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Abstract: The study of fuzzy differential systems is initiated and sufficient
conditions, in terms of Lyapunov-like functions, are provided for the new
concept of stability which unifies Lyapunov and orbital stabilities as well as
includes new notions in between.
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1 Introduction

Recently, the theory of fuzzy differential equations has been initiated and the basic results
have been systematically investigated, including Lyapunov stability, in [2, 3, 6, 8, 10]. This
study of fuzzy differential equations corresponds to scalar differential equations without
fuzziness.

A new concept of stability that includes Lyapunov and orbital stabilities as well as
leads to new notions of stability in between them is introduced in terms of a given topol-
ogy of the function space [9] and sufficient conditions in terms of Lyapunov-like functions
are provided for such concepts to hold relative to ordinary differential equations [5].

In this paper, we shall extend the notion fuzzy differential system employing the gener-
alized metric space and then develop the new concept of stability theory proving sufficient
conditions in terms of vector Lyapunov-like functions in the framework of fuzziness. For
this purpose, we develop suitable comparison results to deal with fuzzy differential sys-
tems in terms of Lyapunov-like functions and then employing the comparison result offer
sufficient conditions for the new concepts to hold. This new approach helps to understand
the intricacies involved in incorporating fuzziness in the theory of differential equations.

c© 2001 Informath Publishing Group. All rights reserved. 111
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2 Preliminaries

Let Pk(Rn) denote the family of all nonempty compact, convex subsets of Rn. If α, β ∈
R and A, B ∈ Pk(Rn), then

α(A + B) = αA + αB, α(βA) = (αβ)A, 1A = A

and if α, β ≥ 0, then (α + β)A = αA + βA. Let I = [t0, t0 + a], t0 ≥ 0 and a > 0 and
denote by En = [u : Rn → [0, 1] such that u satisfies (i) to (iv) mentioned below]:

(i) u is normal, that is, there exists an x0 ∈ Rn such that u(x0) = 1;
(ii) u is fuzzy convex, that is, for x, y ∈ Rn and 0 ≤ λ ≤ 1,

u(λx + (1 − λ)y) ≥ min[u(x), u(y)];

(iii) u is upper semicontinuous;

(iv) [u]0 = [x ∈ Rn : u(x) > 0] is compact.

For 0 < α ≤ 1, we denote [u]α = [x ∈ Rn : u(x) ≥ α]. Then from (i) to (iv), it follows
that the α-level sets [u]α ∈ Pk(Rn) for 0 ≤ α ≤ 1.

Let dH(A, B) be the Hausdorff distance between the sets A, B ∈ Pk(Rn). Then we
define

d[u, v] = sup
0≤α≤1

dH [[u]α, [v]α],

which defines a metric in En and (En, d) is a complete metric space. We list the following
properties of d[u, v]:

d[u + w, v + w] = d[u, v] and d[u, v] = d[v, u],

d[λu, λv] = |λ|d[u, v],

d[u, v] ≤ d[u, w] + d[w, v],

for all u, v, w ∈ En and λ ∈ R.
For x, y ∈ En if there exists a z ∈ En such that x = y + z, then z is called the

H-difference of x and y and is denoted by x−y. A mapping F : I → En is differentiable
at t ∈ I if there exists a F ′(t) ∈ En such that the limits

lim
h→0+

F (t + h) − F (t)

h
and lim

h→0+

F (t) − F (t − h)

h

exist and are equal to F ′(t). Here the limits are taken in the metric space (En, d).
Moreover, if F : I → En is continuous, then it is integrable and

b
∫

a

F =

c
∫

a

F +

b
∫

c

F.

Also, the following properties of the integral are valid. If F, G : I → En are integrable,
λ ∈ R, then the following hold:

∫

(F + G) =

∫

F +

∫

G;

∫

λF = λ

∫

F, λ ∈ R;

d[F, G] is integrable;

d

[
∫

F,

∫

G

]

≤

∫

d[F, G].
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Finally, let F : I → En be continuous. Then the integral G(t) =
t
∫

a

F is differentiable

and G′(t) = F (t). Furthermore,

F (t) − F (t0) =

t
∫

a

F ′(t).

See [2, 3, 8, 10] for details.
We need the following known [4] results from the theory of ordinary differential inequa-

lities. Hereafter, the inequalities between vectors in Rd are to be understood component-
wise.

Theorem 2.1 Let g ∈ C[R+ × Rd
+ × Rd

+, Rd], g(t, w, ξ) be quasimonotone nonde-
creasing in w for each (t, ξ) and monotone nondecreasing in ξ for each (t, w). Suppose
further that r(t) = r(t, t0, w0) is the maximal solution of

w′ = g(t, w, w), w(t0) = w0 ≥ 0, (2.1)

existing on [t0,∞). Then the maximal solution R(t) = R(t, t0, w0) of

w′ = g(t, w, r(t)), w(t0) = w0 ≥ 0, (2.2)

exists on [t0,∞) and
r(t) ≡ R(t), t ≥ t0. (2.3)

Theorem 2.2 Assume that the function g(t, w, ξ) satisfies the conditions of Theo-
rem 2.1. Then m ∈ C[R+, Rd

+] and

D+m(t) ≤ g(t, m(t), ξ), t ≥ t0. (2.4)

Then for all ξ ≤ r(t), it follows that

m(t) ≤ r(t), t ≥ t0.

3 Fuzzy Differential System

We have been investigating so far the fuzzy differential equation

u′ = f(t, u), u(t0) = u0, (3.1)

where f ∈ C[R+ × En, En], which corresponds to, without fuzziness, scalar differential
equation [2, 3, 6, 8]. To consider the situation analogous to differential system, we need to
prepare suitable notation. Let u = (u1, u2, . . . , uN) with ui ∈ En for each 1 ≤ i ≤ N

so that u ∈ EnN , where

EnN = (En × En × · · · × En), N − times.
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Let f ∈ C[R+ ×EnN , EnN ] and u0 ∈ EnN . Then consider the fuzzy differential system

u′ = f(t, u), u(t0) = u0. (3.2)

We have two possibilities to measure the new fuzzy variables u, u0, f , that is,

(1) we can define d0[u, v] =
N
∑

i=1

d[ui, vi], where ui, vi ∈ En for each 1 ≤ i ≤ N and

employ the metric space (EnN , d0), or
(2) we can define the generalized metric space (EnN , D), where

D[u, v] = (d[u1, v1], d[u2, v2], . . . , d[uN , vN ]).

In any of the foregoing set-ups, one can prove existence and uniqueness results for
(3.2) using the appropriate contraction mapping principles. See [1] for the details of
generalized spaces and generalized contraction mapping principle.

We can now prove the needed comparison result in terms of suitable Lyapunov-like
functions. For this purpose, we let

Ω = [σ ∈ C1[R+, R+] : σ(t0) = t0 and w(t, σ, σ′) ≤ r(t), t ≥ t0], (3.3)

where w ∈ C[R2
+ × R, Rd

+] and r(t) is the maximal solution of (2.1).

Theorem 3.1 Assume that for some σ ∈ Ω, there exists a V such that V ∈ C[R2
+ ×

EnN × EnN , Rd
+] and

|V (t, σ, u1, v1) − V (t, σ, u2, v2)| ≤ A[D[u1, u2] + D[v1, v2]],

where A is an N × N positive matrix. Moreover,

D+V (t, σ, u, v)

= lim sup
h→0+

[V (t + h, σ(t + h), u + hf(t, u), v + hf(σ, v)σ′) − V (t, σ, u, v)]

h

≤ g(t, V (t, σ, u, v), w(t, σ, σ′)),

where g(t, w, ξ) satisfies the conditions of Theorem 2.1.
Then V (t0, σ(t0), u0, v0) ≤ w0 implies

V (t, σ(t), u(t, t0, u0), v(σ(t), t0, v0)) ≤ r(t, t0, w0), t ≥ t0.

Proof Let u(t) = u(t, t0, u0), v(t) = v(t, t0, v0) be the solutions of (3.2) and set
m(t) = V (t, σ(t), u(t), v(σ(t)) so that m(t0) = V (t0, σ(t0), u0, v0). Let w0 = m(t0).
Then for small h > 0, we have, in view of the Lipschitz condition given in (i),

m(t + h) − m(t) = V (t + σ, σ(t + h), u(t + h), v(σ(t + h)))

− V (t, σ(t)u(t), v(σ(t))) + V (t + h, σ(t + h), u(t) + hf(t, u(t)),

v(σ(t)) + hf(σ(t), v(σ)))σ′(t)))

≤ A[D[u(t + h), u(t) + hf(t, u(t))] + D[v(σ(t + h)),

v(σ(t)) + hf(σ(t), v(σ(t)))σ′(t)]] + V (t + h, σ(t + h), u(t) + hf(t, u(t)),

v(σ(t)) + hf(σ(t), v(σ(t)))σ′(t)) − V (t, σ(t), u(t), v(σ(t))).
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It therefore follows that

D+m(t) = lim sup
h→0+

1

h
[m(t + h) − m(t)] ≤ D+V (t, σ(t), u(t), v(t))

+ A lim sup
h→0+

1

h
[D[u(t + h), u(t) + hf(t, u(t))]

+ D[v(σ(t + h), v(σ(t) + hf(σ(t), v(σ(t))σ′)]].

Since u′(t), v′(t) is assumed to exist, we see that u(t + h) = u(t) + z(t), v(σ(t + h)) =
v(σ(t)) + ξ(σ(t)), where z(t), ξ(σ(t)) are the H-differences for small h > 0. Hence
utilizing the properties of D[u, v], we obtain

D[u(t + h), u(t) + hf(t, u(t))] = D[u(t) + z(t), u(t) + hf(t, u(t)))]

= D[z(t), hf(t, u(t))] = D[u(t + h) − u(t), hf(t, u(t))].

As a result, we get

1

h
D[u(t + h), u(t) + hf(t, u(t))] = D

[

u(t + h) − u(t)

h
, f(t, u(t))

]

and consequently

lim sup
h→0+

1

h
D[u(t + h, u(t) + h(f(t, u(t))]

= lim sup
h→0+

D

[

u(t + h) − u

h
, f(t, u(t))

]

= D[u′(t), f(t, u(t))] = 0,

since u(t) is the solution of (3.2). Similarly, we can obtain

lim sup
h→0+

1

h
D[v(σ(t + h), v(σ(t)) + hf(σ(t), v(σ(t))σ′]

= D[v′(σ(t)), f(σ(t), v(σ(t))σ′(t)] = 0,

since v(t) is the solution of (3.2). We have therefore the vector differential inequality

D+m(t) ≤ g(t, m(t), w(t, σ(t), σ′(t))), t ≥ t0.

Since σ ∈ Ω, we then get

D+m(t) ≤ g(t, m(t), r(t)), t ≥ t0,

where r(t) is the maximal solution of (2.1). By the theory of differential inequalities for
systems [4] the claimed estimate (3.4) follows and the proof is complete.

Let us next introduce the new concept of stability. Let v(t, t0, v0) bet the given
unperturbed solution of (3.2) on [t0,∞) and u(t, t0, u0) be any perturbed solution of
(3.2) on [t0,∞) and u(t, t0, u0) be any perturbed solution of (3.2) on [t0,∞). Then
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the Lyapunov stability (LS) compares the phase space positions of the unperturbed and
perturbed solutions at exactly simultaneous instants, namely

d0[u(t, t0, u0), v(t, t0, v0)] < ǫ, t ≥ t0, (LS)

which is a too restrictive requirement from the physical point of view. The orbital
stability (OS), on the other hand, compares phase space positions of the same solutions
at any two unrelated times, namely,

inf
s∈[t0,∞)

d0[u(t, t0, u0), v(s, t0, v0)] < ǫ, t ≥ t0.

In this case, the measurement of time is completely irregular and therefore (OS) is too
loose a demand.

We therefore need a new notion unifying (LS) and (OS) which would lead to concepts
between them that could be physically significant. This is precisely what we plan to do
below.

Let E denote the space of all functions from R+ → R+, each function σ(t) ∈ E

representing a clock. Let us call σ(t) = t, the perfect clock. Let τ -be any topology in
E. Given the solution v(t, t0, v0) of (3.2) existing on [t0,∞), we define following Massera
[9], the new concept of stability as follows.

Definition 3.1 The solution u(t, t0, v0) of (3.2) is said to be

(1) τ-stable, if, given ǫ > 0, t0 ∈ R+, there exist a δ = δ(t0, ǫ) > 0 and an τ -
neighborhood of N of the perfect clock satisfying d0[u0, v0] < δ implies

d0[u(t, t0, u0), v(σ(t), t0, v0)] < ǫ, t ≥ t0,

where σ ∈ N ;
(2) τ-uniformly stable, if δ in (1) is independent of t0.
(3) τ-asymptotically stable, if (1) holds and given ǫ > 0, t0 ∈ R+, there exist a

δ0 = δ0(t0) > 0, a τ -neighborhood N of the perfect clock and a T = T (t0, ǫ) > 0
such that

d0[u0, v0] < δ0 implies d0[u(t, t0, u0), v(σ(t), t0, v0)] < ǫ, t ≥ t0 + T,

where σ ∈ N ;
(4) τ-uniformly asymptotically stable, if δ0 and T are independent of t0.

We note that a partial ordering of topologies induces a corresponding partial ordering
of stability concepts.

Let us consider the following topologies of E:

(τ1) the discrete topology, where every set in E is open;
(τ2) the chaotic topology, where the open sets are only the empty set and the entire

clock space E;
(τ3) the topology generated by the base

Uσ0,ǫ = [σ ∈ E : sup
t∈[t0,∞)

|σ(t) − σ0(t)| < ǫ];

(τ4) the topology defined by the base

Uσ0,ǫ = [σ ∈ C1[R+, R+] : |σ(t0) − σ0(t0)| < ǫ and

sup
t∈[t0,∞)

|σ′(t) − σ′
0(t)| < ǫ].
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It is easy to see that (τ3), (τ4) topologies lie between (τ1) and (τ2). Also, an obvious
conclusion is that if the unperturbed motion v(t, t0, v0) is the trivial solution, then (OS)
implies (LS).

4 Stability Criteria

In τ1-topology, one can use the neighborhood consisting of solely the perfect clock σ(t) =
t and therefore, Lyapunov stability follows immediately from the existing results.

Define B = B[t0, v0] = v([t0,∞), t0, v0) and suppose that B is closed. Then the
stability of the set B can be considered the usual way in terms of Lyapunov functions
[4, 7] since

ρ[u(t, t0, u0), B] = inf
s∈[t0,∞)

d0[u(t, t0, u0), v(s, t0, v0)],

denoting the infimum for each t by st and defining σ(t) = st for t > t0, we see that σ ∈ E

in τ2-topology. We therefore obtain orbital stability of the given solution v(t, t0, v0) in
terms of τ2-topology.

To investigate the results corresponding to (τ3) and (τ4) topologies, we shall utilize the
comparison Theorem 3.1 and modify suitably the proofs of standard stability results [4, 7].

Theorem 4.1 Let the condition (i) of Theorem 3.1 be satisfied. Suppose further that

(a) b(d0[u, v]) ≤
d
∑

i=1

vi(t, σ, u, v) ≤ a(t, σ, d0[u, v]),

(b) d(|t − σ(t)|) ≤
d
∑

i=1

wi(t, σ, σ′),

where a(t, σ, ·), b(·) and d(·) ∈ K = [a ∈ C[R+, R+], a(0) = 0 and a(η) is increasing
in η].

Then the stability properties of the trivial solution of (2.1) imply the correspond-
ing τ3-stability properties of fuzzy differential system (3.2) relative to the given solu-
tion v(t, t0, v0).

Proof Let v(t) = v(t, t0, v0) be the given solution of (3.2) and let 0 < ǫ and t0 ∈ R+

be given. Suppose that the trivial solution of (2.1) is stable. Then given b(ǫ) > 0 and
t0 ∈ R+, there exists a δ1 = δ1(t0, ǫ) > 0 such that

0 ≤
d

∑

i=1

wi0 < δ1 implies
d

∑

i=1

wi(t, t0, w0) < b(ǫ), t ≥ t0, (4.1)

where w(t, t0, w0) is any solution of (2.1). We set w0 = V (t0, σ(t0), u0, v0) and choose
δ = δ(t0, ǫ), η = η(ǫ) satisfying

a(t0, σ(t0), δ) < δ1 and η = d−1(b(ǫ)). (4.2)

Using (b) and the fact σ ∈ Ω, we have

d(|t − σ|) ≤
d

∑

i=1

wi(t, σ, σ′) ≤
d

∑

i=1

ri(t, t0, w0) ≤
d

∑

i=1

ri(t, t0, δ1) < b(ǫ).
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It then follows that |t − σ(t)| < η and hence σ ∈ N . We claim that whenever

d0[u0, v0] < δ and σ ∈ N,

it follows that
d0[u(t, t0, u0), v(σ(t), t0, v0] < ǫ, t ≥ t0.

If this is not true, there would exist a solution u(t, t0, u0) and a t1 > t0 such that

d0[u(t1, t0, u0), v(σ(t1), t0, v0] = ǫ and

d0[u(t, t0, u0, v(σ(t), t0, v0] ≤ ǫ
(4.3)

for t0 ≤ t ≤ t1. Then by Theorem 3.1, we get for t0 ≤ t ≤ t1,

V (t, σ(t), u(t, t0, u0), v(t, t0, v0)) ≤ r(t, t0, V (t0, σ(t0, u0, v0)),

where r(t, t0, w0) is the maximal solution of (2.1). It then follows from (4.1), (4.3), using
(a), that

b(ǫ) = b(d0[u(t1), v(σ(t1))]) ≤

d
∑

i=1

Vi(t1, σ(t1), u(t1), v(σ(t1)]

≤

d
∑

i=1

ri(t1, t0, V (t0, σ(t0), u0, v0)) ≤

d
∑

i=1

ri(t1, t0, a(t0, σ(t0), δ1)) < b(ǫ),

a contradiction, which proves τ3-stability.
Suppose next that the trivial solution of (2.1) is asymptotically stable. Then it is

stable and given b(ǫ) > 0, t0 ∈ R+, there exist δ01 = δ01(t0) > 0 and T = T (t0, ǫ) > 0
satisfying

0 ≤

d
∑

i=1

w0i < δ10 implies

d
∑

i=1

wi(t, t0, w0) < b(ǫ), t ≥ t0 + T. (4.4)

The τ3-stability yields taking ǫ = ρ > 0 and designating δ0(t0) = δ(t0, ρ)

d0[u0, v0] < δ0 implies d0[u(t), v(σ(t))] < ρ, t ≥ t0

for every σ such that |t − σ| < η(ρ). This means that by Theorem 3.1

V (t, σ(t), u(t), v(t)) ≤ r(t, t0, δ10), t ≥ t0. (4.5)

In view of (4.4), we find that

d
∑

i=1

ri(t, t0, δ10) < b(ǫ), t ≥ t0 + T,

which in turn implies

d[|(t − σ(t)|] ≤
d

∑

i=1

wi(t, σ, σ′) ≤
d

∑

i=1

ri(t, t0, δ10) < b(ǫ), t ≥ t0 + T.
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Thus |t − σ(t)| < d−1b(ǫ) = η(ǫ), t ≥ t0 + T . Hence there exists a σ ∈ N satisfying

d0[u(t), v(σ(t))] ≤

d
∑

i=1

Vi(t, σ(t), u(t), v(σ(t)))

≤
d

∑

i=1

ri(t, t0, δ10) < b(ǫ), t ≥ t0 + T,

which yields
d0[u(t), v(σ(t))] < ǫ, t ≥ t0 + T,

whenever d0[u0, v0] < δ0 and σ ∈ N . This proves τ3-asymptotic stability of (3.2) and
the proof is complete.

To obtain sufficient conditions for τ4-stability, we need to replace (b) in Theorem 4.1
by

(c) d[|1 − σ′(t)|] ≤
d
∑

i=1

wi(t, σ, σ′),

and then mimic the proof with suitable modifications. We leave the details to avoid
monotony.

It would be interesting to obtain different sets of sufficient conditions as well as discover
other topologies that would be of interest.
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signals for a linear time-invariant dynamic system in the presence of state
constraints. Resort to the theory of invariant sets due to its good capability
of handling this kind of problem. Attention is placed on the determination
of suitable sets for the attainable steady state values and of suitable control
laws which guarantee that every possible output steady state value belonging
to this set can be reached from any initial state belonging to a proper set.
Then, based on recent results on the possibility of associating to these sets
explicit smooth control laws, an explicit controller is derived which allows the
system to asymptotically track constant reference signals and guarantees that
no constraints violation occurs. Finally, an example of the implementation of
the proposed control law will be reported.
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1 Introduction

In most recent literature concerning linear time-invariant continuous-time dynamic sys-
tems much emphasis has been put on the constrained stabilization problem [1, 2, 3, 4, 5]
but little has been done to derive stabilizing regulators which guarantee perfect asymp-
totic tracking of constant reference signal in the presence of state and control constraints.
This problem can for instance be solved by recasting it as an l1 problem, though this
results in high complexity regulators due to the nature of the problem which in general
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results, according to [6], in being a multiblock problem. Another way to proceed is that
of exploiting invariant regions as done in [7, 8, 9]. In [8] the authors have proposed a
discrete-time reference governor which behaves significantly well in the presence of state
and control constraints and whose expression is given in implicit form and can be derived
from that of the “maximal output admissible set” [4] of a proper dynamic system. The
mentioned governor acts as a nonlinear first order filter which limits the reference signal
whenever the state is almost to exit from the maximal output admissible set. In this
work we focus our attention on continuous-time systems with state constraints only and,
instead of limiting instant by instant the reference signal, we provide a polyhedral set of
signals the output can track. Then, exploiting some recent results concerning the possi-
bility of “smoothing” polyhedral Lyapunov functions [10], we show how it is possible to
associate a control law in explicit form to this set.

2 Notation

For a vector x ∈ IRn we denote by ‖x‖∞ = max
i

|xi|. We call C-set a convex and

compact set having the origin as an interior point. Given a C-set S we denote by ∂S and
intS the border and interior of S, respectively, and we denote the scaled set λS, for λ ≥ 0,
as λS = {y : y = λx x ∈ S}. Given a continuous function Ψ: IRn → IR and k ∈ IR

we define the (possibly empty) closed set N̄ [Ψ, k] as N̄ [Ψ, k] = {x ∈ IRn : Ψ(x) ≤ k}.
We say that Ψ: IRn → IR is a Gauge function if, for every x, y ∈ IRn it fulfills
the following properties: Ψ(x) > 0, if x 6= 0, Ψ(λx) = λΨ(x), for every λ ≥ 0,
and Ψ(x + y) ≤ Ψ(x) + Ψ(y). If Ψ is a Gauge function, the set N̄ [Ψ, k] is a C-
set for all k > 0. Any C-set S induces a Gauge function (the so-called Minkowski
functional of S) which is defined as ΨS(x)

.
= inf{µ ≥ 0: x ∈ µS} or, equivalently,

as ΨS(x)
.
= inf{µ ≥ 0: x

µ
∈ S}. A polyhedral C-set P ∈ IRn can be written as

P = {x : max
i=1,s

Fix ≤ 1}, or in compact form as P = {x : Fx ≤ 1̄}, where F ∈ IRs×n

is a full column rank matrix, 1̄ is the s-dimensional column vector [1 1 · · · 1]T and the
inequality sign has to be intended component-wise. We will say that an homogeneous
function Ψ(x) from IRn to IR+ is a polyhedral function if it is the Minkowski functional
of a polyhedral C-set. If P = {x : Fx ≤ 1̄}, then ΨP(x) = max

i
Fix.

3 Problem Statement

In this work we consider a continuous-time reachable and observable square dynamic
system (that is with an equal number of inputs and outputs) in its standard form, say
described by

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(1)

where A ∈ IRn×n, B ∈ IRn×m and the output matrix C ∈ IRm×n. The main additional
requirement for this system is that the state never exceeds prescribed bounds represented
by the C-set X , say

x(t) ∈ X for every t ≥ 0.
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Since a necessary and sufficient condition for the constant tracking problem to have a
solution is that the system has no transmission zeros at the origin, we will work under
the following assumption.

Assumption 3.1 The pencil matrix

Ac =

[

A B

C 0

]

is invertible.

For this kind of system the constrained stabilization problem is quite a well established
subject [2, 1, 3]. If we assume X to be a polyhedral C-set we know that a stabilizing
control law exists if and only if there exists a contractive set for (1) contained in X . If we
add the requirement on the output infinity norm not to exceed a prescribed value µ then
the above statement must be slightly modified in the sense that the solution requires the
determination of a contractive set for (1) contained in X ∗ = X

⋂

{x : ‖Cx‖∞ ≤ µ} (this
fact has been used in [11, 12] for the solution of l1 problems with state feedback). In view
of the reachability assumption it is easy to see that the afore-mentioned problem always
has a solution (for instance a stabilizing linear regulator will do the job); nevertheless
the interest in this kind of problem is usually mostly concerned with the criterion on the
basis of which the stabilizing control law has to be chosen. One “natural” criterion is
that of maximizing the domain of attraction to the origin included in the given set X as
done in [2].

By exploiting this criterion we will consider the constrained tracking problem and we
will take advantage of recent results [10] on the possibility of deriving suitable smooth
controllers in explicit form for the solution of the constrained stabilization problem for
tracking purposes. Before stating our problem it is worth recalling that, in view of As-
sumption 3.1 and of the constraints on the state, the set of admissible constant reference
signals YR which the system will be able to track will be necessarily bounded. The
problem we will focus our attention on can then be stated in the following way:

Problem 3.1 Given the continuous-time dynamic system (1) and the state con-
straints set X find a state feedback control law u = Φ(x) and a set of reference signals
YR such that for every constant reference signal ȳ ∈ YR the state evolution never exceeds
the prescribed bounds for every t ≥ 0 and such that lim

t→∞
y(t) → ȳ.

4 Tracking a Constant Reference Signal

In the previous section without going into much detail we have stated our problem and
we have mentioned the set YR of admissible values the reference signal ȳ can assume.
To see how it is possible to derive such a set we have first recall some results concerning
the use of invariant regions for the solution of this kind of problem. As a first step we
recall that, given the continuous-time system (1), its discrete-time Euler Approximating
System (EAS) is defined as follows:

x(k + 1) = (I + τA)x(k) + τBu(k),

y(x) = Cx(k).
(2)

For continuous and discrete-time systems it is possible to furnish the following defini-
tions of domain of attraction [2].
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Definition 4.1 A region P ⊂ X is a domain of attraction (β-contractive region) for
system (1) if there exists a constant β > 0 (often referred to as speed of convergence)
such that for every initial condition x(0) ∈ P there exists a piecewise continuous control
function u(·) : IR → IRm such that the evolution corresponding to u(t) is such that:

ΨP(x(t)) ≤ ΨP(x(0))e−βt

for every t ≥ 0 (we recall that ΨP is the Minkowski functional induced by P on IRn).

Definition 4.2 A region P ⊂ X is a domain of attraction (λ-contractive region) for
system (2) if there exists a constant λ < 1 (often referred to as contractivity) such that
for every initial condition x(0) ∈ P there exists a sequence u(k) ∈ IRm such that the
corresponding evolution is such that:

ΨP(x(k)) ≤ ΨP(x(0))λk

for every t ≥ 0.

It can be proven that the existence of a β-contractive set P for system (1) is equivalent
to the existence, for every x ∈ P , of a value v such that:

D+ΨP(x, v)
.
= lim sup

τ→0+

ΨP(x + τ(Ax + Bv)) − ΨP(x)

τ
≤ −βΨP(x) (3)

(the introduction of the generalized Lyapunov derivative allows to deal with non smooth
functionals, see [10] for details). In the discrete-time case the above condition, for the
existence of a λ-contractive set for (2), translates in the following one-step contractivity
requirement:

ΨP(x + τ(Ax + Bv)) ≤ λΨP(x). (4)

It is well known that the systems under consideration, for a given β, admit a maximal
β-contractive set Sβ contained in X and that this set is in general not polyhedral. From
[2] it is known that it is possible to approximate arbitrarily well the largest contractive
set Sβ ⊂ X by means of a polyhedral set P ⊂ X which results in being a domain of

attraction for system (1) with a speed of convergence β̄ arbitrarily close to the prescribed
one and the control u = φ(x) can be expressed in feedback form, where φ(x) is Lipschitz
on P . It is straightforward that the same applies (with the cited replacement of the set
X with X ∗) when output bounds have to be considered.

This approximation is derived and can be effectively computed by exploiting the re-
lation existing between a continuous-time system of the form (1) and its discrete-time
EAS (2), according to the next result.

Theorem 4.1 [13] Suppose system (1) admits a β-contractive C-set P ⊂ X . Then
for all 0 < β′ < β there exists τ > 0 such that P is λ′-contractive for the discrete-time
system (2) with 0 < λ′ = 1− τβ′. Conversely, if system (2) admits a λ-contractive C-set

P then P is β-contractive for system (1) with β = (1−λ)
τ

.

Given the above definitions it is hence possible to define the set YR of admissible
constant reference signals which the system will be able to track. Suppose a β-contractive
set P has been found and consider the following equation:

Ac

[

x̄

ū

]

=

[

0

ȳ

]

. (5)
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Since Ac is invertible the solution to the above set of equations can be written as

x̄ = Kȳx̄ȳ, (6)

ū = Kȳūȳ. (7)

From (6) we see that all the admissible equilibrium states belong to the subspace Kȳx̄ȳ

so that the admissible constant reference signals which do not lead to state constraints
violation are given by

YR = {ȳ : Kȳx̄ȳ ∈ P}, (8)

while from (7) we know that to track an arbitrary constant signal ȳ ∈ YR the control
value will have to converge to the value ū = ū(ȳ) = Kȳūȳ.

The next step for the solution of Problem 3.1 is that of determining a suitable control
law such as to guarantee that the state constraints are never violated and the output
converges to the given constant reference value ȳ. In view of Assumption 3.1 this amounts
to requiring that lim

t→∞
x(t) = Kȳx̄ȳ.

To this aim consider a reference value ȳ ∈ αYR, α < 1 (the need for the introduction
of the parameter α will be clear in the sequel; the introduction of α basically amounts to
discarding trackable signals corresponding to states belonging to the border of P) and
consider the following functional, which is the Gauge functional associated to the set P
and centered in x̄(ȳ)

Ψȳ(x)
.
= inf{µ ≥ 0: x̄(ȳ) +

1

µ
(x − x̄(ȳ)) ∈ P}.

The following lemma allows us to compute explicitly Ψȳ(x) whenever P is a polyhedral C-
set.

Lemma 4.1 If P = {x : Fx ≤ 1̄}, then for every ȳ ∈ αYR, α < 1, and x ∈ P

Ψȳ(x) = max
i

Fi(x − x̄(ȳ))

1 − Fix̄(ȳ)
. (9)

Moreover Ψȳ(x) = 1 whenever x ∈ ∂P.

Proof It follows from simple algebra by first noting that, since x̄(ȳ) ∈ intP , the
quantity 1 − Fix̄(ȳ) is strictly greater than zero for every i. Hence

Ψȳ(x)
.
= inf

{

µ ≥ 0: x̄ +
1

µ
(x − x̄) ∈ P

}

= inf

{

µ ≥ 0: Fi

(

x̄ +
1

µ
(x − x̄)

)

≤ 1 ∀ i

}

= inf

{

µ ≥ 0:
Fi(x − x̄)

1 − Fix̄
≤ µ ∀ i

}

.

The next lemma shows that the functional Ψȳ(x) just introduced, whenever P is a
domain of attraction, can be regarded as a Lyapunov function for the dynamic of the
error e(t) = x(t) − x̄(ȳ) when the reference signal is a constant. For the sake of clarity
and given the above-mentioned possibility of approximating the largest β-contractive set
for system (1) by means of a polyhedral set, without lack of generality we will limit our
attention to the case of polyhedral C-sets, although the next lemma can be proven true
for any contractive C-set.
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Lemma 4.2 Let P = {x : Fx ≤ 1̄} be a β-contractive polyhedral C-set for system
(1) and let YR be defined as in (8). Then for every constant value ȳ ∈ αYR, α < 1,
there exists 0 < β1 < β and a state feedback control function u = φ1(x, x̄) such that for
every x(0) ∈ P the corresponding state evolution is such that

Ψȳ(x(t)) ≤ e−β1tΨȳ(x(0)) (10)

for every t ≥ 0.

Proof Consider a constant reference value ȳ and let x̄ and ū be the corresponding
state and control values. Setting e(t) = x(t) − x̄ and v(t) = u(t) − ū leads to the
following description of the error dynamics:

ė = ẋ − ˙̄x = Ax + Bu − (Ax̄ + Bū) = Ae + Bv. (11)

Since Ψȳ(x) = max
i

Fi(x−x̄)
1−Fix̄

= max
i

Fi

1−Fix̄
e = Ψ1(e), showing that (10) holds amounts to

prove that P1 =
{

e : Fi

1−Fix̄
e ≤ 1, i = 1, . . . , s

}

is a β1-contractive domain for system

(11). The latter, in view of Theorem 4.1, can be proven by determining τ and λ1 such
that P1 is λ1 contractive for the discrete-time EAS of (11), say for every e ∈ P1 there
exists v such that

max
i

Fi

1 − Fix̄
(e + τ(Ae + Bv)) ≤ λ1 max

j

Fj

1 − Fj x̄
e. (12)

Let us first consider e ∈ ∂P1 (hence x ∈ ∂P). Expanding v = u − ū in (12), the
above requires, for every i, that

Fi

1 − Fix̄
(x − x̄ + τ(Ax − Ax̄ + Bu − Bū))

=
Fi(x + τ(Ax + Bu)) − 1

1 − Fix̄
+ 1 ≤ λ1.

(13)

From Theorem 4.1 for every β′ < β there exists τ such that P is λ′ = 1−τβ′-contractive
for the EAS of (1), say for every x ∈ ∂P , there exists ũ such that for every i

Fi(x + τ(Ax + Bũ)) ≤ 1 − τβ′.

Hence, setting u = ũ in (13), results in

Fi(x + τ(Ax + Bũ)) − 1

1 − Fix̄
+ 1 ≤ −

τβ′

1 − Fix̄
+ 1 ≤ λ1,

for some λ1 < 1 in view of the fact that 1 − Fix̄ > 0 for every i. The extension to
the case of e (respectively x = e + x̄) in the interior of P1 (resp. P) is straightforward
due to the homogeneity of Ψ1(e). In fact for every x in the interior of P the error e can
be written as e = x − x̄ = γ(x1 − x̄) = γe1, with e1 ∈ ∂P1, for a proper scaling factor
γ < 1. The one step contractivity requirement (12) can then be rewritten as

max
i

Fi

1 − Fix̄

(

γe1 + τ(γAe1 + Bv)
)

≤ λ1γ. (14)
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Setting v = γv1 in (14) and dividing both terms by γ we get (13).
Now, since P1 is β1-contractive for (11), it is possible to associate to P1 a Lipschitz

continuous state feedback control law φ(e) = φ(x − x̄). Going back from (11) to the
original system (1) it is readily seen that φ1(x, x̄) = ū + φ(x − x̄) is the desired control
law.

The lemma just presented allows us partially to solve Problem 3.1 as it just states
that whenever the initial condition lies in the set P and the reference signal is a constant
value belonging to the interior of YR we can provide a Lipschitz continuous state feedback
control function which guarantees that the corresponding state evolution belongs to P
and asymptotically converges to the given steady state value. This might appear as
an expected consequence of the existence of a contractive region (w.r.t. the origin)
for system (1). Nevertheless, as we will see next, this way of proceeding allows us to
determine an explicit feedback control law. Before going on with the next theorem we
need to recall a result which is a restricted version of what has been presented in [14]
concerning the possibility of deriving explicit continuous state feedback control law for
the class of systems under consideration. This is obtained by smoothing the polyhedral
function ΨP(x) so as to get, for a given positive integer q > 0, the Gauge function

Ψq(x) =

(

s
∑

i=1

σ2q(Fix)

)
1
2q

(15)

with

σr(x) =

{

xr if x ≥ 0

0 otherwise
.

Introducing the function gradient

∇Ψq(x) =

[

∂Ψq(x)

∂x1
, . . . ,

∂Ψq(x)

∂xn

]

= Ψq(x)(1−2q)Gq(x)F,

where
Gq(x) =

[

σ2q−1(F1x) . . . σ2q−1(Fsx)
]

,

the following result holds:

Theorem 4.2 [14] Let P = {x : Fx ≤ 1̄} be a β-contractive polyhedral C-set for
system (1). Then for every 0 < β1 < β there exists a positive integer q such that the
set Pq = {x : Ψq(x) ≤ 1} is β1-contractive for system (1). Moreover it is possible to

associate to Ψq(x) the explicit smooth1 state feedback control law

u = Φ(x) = −µ0Ψq(x)2(1−q)BT FT Gq(x), (16)

where µ0 is a finitely computable nonnegative constant.

In Lemma 4.2 it has been shown that the polyhedral function (9) is a Lyapunov
function for the error whenever the reference signal belongs to the interior of YR, but
nothing has been said about the effective determination of a stabilizing control law (in

1We mean smooth for every x 6= 0.
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the sense that we have proved its existence though not furnishing any expression for it),
due to the lack of differentiability of (9).

The next theorem will provide us with the requested expression for the controller. To
this aim we first “smooth”, similarly to what we have done in (15), the expression given
by (9) and centered in x̄(ȳ) by taking q < ∞ sufficiently large so as to get the function

Ψȳ
q(x) =

( s
∑

i=1

σ2q

(

Fi(x − x̄)

1 − Fix̄

))
1
2q

. (17)

Simple algebra shows that the gradient ∇Ψȳ
q(x) of (17) is:

∇Ψȳ
q(x) =

(

Ψȳ
q(x)

)(1−2q)
Gȳ

q(x)Fȳ ,

where

Gȳ
q(x) =

[

σ2q−1

(

F1(x − x̄)

1 − F1x̄

)

. . . σ2q−1

(

Fs(x − x̄)

1 − Fsx̄

)]

and

Fȳ =





F1

1−F1x̄

· · ·
Fs

1−Fsx̄



 .

These expressions allow us to introduce the next theorem.

Theorem 4.3 Let P = {x : Fx ≤ 1̄} be a β-contractive polyhedral C-set contained
in X for system (1). Then for every reference signal ȳ ∈ αYR, α < 1, there exists
0 < β1 < β and an integer q such that the control law

Φ(x, ȳ) = ū(ȳ) − ρ0Ψ
ȳ
q(x)2(1−q)BT FT

ȳ Gȳ
q(x), (18)

where ρ0 is a finitely computable nonnegative constant, is such that for every initial con-
dition x(0) ∈ P the output of the corresponding evolution y(t) asymptotically converges
to ȳ with speed equal to β1 while assuring that x(t) ∈ X for every t ≥ 0.

Proof From Lemma 4.2 we have that P1 = {e : Ψ1(e) ≤ 1}, where Ψ1(e) =

max
i

Fi

1−Fix̄
e, is a β1-contractive set for system (11). The proof hence follows immediately

by first recalling Theorem 4.2, which assures the existence of an explicit control law of
the form (16) (which will result in being a function of e = x − x̄), and by subsequently
going back to the original system to obtain (18).

5 Example

Consider the following two dimensional system

ẋ(t) =

[

−0.3 1

−1 −0.3

] [

x1(t)

x2(t)

]

+

[

−5

5

]

,

y(t) = [ 2 0 ]

[

x1(t)

x2(t)

]
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Figure 5.1. State space evolution.

with state constraints given by the set X = {x : ‖x‖∞ ≤ 1}. A polyhedral 2-contractive
set contained in X is P = {x : max

i
Fix ≤ 1}, where F is the following matrix

F =



















0 1

0 −1

1 0

−1 0

1.391 1.540

−1.391 −1.540



















.

The resulting sets of admissible constant input and output values are UR =
[−0.073, 0.073] and YR = [−0.470, 0.470]. We chose as a tracking value ȳ = 0.358
corresponding to α = 0.761 and exploiting the results presented in Theorem 4.3 we de-
termined the integer q = 12 such that the proposed control law (18) with ρ0 = 21.586
guarantees asymptotic tracking of ȳ for every x0 ∈ P with speed of convergence β1 = 0.3.
Figure 5.1 depicts the state space evolution obtained starting from zero initial value and
tracking value-equal to ȳ for the first 8 seconds and −ȳ for t > 8 together with different

level surfaces of the Lyapunov functions Ψȳ
12 and Ψ−ȳ

12 (dotted) associated to the two
tracking states x̄(ȳ) and −x̄(ȳ) which belong to the first and third quadrant and are
indicated with a circled cross in the same figure.

Finally Figure 5.2 shows the evolution of the output as well as that of the control.

6 Conclusions

This work has dealt with perfect asymptotic tracking for state constrained dynamic
systems. An alternative approach to the one proposed by Gilbert et al. [8], which is
based on the concept of “maximal output admissible set” and recent results [10, 14], has
been presented. This novel approach allows us to synthesize an explicit nonlinear state
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Figure 5.2. Control and output simulated plots.

feedback control law which guarantees perfect asymptotic tracking while maximizing the
set of trackable signals which do not lead to state constraint violation.
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under input disturbance is considered. The input disturbance is bounded
but the bound information is either deterministic or fuzzy. The control de-
sign is purely deterministic. However, the resulting system performance is
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1 Introduction

Fuzzy theory was originally introduced to describe information (for example, the lin-
guistic information) that is in lack of a sharp boundary with its environment (see [1]).
However, it soon turned into the direction that mainly focuses on the use of fuzzy rea-
soning for control, estimation, decision making, etc. The application of fuzzy reasoning
has enjoyed its advantage that it is model free. The designer’s effort is mainly focused
on tuning some parameters based on linguistic reasoning. It has been shown to be rather
effective for a large amount of complex problems.

The current paper, on the other hand, proposes a rather different angle. It endeavors
to explore applications of the original intention of fuzzy theory, namely, information
description. In particular, we cast the framework within the context of control theory.

Granted that the probability theory is quite self-contained, criticism of its validity in
describing the real world does exist. It is interesting to notice that Kalman [2], among
others, despite his early devotion to the use of probability in mathematical system theory,
is now critical on part of its foundation. Kalman contended that probability theory might

c© 2001 Informath Publishing Group. All rights reserved. 133
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not be all that suitable to describe the majority of randomness. In a sense, the link
between a rather sophisticated mathematical tool and the physical world might be loose.
We stress, however, that Kalman’s recent comment on probability does not automatically
assume him an advocate for fuzzy theory. His view on the latter has been unchanged
(see [3] and [4]).

The fuzzy approach, as originally proposed by Zadeh [1] on the other hand, takes
the extent of occurrence point of view. Historically, the merge between the probability
theory and control/system theory, which can be traced back to the fifties, has been highly
successful and received little criticism. In the state space framework, Kalman initiated
the effort of looking into the estimation problem (see [5]) and control problem (see [6])
when a system is under stochastic noise. The effort has received tremendous attention.
As it turns out, there is now a quite impressive arena on stochastic system and control
theory (see, e.g., [7]) that can not be ignored by any practitioners.

In this work, we shall attempt to pursue a possible use of fuzzy description of uncer-
tainty in robust control design. This may be viewed as an alternative proposal to combine
the fuzzy theory and control theory. The objectives are two fold. First, we explore fuzzy
descriptions of system performance should more information of the uncertainty (in the
fuzzy sense) be provided. This adds more insight on the system performance. Further-
more, this also shows a way to view the system performance with human needs (which
are often best described in a fuzzy sense). Second, we consider an optimal design of the
robust control. The combined average system performance (over the fuzzy description)
and control effort is to be extremized by an appropriate choice of a design parameter.
This may be viewed as an analogous development to the LQG design in stochastic control.

2 Uncertain System and Robust Control

Consider the following uncertain system

ẋ(t) = Ax(t) +Bu(t) +Bv(x(t), t), x(t0) = x0, (2.1)

where t ∈ R is the “time” (or more precisely, the independent variable), x(t) ∈ Rn is
the state, u(t) ∈ Rm is the control, v(x(t), t) ∈ Rm is the (unknown) input disturbance,
A, B are (known) constant matrices. The function v(·, t) is continuous. The function
v(x, ·) is Lebesgue measurable. The task is to choose the control u such that the state
x(t) of the controlled system of (2.1) enters a region around x = 0 after a finite time
and remains there thereafter.

Assumption 2.1 The pair (A,B) is stabilizable.

Assumption 2.2 There is a known scalar u ≥ 0 such that

max
x∈R

n

t∈R

‖v(x, t)‖ ≤ u. (2.2)

Choose constant n × n matrices Q > 0 and R > 0. Solve the following Riccati
equation

ATP + PA− PBR−1BTP +Q = 0 (2.3)

for the solution P > 0, which is also an n× n matrix. Notice that the solution P > 0
exists and is unique if (A,B) is stabilizable. We propose the control u as follows:

u(t) = −
1

2
R−1BTPx(t) − γBTPx(t), (2.4)

where γ > 0 is a scalar constant. The choice of γ will be made later.
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Definition 2.1 Consider a dynamical system

ξ̇(t) = f(ξ(t), t) (2.5)

with ξ(t0) = ξ0. The solution of the system (suppose it exists) is uniformly ultimately

bounded if for any r > 0 with ‖ξ0‖ ≤ r, there are d̄(r) > 0 and T̃ (d̄(r), r) ≥ 0 such
that

‖ξ(t)‖ ≤ d̄(r) (2.6)

for all t ≥ t0 + T̃ (d̄(r), r).

Theorem 2.1 [8] Consider that the system (2.1) is subject to Assumptions 2.1
and 2.2. Suppose that the control (2.4) is applied. For each γ > 0, the resulting con-
trolled system is uniformly ultimately bounded. Furthermore, the size of the ultimate
boundedness region, i.e., d̄(r), can be made arbitrarily small by choosing a sufficiently
large γ.

There is a trade-off between the performance and the control effort. As a result, an
optimal quest for the design may be interesting. It is also possible that, based on further
understanding of the input disturbance, one is able to extract more information about
its bound. We describe the information in the following.

Assumption 2.3 There is a scalar ν ≥ 0 such that

max
x∈R

n

t∈R

‖v(x, t)‖ ≤ ν. (2.7)

The membership value of ν in a region U : = [u, u], u ≥ u ≥ 0, is prescribed by a
fuzzy number N , whose membership function is µN : U → [0, 1].

The fuzzy description of the uncertainty bound, as shown in Assumption 2.3, enables
us to pursue a fuzzy-based interpretation of the system performance. By Assumption 2.3,
given that ν is in the fuzzy set N , the possibility that ν = u, where u ∈ [u, u], is given
by µN (u).

For later purpose, we are also interested in the fuzzy number N ·N . This is discussed
as follows. Let

v(x, t) = [ v1(x, t) v2(x, t) · · · vm(x, t) ]T . (2.8)

It is possible that sometimes the designer only knows the fuzzy description of the bound
of each component vi(x, t), i = 1, 2, · · · ,m. Suppose that |vi(x, t)| ≤ νi for all x, t.
The scalar νi belongs to a region Ui : = [ui, ui], ui ≥ ui ≥ 0, which is the universe
of discourse of a fuzzy number Ni. This fuzzy number is prescribed by a membership
function µNi

: Ui → [0, 1].
With the membership function µNi

(·) prescribed, one obtains its α-cuts [uiα
, uiα

].
The square of the α-cuts, that is, [uiα

, uiα
] · [uiα

, uiα
], is obtained (see [9]). The sum of

all these α-cuts, i.e.,
m
∑

i=1

[uiα
, uiα

] · [uiα
, uiα

], also can be obtained for each α (see [9]).

Finally, one may use decomposition theorem to reach the membership function for the
fuzzy number N ·N .

If the designer already knows the membership function µN (·), then it is easy to obtain
the membership function of the fuzzy number N ·N . All it takes is to take the square of
the α-cuts of µN (·), summarize them, and then invoke the decomposition theorem. We
now state the following fuzzy-based system performance.
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Theorem 2.2 Consider that the system (2.1) is subject to Assumptions 2.1 and 2.3.
Suppose that the control (2.4) is applied. For any u ∈ [u, u] and any r > 0 with
‖x0‖ ≤ r, the possibility that

‖x(t)‖ ≤ d̂(u) for all t ≥ t0 + T̃

is given by µN ·N(u), where

d̂(u) = d̂(u) + ǫ, (2.9)

d̂(u) :=

√

u2

2γλm(Q)
. (2.10)

Proof By [8], for any ν = u,

V̇ ≤ −λm(Q)‖x‖2 +
u2

2γ
. (2.11)

This means that V̇ is negative definite for all ‖x‖ such that

‖x‖ >

√

u2

2γλm(Q)
=: d̂(u). (2.12)

From Assumption 2.3, the possibility that ν = u is µN (u). Thus the possibility that

V̇ is negative for all ‖x‖ > d̂(u) is µN ·N (u). By Theorem 2.1, for any t ≥ t0 + T̃ ,

‖x(t)‖ ≤ d̄. Since d̄ > d̂(u), this in turn shows that the possibility of ‖x(t)‖ ≤ d̂(u) is
given by µN ·N(u).

Remark 2.1 The theorem asserts that, given the uniform ultimate boundedness result
in Theorem 2.1, and the additional information provided by Assumption 2.3, one can
further prescribe a possibility distribution that the state enters another region, which is
in general of smaller size. This is a totally new aspect of the system performance, as
compared with the previous work in robust control. The special way of incorporating
fuzzy logic theory with control system analysis is believed to be the first time.

The input disturbance bound ν is often obtained via observed data and analyzed
by the engineer. The observed data is, by nature, always limited. The source of the
disturbance is unlikely to be exactly repeated. Hence any interpretation via the frequency
of occurrence, as the number of repetitions approaches to infinity, suffers from a lack of
basis. An alternative interpretation of the bound for circumstances like this would have
to be fuzzy in its nature. For examples, one may need to adopt the fuzzy (linguistic)
terms such as “close to” or “very close to” a (crisp) value.

The system performance is also often judged by the engineer in terms of the need of
human being: One may choose a (crisp) set point and intend to have the performance
to be “close to” or “very close to” it, after a finite time. These again fall into the
fuzzy category. A typical example of this nature is the “comfort” control in Heating,
Ventilating, and Air Conditioning (HVAC) (see, e.g., [10]). On top of this, the engineer
also has the discretion to impose a hard bound (through, e.g., the prescription of the size
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of uniform ultimate boundedness region) on the performance, which must be met with
absolutely no exceptions. All these can be addressed by the current framework.

3 Optimal Design of γ

The previous section shows a system performance which can be guaranteed by a deter-
ministic control design. By the analysis, the size of the uniform ultimate boundedness
region decreases as γ increases. As γ approaches to infinity, the size approaches to 0.
This rather strong performance is accompanied by a (possibly) large control effort, which
is reflected by γ. From the practical design point of view, the designer may be also in-
terested in seeking an optimal choice of γ for a compromise among various conflicting
criteria. This is associated with the minimization of a performance index.

We first explore more on the deterministic performance of the uncertain system. By
the Rayleigh’s principle,

λm(P )‖x‖2 ≤ xTPx = V ≤ λM (P )‖x‖2 (3.1)

and hence

−‖x‖2 ≤ −
1

λM (P )
V. (3.2)

With this into (2.11), we have

V̇ (t) ≤ −
λm(Q)

λM (P )
V (t) +

ν2

2γ
, (3.3)

where V0 = V (t0) = xT
0 Px0. This is a differential inequality. The following is needed for

our analysis of (3.3).

Definition 3.1 [11] If w(ψ, t) is a scalar function of the scalars ψ, t in some open
connected set D, we say a function ψ(t), t0 ≤ t ≤ t̄, t̄ > t0 is a solution of the differential
inequality

ψ̇(t) ≤ w(ψ(t), t) (3.4)

on [t0, t̄) if ψ(t) is continuous on [t0, t̄) and its derivative on [t0, t̄) satisfies (3.4).

Theorem 3.1 [11] Let w(φ, t) be continuous on an open connected set D ∈ R2 and
such that the initial value problem for the scalar equation

φ̇(t) = w(φ(t), t), φ(t0) = φ0 (3.5)

has a unique solution. If φ(t) is a solution of (3.5) on t0 ≤ t ≤ t̄ and ψ(t) is a solution
of (3.4) on t0 ≤ t < t̄ with ψ(t0) ≤ φ(t0), then ψ(t) ≤ φ(t) for t0 ≤ t ≤ t̄.

Instead of exploring the solution of the differential inequality, which is often non-
unique and not available, the theorem suggests that it may be feasible to study the
upper bound of the solution. The reasoning is, however, based on that the solution of
(3.5) is unique.
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Theorem 3.2 [12] Consider the differential inequality (3.4) and the differential equa-
tion (3.5). Suppose that for some constant L > 0, the function w(·) satisfies the Lipschitz
condition

|w(v1, t) − w(v2, t)| ≤ L|v1 − v2| (3.6)

for all points (v1, t), (v2, t) ∈ D. Then any function ψ(t) that satisfies the differential
inequality (3.4) for t0 ≤ t < t̄ satisfies also the inequality

ψ(t) ≤ φ(t) (3.7)

for t0 ≤ t ≤ t̄.

We consider the differential equation

ṙ(t) = −
λm(Q)

λM (P )
r(t) +

ν2

2γ
, r(t0) = V0. (3.8)

The right-hand side satisfies the global Lipschitz condition with

L =
λm(Q)

λM (P )
. (3.9)

We proceed with solving the differential equation (3.8). This results in

r(t) =

(

V0 −
λM (P )

λm(Q)

ν2

2γ

)

exp

[

−
λm(Q)

λM (P )
(t− t0)

]

+
λM (P )

λm(Q)

ν2

2γ
. (3.10)

Therefore
V (t) ≤ r(t) (3.11)

or

V (t) ≤

(

V0 −
λM (P )

λm(Q)

ν2

2γ

)

exp

[

−
λm(Q)

λM (P )
(t− t0)

]

+
λM (P )

λm(Q)

ν2

2γ
(3.12)

for all t ≥ t0. By the same argument, we also have, for any ts and any τ ≥ ts,

V (τ) ≤

(

Vs −
λM (P )

λm(Q)

ν2

2γ

)

exp

[

−
λm(Q)

λM (P )
(τ − ts)

]

+
λM (P )

λm(Q)

ν2

2γ
, (3.13)

where Vs = V (ts) = xT (ts)Px(ts). The time ts is when the control scheme (2.4) starts
to be executed. It does not need to be t0.

By the Rayleigh’s principle V (τ) ≥ λm(P )‖x(τ)‖2, the right-hand side of (3.13) pro-
vides an upper bound of λm(P )‖x(τ)‖2. This in turn leads to an upper bound of ‖x(τ)‖2.
For each τ ≥ ts, let

η(ν, γ, τ, ts) :=

(

Vs −
λM (P )

λm(Q)

ν2

2γ

)

exp

[

−
λm(Q)

λM (P )
(τ − ts)

]

, (3.14)

η∞(ν, γ) :=
λM (P )

λm(Q)

ν2

2γ
. (3.15)

Notice that for each ν, γ, ts, η(ν, γ, τ, ts) → 0 as τ → ∞.
One may relate η(ν, γ, τ, ts) to the transient portion and η∞(ν, γ) the steady state

portion of the system performance. Since there is no knowledge of the input disturbance
v(x, t) except its possible bound, it is only realistic to refer to η(ν, γ, τ, ts) and η∞(ν, γ)
while analyzing the system performance. We also notice that both η(ν, γ, τ, ts) and
η∞(ν, γ) are dependent on ν. The value of ν is not known except that it lies within a set
U (i.e., the universe of discourse) to the degree that is defined by µN (·).
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Definition 3.2 For any function f : [u, u] → R, the D-operation D[f(ν)] is defined
as follows:

D[f(ν)] =

u
∫

u

f(ν)µN (ν)dν

u
∫

u

µN (ν)dν

. (3.16)

Remark 3.1 In a sense, the D-operation D[f(ν)] takes an average value of f(ν) over
µN (ν). In the special case that f(ν) = ν, this is reduced to the well-known center-of-
gravity defuzzification method (see, e.g., [13]). If N is crisp (i.e., µN (ν) = 1 for all ν),
then D[f(ν)] = f(ν). This is reduced to the classical case.

Lemma 3.1 For any crisp constant a ∈ R,

D[af(ν)] = aD[f(ν)]. (3.17)

We now propose the following performance index: For any ts, let

J(γ, ts) := D

[

∞
∫

ts

η2(ν, γ, τ, ts) dτ

]

+ αD[η2
∞(ν, γ)] + βγ2

=: J1(γ, ts) + J2(γ) + J3(γ),

(3.18)

α, β > 0. The performance index consists of three parts. The first part J1(γ, ts) may be
interpreted as the average (via the D-operation) of the overall transient performance (via
the integration) from time ts. The second part J2(γ) may be interpreted as the average
(via the D-operation) of the steady state performance. The third part J3(γ) is due to
the control cost. Both α and β are weighting factors. The weighting of J1 is normalized
to be unity.

Remark 3.2 A standard LQG (i.e., linear-quadratic-Gaussian) problem in stochastic
control is to minimize a performance index which is the average (via the expectation
value operation in probability) of the overall state and control accumulation. The cur-
rent optimal design of γ may be viewed as a parallel problem, though not equivalent, in
the fuzzy setting. However, one can not be too careful in distinguishing the difference.
For example, the Gaussian probability distribution implies that the uncertainty is un-
bounded (although a higher bound is predicted by a lower probability). In the current
consideration, the uncertainty bound is always finite.

Let κ := λM (P )/λm(Q). One can show that

∞
∫

ts

η2(ν, γ, τ, ts) dτ =

(

Vs −
λM (P )

λm(Q)

ν2

2γ

)2
∞
∫

ts

exp

[

− 2
λm(Q)

λM (P )
(τ − ts)

]

dτ

=

(

Vs − κ
ν2

2γ

)2
κ

2
. (3.19)
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Taking the D-operation,

D

[

∞
∫

ts

η2(ν, γ, t, ts) dt

]

= D

[(

Vs − κ
ν2

2γ

)2
κ

2

]

=

(

Vs −
Vsκ

γ
D[ν2] +

κ2

4γ2
D[ν4]

)

κ

2
.

(3.20)

Next, we analyze the cost J2(γ):

D[η2
∞(ν, γ)] = D

[(

λM (P )

λm(Q)

)2(
ν2

2γ

)2]

=
κ2

4γ2
D[ν4]. (3.21)

With (3.20) and (3.21) into (3.18),

J(γ, ts) =

(

Vs −
Vsκ

γ
D[ν2] +

κ2

4γ2
D[ν4]

)

κ

2
+ α

κ2

4γ2
D[ν4] + βγ2

=: κ1 −
κ2

γ
+
κ3

γ2
+ α

κ4

γ2
+ βγ2,

(3.22)

where κ1 := κ
γ
Vs, κ2 := κ2

2 VsD[ν2], κ3 := κ4

4 D[ν4], κ4 := κ2

4 D[ν4].

The optimal design problem is then the following constrained optimization problem:
For any ts,

min
γ
J(γ, ts) subject to γ > 0. (3.23)

For any ts, taking the first order derivative of J with respect to γ:

∂J

∂γ
=
κ2

γ2
− 2

κ3

γ3
− 2α

κ4

γ3
+ 2βγ =

1

γ3

(

κ2γ − 2κ3 − 2ακ4 + 2βγ4
)

. (3.24)

That
∂J

∂γ
= 0 (3.25)

leads to
κ2γ − 2κ3 − 2ακ4 + 2βγ4 = 0 (3.26)

or
κ2γ + 2βγ4 = 2(κ3 + ακ4). (3.27)

Equation (3.27) is a scalar quartic equation. For simplicity, in the rest of discussion,
we shall rule out the trivial possibility of u = u = 0, which results in D[ν2] = 0 and
D[ν4] = 0. In other words, we only consider D[ν2] > 0 and D[ν4] > 0 and hence κ3 > 0
and κ4 > 0 (notice that κ > 0). This in turn means that the solutions (there are two)
γ to (3.27) are not identical to zero.

To observe the constraint γ > 0, we now restrict ourselves to only the positive solution
of (3.27). For the γ > 0 that solves (3.27),

∂2J

∂γ2
= −

3

γ4

(

κ2γ
2κ3 − 2ακ4 + 2βγ4

)

+
1

γ3

(

κ2 + 8βγ3
)

=
1

γ3

(

κ2 + 8βγ3
)

> 0.

(3.28)
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The positive solution of the scalar quartic equation (3.27), which depends on Vs, solves
the constrained minimization problem (3.23). By the continuity of the left-hand side of
(3.27) on γ, the solution γ > 0 to (3.27) always exists. In addition, since the left-hand
side of (3.27) is strictly increasing in γ, the solution γ > 0 to (3.27) is unique. We
summarize the main result as follows.

Theorem 3.3 Consider that the system (2.1) is subject to Assumptions 2.1 and 2.3.
Suppose that the control (2.4) is applied. For given Vs, the unique solution γ > 0 of
(3.27) minimizes the performance index (3.18).

The solutions of the quartic equation (3.27) depend on the cubic resolvent (see [14])

z3 + (−4r)z − q2 = 0, (3.29)

where

r = −
1

β

(

κ3 + ακ4

)

, q =
κ2

2β
.

Let p1 := −4r, p2 := −q2. The discriminant D of the cubic resolvent is given by

D =

(

p1

3

)3

+

(

p2

2

)2

. (3.30)

Since r < 0, D > 0. The solutions of the cubic resolvent are given by

z1 = u+ v, (3.31)

z2 = −
(u+ v)

2
+ (u− v)i

√

3

2
, (3.32)

z3 = −
(u+ v)

2
− (u− v)i

√

3

2
, (3.33)

where

u =

(

−
p2

2
+
√
D

)
1
3

, (3.34)

v =

(

−
p2

2
−
√
D

)
1
3

. (3.35)

The cubic resolvent possesses one real solution and two complex conjugate solutions.
This in turn implies that the quartic solution has two real solutions and one pair of
complex conjugate solutions. The maximum real solution, which is positive, of the quartic
equation is given by

γ =
1

2

(√
z1 +

√
z2 +

√
z3

)

. (3.36)

With z1, z2, and z3 into (3.36), a lengthy but straightforward algebra shows that the
positive solution of the quartic equation is given by

γ =
1

2

(

√
u+ v +

√

7u2 + 7v2 − 10uv cos
θ

2

)

, (3.37)
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where

θ = tan−1

√

3
2 (u− v)

− 1
2 (u+ v)

. (3.38)

Remark 3.3 The calculation of γ in (3.37) requires Vs which depends on x(ts). In
implementations, this can be obtained via on-line feedback of the state. Notice that ts
is the starting time of the execution of the control. It does not need to be identical
to the initial time t0. The control starts to activate as soon as it receives the feedback
signal x(ts). The control scheme, which minimizes the performance index (3.18), also
only depends on ts, not t0. Certainly, the controlled system with x(ts) the initial state
is uniformly ultimately bounded.

By using (3.27), the cost J in (3.22) can be rewritten as

J = κ1 −
κ2

γ
+
κ3

γ2
+ α

κ4

γ2
+ βγ2

= κ1 −
1

γ2

(

κ2γ + 2βγ4
)

+ κ3γ
2 + α

κ4

γ2
+ 3βγ2

= κ1 −
1

γ2

(

κ3 + ακ4 + 3βγ4
)

.

(3.39)

With (3.37), the minimum cost is given by

Jmin = κ1 −
4

(
√
z1 +

√
z2 +

√
z3)2

(

κ3 + ακ4 +
3

8
β
(√
z1 +

√
z2 +

√
z3

)4
)

. (3.40)

Remark 3.4 Combining the previous results, the robust control scheme (2.4) using the
optimal design of γ > 0 renders the closed-loop system uniformly ultimately bounded
(with the initial state x(ts)). In addition, there is a possibility distribution associated
with the size of the region that the state will enter.

4 Conclusions

The incorporation of uncertainty, which is described in a fuzzy sense, into a robust control
framework is introduced. This is believed to the first attempt for such a merge. As to
the prescription of the desirable performance, it is often the designer’s discretion. Since
in practice it is in fact more realistic to prescribe the performance in a fuzzy sense (such
as “close to”, “very close to”), the current framework fits in well with both the need (the
performance) and the given (uncertainty).
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1 Introduction

Local stability and bifurcation analysis of systems of nonlinear differential equations with
one time delay of the following type

ẋ(t) = Ax(t) + Bx(t − τ) + F (x(t), x(t − τ)), (1.1)

where τ ≥ 0; A, B ∈ Rn,n, F ∈ Ck(Rn ×Rn, Rn), k ≥ 1, F (0, 0) = DF (0, 0) = 0, often
leads to the consideration of quasi-polynomials Φτ,λ : C → C; τ ≥ 0, λ ∈ C, given by

Φτ,λ(s) := (s + 1) exp(τs) − λ. (1.2)

In this context it is of particular relevance to know how the zeros of Φτ,λ are distributed
in the complex plane, whether they lie in the left or right half plane, and finally, how
they depend on the parameters τ and λ.

The objective of this work is to divide the τ -halfline and the λ-plane into domains
where Φτ,λ has a constant number of zeros with positive real part and to investigate the

c© 2001 Informath Publishing Group. All rights reserved. 145
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local stability of the zero solution and the Hopf bifurcation points of systems given by
(1.1) with appropriate matrices A and B.

Systems of type (1.1) occur in several fields of science. For example, they model
electro-optical circuits which display bistability and chaotic behavior (see [12, 17]), they
describe dynamical processes in neural networks (see [1, 22]), they model protein synthesis
(see [2]) and they arise in the study of white blood-cell production (see [21]). Interested
readers may find further applications, for example, in [15, pp.1–8]; [13, pp.72–81], [18,
pp.1–34], [19, pp.1–17].

The problem to estimate the zeros of (1.2) with positive real part, the stability analysis
of equilibria and the computation of Hopf bifurcation points of (1.1) has attracted the
interest of several authors. For instance, Hayes [16] discusses quasi-polynomial equations
equivalent to Φτ,λ(s) = 0 with τ > 0 and λ ∈ R (see also [5, pp.444–446], [6]). El’sgolts
and Norkin [11, pp.134–136] give a partition of the (A, B)-plane consisting of regions
where the corresponding characteristic quasi-polynomials of the linear approximation of
(1.1) with n = 1 and A, B ∈ R has a constant number of zeros with positive real
part (see also [9, pp.305–309], [19, pp.56, 57]). Braddock and Van den Driessche [7]
estimate the domains in λ-plane, where corresponding quasi-polynomials of the form
Φ(s) = (s + µ) exp(τs) − λ have no zeros with positive real part and discuss the local
stability of the trivial solution x(t) = 0 of (1.1). Bélair [4] also investigates the local
stability of the trivial solution of (1.1) with A = −In, and proves the existence of a
Hopf bifurcation point in the one dimensional case n = 1 with B < 0. Godoy and dos
Reis [14] explore (1.1) with n = 2, A = −I2 and B having eigenvalues in C \ {R ∪ iR},
and provide a partition of the τ -halfline (τ ≥ 0) in segments where the corresponding
characteristic quasi-polynomials of the linear approximation of (1.1) have a constant
number of zeros with positive real part (for the case that B has eigenvalues in C \ R,
see [3]).

In this work we extend the results above in the following way. For given τ ≥ 0 (λ ∈ C)
we divide the λ-plane (τ -halfline) into regions (intervals) with constant number of zeros
with positive real part of the corresponding quasi-polynomials Φτ,λ(s) (Section 2). We
investigate the local τ -dependent stability of the zero solution of (1.1) for a large class of
matrices A and B (Section 3), and we compute all Hopf bifurcation points of (1.1) with
τ as bifurcation parameter (Section 4).

2 Zeros of Φτ,λ with Positive Real Part

Consider the quasi-polynomial equation

Φτ,λ(s) = (s + 1) exp(τs) − λ = 0 (2.1)

for given τ > 0 and λ ∈ C. The primary objective of this section is to divide the
λ-plane into regions by a planar curve with following properties. Points λ lying on the
curve represent quasi-polynomials Φτ,λ having at least one pure imaginary root, and
points in each region correspond to quasi-polynomials with the same number of zeros
having positive real part, counted by their multiplicity. This method is well known
as D-decomposition (just as D-subdivision or D-partition) (see [11, pp.132–138], [19,
pp.55–60]). Then, as consequence of the D-decomposition of the λ-plane, we get a D-
decomposition of the τ -halfline.

Let us first state a few elementary results on the roots of (2.1).
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Lemma 2.1

a) s ∈ C is a zero of Φτ,λ if and only if s̄ is a zero of Φτ,λ̄.

b) For |λ| ≤ 1 equation (2.1) has no solution with positive real part.
For |λ| > 1 equation (2.1) has a finite number of solutions with positive real part.
Furthermore, if such solutions exist, they belong to the open and bounded set

Sλ :=
{

s ∈ C | 0 < Re s < |λ| − 1 and | Im s| <
√

|λ|2 − 1
}

. (2.2)

c) Any root s of (2.1) with τs 6= −(1 + τ) is simple.

Proof a) Part a) is evident.

b) For all s ∈ C with |s + 1| ≥ |λ| and Re s > 0 it holds

|s + 1| > |λ exp(−τs)|. (2.3)

This implies that equation (2.1) has no roots with |s + 1| ≥ |λ| and Re s > 0. So all
roots of (2.1) with positive real part have to satisfy |s + 1| < |λ|. We set Sλ := {s ∈
C : |s + 1| < |λ|, Re s > 0}. Because Sλ is a bounded and connected subset of C, the
analytic function Φτ,λ has only a finite number of zeros s with Re s > 0 (see [8, p.78]).
For |λ| ≤ 1 the set Sλ is empty and consequently (2.1) has no roots with positive real
part.

For |λ| > 1 it follows

Sλ =
{

s ∈ C | 0 < Re s < |λ| − 1 and | Im s| <
√

|λ|2 − 1
}

.

c) For τ = 0 the only root s = λ − 1 is simple. If τ > 0 the assertion follows from

d

ds
Φτ,λ(s) = [τ(s + 1) + 1] exp(τs) 6= 0 (2.4)

for any s ∈ C \
{

− 1+τ
τ

}

.

2.1 D-decomposition of the λ-plane

Let us now consider the planar curve mentioned above. Equation (2.1) has a pure
imaginary root s = iω if and only if

λ = (iω + 1) exp(iωτ) =: Kτ (ω). (2.5)

In the following we summarize a few useful properties of the function Kτ (see Figure 2.1).

Lemma 2.2 For τ > 0 let Kτ : R → C be the function defined by (2.5). Then:

a) Kτ describes a spiral in C with decreasing radius and argument for ω ∈ (−∞, 0]
and increasing radius and argument for ω ∈ [0,∞). Moreover the curve described
by Kτ is convex and lies symmetrically to the Re λ-axis, i.e. Kτ (ω) = λ ⇔
Kτ (−ω) = λ̄.

b) For ω, ω̃ ∈ R and ω 6= ω̃ with λ = Kτ (ω) = Kτ (ω̃) it follows that ω = −ω̃

and λ ∈ R.
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Figure 2.1. D-decomposition of the λ-plane.

Proof Part a) follows from (2.5), see also (2.6), (2.9), (2.10) below.
Now suppose that there exist ω, ω̃ ∈ R, ω 6= ω̃, with Kτ (ω) = Kτ (ω̃). Equation

(2.5) yields |Kτ (ω)|2 = 1 + ω2 = 1 + ω̃2 = |Kτ (ω̃)|2 and so ω = −ω̃. With a) we obtain
λ = Kτ (ω) = Kτ (−ω) = λ̄ ∈ R and the proof is complete.

Every λ ∈ C can be written in polar coordinates, namely

λ = ρeiθ, (2.6)

where ρ ≥ 0 is the radius and θ the argument of λ. Inserting (2.6) into (2.5) yields

(1 + iω) = ρei(θ−ωτ). (2.7)

From (2.7) we obtain following conditions for θ and ρ

ωτ − θ ∈

(

2kπ −
π

2
, 2kπ +

π

2

)

, k ∈ Z, (2.8)

√

1 + ω2 = ρ = |λ|, (2.9)

ω = tan(θ − ωτ). (2.10)

The next lemma deals with solutions of (2.10). We first set

Ik(τ, θ) :=

(

1

τ

(

2kπ + θ −
π

2

)

,
1

τ

(

2kπ + θ +
π

2

))

, k ∈ Z, τ > 0. (2.11)
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Lemma 2.3 For any given τ > 0, θ ∈ [0, 2π) and k ∈ Z, equation (2.10) has a
unique solution ωk(τ, θ) ∈ Ik(τ, θ) with the following properties:

ωk(τ, θ) ∈

(

1

τ

(

2kπ + θ −
π

2

)

,
1

τ
(2kπ + θ)

)

for k > 0, (2.12)

ω0(τ, θ) ∈

(

0,
θ

τ

)

for θ 6= 0 and ω0(τ, 0) = 0, (2.13)

ωk(τ, θ) ∈

(

1

τ
(2kπ + θ),

1

τ

(

2kπ + θ +
π

2

))

for k < 0. (2.14)

Proof tan(θ − ωτ) is a decreasing function of ω ∈ Ik(τ, θ) with tan(θ − ωτ) > 0

for ω ∈
(

1
τ

(

2kπ + θ − π
2

)

, 1
τ
(2kπ + θ)

)

, tan(θ − ωτ) = 0 for ω ∈ 1
τ
(2kπ + θ) and

tan(θ − ωτ) < 0 for ω ∈
(

1
τ
(2kπ + θ), 1

τ

(

2kπ + θ + π
2

)

)

. This yields the assertions of

the lemma.

For the construction of the regions with constant number of zeros of Φτ,λ having
positive real part, we need the intersection points of the curve Kτ with the Re λ-axis.
These intersection points are given by (2.10) with θ = 0, if k = 2l and θ = π, if
k = 2l + 1, l ∈ N0. Because of symmetry properties of Kτ (ω), see Lemma 2.2, we only
consider the case ω ≥ 0. From Lemma 2.3 we obtain:

Lemma 2.4 For τ > 0 there is an increasing sequence of real numbers 0 = ωR
0 <

ωR
1 < . . . , where ωR

k ∈ Il(τ, θ) with θ = 0 if k = 2l and θ = π if k = 2l + 1, l ∈ N0,
such that

a) Kτ (ωR
k ) ∈ R and, if ω 6= ωR

k , Kτ (ω) 6∈ R for any k ∈ N0,

b) (Kτ (ωR
2l))l∈N0

is an unbounded strictly increasing sequence with Kτ (ωR
0 ) = 1,

c)
(

Kτ (ωR
2l+1)

)

l∈N0
is an unbounded strictly decreasing sequence with Kτ (ωR

1 )<−1.

Using the sequence (ωR
k )k∈N0

we now define segments of the curve described by Kτ

lying in the upper and lower half of the λ-plane:

C±
τ,k := {λ ∈ C : λ = Re Kτ (ω) ± i| ImKτ (ω)|, ω ∈ [ωR

k , ωR
k+1]} (2.15)

and Gτ,k as the region bounded by C+
τ,k and C−

τ,k:

Gτ,k := {µ ∈ C : Re µ = Re λ, − Imλ < Im µ < Im λ, λ ∈ C+
τ,k} (2.16)

for given k ∈ N0 and τ > 0. Further we set

Gτ,−1 := ∅. (2.17)

We summarize a few useful properties of the regions Gτ,k (see Figure 2.1) in the
following.
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Lemma 2.5 Assume τ > 0. For any k ∈ N0 the regions Gτ,k are bounded, connected
and open subsets of the λ-plane, symmetric to the Re λ-axis, satisfying

a) 0 ∈ Gτ,k ⊂ Gτ,k+1,

b) Gτ,k+1 \ Gτ,k 6= ∅,

c) (Gτ,k+2 \ Gτ,k+1) ∩ (Gτ,k+1 \ Gτ,k) = ∂Gτ,k+1 = C+
τ,k+1 ∪ C−

τ,k+1,

d) (Gτ,k+2 \ Gτ,k+1) ∩ (Gτ,k \ Gτ,k−1) = ∂Gτ,k+1 ∩ ∂Gτ,k = {Kτ(ωR
k+1)} ⊂ R,

e) Gτ,0 ∩ {λ ∈ C : Re λ ≥ 1} = ∅.

Proof By construction (see (2.16) and (2.15)) we obtain the boundness, connectivity
and openness of Gτ,k. Lemma 2.1a and 2.2 provide the symmetry.

For x ∈
[

ωR
k , ωR

k+1

)

and y ∈
[

ωR
k+1, ω

R
k+2

)

(k ∈ N0) we have x < y and (2.9) implies

|K(x)| < |K(y)|. The definition of Gτ,k and C±
τ,k, k ∈ N0, yield the assertions a), b), c)

and d). Kτ

(

ωR
k+1

)

∈ R follows from Lemma 2.4a.

Since dKτ

dω
(0) = i(1+ τ), the curve Kτ is tangent to the straight line {λ ∈ C : Re λ =

1} at λ = 1. The convexity (see Lemma 2.2) of Kτ and the definition (see (2.16)) of
Gτ,k implies part e).

Proposition 2.1 Let τ > 0 and k ∈ N0. By passing from region Gτ,k into region

Gτ,k+1 \Gτ,k along the positive Im λ-axis exactly one root of (2.1) with positive real part
appears.

Proof Lemma 2.2 and 2.5 provide the existence of an unbounded strictly increasing
sequence of positive real numbers (βI

k)k∈N0
such that

∂Gτ,k ∩ {i β ∈ C : β > 0} = {iβI
k}

for k ∈ N0. Suppose λ = i βI
k. First we consider the case k = 2l, l ∈ N0. For λ = i βI

k

(2.1) has a root s0,k = iωI
k, with 2lπ < ωI

kτ < 2lπ + π
2 . Notice that ωI

k = ωl(τ,
π
2 ) with

ωl as in Lemma 2.3. s0,k is the only root s of (2.1) for λ = iβI
k with Re s = 0 (see

Lemma 2.2 and 2.3).
Now consider the case k = 2l + 1, l ∈ N0. For λ = i βI

k (2.1) has a root s0,k = −iωI
k,

with (2l + 1)π < ωI
kτ < (2l + 1)π + π

2 . Notice that ωI
k = ωl(τ,

3
2π) with ωl as in

Lemma 2.3. s0,k is the only root s of (2.1) for λ = iβI
k with Re s = 0 (see Lemma 2.2

and 2.3).
In both cases there holds

sin τ(−1)kωI
k > 0. (2.18)

Since s0,k is a simple root of (2.1) (see Lemma 2.1c) the implicit function theorem (see
[10]) provides the existence of δ > 0 and a unique differentiable function

s :
(

βI
k − δ, βI

k + δ
)

→ C,

where s(β) solves equation (2.1) for λ = i β and s(βI
k) = i(−1)kωI

k. Moreover it holds

ds(βI
k)

dβ
=

τβI
k + sin τ(−1)kωI

k + i cos τ(−1)kωI
k

| cos τ(−1)kωI
k − i

(

τβI
k + sin τ(−1)kωI

k

)

|2
. (2.19)

Using (2.18) this yields

d Re s(βI
k)

dβ
=

τβI
k + sin τ(−1)kωI

k

| cos τ(−1)kωI
k − i

(

τβI
k + sin τ(−1)kωI

k

)

|2
> 0. (2.20)
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Therefore we can choose δ sufficiently small such that

Re s(β)











< 0 for βI
k − δ < β < βI

k ,

= 0 for β = βI
k,

> 0 for βI
k < β < βI

k + δ.

On the other hand we know that i(−1)kωI
k is the only solution with zero real part of

(2.1) for λ = iβI
k (see Lemma 2.2) and that the real part of every solution of (2.1) is

bounded above (see Lemma 2.1b). So the assertion of the proposition is proved.

Lemma 2.6 Let k ∈ N0. For every λ ∈ Gτ,k \ Gτ,k−1 the number of zeros with
positive real parts (counted by their multiplicities) of (2.1) is constant.

Proof First recall that all solutions with positive real part are in the open and
bounded set Sλ (see Lemma 2.1b). Let S :=

⋃

λ∈Gτ,k\Gτ,k−1

Sλ. S is an open and bounded

set. By definition it holds |Φτ,λ(z)| > 0 for all z ∈ ∂S. By Theorem 9.17.4 of [10, p.243],
an application of Rouche’s theorem, the number of zeros with positive real part is con-
stant for all λ ∈ Gτ,k \ Gτ,k−1.

We are now in a position to state the main result of this section.

Theorem 2.1 Let k ∈ N0, τ > 0. For any given λ ∈ Gτ,k\Gτ,k−1 the number of
zeros with positive real parts (counted by their multiplicities) of (2.1) is exactly k.

Proof The theorem is proved by induction on k ∈ N0. First notice that 0 ∈ Gτ,0

and that (2.1) with λ = 0 has no solution with positive real part. Consequently for all
λ ∈ Gτ,0 equation (2.1) has no solution with positive real part (see Lemma 2.6).

Suppose that (2.1) for λ ∈ Gτ,k\Gτ,k−1 has exactly k ∈ N0 solutions with positive
real part. Proposition 2.1 yields that (2.1) has exactly k + 1 solutions with positive real

part for λ ∈ Gτ,k+1\Gτ,k. The theorem is proved.

2.2 D-decomposition of the τ -halfline.

Now we want to use the preceding results to give an D-decomposition of the τ -halfline.
For any given τ > 0 and θ ∈ [0, 2π) we define a sequence

(

λk(τ, θ)
)

k∈N0
by

C+
τ,k ∩ {λ ∈ C : λ = ρeiθ, ρ ≥ 0} = {λk(τ, θ)}, k ∈ N0 if θ ∈ [0, π],

C−
τ,k

∩ {λ ∈ C : λ = ρeiθ, ρ ≥ 0} = {λk(τ, θ)}, k ∈ N0 if θ ∈ (π, 2π).

Lemma 2.7 For τ > 0 it holds

a) For any k ∈ N0 (k ∈ N) and θ ∈ (0, 2π) (θ ∈ [0, 2π)) |λk(τ, θ)| is a decreasing
function of τ > 0. λ0(τ, 0) = 1 for all τ > 0.

b) lim
τ→0+

|λk(τ, θ)| = ∞ provided k > 0 or k = 0 and θ ∈
[

π
2 , 3

2 π
]

lim
τ→0+

λ0(τ, θ) = 1 + i tan θ if θ ∈
[

0, π
2

)

∪
(

3
2 π, 2π

)

.

c) lim
τ→∞

λk(τ, θ) = eiθ.
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Proof Suppose θ ∈ (0, π). By construction of C+
τ,k, there is ωk(τ, θ) ∈ (ωR

k , ωR
k+1)

such that λk(τ, θ) = Kτ (ωk(τ, θ)) if k = 2l and λk(τ, θ) = Kτ (ωk(τ, θ)) if k = 2l + 1,
l ∈ N0. Now consider ωk(τ, θ) as function of τ > 0. By differentiating (2.10) with
respect to τ we obtain:

dωk(τ, θ)

dτ
= −

ωk(τ, θ)(1 + ω2
k(τ, θ))

1 + τ(1 + ω2
k(τ, θ))

< 0. (2.21)

Consequently ωk(τ, θ) is a decreasing function of τ > 0, and thus, by (2.9), |λk(τ, θ)| is
also a decreasing function of τ > 0. This proves part a) with θ ∈ (0, π). Part a) with
θ ∈ (π, 2π) follows by symmetry (see Lemma 2.2). For k = 0 and θ = 0 there holds
λ0(τ, 0) = 1. The cases (θ = 0, k ∈ N) and (θ = π, k ∈ N0) can be proved in a similar
way.

Equations (2.8) and (2.9) provide b) and part c) follows from (2.8), (2.9) and (2.12).

Using the lemma above we obtain

Lemma 2.8 For any τ1, τ2 > 0 with τ1 < τ2 there holds

a) Gτ2,k $ Gτ1,k for any k ∈ N0;

b) ∂Gτ1,0 ∩ ∂Gτ2,0 = {1} and ∂Gτ1,k ∩ ∂Gτ2,k = ∅, for k ∈ N.

To complete the discussion about the τ -dependence of the regions Gτ,k we consider
the limiting cases τ = 0 and τ → ∞.

Lemma 2.9 Let τ = 0. Equation (2.1) has exactly one solution, namely s = λ − 1.

For τ ∈ (0,∞) we set z = τs. From (2.1) for τ → ∞ we obtain

Φλ(z) := exp(z) − λ = 0. (2.22)

It is easy to prove, that

Lemma 2.10 For |λ| < 1 Φλ has only zeros with negative real part, and for |λ| > 1
Φλ has only zeros with positive real part. z is a zero of Φλ with Re z = 0 if and only
if |λ| = 1.

Remark 2.1 For any τ > 0 there holds

G∞,0 $ Gτ,0 $ G0,0, (2.23)

where

G∞,0 := {λ ∈ C : |λ| < 1} and G0,0 := {λ ∈ C : Re λ < 1}. (2.24)

In order to be able to state the main results on the D-decomposition of the τ -halfline
we define positive real numbers τk(λ) for λ ∈ C, |λ| > 1, such that λ ∈ ∂Gτ,k if and
only if τ = τk(λ) for k ∈ N0 (k ∈ N) if Re λ < 1 (Re λ ≥ 1). For Re λ ≥ 1 we set
τ0(λ) := 0. Moreover let τ−1(λ) := 0.

As a consequence of Lemma 2.7 we obtain
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Proposition 2.2 If λ ∈ C \ R with |λ| > 1 then (τk(λ))k∈N0
is an unbounded and

strictly increasing sequence.
If λ ∈ R with λ > 1 then (τk(λ))k∈N0

is an unbounded and increasing sequence with
τ2k−1(λ) = τ2k(λ) < τ2k+1(λ).

If λ ∈ R with λ < −1 then (τk(λ))k∈N is an unbounded and increasing sequence
with τ2k(λ) = τ2k+1(λ) < τ2k+2(λ).

Remark 2.2 One can compute τk(λ) explicitly. Because of the symmetry properties
of Kτ (ω), see Lemma 2.2, it is sufficient to consider C ∋ λ = |λ|eiθ with Im λ ≥ 0, i.e.
θ ∈ [0, π]. It holds

τ2k(λ) =
2kπ + θ − arctan

(

√

|λ|2 − 1
)

√

|λ|2 − 1

for k ∈ N0 (k ∈ N) if Re λ ≤ 1 (Re λ > 1) and

τ2k+1(λ) =
2(k + 1)π − θ − arctan

(

√

|λ|2 − 1
)

√

|λ|2 − 1

for k ∈ N0. Note that arctan
(√

λ2 − 1
)

∈
(

− π
2 , π

2

)

.

Theorem 2.2

a) Let λ ∈ C \ R with |λ| > 1. For Re λ < 1 (Re λ ≥ 1) and τ ∈ (τk−1(λ), τk(λ)],
k ∈ N0 (k ∈ N) the number of zeros with positive real part of (2.1) counted by
their multiplicities is exactly k.

b) Let λ ∈ R. For λ > 1 and τ ∈ (τ2k(λ), τ2k+2(λ)], k ∈ N0, equation (2.1)
has exactly 2k + 1 solutions with positive real part. For λ < −1 and τ ∈
(τ2k−1(λ), τ2k+1(λ)], k ∈ N0, equation (2.1) has exactly 2k solutions with po-
sitive real part.

Proof Theorem 2.1, Lemma 2.8 and the definition of τk(λ) yield the assertions.

3 Stability of Delay Differential Equations

We consider the following system of delay differential equations:

ẋ(t) = Ax(t) + Bx(t − τ) + F (x(t), x(t − τ)), (3.1)

where τ > 0; A, B ∈ Rn,n, F ∈ Ck(Rn × Rn, Rn), k ≥ 1 and F (0, 0) = DF (0, 0) = 0.
It follows x̄ = 0 is an equilibrium point of (3.1).

3.1 Characteristic equation

The linear part of the system (3.1) is given by

ẋ(t) = Ax(t) + Bx(t − τ), (3.2)

where τ ≥ 0; A, B ∈ Rn,n. The corresponding characteristic equation satisfies:

det(sI − A − B exp(−τs)) = 0. (3.3)

We are interested in special matrices A and B, for which it is possible to study the
properties of the solutions of the characteristic equation above by help of (2.1).
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Definition 3.1 We say the matrices A, B ∈ Rn,n satisfy condition (C) if there
is a regular (unitary) matrix M ∈ Cn,n such that A = M(DA + TA)M−1 and B =
M(DB +TB)M−1, where DA = diag (−p1, . . . ,−pn) ∈ Rn,n, with pi > 0, i ∈ {1, . . . , n},
DB = diag (λ1, . . . , λn) ∈ Cn,n, and TA, TB are upper triangular with all diagonal entries
equal to zero.

Example 3.1 If A = diag (−p, . . . ,−p) ∈ Rn,n, with p > 0, and B ∈ Rn,n is a
general matrix, or if A ∈ Rn,n is a matrix with n real negative eigenvalues and B =
diag (λ, . . . , λ) ∈ Rn,n, with λ ∈ R, then A and B satisfy the condition (C) (see [4, 7]).

Using the multiplicativity of the determinant function we prove

Lemma 3.1 Let A, B ∈ Rn,n satisfy condition (C). Then:

det(sI − A − B exp(−τs)) = exp(−τs)

n
∏

i=1

[

(s + pi) exp(τs) − λi

]

.

Remark 3.1

a) Setting ś = s
p
, τ́ = pτ and λ́ = λ

p
into (s + p) exp(sτ) − λ = 0 we obtain

Φ
τ́ ,λ́

(ś) := (ś + 1) exp(śτ́ ) − λ́ = 0. (3.4)

b) From a) and Lemma 3.1. It follows: If A, B ∈ Rn,n satisfy (C), equation (3.3)

can be reduced to n simpler equations of type (3.4) with τ́ = piτ and λ́ = λi

pi
,

i ∈ {1, . . . , n}.

3.2 τ -dependent stability

In the following we study the τ -dependent stability properties of the trivial equilibrium
x̄ = 0 of system (3.1).

Theorem 3.1 Suppose the matrices A, B ∈ Rn,n satisfy (C). Then

a) If |λi| ≤ pi and λi 6= pi for all i ∈ {1, . . . , n}, then x̄ = 0 is asymptotically
stable for any τ ≥ 0.

b) If there is l ∈ {1, . . . , n} such that Re λl ≥ pl (Re λl > pl) and λl 6= pl, then
x̄ = 0 is unstable for any τ > 0 (τ ≥ 0).

c) Suppose Re λi < pi for all i ∈ {1, . . . , n}. Further we suppose there exist l ∈
{1, . . . , n} such that |λl| > pl. Then there is 0 < τs, such that x̄ = 0 is
asymptotically stable for 0 ≤ τ < τs and unstable for τ > τs.

Proof The case τ = 0 is covered by Lemma 2.9. In the sequel we suppose τ > 0.
|λi| ≤ pi and λi 6= pi for all i ∈ {1, . . . , n} yields λi

pi
∈ G∞,0 ⊂ Gτpi,0 (see Lemma 2.8a)

for arbitrary τ > 0. It follows that for any τ > 0 the characteristic equation (3.3) has
only roots with negative real part (see Theorem 2.1). Standard results on stability in
first approximation (see [11, pp.160, 161]) prove part a.

If there is l ∈ {1, . . . , n} such that Re λl ≥ pl and λl 6= pl, then there holds λl

pl
6∈

Gτpl,0 (see Lemma 2.5d) for arbitrary τ > 0. This implies (see Theorem 2.1) that for
any τ the characteristic equation (3.3) has at least one root with positive real part, and
thus part b is proved.
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Now let l ∈ {1, . . . , n} be such that |λl| > pl and Re λl < pl. By Lemmas 2.7 and
2.8 there exist a τs

l > 0 such that

λl

pl

∈ Gτpl,0, τ < τs
l ,

λl

pl

∈ ∂Gτpl,0, τ = τs
l ,

λl

pl

6∈ Gτpl,0, τ > τs
l .

We set
τs = min {τs

l : l ∈ {1, . . . , n} with |λl| > pl > Re λl} .

Consequently the characteristic equation (3.3) has only roots with negative real part if
τ < τs and at least one root with positive real part if τ > τs.

Remark 3.2 τs in Theorem 3.1c is defined by

τs = min

{

θl − arctan( 1
pl

√

|λl|2 − p2
l )

√

|λl|2 − p2
l

: l ∈ {1, . . . , n} with |λl| > pl > Re λl

}

,

where θl ∈ [0, 2π) such that λl = |λl| e
iθl and arctan

(

1
pl

√

|λl|2 − p2
l

)

∈
(

− π
2 , π

2

)

.

For the sake of completeness we consider the limiting case τ → ∞. For τ ∈ (0,∞)
we set t′ = t

τ
and y(t′) = x(t′τ). Then (3.1) becomes

1

τ
ẏ(t′) = Ay(t′) + By(t′ − 1) + F (y(t′), y(t′ − 1)).

For τ → ∞ we obtain

Ay(t′) + By(t′ − 1) + F (y(t′), y(t′ − 1)) = 0. (3.5)

Theorem 3.2 Suppose the matrices A, B ∈ Rn,n satisfy (C). Then

a) If |λi| < pi for all i ∈ {1, . . . , n}, then x̄ = 0 as solution of equation (3.5) is
asymptotically stable.

b) If there is l ∈ {1, . . . , n} such that |λl| > pl, then x̄ = 0 is unstable.

Proof Since A is a regular matrix, equation (3.5) can be rewritten as

y(t) = Cy(t − 1) + g(y(t′ − 1)),

where C = −A−1B and g ∈ C1(U, V ); U, V ⊂ Rn neighborhoods of x̄ = 0, an
appropriate function with g(0) = Dg(0) = 0. The eigenvalues µi of C satisfy µi =
λi

pi
, i ∈ {1, . . . , n}. From Lemma 2.10 and Remark 3.1: |µi| < 1 if |λi| < pi for

all i ∈ {1, . . . , n} and if there is l ∈ {1, . . . , n} such that |λl| > pl then |µl| > 1.
The Theorem about Stability by First Approximation for Difference Equations (see [20,
p.104]) completes the proof.

4 Hopf Bifurcation

In this section we derive sufficient conditions for the occurrence of Hopf bifurcation points
in (3.1) with bifurcation parameter τ .
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Theorem 4.1 Suppose that

A1: Matrices A and B satisfy condition (C).
A2: There are i0, i1 ∈ {1, . . . , n} with i0 6= i1 if λi0 ∈ C\R and i0 = i1 if λi0 ∈ R,

such that
λi1

pi1

=
λi0

pi0

and pi0 < |λi0 |. Assume Im λi0 ≥ 0. Set

τH
2k :=

2kπ + θi0 − arctan
(

1
pi0

√

|λi0 |
2 − p2

i0

)

√

|λi0 |
2 − p2

i0

for k ∈ N0 if Re λi0 < pi0 and k ∈ N if Reλi0 ≥ pi0 , and

τH
2k+1 :=

2(k + 1)π − θi0 − arctan
(

1
pi0

√

|λi0 |
2 − p2

i0

)

√

|λi0 |
2 − p2

i0

for k ∈ N0, where θi0 ∈ [0, π) such that λi0 = |λi0 | e
iθi0 .

A3: For any i ∈ {1, . . . , n} \ {i0, i1}, for which there exist l ∈ N0 such that λi

pi
∈

∂GτH
k

pi,l
, it follows 1

pi

√

|λi|2 − p2
i 6= N.

Then a Hopf bifurcation takes place at τ = τH
k for k ∈ N0 if Re λi0 < pi0 respectively

k ∈ N if Re λi0 ≥ pi0 .

Proof The Theorem is proved by verifying the hypotheses (H1) and (H2) of the Hopf
Bifurcation Theorem (see [15, pp.331–333]). If τ = τH

k , equations (2.8) – (2.10) and (2.16)

yield
λi0

pi0

∈ ∂GτH
k

pi0
,k. Lemma 3.1 and Remark 3.1 provide that s0 = ipi0ω(τH

k pi0 , θi0)

is a purely imaginary root of the characteristic equation (3.3), where ω(τH
k pi0 , θi0) is the

unique solution of equation (2.10) in Ik(τH
k pi0 , θi0) (see Lemma 2.3). From Lemma 2.1c

we obtain iω(τH
k pi0 , θi0) is a simple root of (2.1) for λ =

λi0

pi0

and τ = τH
k pi0 , and

consequently s0 is a simple root of the characteristic equation (3.3) for τ = τH
k pi0 .

Further we get by (A3) that there are no other roots s 6= s0, s0 of the characteristic
equation (3.3) for τ = τH

k which satisfy s = ms0 with m ∈ Z. This verifies hypothesis
(H1) in [15, pp.331–333].

Since s0 is a simple root the implicit function theorem (see [10]) provides the existence
of δ > 0 and a differentiable function s : (τH

k − δ, τH
k + δ) → C with s(τH

k ) = s0 and
s(τ) solves (3.3). Moreover one can compute

d Re s

dτ
(τH

k ) = pi0

ω2(τH
k pi0 , θi0)

(1 + τH
k pi0)

2 + (τH
k pi0)

2 ω2(τH
k pi0 , θi0)

> 0.

Thus, hypothesis (H2) in [15, pp.331–333] is satisfied.

Remark 4.1 If n = 1 and n = 2 with λi0 ∈ C \ R, respectively, condition (A3) in
Theorem 4.1 is always satisfied.
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1 Introduction and Main Results

In data communication systems like transoceanic transmission along a fiber cable, there
is increasing demand to achieve transmission rates as high as possible, mainly to the
extensive use of the internet. To do so, a recent approach is to utilize non-linear light-
wave communications with suitable periodic amplifications to compensate for loss and
dispersive effects. The transmission of such optical signal is described by

iΨz −
1

2
β2(z)Ψtt + σ(z)|Ψ|2Ψ = iG(z)Ψ, (1)

see [6, 8, 9]. Here Ψ = Ψ(z, t) is some complex-valued envelope function of the original
electric field, t is time, and z is the longitudinal coordinate of the fiber cable, which
should be thought of to be a periodic variable, since both amplification and dispersion
repeat periodically. Moreover, G(z) accounts for both loss and amplification in the fiber,
whereas β2(z) is related to the dispersion; σ(z) is some additional function.

The transformation Ψ(z, t) = A(z, t) exp
( z
∫

G(z′) dz′
)

removes the term on the right-

hand side of (1) to yield the nonlinear Schrödinger equation

iAz + d(z)Att + c(z)|A|2A = 0, (2)

c© 2001 Informath Publishing Group. All rights reserved. 159
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with coefficient functions c(z) and d(z) being periodic of some period L > 0. It is then
well-accepted that the central part of the desired pulse-shaped solution to (2) is described
to leading order by

A(z, t) =
Q(t/T (z))
√

T (z)
exp

(

i
M(z)

T (z)
t2
)

, (3)

see the references cited above, and also [2, 4, 5]; the function Q(x) is an input pulse which
often is taken as Q(x) = C0 exp(−x2/2), and M(z) resp. T (z) describe the optical pulse
width resp. the chirp (time-dependent phase) of the breathing central part of the optical
soliton. Most importantly for our purposes, T (z) and M(z) are L-periodic solutions to

dT

dz
= 4d(z)M,

dM

dz
=

d(z)C1

T 3
−

c(z)C2

T 2
, (4)

with fixed constants

C1 =

∫

|Q′(x)|2 dx
∫

x2|Q(x)|2 dx
, C2 =

∫

|Q(x)|4 dx

4
∫

x2|Q(x)|2 dx
.

It is hence of fundamental importance for the whole approach to deduce whether or
not periodic solutions of (4) do exist. In some of the papers cited above, this problem is
studied numerically for the dispersion map d(z) taken as an L-periodic step function,

d(z) =

{

d+ : 0 ≤ z ≤ L/4, 3L/4 ≤ z ≤ L

−d− : L/4 < z < 3L/4
, (5)

with d+, d− > 0; the function c(z) was chosen to be constant as is physically reasonable in
case the compensation period is much larger than the amplification distance. Taking d(z)
as in (5) corresponds to a transmission line consisting of two pieces of fibers with opposite
dispersion. Eq. (4), even with dispersion map as in (5), poses interesting mathematical
problems, but despite that there is a large mathematical literature on singular Lagrangian
problems, cf. e.g. [1, 3] and many others, it does not seem that there are general results
that apply to a system as (4), which is Hamiltonian with

H(T, M, z) = 2d(z)M2 +
d(z)C1

2T 2
−

c(z)C2

T
.

As we are interested in periodic solutions of period L (the “fixed period problem”), it
would be natural to consider the action functional I corresponding to (4) which is here

I(T, M) =

L
∫

0

[

T (z)
dM

dz
(z) −H(T (z), M(z), z)

]

dz

for M , T in a suitable function space. A critical point of I then would provide a solution
to (4), but it is not clear how the necessary assumptions on I can be verified to apply
some minimax-argument.

The following theorem is our main result.
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Theorem 1.1 Assume c(z) = c > 0 is a constant and d(z) is given by (5). Then
(4) has a periodic solution of period L if d+ > d−.

The proof of Theorem 1.1 is rather elementary and possible through direct calculation
and estimates. Rather than this we would have preferred to give a more functional
analytical proof that also works for non-explicit dispersion maps, but such an approach
was not clear to us. Nevertheless, the same proof also yields some results for a dispersion
map which has the more general form

d(z) =

{

d+ : 0 ≤ z ≤ L1, L − L1 ≤ z ≤ L

−d− : L1 < z < L − L1

, (6)

for some L1 ∈ (0, L/2); see Theorem 2.4.
Theorem 1.1 discusses the case of a dispersion map with positive average dispersion

〈d〉 = 1
L

L
∫

0

d(z) dz = 1
2 (d+ − d−), cf. [7] for some results in the same direction. Due to

numerical observations in [8, 9] there should also exist periodic solutions for the zero-
average case d+ = d−, at least if those values are sufficiently large. If the average
dispersion is negative, d+ < d−, then it will be seen below by means of a symmetry
argument that again a periodic solution T (z), M(z) of (4) can be found. However, it is
of no practical relevance for the original problem, since it will be negative contrary to
what is needed in the ansatz (3). The situation for negative average dispersion currently
is rather unclear.

2 Existence of Periodic Solutions

In this section we carry out the proof of Theorem 1.1. First we rewrite (4), introducing

t = z, a+ = 4d+

√
C1, a− = 4d−

√
C1, b = cC2/

√
C1 and q(t) = T (z). Then (4) reads

as

q̈ =







a2
+

4q3 − a+b

q2 = −V ′
+(q) : 0 ≤ t ≤ L/4, 3L/4 ≤ t ≤ L

a2
−

4q3 + a
−

b

q2 = −V ′
−(q) : L/4 < t < 3L/4

, (7)

where

V+(q) =
a2
+

8q2
−

a+b

q
and V−(q) =

a2
−

8q2
+

a−b

q
.

Throughout we assume b > 0, and we also introduce the corresponding energies

H+(q, q̇) =
1

2
q̇2 + V+(q) and H−(q, q̇) =

1

2
q̇2 + V−(q).

For the proof of Theorem 1.1, from d+ > d− we have the hypothesis

a+ > a−. (8)

It should be noted that the transformation q̄(t) = −q(L/2 + t) changes the rôles of a+

and a− in (7). However, since the solution q will be positive under assumption (8), it
turns out that for the negative dispersion case a+ < a− the function q̄ is negative and
hence cannot play the rôle of T (z), cf. the corresponding remarks in the introduction.
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Figure 2.1. Phase portrait of q̈ = −V ′
+(q).

Figure 2.2. Phase portrait of q̈ = −V ′
−(q).

To get a clue where to look for periodic solutions of (7), the phase portraits for
q̈ = −V ′

+(q) resp. for q̈ = −V ′
−(q) are given in Figure 2.1 resp. Figure 2.2.

Thus the only possibility to have a periodic solution in {q > 0} is to match a periodic
orbit from Figure 2.1 to a trajectory from Figure 2.2. The periodic orbits in Figure 2.1
are found to have energies h+ ∈ [−2b2, 0), the value h+ = −2b2 corresponding to the
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fixed-point q = a+/4b. The respective periods may then be calculated explicitly as

1

2
T (h+) =

q0
∫

q1

dq

[2(h+ − V+(q))]1/2
=

a+b π

2
√

2(−h+)3/2
,

where (q1, 0) and (q0, 0) with q1 ≤ q0 are the intersection points of the orbit of energy
h+ with the axis {q̇ = 0}.

Let

q∗ =

{

a+/4b : a+π > 2b2L

(V+)−1
(

− (
√

2a+bπ/L)
2/3
)

: a+π ≤ 2b2L
(9)

with (V+)
−1
(

− (
√

2a+bπ/L)
2/3
)

∈ [a+/4b,∞); observe V+ : [a+/4b,∞) → [−2b2, 0) is

strictly increasing. We define a map q0 7→ q1 7→ q2 as follows.

(1) For given q0 ≥ q∗, determine the energy

h+ = V+(q0) =
a2
+

8q2
0

−
a+b

q0
∈ [−2b2, 0). (10)

(2) The point q1 ≤ q0 then is defined through

L

4
=

q0
∫

q1

dq

[2(h+ − V+(q))]
1/2

. (11)

(3) Next, q̇1 ≥ 0 is calculated from

h+ = H+(q1, q̇1) =
1

2
q̇2
1 +

a2
+

8q2
1

−
a+b

q1
. (12)

(4) Then we let

h− = H−(q1, q̇1) =
1

2
q̇2
1 +

a2
−

8q2
1

+
a−b

q1
> 0. (13)

(5) Finally, q2 > 0 is defined as the unique intersection point of the orbit with energy
h− of q̈ = −V ′

−(q) with the axis {q̇ = 0}, i.e., the solution of h− = H−(q2, 0).

Remark 2.1 The map q0 7→ q1 7→ q2 is well-defined, since by definition of q∗ in (9)

we have 1
2T (h+) ≥ L

4 for q0 ≥ q∗ in both cases, and therefore q1 exists. Note also that
all quantities are determined by q0, or equivalently, by h+.

Thus the existence of an L-periodic orbit of (7) is equivalent to finding a zero q0 of
the function

F (q0) =

q1
∫

q2

dq

[2(h− − V−(q))]
1/2

−
L

4
. (14)
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Since F is continuous, the existence of a zero will be a consequence of

F (q0) → −
L

4
< 0 as q0 → q∗, and

F (q0) →
L

4

(

a+

a−

− 1

)

> 0 as q0 → ∞,

cf. (8). The following Lemmas 2.1 and 2.2 verify these assertions, completing the proof of
Theorem 1.1. Before going on, we will state some identities that will be used frequently
throughout. First, from (12) and (13) we infer

h− = h+ +
a2
− − a2

+

8q2
1

+
(a− + a+)b

q1
. (15)

Next, by direct integration of the right-hand side in (11) we obtain

L

4
= −

√

X(q1)

4h+
+

a+b

2
√

2(−h+)3/2

[

π

2
+ arcsin

(

2h+q1 + a+b

a+

√

b2 + 1
2h+

)]

(16)

with X(q) = 8h+q2+8a+bq−a2
+; to derive this it is useful to note that 2h+q0+a+b

a+

√
b2+ 1

2
h+

= −1
by (10). Similarly, integrating (14) we deduce

F (q0) +
L

4
=

√

X(q1)

4h−

+
a−b

2
√

2h
3/2
−

log

(

√

2h−X(q1) + 4h−q1 − 2a−b

2a−

√

b2 + 1
2h−

)

, (17)

utilizing 8h−q2
1 − 8a−bq1 − a2

− = X(q1), cf. (15); the argument of log is ≥ 1, since

2a−

√

b2 +
1

2
h− = 4h−q2 − 2a−b, (18)

and q1 ≥ q2.
The right-hand side of (16) contains no q0, only h+. It will also be important to have

formulae for derivatives w.r. to h+. To begin with,

dX(q1)

dh+
= 8q2

1 + 8(a+b + 2h+q1)

(

dq1

dh+

)

.

Through a tedious and lengthy calculation one may then show by differentiating the
right-hand side of (16) w.r. to h+ that

dq1

dh+
=

3L

16

√

X(q1)

(−h+q1)
−

q1

h+
+

a+

(

2bq1 −
1
2a+

)

16
(

b2 + 1
2h+

)

(−h+q1)
; (19)

this works by inserting formula (16) after differentiation again for the arcsin (. . . )-term.
Additionally, we get from (15)

dh−

dh+
= 1 −

a2
− − a2

+

4q3
1

(

dq1

dh+

)

−
(a− + a+)b

q2
1

(

dq1

dh+

)

. (20)
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After this preparation we can proceed to the proof of Lemma 2.1 and Lemma 2.2.

Lemma 2.1 As q0 → q∗ we have F (q0) → −L
4 .

Proof We first consider the case a+π > 2b2L, i.e., q0 → a+/4b. By definition, q̄0 ≤
q1 ≤ q0, with q̄0 and q0 being the two solutions to h+ = H+(q, 0). Since h+ → −2b2 by

(10), it follows that q̄0 = (−a+/2h+)
[

b −
√

b2 + 1
2h+

]

→ a+/4b, therefore q1 → a+/4b,

and hence also X(q1) → 0 as q0 → a+/4b. By (15), h− → 2b2(a−/a+)(2+ a−/a+), and
therefore h− = H−(q2, 0) gives q2 → a+/4b as q0 → a+/4b. Consequently, F (q0) →
−L/4 as q0 → a+/4b by (17) and (18).

What concerns the second case a+π ≤ 2b2L in (9), we then have T (h∗
+)/2 = L/4,

with h∗
+ = −

(√
2a+bπ/L

)2/3
, by definition of q∗. As q0 → q∗ therefore q1 tends to the

smaller solution q̄∗ of h∗
+ = H(q, 0), i.e., we have X(q1) → 0. According to step (3) – (5)

in the above construction of the map, q2 degenerates to q2 → q̄∗ as q0 → q∗. Since

h− → a2
−/8(q̄∗)

2
+ a−b/q̄∗ > 0, we may argue as before to conclude F (q0) → −L/4

as q0 → q∗.

It remains to analyze the limiting behaviour of F (q0) as q0 → ∞.

Lemma 2.2 As q0 → ∞ we have F (q0) →
L
4

(

a+

a
−

− 1
)

.

Proof All limits that are taken in this proof are as q0 → ∞, or, equivalently, as
h+ → 0. Since both terms on the right-hand side of (16) are non-negative and h+ → 0,
we must also have X(q1) → 0, whence

q1(h+q1 + a+b) →
a2
+

8
, h+q1 → −a+b, (21)

and therefore 2h+q1+a+b

a+

√
b2+ 1

2
h+

→ −1. By the de L’Hospital rule we are led to check whether

Λ1 = −
a+b

3
√

2

d
dh+

arcsin (. . . )

(−h+)1/2

= −
a+b

3
(

b2 + 1
2h+

)

(

2
(

b2 + 1
2h+

)[

h+

(

dq1

dh+

)

+ q1

]

− 1
4 (2h+q1 + a+b)

(−h+)
√

X(q1)

) (22)

has a limit as h+ → 0. Utilizing (19), one arrives after some simplification at

2

(

b2 +
1

2
h+

)[

h+

(

dq1

dh+

)

+ q1

]

−
1

4
(2h+q1 + a+b)

= −
3L

8

(

b2 +
1

2
h+

)

√

X(q1)

q1
−

X(q1)

16q1
.

(23)

Inserting (23) into (22) implies by (21), and since X(q1) → 0, that Λ1 → L/8. Thus de
L’Hospital yields from (16),

a+b

2
√

2(−h+)3/2

[

π

2
+ arcsin

(

2h+q1 + a+b

a+

√

b2 + 1
2h+

)]

→
L

8
, −

√

X(q1)

4h+
→

L

8
. (24)
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By (15) and (21),
h−

h+
→ −

a−

a+
. (25)

Thus as a first step towards deriving the limiting behaviour of F (q0) we conclude from
(24) and (25) that

√

X(q1)

4h−

=

(

−

√

X(q1)

4h+

)

(

−
h+

h−

)

→
L

8

(

a+

a−

)

. (26)

Next we have to analyze the contribution of the second term on the right-hand side
of (17). For this, we proceed as before and consider first the quotient

Λ2 =
a−b

3
√

2

d
dh+

log(. . . )

h
1/2
−

(

dh
−

dh+

)

=
a−b

3
√

2
(

b2 + 1
2h−

)[

√

2h−X(q1) + 4h−q1 − 2a−b
] (

dh
−

dh+

)

(

Λ21 + Λ22

h
1/2
−

)

,

where

Λ21 = 4

(

b2 +
1

2
h−

)[

h−

(

dq1

dh+

)

+

(

dh−

dh+

)

q1

]

−
1

2
(2h−q1 − a−b)

(

dh−

dh+

)

,

Λ22 =

(

b2 + 1
2 h−

)

√

2h−X(q1)

[

h−

(

dX(q1)

dh+

)

+

(

dh−

dh+

)

X(q1)

]

−
1

4

√

2h−X(q1)

(

dh−

dh+

)

.

By (25) we have O(h+) = O(h−) as h± → 0, whence we can denote such terms simply

by O(h). Because 1
q2
1

(

dq1

dh+

)

→ 1
a+b

according to (19), (21) shows 1
q3
1

dq1

dh+
= O(h).

In addition,
√

X(q1) = O(h) by (24) and h+q1 + a+b = O(h) by (21). Using this

information and the explicit representations (20) of dh
−

dh+
and (19) of dq1

dh+
, it follows after

some calculations that
Λ21 = O(h).

Turning our attention to Λ22, we first note 1
4

√

2h−X(q1)
(

dh
−

dh+

)

= O(h3/2), since dh
−

dh+
→

−a
−

a+
by (20) and the preceding arguments. Consequently,

Λ2 =
a−b

6
[

√

2h−X(q1) + 4h−q1 − 2a−b
](

dh
−

dh+

)

×

[

h−

(

dX(q1)
dh+

)

+
(

dh
−

dh+

)

X(q1)
]

h−

√

X(q1)
+ O(h1/2).

(27)

As before, an elementary but quite lengthy calculation yields

h−

(

dX(q1)

dh+

)

+

(

dh−

dh+

)

X(q1) = −
3L

2

[

(a− + 2a+)b + 2h+q1

]

√

X(q1)

q1
+ O(h3). (28)
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As a consequence of h−q1 = (h+q1)
(

h
−

h+

)

→ a−b, by inserting (28) into (27) we get

Λ2 → L
8

(

a+

a
−

)

. Thus the rule of de L’Hospital yields

a−b

2
√

2h
3/2
−

log

(

√

2h−X(q1) + 4h−q1 − 2a−b

2a−

√

b2 + 1
2h−

)

→
L

8

(

a+

a−

)

. (29)

Summarizing (26) and (29), we finally obtain from (17) that F (q0) + L
4 → L

4

(

a+

a
−

)

.

The method of proof can also be adapted for

q̈ =







a2
+

4q3 − a+b

q2 : 0 ≤ t ≤ L1, L − L1 ≤ t ≤ L

a2
−

4q3 + a
−

b

q2 : L1 < t < L − L1

, (30)

with L1 ∈ (0, L/2), corresponding to the more general dispersion maps (6). We obtain

Theorem 2.1 For 2L1

(

1 + a+

a
−

)

> L, (30) has an L-periodic solution.

Proof We can proceed as before, and in particular we find F (q0) + (L/2 − L1) →
L1(a+/a−) as q0 → ∞. The condition lim

q0→∞
F (q0) > 0 then means 2L1(1+a+/a−) > L.

Acknowledgements.
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Abstract: The paper is concerned with upper bounds for the Hausdorff di-
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The proof of the main theorem uses a special Carathéodory dimension struc-
ture in order to get contraction conditions for the considered Carathéodory
measures which majorize the Hausdorff measures. The Hausdorff dimension
bounds in the general case are formulated in terms of the eigenvalues of the
symmetric part of the operator which generates the associated system in nor-
mal variations with respect to the direction of the vector field. For sets with
an equivariant tangent bundle splitting dimension bounds are derived in terms
of uniform Lyapunov exponents. A generalization of the well-known theorems
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1 Introduction

The first method of Lyapunov ([9, 36, 47, 49]) traditionally includes all the approaches
for the stability investigation of a given solution of an ODE (or an other dynamical
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system) which consider the perturbed solutions by means of various types of linearized
or variational equations. In particular this method can be used to construct explicitly
(i.e. in the form of a series of known functions and exponential terms including the
Lyapunov characteristic exponents) integral manifolds of stationary solutions in order to
determine the stability character of these solutions.

As a rule in the given variational equation new coordinates are introduced in order
to separate the normal components of the vector fields which act transversally to the
flow lines. The main idea of reparametrization and the use of flow information in the
transversal to an orbit direction goes back to ([20, 48]). Using these techniques the well-
known theorems of Hartman-Olech and Borg ([4, 19, 20]) on global asymptotic stability
are derived. For ODE’s in Rn these results were extended and generalized in [29, 32]
for other types of stability behavior (stability in the sense of Poincaré and Zhukovskij)
including into the consideration Lyapunov functions. Variational systems written in
normal coordinates are also used in stability theory to show orbital stability of solutions of
a differential equation ([20, 31, 32]). For bounded semi-orbits these methods are extended
in [31] to vector fields on Riemannian manifolds. In particular, in this paper sufficient
conditions for orbital stability and instability are deduced by estimating the singular
values of the fundamental operator of the linearized vector field.

Note that for simple mechanical systems in Lagrange form the physical paths can be
interpreted as geodesics on a Riemannian manifold ([17, 23, 24]). A prototype of such
systems with instability behavior in the sense of Zhukovskij are geodesic flows on the unit
tangent bundle of a manifold with negative curvature ([10, 17, 23, 24, 42]). These systems
are characterized by a uniform splitting of the tangent bundle into invariant subbundles
(with respect to the linearization) having equal contracting or expanding rates in all
points of the bundle. They belong to a special type of (strong) hyperbolic systems.
Unfortunately most of the interesting equations are only quasi-hyperbolic ([7, 13, 42, 43]).

Stability investigations of flows are closely connected with global properties of invariant
sets or attractors such as dimension (topological, Hausdorff, box-counting etc.) and the
topological shape of these sets (connectness, point-like type etc.) ([14, 18]).

The first general results for upper Hausdorff dimension estimates of flow invariant
sets in Rn in terms of singular values of the linearization are given by [6]. This ap-
proach was extended in [25, 39] to map-invariant sets on Riemannian manifolds and in
[26, 28, 29] by including Lyapunov functions into the contraction conditions for outer
Hausdorff measures. In [8, 46] the Douady-Oesterlé results were extended to estimates
for evolution systems in general Hilbert spaces. Hausdorff dimension estimates of general
flow invariant sets using the eigenvalues of the symmetric part of the operator part of the
(standard) equation in variation are deduced in [45] for the Rn and in [39] for manifolds.
Douady-Oesterlé estimates for piecewise smooth maps on manifolds are given in [44].
The hyperbolic or quasi-hyperbolic structure was considered in dimension estimates in
[10, 13] where also an entropy term into the estimate was introduced.

Various dimension upper bounds of invariant sets allow conclusions on the dynamical
behavior of the system. The key step in the papers [29, 39, 45] is to prove that the
Hausdorff dimension for the maximal compact invariant set is less than two. By a result
of Smith ([45]) such a set contains no simple closed piecewise smooth invariant curves. In
particular the system has no non-constant periodic orbits. On the base of such dimension
estimates a generalization of the mentioned global stability results of Hartman-Olech and
Borg, but also of other types of classical results from the Bendixson-Poincaré theory were
derived in [29, 34, 35].
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Parallel to Hausdorff dimension estimates a number of upper bounds for the box
dimension of invariant sets were deduced ([3, 21, 22, 30, 38, 46]). The box dimension of a
set is always not smaller than the Hausdorff dimension and gives important information
about the possibility to use embedding homeomorphisms, which map the given invariant
set orthogonal and one-to-one on a hyperplane in standard position ([22, 38]). Recently
it was shown that such homeomorphisms can be chosen with Hölder-Lipschitz continuous
inverse ([12]) which enables conclusions for dimension estimates.

Hausdorff and box dimension estimates for flow invariant sets show its effectivity if var-
ious types of local, global and uniform Lyapunov exponents are introduced ([7, 8, 25, 28,
46]). On the base of such Lyapunov exponents the Lyapunov dimension of a set was
defined (Kaplan-Yorke formula [25, 42]) and it was conjectured that in typical cases this
dimension coincides with the Hausdorff dimension.

Parallel to the dimension and stability investigation of invariant sets of flows and
cascades various types of dimensions of an invariant measure have been developed ([7, 25,
41]). Defining for the invariant ergodic measure of a flow the Lyapunov exponents one
can introduce the Lyapunov dimension of this measure which is an upper bound of the
Hausdorff dimension of the measure. (The Hausdorff dimension of the measure is the
largest lower bound of the Hausdorff dimension of the support of the measure ([25]).)
As in the measure free case various stability properties of the underlying flow may be
derived from the properties of the Lyapunov exponents of the measure. It is shown in
[7] that if the invariant measure is ergodic and all Lyapunov exponents of the measure
are negative, the support of this measure is a stable equilibrium point. If exactly one
exponent is zero and the remaining ones are negative, the support is an equilibrium point
or a stable limit cycle.

An important class of invariant sets of dynamical systems are strange attractors which
have locally the structure of the product of a smooth (often one-dimensional) submanifold
directed ‘along the attractor’ and a Cantor-like set ‘transversal’ to the attractor ([18, 41]).
Thus, it is natural to investigate the stability and dimension properties of such attractors
considering the intersection of the attractors with surfaces which are locally transversal
to the attractor ([20, 26]). The use of transverse intersections (Poincaré sections) is well-
known in stability theory investigations of flow orbits: contracting or expanding behavior
in sections transverse to the flow line directions is the main reason for properties of
stability or instability of the considered orbit ([29, 31, 32]).

The paper is organized as follows. In Section 2 we present a short review of basic
facts on Riemannian geometry. We introduce the variational system written in normal
variations, transversal to the evolution direction of the flow lines, which is natural to
investigate in the case of attractors of differential equations. In Section 3 we give the
definition of a special Carathéodory structure adapted for the dimension investigation of
flow invariant sets. It is defined via covering elements which are tubular neighborhoods
of arcs of smooth curves to approximate the fiber structure of the sets. The main results
of the paper are contained in Section 4. For flow negatively invariant sets which do not
contain singular points of the vector field an upper bound of the Hausdorff dimension is
given. The estimates are derived by means of Carathéodory measures which are contrac-
tive under the flow and majorize the Hausdorff measure. These results generalize those
from [26, 27] on Riemannian manifolds. The estimates are formulated in terms of the
eigenvalues of the symmetric part of the generated operator of the associated system in
normal variation. Assuming special properties of the stable and unstable manifolds of
equilibrium points the results are generalized for vector fields having a finite number of
such equilibrium points in the considered invariant set. The used Carathéodory measures
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show in many cases a better contracting behavior under the positive semi-flow than the
Hausdorff measures do. Section 5 is concerned with Hausdorff dimension estimates of
flow invariant sets with an equivariant tangent bundle splitting which are formulated
in terms of uniform Lyapunov exponents. In Section 6 we end with a discussion of the
effectivity of the obtained Hausdorff dimension estimates. In addition we obtain results
about the asymptotic behavior of the dynamical system using the dimension bounds,
which are closely related to results in [4, 19, 20].

2 The System in Normal Variation

In this section we introduce a modified variational equation for a vector field f which will
be used for modeling the variation of time translated pieces of hypersurfaces orthogonal
to a considered orbit. This idea originates from investigations on stability behavior of
solutions of a differential equation (see [20, 31, 32]), where together with the movements of
phase points along a trajectory one considers their movements in transversal direction.
Projecting the covariant derivative of the vector field along a reference orbit into the
(n − 1)-dimensional tangent space lying orthogonal to the vector field in an arbitrary
point of the orbit we get a variational equation describing the normal variation. For the
first time this type of variational equation has been applied to dimensional estimates
in [26, 27].

Let us recall some notation from linear algebra and differential geometry used later.
If V and W are m-dimensional Euclidean spaces with scalar products 〈·, ·〉V and 〈·, ·〉W ,
respectively, and L : V →W is a linear operator, then the adjoint operator L∗ : W → V

is the linear operator uniquely determined by the relation 〈Lξ, η〉W = 〈ξ, L∗η〉V for all
ξ ∈ V , η ∈W . The singular values of the operator L are the eigenvalues of the positive

semidefinite operator (L∗L)
1
2 : V → V . We denote them by σ1(L) ≥ · · · ≥ σm(L) ≥ 0

ordered with respect to size and multiplicity. For d ∈ R let ⌊d⌋ denote the largest integer
less than d. For an arbitrary number d ∈ [0,m] we define by

ωd(L) =

{

1 for d = 0,

σ1(L) · . . . · σ⌊d⌋(L)σ
d−⌊d⌋

⌊d⌋+1 (L) for d ∈ (0,m],

the singular value function of order d of L. Let E be an ellipsoid in V and let σ1(E) ≥
. . . ≥ σm(E) ≥ 0 denote the length of its semi-axes. For an arbitrary number d ∈ [0,m]
we introduce the d-dimensional ellipsoid measure by

ωd(E) =

{

1 for d = 0,

σ1(E) · . . . · σ⌊d⌋(E)σ
d−⌊d⌋

⌊d⌋+1(E) for d ∈ (0,m].

For the linear operator L : V → W and the ball B(O, r) of radius r around the origin
O of V the image LB(O, r) is an ellipsoid in W with length of semi-axes σi(L)r. For
d ∈ [0,m] it holds

ωd(LB(O, r)) = ωd(L) rd. (2.1)

Consider now a Riemannian manifold (M, g) of dimension n (n ≥ 2) and, for simplic-
ity, of class C∞, which we call smooth. Denote by TpM the tangent space at p ∈M . The
Christoffel symbols of second kind on (M, g) with respect to a chart x : D(x) → R(x)
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are given by the n3 smooth functions Γk
ij = 1

2 g
ks(gjs,i + gsi,j − gij,s) (throughout this

paper with summation on repeated indices), where gkl,r = ∂gkl

∂xr . Here and in the sequel

let f : M → TM be a vector field of class C2 on the n-dimensional Riemannian manifold
M (n ≥ 2) and let us consider the corresponding differential equation

u̇ = f(u). (2.2)

For simplicity we assume that the global flow ϕ : R ×M → M of (2.2) exists. This
flow ϕ can also be written as one-parameter family of C2-diffeomorphisms {ϕt}t∈R with
ϕt(·) = ϕ(t, ·). In a chart x around p let {∂i(p)} be the canonical basis of TpM and f(p) =

f i∂i(p) the representation of the vector field (2.2). The covariant derivative of f in p is

the linear operator ∇f(p) : TpM → TpM defined by ∇f(p)v = ∇if
kvi∂k(p) =

(

∂fk

∂xi v
i+

Γk
ijf

jvi
)

∂k(p) for all v = vi∂i(p) ∈ TpM . For the linear operator ∇f(p) : TpM → TpM

in the Euclidean space (TpM, 〈·, ·〉TpM ) we denote by ∇f(p)∗ the adjoint operator and

by S∇f(p) := 1
2 [∇f(p) + ∇f(p)∗] the symmetric part of ∇f(p).

Let c : [a, b] → M be a piecewise smooth curve such that the restrictions c|[tj,tj+1]

are smooth for any j = 1, . . . ,m − 1. Recall that the length l(c) of c is defined as

l(c) =
m−1
∑

j=1

tj+1
∫

tj

‖ċ(t)‖ dt. For a C1-curve c : [a, b] → M let xi(t) be the local coordinates

of c(t) in the chart x. Let F (t) be a vector field along c, i.e., F (t) ∈ Tc(t)M for all

t ∈ [a, b]. The absolute derivative DF (t)
dt

∈ Tc(t)M of F along c is defined in the chart x
by

DF (t)

dt
≡ ∇ċF (t) :=

(

dF k

dt
+ Γk

ijF
j ċi

)

∂k(c(t)).

For a given C1-curve c : [a, b] → M and v ∈ Tc(t0)M (t0 ∈ [a, b]) there exists a unique

vector field Fv along c such that Fv is parallel along c, i.e., ∇ċFv ≡ 0 and Fv(t0) = v.

This defines for any s, t ∈ [a, b] with s < t the parallel transport τ
c(t)
c(s) : Tc(s)M →

Tc(t)M along c from c(s) to c(t) which relates to any v ∈ Tc(s)M the vector Fv(t) ∈
Tc(t)M .

Recall that a geodesic on (M, g) is a smooth curve c : [a, b] →M satisfying Dċ(t)
dt

≡ 0.
For any p ∈ M and v ∈ TpM we denote the maximal geodesic with ċ(0) = v and
c(0) = p by cp,v. Let D1 ⊂ TM be the set of pairs {(p, v)} with p ∈M and v ∈ TpM

such that cp,v(1) exists. Then the exponential map exp: D1 →M on (M, g) is given by

exp((p, v)) = cp,v(1) for all (p, v) ∈ D1 and expp is the restriction exp |TpM∩D1 . It is

well-known (see [24]) that D1 is open in TM , that exp: D1 → M is smooth, and for
any p ∈ M there exists an open set D1

p ⊂ TpM such that expp is a diffeomorphism on

D1
p and ‖dOp

expp ‖ = 1.

The behavior of system (2.2) near a given solution ϕ(·)(p) is described by the varia-
tional equation

Dy

dt
= ∇f(ϕt(p))y (2.3)

(see [31, 39]). In local coordinates of a chart x around ϕt(p) system (2.3) takes the form

Dyk

dt
=
∂fk

∂xi
yi + Γk

ijf
jyi = ∇if

kyi, k = 1, . . . , n.
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For any p ∈ M the differential Y (t, p) = dpϕ
t is the operator solution of (2.3) with

initial condition Y (0, p) = id TpM .
All points p ∈ M with f(p) 6= Op (f(p) = Op), where Op denotes the origin of

the tangent space TpM , we call regular (singular) points of the vector field f . If p is
a regular point we may consider the system in normal variations with respect to the
solution ϕ(·)(p) of (2.2) ([31])

Dz

dt
= A(ϕt(p))z, (2.4)

where the linear operator A(p) : TpM → TpM is given by

A(p) = ∇f(p) −B(p), where

B(p)v = 2
f(p)

‖f(p)‖2
〈f(p), S∇f(p)v〉 for all v ∈ TpM.

(2.5)

The scalar product 〈·, ·〉 and the associated norm ‖ · ‖ are taken in the tangent space
TpM . In coordinates of an arbitrary chart x : D(x) → R(x) around the regular point p
the linear operator A(p) is given by

Ak
i = ∇if

k −
2

gmnfmfn
fkgjlf

lS
j
i , k, i = 1, . . . , n,

where fk and gjl are the coordinates of the vector field f and the Riemannian metric

tensor g in the chart x, respectively, and S
j
i = 1

2

[

gjk∇kf
pgpi+∇if

j
]

is the representation

in coordinates of the symmetric part S∇f(p) of the covariant derivative of the vector
field f in this chart. Note that for ODE’s in Rn with standard metric the system in
normal variations (2.4) coincides with the system in modified variations in [28, 29, 32].

Suppose that p ∈ M is a regular point of f and y(·) is a solution of (2.3) along ϕ(·)(p).
This solution can be splitted for any t ∈ R into two orthogonal components as

y(t) = z(t) + µ(t)f(ϕt(p)), (2.6)

where z(·) is the solution of (2.4) with respect to ϕ(·)(p) with initial condition z(0) = y(0)
and µ(·) is a scalar valued C1-function given by µ(t) = 〈y(t), f(ϕt(p))〉/‖f(ϕt(p))‖2.

For every regular point p ∈ M of f we introduce the (n − 1)-dimensional linear
subspace

T⊥(p) =
{

v ∈ TpM : 〈v, f(p)〉 = 0
}

of the tangent space TpM . Denote by SA(p) := 1
2 [A(p) + A(p)∗] the symmetric part

of the operator A(p). A straight forward calculation shows that for all v ∈ T⊥(p) the
following two relations

〈f(p), SA(p)v〉 = 0 and 〈v,A(p)v〉 = 〈v,∇f(p)v〉 (2.7)

are satisfied. Hence, we have SA(p) : T⊥(p) → T⊥(p). Using this fact one can easily
prove the first part of the following lemma.

Lemma 2.1 For an arbitrary regular point p ∈M of the vector field (2.2) the eigen-
values of the operator SA(p) : TpM → TpM are the eigenvalues of the operator SA(p)
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which is restricted to the linear subspace T⊥(p) and the value −〈∇f(p)f(p), f(p)〉\‖f(p)‖2.

Further we have

S∇f(p)z −
f(p)

‖f(p)‖2
〈f(p), S∇f(p)z〉 = SA(p)z for all z ∈ T⊥(p).

In the following we denote at any regular point p of (2.2) the eigenvalues of the
operator SA(p) restricted to the subspace T⊥(p) by β1(p) ≥ · · · ≥ βn−1(p), which are
ordered with respect to size and multiplicity. By Z(t, p) we denote the operator solution
of (2.4) with initial condition Z(0, p) = id T⊥(p). For every t ∈ R the linear operator

Z(t, p) : T⊥(p) → T⊥(ϕt(p)) maps between the subspaces T⊥(p) and T⊥(ϕt(p)) being
orthogonal to the vector field in p and ϕt(p), respectively. The next lemma will be needed
in the sequel and can be proved analogously to [39].

Lemma 2.2 Suppose that p ∈ M is a regular point of the vector field (2.2) and
Z(·, p) is the operator solution of (2.4). Let d ∈ (0, n− 1]. Then for all t ≥ 0 it holds

ωd(Z(t, p)) ≤ exp

{ t
∫

0

[

β1(ϕ
τ (p)) + . . .+ β⌊d⌋(ϕ

τ (p))

+ (d− ⌊d⌋)β⌊d⌋+1(ϕ
τ (p))

]

dτ

}

.

Let B(Op, r) denote the ball of radius r around the origin Op of TpM . For a regular

point p ∈M of f let B⊥(Op, r) = B(Op, r) ∩ T
⊥(p) be the ball in the subspace T⊥(p)

centered in the origin Op of TpM with radius r. Fix p and r and consider for any t ≥ 0

the ellipsoid E(t) = Z(t, p)B⊥(Op, r) in the subspace T⊥(ϕt(p)). If σ1(E(t)) ≥ · · · ≥
σn−1(E(t)) are the lengths of the semi-axes of E(t) and if d is an arbitrary number in
(0, n− 1] we have by (2.1)

ωd(E(t)) = ωd(Z(t, p))rd. (2.8)

Our aim is to describe the variation of time translated pieces of hypersurfaces, i.e.,
(n − 1)-dimensional submanifolds, orthogonal to a considered orbit of (2.2). For this
purpose we will use methods from [31, 32] developed there for stability investigations of
flows on manifolds, in order to get information for the Hausdorff dimension of underlying
flow invariant sets. Considering a non-equilibrium solution ϕ(·)(p) of (2.2) with p ∈
M the local transformation of small pieces of a hypersurface can be described by a
reparametrized local flow. For δ > 0 so small that expp is defined on B(Op, δ) we

consider the (n− 1)-dimensional submanifold

B⊥(p, δ) := expp(B
⊥(Op, δ))

of M through p which is local transversal at the point p to the trajectory of the vector
field passing through the point p. Every point u ∈ B⊥(p, δ) can be uniquely written in
the form u = expp(rv), where v ∈ T⊥(p) is a vector of length ‖v‖ = 1 and r ∈ [0, δ)
measures the arc length of the geodesic cp,v connecting p and u. This defines us a unique

representation u = u(r, v) of a point u ∈ B⊥(p, δ).
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Figure 2.1. Reparametrization of the flow.

The main properties of the described reparametrization are summarized in the follow-
ing two lemmata which proofs are similar to [20, 31], where a slightly different reparamet-
rization is considered. Results on reparameterization for flows in Rn are given in [28,29,32].

Lemma 2.3 Suppose that ϕ(·)(p) is a non-equilibrium solution of the C2-vector
field (2.2). Then for any finite number T0 > 0 there exists a number ε1 > 0 such
that for every u ∈ B⊥(p, ε1) there is a monotonously increasing differentiable function
s(·, u) : R+ → R+ satisfying s(·, p) = id |[0,T0] and

〈

exp−1
ϕt(p)

(

ϕs(t,u)(u)
)

, f(ϕt(p))
〉

= 0 for all t ∈ [0, T0]. (2.9)

The next lemma states that for any regular point p ∈ M of f for the locally defined
reparametrized flow φt(·) ≡ φ(t, ·) := ϕ(s(t, ·), ·) the differential dpφ

t of φt restricted

to T⊥(p) satisfies (2.4). This provides the desired description of the variation of time
translated pieces of hypersurfaces orthogonal to the considered orbit. For the proof again
we refer to the method of [31].

Lemma 2.4 Suppose that ϕ(·)(p) is a non-equilibrium solution of (2.2) and the
function s(·, ·) : [0, T0]×B

⊥(p, ε1) → R+ as given in Lemma 2.3 defines a reparametrized

local flow φt(u) := ϕs(t,u)(u). Then for all t ∈ [0, T0] there holds

dpφ
t|T⊥(p) = Z(t, p),

where Z(t, p) denotes the operator solution of (2.4) with Z(0, p) = idT⊥(p).

We return to the Lemmata 2.3 and 2.4 in Section 4 where they are needed in the proof
of Theorem 4.1.
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3 Tubular Carathéodory Structure

In this section we define a special Carathéodory structure for flow negatively invariant
sets on Riemannian manifolds. The outer measures which arise from this structure will
majorize the Hausdorff measures and will be applied to obtain Hausdorff dimension
estimates of flow-invariant sets on the manifold.

Carathéodory dimension structures were introduced by Pesin [41] (see also [42]) in
order to give a general concept for most of the dimension-like characteristics of sets
and measures. Such structures may be considered as a generalization of a well-known
measure-theoretic construction of Carathéodory [5, 11]. The essential parts of such a
structure are the following ([15]).

Let X be an arbitrary set, F be a family of subsets of X , P = [d∗,+∞) for finite
d∗ or P = R be a parameter set, and let ξ : F × P → [0,∞), η : F × R → [0,∞),
and ψ : F → [0,∞) be functions. A sub-family G ⊂ F is said to be an ε-cover of a
set Y ⊂ X if Y ⊂

⋃

u∈G

U and ψ(G) := sup{ψ(U) | U ∈ G} ≤ ε hold. The following

conditions are assumed to be satisfied:

(A1) ∅ ∈ F , ψ(∅) = 0, and ξ(∅, d) = 0 for all d ∈ P.
(A2) ξ(U, s) = η(U, s− d)ξ(U, d) for all d, s ∈ P and all U ∈ F .
(A3) For any ∆ > 0 there exists ε > 0 such that for all U ∈ F\{∅} with ψ(U) ≤ ε

we have η(U, d) ≤ ∆ if d > 0 and η(U, d) ≥ ∆−1 if d < 0.
(A4) For any subset Y ⊂ X and for arbitrary ε > 0 there exists a countable ε-cover

of Y .

In analogy to [42] we call such a collection (F ,P, ξ, η, ψ) which satisfies (A1) – (A4) a
Carathéodory (dimension) structure on X . For a given Carathéodory structure
(F ,P, ξ, η, ψ), an arbitrary set Y ⊂ X , d ∈ P, and ε > 0 we define the Carathéo-
dory d-measure at level ε of Y with respect to (F ,P, ξ, η, ψ) by

µC(Y, d, ε) = inf
G

∑

U∈G

ξ(U, d),

where the infimum is taken over all countable sub-collections G ⊂ F being ε-covers of
the set Y . For fixed Y and d the function µC(Y, d, ε) is non-increasing with respect to
ε. Therefore, there exists the limit

µC(Y, d) = lim
ε→0+0

µC(Y, d, ε)

which is called the Carathéodory d-measure of Y with respect to (F ,P, ξ, η, ψ). For
arbitrary d ∈ P and arbitrary ε > 0 the functions µC(·, d, ε) and µC(·, d) are outer
measures on X . It turns out that for any set Y ⊂ X there exists a unique number
dcr(Y ) ∈ P having the property that

µC(Y, d) =

{

0 for d > dcr(Y )

+∞ for d < dcr(Y )

holds for d ∈ P. This critical value dcr(Y ) is called Carathéodory dimension dimC Y of
Y with respect to the structure (F ,P, ξ, η, ψ).

Note that our system of conditions (A1) – (A4) which leads to a Carathéodory structure
is slightly different from the system in [41, 42]. In contrast to these works we assume
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that our family of objects in the Carathéodory construction depends on parameters which
come from a (possibly proper) subset of R.

For a standard Carathéodory structure let X be a separable metric space, F the
family consisting of open balls B(u, r) in X with center u and radius r and the empty
set, P = R+, ξ(B(u, r), d) = rd, η(B(u, r), s) = rs, ψ(B(u, r)) = r, ξ(∅, d) = ψ(∅) = 0,
and η(∅, s) = 1 for each u ∈ X , r > 0 and each d ≥ 0, s ∈ R. It is easy to see
that such a system (F ,P, ξ, η, ψ) defines a Carathéodory structure on X . We denote by
µH(·, d, r), µH(·, d) and dimH the resulting Carathéodory measures and Carathéodory
dimension which are in fact the Hausdorff d-measure at level r, the Hausdorff d-measure
and the Hausdorff dimension, respectively. The concept of the Carathéodory dimension
covers not only several dimension type characteristics of sets but also characteristics of
dynamical systems such as topological pressure and topological entropy (see [41, 42]) or
a dimension introduced for Poincaré recurrences ([1]).

Let (M, g) be a smooth n-dimensional Riemannian manifold and ρ the metric induced
by g. For a piecewise smooth curve γ : I → M (I ⊂ R an interval) of finite length and
arbitrary ε > 0 we define the ε-tubular neighborhood Ω(γ, ε) of γ by

Ω(γ, ε) =
⋃

u∈γ(I)

B(u, ε),

where B(u, ε) = {p ∈ M | ρ(u, p) < ε} is again a metric ε-ball on M centered in the
point u. For simplicity we call the ε-tubular neighborhood Ω(γ, ε) around the curve γ of
length l shortly tube of length l.

For a given compact set K ⊂ M and a given number l0 > 0 we denote by Γ = {γ}
a family of piecewise smooth curves of a finite length l(γ) = l0 such that for any ε > 0
the following condition is satisfied:

(A) K is contained in the union of ε-tubular neighborhoods Ω(γ, ε) with γ ∈ Γ.

Condition (A) guarantees the existence of arbitrarily fine covers of the set K which are
generated by the family Γ. For a family Γ satisfying (A) we define a family of subsets
F , a parameter set P, and the functions ξ : F × P → [0,∞), η : F × R → [0,∞), and
ψ : F → [0,∞) by

F = {Ω(γ, ε) ∩K | γ ∈ Γ, ε > 0} ∪ {∅}, P = [1,+∞),

ξ(Ω(γ, ε) ∩K, d) = εd−1, η(Ω(γ, ε) ∩K, s) = εs,

ψ(Ω(γ, ε) ∩K) = ε

(3.1)

for γ ∈ Γ, ε > 0 with Ω(γ, ε)∩K 6= ∅, ξ(∅, d) = ψ(∅) = 0, and η(∅, s) = 1 for all d ∈ P,
s ∈ R.

Straight forward, one can verify that the collection (F ,P, ξ, η, ψ) defined via (3.1)
with Γ satisfying (A) is a Carathéodory structure on K in the sense as considered above.
In the sequel we will call such a structure simply a Carathéodory structure with tubes of
length l0 on K or tubular Carathéodory structure on K, if the underlying set K and the
family Γ are clear from the context. The next proposition shows the relations between
the Carathéodory measures and the Hausdorff measures, as well as between the Cara-
théodory dimension and the Hausdorff dimension, generated by this structure. For the
proof we refer to [15, 16] and for the Rn-case to [27].



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 1(2) (2001) 169–192 179

Proposition 3.1 Suppose that K is a compact set on the smooth n-dimensional
Riemannian manifold (M, g). Suppose that (F ,P, ξ, η, ψ) is a tubular Carathéodory
structure on K with tubes of length l0 defined by (3.1) and with respect to this structure
let be µC(·, d, ε), µC(·, d), and dimC the Carathéodory d-measure at level ε, the Cara-
théodory d-measure, and the Carathéodory dimension, respectively. Then there exist two
numbers k > 0 and ε0 > 0 depending only on K such that for any set Y ⊂ K and any
d ≥ 1 the inequality

µH(Y, d, ε) ≤ l0kµC(Y, d, ε) (3.2)

holds for all ε ∈ (0, ε0]. Therefore, we have

µH(Y, d) ≤ l0kµC(Y, d) and thus dimH Y ≤ dimC Y.

Now we specify the family Γ of curves which will be used further for the considerations
of sets being negatively invariant with respect to a flow. As in the previous section
we consider the complete C2-vector field f : M → TM on a smooth n-dimensional
Riemannian manifold and the corresponding differential equation (2.2) with global flow

{ϕt}t∈R. Let K and ˜K be two compact sets in M satisfying

K ⊂ ϕt(K) ⊂ ˜K for all t ≥ 0. (3.3)

(A set K satisfying K ⊂ ϕt(K) for all t ≥ 0 is usually called negatively invariant with
respect to the flow.) At first we suppose that the set K does not contain equilibrium
points of (2.2).

To construct the family Γ we denote by Λ the set of all equilibrium points of (2.2) in
˜K and set e1 = 1

2 dist (Λ,K), where dist (Λ,K) = inf
u∈Λ, p∈K

ρ(u, p) is the usual metric

distance between two sets in M , and define

Φ := ˜K ∩
⋃

p∈K

B(p, e1). (3.4)

With respect to the vector field f , the compact set ˜K from (3.3), and the set Φ from
(3.4) define the following coefficient

V (f, ˜K,Φ) :=

max
u∈ ˜K

‖f(u)‖TuM

min
u∈Φ

‖f(u)‖TuM

, (3.5)

which will be important for the proofs in Section 4. For any p ∈ K we take a time
bp > 0 such that ϕt(p) ∈ Φ for all t ∈ [0, bp]. Further, since dpϕ

t|t=0 = id TpM we

can suppose that ‖dpϕ
t‖ ≤ 2 holds for all t ∈ [0, bp]. Since K is compact and contains

no equilibrium points of f there exists a number e2 > 0 such that for the length of the
integral curve pieces it holds l(ϕ(·, p)|[0,bp]) ≥ e2 for any p ∈ K. We set

l0 :=
1

2
min{e1, e2},

introduce for any q ∈ K the number τ(q) > 0 satisfying l(ϕ(·, q)|[0,τ(q)]) = l0, and
define the set

Γ := {ϕ(·, q)|[0,τ(q)] | q ∈ K}. (3.6)
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Obviously this family Γ satisfies condition (A) and (F ,P, ξ, η, ψ) defined by (3.1) on the
base of this family is a Carathéodory structure on K – a Carathéodory structure with
tubes of length l0 – which will be used in Section 4.

4 Dimension Estimates of Flow Negatively Invariant Sets

In the present section we derive upper bounds for the Hausdorff dimension of compact
sets being negatively invariant with respect to the flow of the differential equation (2.2).
Investigating the deformation of such a set under shift maps generated by the flow the
deformation transversal to the flow lines is of great importance.

Our main result is the following theorem which generalizes the results of [26, 27] to
vector fields on manifolds. Recall that for d ∈ R we denote by ⌊d⌋ the largest integer
less than d.

Theorem 4.1 Let f : M → TM be the C2-vector field (2.2) on the smooth n-di-
mensional (n ≥ 2) Riemannian manifold (M, g) satisfying the following conditions:

(a) The flow {ϕt}t∈R of (2.2) satisfies (3.3) with respect to the compact sets K and
˜K in M , where K does not contain equilibrium points of (2.2).

(b) For a regular point p ∈ ˜K let β1(p) ≥ · · · ≥ βn−1(p) be the eigenvalues of the
symmetric part SA(p) = 1

2 [A(p)+A(p)∗] restricted to the subspace T⊥(p), where
A(p) is the operator from (2.5). There exist a number d ∈ (0, n − 1], a number
Θ > 0, and a time T0 > 0 such that

T0
∫

0

[

β1(ϕ
τ (p)) + · · · + β⌊d⌋(ϕ

τ (p)) + (d− ⌊d⌋)β⌊d⌋+1(ϕ
τ (p))

]

dτ ≤ −Θ (4.1)

is satisfied for all regular points p ∈ ˜K.

Then it holds dimH K < d+ 1. If d = 1 we have dimH K ≤ 1.

Before proving Theorem 4.1 we formulate some lemmata. The special flow line struc-
ture of sets which are flow negatively invariant allows us to obtain the dimension estimate.
In order to describe the deformation under the map ϕt of tubular neighborhoods around
an arc of a trajectory we investigate the evolution of time translated pieces of hypersur-
faces lying transversal to the considered trajectory. In the next lemma we consider the
influence of ϕt on arcs of a trajectory.

For an arbitrary piecewise smooth curve c : [t1, t2] →M we denote its length by l(c).

Lemma 4.1 Suppose that {ϕt}t∈R is the flow of (2.2), Φ and ˜K are compact sets in

M , Φ does not contain any equilibrium points of (2.2), and V (f, ˜K,Φ) is the coefficient
from (3.5). Let p ∈ Φ and let ct : [t1, t2] → M be a restriction of the integral curve
of (2.2) through p given by ct(·) = ϕ(t + ·, p)|[t1,t2] and satisfying c0([t1, t2]) ⊂ Φ and

ct([t1, t2]) ⊂ ˜K for all t > 0. Then the length l(ct) of such a restriction satisfies l(ct) ≤

V (f, ˜K,Φ)l(c0) for all t ≥ 0.

Proof The statement follows immediately from

l(ct) =

t2
∫

t1

‖ϕ̇(τ, ϕt(p))‖ dτ =

t2
∫

t1

‖ϕ̇(τ + t, p)‖

‖ϕ̇(τ, p)‖
‖ϕ̇(τ, p)‖ dτ

≤ V (f, ˜K,Φ)l(c0).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 1(2) (2001) 169–192 181

We consider now the family Γ of curves of length l0 from (3.6) and the chosen Cara-
théodory structure (F ,P, ξ, η, ψ) on the compact set K with tubes of length l0 from
(3.1). The next lemma estimates the tubular measures µC(·, d, ε), generated with respect
to (F ,P, ξ, η, ψ), of the flow-transformed set K. Its proof is based on the consideration
of the deformation of tubular neighborhoods around trajectory pieces.

Lemma 4.2 Suppose that {ϕt}t∈R is the flow of (2.2) satisfying (3.3) with respect to

the compact sets K and ˜K in M , where K does not contain equilibrium points of (2.2).

Suppose also that Φ, V (f, ˜K,Φ) and l0 are given by (3.4), (3.5), and (3.6), respectively.

For p ∈ ˜K let α1(p) be the largest eigenvalue of S∇f(p), and for a regular point p ∈ ˜K

let β1(p) ≥ · · · ≥ βn−1(p) be the eigenvalues of SA(p)|T⊥(p), where A(p) is the operator

from (2.5). Define for a number d ∈ (0, n− 1] and a time T0 > 0 the values

k := max
p∈K

exp

{ T0
∫

0

[

β1(ϕ
τ (p)) + · · · + β⌊d⌋(ϕ

τ (p))

+ (d− ⌊d⌋)β⌊d⌋+1(ϕ
τ (p))

]

dτ

}

,

a := exp

[

3l0 max
p∈ ˜K

α1(p)
V (f, ˜K,Φ)

min
p∈Φ

‖f(p)‖TpM

]

,

λ := 26
√

⌊d⌋ + 1 a, and C :=
(

3V (f, ˜K,Φ) + 1
)

2⌊d⌋λd.

(4.2)

Then for any l > k there exists an ε0 > 0 such that for all ε ∈ (0, ε0] the Carathéo-
dory (d+1)-measure µC(·, d+1, ε) at level ε, generated with respect to the Carathéodory
structure (3.1) with tubes of length l0, satisfies the inequality

µC(ϕT0(K) ∩K, d+ 1, λl1/dε) ≤ ClµC(K, d+ 1, ε). (4.3)

Proof Fix some γ ∈ Γ. For arbitrary l > k we can choose an ε1 > 0 such that the
set V :=

⋃

p∈K

B(p, ε1) contains no equilibrium points of (2.2) and that the inequality

k′ := max
u∈V

exp

{ T0
∫

0

[

β1(ϕ
τ (u)) + · · · + β⌊d⌋(ϕ

τ (u))

+ (d− ⌊d⌋)β⌊d⌋+1(ϕ
τ (u))

]

dτ

}

< l

(4.4)

is satisfied. We set

σ := max
p∈V

exp

{ T0
∫

0

β1(ϕ
τ (p)) dτ

}

(4.5)

and take a number m > 0 such that k′ < md and σ ≤ m are satisfied. Since l > k′

the equation
[

1 +

(

m⌊d⌋

k′

)1/(1−⌊d⌋)

η

]d

k′ = l
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uniquely defines a number η > 0.

Choose δ > 0 such that for any u ∈ ˜K the map expu maps the ball B(Ou, δ) ⊂ TuM

diffeomorphically onto the geodesic ball B(u, δ) ⊂M . Further with ‖dOu
expu ‖ = 1 we

can suppose that ‖dv expu ‖ ≤ 2 and therefore

ρ(expu v1, expu v2) ≤ 2ρ(v1, v2)

holds for all v, v1, v2 ∈ B(Ou, δ).
To simplify the use of the reparametrized local flow we cover Ω(γ, r) by a set S(γp, r)

as follows. Let for some p ∈ K and the associated time t(p) > 0 be γp(·) = ϕ(·, p)|[0,t(p)]

the integral curve of lenght 2l0 such that γp ⊃ γ and for any r ∈ (0, l0] the inclusion
Ω(γ, r) ⊂ S(γp, r) holds, where

S(γp, r) :=
⋃

u∈γp

B⊥(u, r).

Let p and t(p) be fixed in the sequel. We take now

ε0(γ) <
1

4
min{ε1, δ, dist (K,M\V ), l0}

small enough such that the following conditions are satisfied:

(1) The function s : [0,max{T0, t(p)}] × B⊥(p, 4ε0(γ)) → R+ as characterized in the
Lemma 2.3 defines a local reparametrization of the flow ϕ by φ : [0,max{T0, t(p)}] ×

B⊥(p, 4ε0(γ)) →M with φ(t, ·) ≡ φt(·) := ϕs(t,·)(·) for t ∈ [0,max{T0, t(p)}].

(2) φT0(B⊥(p, 4ε0(γ))) ⊂ B(ϕT0 (p), δ).

(3) The distance between the points φt(u) on an integral curve starting in u = expp(rv) ∈

B⊥(p, ε0(γ)) and the reference orbit through p for a fixed t ∈ [0, t(p)] is of the size

ρ(ϕt(p), φt(u)) = ‖dpφ
t‖ · r(1 +O(r))

as r → 0. It holds ‖dpφ
t‖ ≤ ‖dpϕ

t‖ and ‖dpϕ
t‖ ≤ 2 for any t > 0 such that

l(ϕ([0, t], p)) ≤ 2l0. Thus, for any u ∈ B⊥(p, ε0(γ)) it is ρ(ϕt(p), φt(u)) ≤ 4ρ(p, u) for
any such t. We can assume analogous assumptions for the flow in reverse time-direction.
Let for ε0(γ) > 0 the following be satisfied: If γ′ = φ([0, t(p)], u) is some arc of trajectory
intersecting S(γp, ε0(γ)) then γ′ is completely contained in S(γp, 4ε0(γ)) and satisfies
l(γ′) ≤ 3l0.

(4) For any u ∈ ˜K and for any time τ > 0 such that the integral curve ϕ([0, τ ], u) is of

maximal lenght 3l0V (f, ˜K,Φ) it holds

sup
q∈B(u,16σε0(γ))

∥

∥τ
ϕt(u)
ϕt(q) dqϕ

tτq
u − duϕ

t
∥

∥ ≤ a for all t ∈ (0, τ). (4.6)

Suppose that it holds

sup
q∈B⊥(p,4ε0(γ))

∥

∥τ
φT0 (p)

φT0 (q)
dqφ

T0τq
p − dpφ

T0

∥

∥ ≤ η. (4.7)
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(5) For any u = u(r, v) ∈ B⊥(p, 4ε0(γ)) the deviation arising from the local reparametri-
zation of the flow is of the form s(T0, u(r, v))− T0 = O(r) as r → 0 which gives for the

point φT0(u) = ϕs(T0,u)−T0(ϕT0 (u)) the representation

exp−1
ϕT0(u)

(φT0 (u)) = OϕT0(u) + f(ϕT0(u))O(r) + o(r)

as r → 0. The vector field C2-varies on M . So we can suppose that for any point

u ∈ B⊥(ϕT0 (p), δ) for ν < 24
√

⌊d⌋ + 1 σε0(γ) any set (ϕT0 ◦ φ−T0)B(u, ν) is contained

in a 2ν-tubular neighborhood of a curve ϕ(·, (ϕT0 ◦φ−T0)(u))|(−τ,τ) of some finite length,
say of length l0.

Now let r ≤ ε0(γ). Suppose ϕT0(Ω(γ, r)) ∩K 6= ∅. The set B(p, 4r) is contained in
the open set V . Taylor’s formula for the differentiable map φT0 provides ([39]) that for
every u ∈ B⊥(p, 4r)

∥

∥ exp−1
φT0(p)

φT0(u) − dpφ
T0(exp−1

p (u))
∥

∥

≤ sup
q∈B(p,4r)

∥

∥τ
φT0 (p)

φT0 (q)
dqφ

T0τq
p − dpφ

T0

∥

∥ ·
∥

∥ exp−1
p (q)

∥

∥

(4.8)

holds. Considering the image of B⊥(p, 4r) under φT0 with (4.7) we obtain the inclusion

exp−1
φT0(p)

(

φT0
(

B⊥(p, 4r)
))

⊂ dpφ
T0

(

B⊥(Op, 4r)
)

+B⊥
(

OϕT0(p), η4r
)

.

The set dpφ
T0

(

B⊥(Op, 4r)
)

is an ellipsoid with half-axes of length 4rσk(p), where σk(p)

(k = 1, . . . , n − 1) denote the singular values of the linear operator dpφ
T0 : T⊥(p) →

T⊥(ϕT0(p)). Using the definition of k′, Lemma 2.2 and (2.8) we conclude

ωd

(

dpφ
T0(B⊥(Op, 4r))

)

≤ (4r)dk′. (4.9)

By standard covering results (see e.g. [39]) an ellipsoid E ⊂ T⊥(ϕT0 (p)) can be found

containing dpφ
T0

(

B⊥(Op, 4r)
)

+ B
(

OϕT0(p), η4r
)

and satisfying ωd(E) ≤ l(4r)d. Any

set E can be covered by N balls of radius R =
√

⌊d⌋ + 1σ⌊d⌋+1(E). The number N can
be estimated from above by

N ≤
2⌊d⌋ωd(E)

σ⌊d⌋+1(E)d
.

Thus, any set expϕT0(p)(E) and therefore φT0(B⊥(p, 4r)) can be covered by N ge-

odesic balls in M of radius 2R. Fixing such a cover {B(ũj , 2R)}j≥1, where ũj ∈ M

(j ≥ 1), we choose in every set

K ∩B(ũj , 2R) ∩B⊥(ϕT0(p), δ)

a point uj and obtain the cover {Bj}j≥1 of the set φT0 (B⊥(p, 4r)) ∩ K with Bj =

B(uj , 4R) ∩B⊥(ϕT0(p), δ).
Now we consider the deviation arising from the reparametrization. By the prop-

erty (5) any set (ϕT0 ◦ φ−T0)(Bj) is with precision o(r) (r ≤ ε0(γ)) contained in a
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4R-neighborhood of the orbit trough uj , or more precise, in an 8R-neighborhood of a

trajectory piece ϕ(·, (ϕT0 ◦ φ−T0)(uj))|(−τ,τ) of length l0.

By the choise of ε0(γ) any trajectory piece in S(γp, 4r) which intersects S(γp, r) is

of maximal length 3l0. We shift the balls B((ϕT0 ◦ φ−T0)(uj), 8R) along the flow lines.

Thus, with the above and (4.6) the set ϕT0(S(γp, r)) can be covered by N tubes of length

3l0V (f, ˜K,Φ) + l0 and diameter 2a · 8R.
Covering each curve arc by curve arcs of length l0 we conclude

µC

(

ϕT0(Ω(γ, r)) ∩K, d+ 1, 26
√

⌊d⌋ + 1 l1/dar
)

≤ N(3V (f, ˜K,Φ) + 1)
(

26a
√

⌊d⌋ + 1σ⌊d⌋+1(E)
)d

≤ Clrd.

(4.10)

Since Γ is the set of trajectory pieces starting in a point p in the compact set K we
can pass to ε0 := inf

γ∈Γ
ε0(γ) > 0 such that the (4.10) holds for any Ω(γ, r) with γ ∈ Γ

and r ≤ ε0. Let ε ≤ ε0. For any ν > 0 there exists a finite family {Ω(γi, ri)}i≥1 with

γi ∈ Γ, ri ≤ ε having the property that
⋃

i

Ω(γi, ri) ⊃ K and
∑

i

rd
i ≤ µC(K, d+1, ε)+ν.

We obtain µC(ϕT0(K) ∩ K, d + 1, λl1/dε) ≤
∑

i

µC(ϕT0 (Ω(γi, ri)) ∩ K, d + 1, λl1/dε) ≤

Cl
∑

i

rd
i ≤ Cl(µC(K, d+ 1, ε)+ ν), where λ and C are defined by (4.2). Since ν has been

chosen arbitrarily we obtain that (4.3) holds for any ε ∈ (0, ε0].

Although we are mainly interested in upper estimates of the Hausdorff dimension of
flow negatively invariant sets we can deduce upper bounds of its Carathéodory dimension
with respect to the chosen tubular Carathéodory structure.

Proposition 4.1 Let the differential equation (2.2) satisfy the conditions of Theo-
rem 4.1 with the number d ∈ (0, n−1] in (4.1) and the negatively invariant set K. Then
the Carathéodory dimension of K, determined with respect to the Carathéodory structure
(3.1) on K consisting of tubes with length l0 determined in (3.6), satisfies

dimC K < d+ 1.

Proof It follows from (4.1) that for an arbitrarily small number κ ∈ (0, 1) there
exists some number m = m(κ) > 0 such that

k := sup
p∈K

exp

{ mT0
∫

0

[

β1(ϕ
τ (p)) + · · · + β⌊d⌋(ϕ

τ (p))

+(d− ⌊d⌋)β⌊d⌋+1(ϕ
τ (p))

]

dτ

}

≤ exp(−mΘ) < κ.

(4.11)

Without loss of generality we can assume that this number k satisfies λk1/d < 1 and
Ck < 1, where λ and C are the constants given in (4.2). We choose l > k with λl1/d < 1
and Cl < 1. Lemma 4.2, applied to the map ϕmT0 , guarantees that for the chosen number
l there exists a number ε0 > 0 such that for all ε ∈ (0, ε0] the inequality

µC

(

ϕmT0(K) ∩K, d+ 1, λl1/dε
)

≤ ClµC(K, d+ 1, ε) (4.12)
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holds. Let ε ∈ (0, ε0] be arbitrarily small. Since K is compact the value µC(K, d+ 1, ε)
is finite. SinceK is negatively invariant with respect to ϕmT0 we have K = ϕmT0(K)∩K.

Using inequality λl1/d < 1 we conclude µC(K, d+ 1, ε) < CLµC(K, d+ 1, ε). From this
we follow that the equality µC(K, d + 1, ε) = 0 holds for every ε ∈ (0, ε0]. We see that
µC(K, d + 1) = 0. This implies dimCK ≤ d + 1. Since (4.11) holds true if we slightly
reduce d we conclude dimC K < d+ 1.

Proof of Theorem 4.1 Applying Proposition 4.1 and Proposition 3.1 we obtain
dimH K < d + 1. If condition (4.1) is also satisfied for d = 1 it is satisfied for all
d ∈ (0, n− 1]. Thus, dimH K < d+ 1 for all d ∈ (0, n− 1] and we obtain dimH K ≤ 1.
This proves the Theorem.

Let us again consider compact sets K and ˜K in M satisfying (3.3) with respect to
the flow of (2.2). We may now assume that the set K possesses equilibrium points and
satisfies the following condition:

(S) The set K contains at most a finite number of equilibrium points of (2.2). Every
such equilibrium point possesses a local stable manifold with dimension at least
n− 1. Trajectories starting in local unstable manifolds or local center manifolds
of such an equilibrium point in K converge for t → +∞ to an asymptotically

stable equilibrium point of (2.2) in ˜K.

The special structure of equilibrium points satisfying (S) allows us to obtain the fol-
lowing theorem. The reason for this is that in some sense in open and flow positively
invariant neighborhoods of these points the flow preserves its contracting property with
respect to the Hausdorff measure ([16]).

Theorem 4.2 Let f : M → TM be a C2-vector field (2.2) on the smooth n-dimen-
sional Riemannian manifold (M, g). Suppose that the flow {ϕt}t∈R of (2.2) satisfies

(3.3) and condition (S) with respect to compact sets K and ˜K in M . Suppose also that
condition (b) of Theorem 4.1 is satisfied. Then the conclusion of Theorem 4.1 holds.

In the following statement we denote for a differentiable function v : U ⊂ M → R, U
an open set, by Lfv(p) the Lie derivative of v in p in direction of the vector field f .

Corollary 4.1 Suppose that the flow {ϕt}t∈R of (2.2) satisfies (3.3) and condition

(S) with respect to compact sets K and ˜K in M .
Denote by Λ the set of equilibrium points of (2.2) in M . For p ∈ M\Λ let β1(p) ≥

. . . ≥ βn−1(p) be the eigenvalues of the symmetric part SA(p) restricted to the subspace
T⊥(p), where A(p) is the operator from (2.5), and let v : M\Λ → R be a C1-function.
Suppose also that for a number d ∈ (0, n − 1] there exist a number Θ > 0 and a time
T0 > 0 such that

T0
∫

0

[

β1(ϕ
τ (p)) + · · · + β⌊d⌋(ϕ

τ (p)) + (d− ⌊d⌋)β⌊d⌋+1(ϕ
τ (p))

+ Lfv(ϕ
τ (p))

]

dτ ≤ −Θ

(4.13)

holds for all regular points p ∈ ˜K. Then the conclusion of Theorem 4.1 holds.

Proof As mentioned above, on open and flow positively invariant neighborhoods of
equilibrium points of (2.2) which satisfy (S) the flow preserves its contracting property
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with respect to the Hausdorff measure. So it remains to show that for any compact,
flow negatively invariant set K1 ⊂ K which does not contain equilibrium points of (2.2)
it holds dimH K1 < d + 1. On M\Λ we introduce a new metric tensor by ĝ(p) :=

exp
(

2v(p)
d

)

g(p) for p ∈ M\Λ. On K1 the Riemannian metric ĝ is equivalent to g.

Changing to the metric ĝ does not alter the Hausdorff dimension of the compact set K1.

Consider the operator Â(p) from (2.5), the symmetric part SÂ(p) of Â(p), the operator

∇̂f(p), and S∇̂f(p), which are defined regarding to the scalar product in TpM induced

by the metric ĝ. As in [39] one shows that S∇̂f(p) = S∇f(p) +
Lf v(p)

d
id TpM . Using

(2.7) we obtain that for a regular point p ∈ M the eigenvalues β̂i(p) of the operator

SÂ(p)|T⊥(p) are related to the eigenvalues βi(p) (i = 1, . . . , n − 1) with respect to the

original metric g by β̂i(p) = βi(p) +
Lf v(p)

d
. Therefore,

β̂1(p) + · · · + β̂⌊d⌋(p) + (d− ⌊d⌋)β̂⌊d⌋+1(p)

= β1(p) + · · · + β⌊d⌋ + (d− ⌊d⌋)β⌊d⌋+1(p) + Lfv(p)

guarantees (4.13) and thus (4.1) of Theorem 4.1. Hence dimH K1 < d+ 1.

Corollary 4.2 Consider a 2-dimensional Riemannian manifold M . Suppose that the
flow {ϕt}t∈R of (2.2) satisfies (3.3) and condition (S) with respect to compact sets K

and ˜K in M . If div f(p) < 0 holds for any regular points p ∈ ˜K then dimH K ≤ 1.

Proof For the operator A(p) from (2.5) it holds tr (SA(p)|T⊥(p)) = tr ∇f(p) −

〈∇f(p)f(p), f(p)〉/‖f(p)‖2. We define the C1-function v on the set of all regular points
p in M by v(p) = 1

2 ln ‖f(p)‖2. The statement follows with Corollary 4.1.

5 Flow Invariant Sets with an Equivariant Tangent Bundle Splitting

The considered outer measures defined via tube covers show in many cases a better con-
traction behavior under the flow operator of a vector field in positive time direction than
conventional outer measures defined via a covering of balls do. Using such an approach
for a class of generalized hyperbolic flows on n-dimensional Riemannian manifolds we
may improve upper Hausdorff dimension estimates which are obtained with methods
from [39] (or from [45] for the Rn).

Consider again the vector field f : M → TM from (2.2) on the smooth n-dimensional
Riemannian manifold (M, g). Let us introduce a property of flow-invariant sets which
may be considered as a generalized hyperbolic structure. We say that a flow-invariant
compact set K ⊂M possesses an equivariant tangent bundle splitting (which for simplic-
ity consists of only two components) TKM = E1 ⊕E2 with respect to the flow {ϕt}t∈R

if for any p ∈ K and i = 1, 2 the space Ei
p = Ei ∩ TpM is an ni-dimensional subspace

of TpM such that n1 + n2 = n and dpϕ
t(Ei

p) = Ei
ϕt(p) hold for any p ∈ K and t ∈ R.

Recall that an Anosov flow on K is a flow without equilibria for which among other
properties there exists an equivariant tangent bundle splitting TKM = E1 ⊕ E2, where
E2

p = span {f(p)} for each p ∈ K. For d ∈ (0, n − n2] and t ∈ R we introduce the

singular value function of order d of ϕt on K with respect to the splitting E1⊕E2 which
is defined by

ω
E

1
,E

2

d,K (ϕt) := sup
p∈K

ωd

(

dpϕ
t|E1(p)

)

.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 1(2) (2001) 169–192 187

Since ωE1,E2

d,K (ϕt) is a sub-exponential function the limit

νd := lim
t→∞

1

t
lnωE1,E2

d,K (ϕt)

exists for any d ∈ (0, n− n2] ([46]). We call the numbers

νu
1 := ν1, νu

i := νi − νi−1 for i = 1, . . . , n− n2

the uniform Lyapunov exponents of {ϕt} with respect to the splitting E1 ⊕ E2. Let us
investigate the splitting TKM = E2 ⊕ E2 such that E1 = T⊥ with E1

p = T⊥(p) and

E2 = T ‖ with E2
p = T ‖(p) = span {f(p)}.

With the help of Lemma 2.1 one shows that for any regular point p ∈M satisfying

〈S∇f(p)z, f(p)〉 = 0 for all z ∈ T⊥(p) (5.1)

the n − 1 eigenvalues β1(p), . . . , βn−1(p) of SA(p)|T⊥(p), with the operator A(p) from

(2.5), coincide with n− 1 eigenvalues of S∇f(p). The subspace T ‖(p) is the eigenspace
of the remaining nth eigenvalue α(p) = 〈∇f(p)f(p), f(p)〉/‖f(p)‖2 of S∇f(p).

We consider now two compact sets K and ˜K in M without equilibrium points of (2.2)

satisfying (3.3) and suppose that (5.1) is satisfied for any p ∈ ˜K. By α1(p) ≥ · · · ≥ αn(p)
denote the eigenvalues of S∇f(p). For that case Theorem 3.1 from [39] states that if for
some d ∈ (0, n] the inequality

α1(p) + . . .+ α⌊d⌋(p) + (d− ⌊d⌋)α⌊d⌋+1(p) < 0

holds for all p ∈ ˜K, the estimate dimH K < d is true. For the C1-function v : ˜K → R
given by v(p) = 1

2 ln ‖f(p)‖2 we have Lfv(p) = 〈∇f(p)f(p), f(p)〉/‖f(p)‖2 = α(p) for

each p ∈ ˜K. If α(p) ≥ 0 holds for all p ∈ ˜K then

α1(p) + · · · + α⌊d⌋(p) + (d− ⌊d⌋)α⌊d⌋+1(p)

= β1(p) + · · · + β⌊d⌋−1(p) + (d− ⌊d⌋)β⌊d⌋(p) + Lfv(p).

With this Corollary 4.1 gives an upper bound of dimH K which is less than or equal
to the upper bound we would get applying Theorem 3.1 from [39]. If d = 2 then
Corollary 4.1 gives the better estimate dimH K ≤ 1.

One easily shows that a compact, flow-invariant set K without equilibrium points
possesses an equivariant tangent bundle splitting T⊥ ⊕ T ‖ if and only if (5.1) holds
for any p ∈ K. Obviously the flow {ϕt}t∈R on K then is already reparametrized
globally if one considers the reparametrization described in Lemma 2.3. For that case
the assumptions of Theorem 4.1 can be weaken if we consider the long-time behavior.

Proposition 5.1 Let f : M → TM be the C2-vector field from (2.2) on the n-di-
mensional Riemannian manifold (M, g). Suppose that K ⊂ M is a compact and flow-
invariant set without equilibrium points of (2.2) and that K possesses an equivariant

tangent bundle splitting TKM = T⊥⊕T ‖ with respect to the flow. Let D ∈ {0, . . . , n−1}
be the smallest number such that νu

1 + · · · + νu
D + νu

D+1 < 0. Then it holds

dimH K ≤ D +
νu
1 + · · · + νu

D

|νu
D+1|

+ 1.
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Proof Take an arbitrary number d ∈
(

D +
νu
1 +···+νu

D

|νu
D+1

|
, n − 1

]

. Then it holds νd =

νu
1 + · · · + νu

⌊d⌋
+ (d − ⌊d⌋)νu

⌊d⌋+1 < 0. Fix some ε ∈ (0, νd). By definition of νd there

is a finite number T0 > 0 such that 1
T0

lnωT⊥,T‖

d,K
(ϕT0) < νd + ε, i.e., ωT⊥,T‖

d,K
(ϕT0) <

exp(T0(νd + ε)) < 1. Theorem 4.1 basically uses properties of the singular value function
which is estimated from above applying Lemma 2.2. Thus, the proposition can be proved

applying analogous arguments and using ω
T⊥,T‖

d,K (ϕT0) = sup
p∈K

ωd

(

dpϕ
T0 |T⊥(p)

)

.

Example 5.1 Consider the vector field in R2 given by

θ̇ = a sin θ, ẋ = −x+ b (5.2)

(with parameters a ≥ 1, b 6= 0), being in the first coordinate periodic with period
2π. The arising dynamical system can be interpreted as a dynamical system on the
flat cylinder Z of all equivalence classes [u], u ∈ R2, being a smooth 2-dimensional
Riemannian manifold with the standard metric for factor manifolds. Every solution of
(5.2) is bounded in the second coordinate. Obviously, the set K = {z ∈ Z|z = [u], u =
(θ, 0), θ ∈ R} is compact and flow-invariant with respect to (5.2). The variational system
(2.3) and the system in normal variations (2.4) with respect to any solution (θ(t), 0) in
K are given by

ẏ =

(

a cos θ(t) 0
0 −1

)

y and ż =

(

−a cos θ(t) 0
0 −1

)

z,

respectively. Thus, β1(z) = −1 for any z ∈ K and condition (4.1) is satisfied with
d = 1 and Θ = T = 1. By Theorem 4.1 we conclude that dimH K ≤ 1. Note that in the
present situation other available theorems [39, 45] are not applicable since the divergence
of the right-hand side of (5.2) gives the expression a cos θ−1 which is, in contrast to the
assumptions of Theorem 3.1 from [39], not always negative.

6 Generalizations of the Theorems of Hartman-Olech and Borg

In this section we show that for certain vector fields in R3 the methods of the present
paper provide always more effective conditions for upper Hausdorff bounds than those
which work without projection onto transversal submanifolds (e.g. [39, 45]). In addition
to this we improve for these systems results about the structure of ω-limit sets, which
are closely related to results in [4, 19, 20].

Consider an arbitrary C2-vector field f in R3 with the standard Euclidean metric, i.e.,
the differential equation

ẋ = f(x). (6.1)

Suppose that for (6.1) the global flow {ϕt}t∈R exists. Let K and ˜K be two compact

sets in R3 satisfying K ⊂ ϕt(p) ⊂ ˜K for all t ≥ 0. For that case for any x ∈ R3 the
covariant derivative ∇f(x) can be identified with the Jacobi matrix Df(x) of f in x.

Suppose that f possesses in ˜K a finite number of equilibrium points and that for any
such equilibrium point all eigenvalues of Df(x) have negative real part.
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Consider the symmetric part SDf(x) = 1
2

(

Df(x) + Df(x)∗
)

of Df(x). As in the

previous sections for any regular p of f define the hyperplanes T⊥(x) = {z ∈ R3 |
f(x)∗z = 0}, where f(x)∗ denotes the transposed vector. Let the linear operator
SA(x) : T⊥(x) → T⊥(x) be given by

SA(x) = SDf(x) −
f(x)f(x)∗

‖f(x)‖2
SDf(x) =

(

I −
f(x)f(x)∗

‖f(x)‖2

)

Df(x)

(compare with Lemma 2.1). Denote the eigenvalues of SDf(x), ordered with respect to
size and multiplicity, by α1(x) ≥ α2(x) ≥ α3(x). Suppose that β1(x) ≥ β2(x) are the
eigenvalues of SA(x) restricted to the subspace T⊥(x) and suppose further that β1(x)
and β2(x) are not eigenvalues of S∇f(x). It is easy to see that β1(x) and β2(x) are the

zeros of the equation f(x)∗
(

βi(x)I −SDf(x)
)−1

f(x) = 0. We introduce the polynomial

det(βI −Df(x)) ≡ β3 + δ2(x)β
2 + δ1(x)β + δ0(x). (6.2)

Let x ∈ ˜K. Note that we have δ2(x) = −(α1(x)+α2(x)+α3(x)), δ1(x) = α1(x)α2(x)+
α2(x)α3(x) + α1(x)α3(x) and δ0(x) = −α1(x)α2(x)α3(x). From this with elementary
calculations (see [16]) it follows that the eigenvalues βi(x) (i = 1, 2) of SA(x) are the
zeros of the polynomial

β2 +
[

δ2(x) + ∆1(x)
]

β +
[

δ1(x) + δ2(x)∆1(x) + ∆2(x)
]

,

where

∆1(x) =
1

‖f(x)‖2
f(x)∗Df(x)f(x) and

∆2(x) =
1

‖f(x)‖2
f(x)∗Df(x)2f(x).

(6.3)

Using this fact one sees immediately that the assumptions of Corollary 4.1 are satisfied
for (6.1) if we suppose for the auxiliary function v(x) = 1

2 ln ‖f(x)‖2, defined on the set

of all regular points of R3, the following conditions: There exists a continuous function

s : ˜K → [0, d1] with d1 ∈ (0, 1] such that for any regular point x ∈ ˜K with h(x) :=
1−s(x)
1+s(x) the inequalities

δ2(x) − h(x)∆1(x) > 0 and

1

4h(x)2
(

δ2(x) − h(x)∆1(x)
)2
>

1

4

(

δ2(x) − ∆1(x)
)2

− δ1(x) − ∆2(x)

hold. As a corollary we get that if the inequalities

δ2(x) − ∆1(x) > 0 and

δ1(x) + ∆2(x) > 0
(6.4)

are satisfied for all regular points x of f on ˜K then by Corollary 4.1 it holds that
dimH K ≤ 1. Further, the set K consists of a finite number of equilibrium points and
closed trajectories of (6.1). This can be easily shown using coverings of appropriated
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tubular neighborhoods. Note that the last result is closely related to results in [4, 19, 20].

If in addition to this the set ˜K is positively invariant with respect to the flow of (6.1),

connected, and if ˜K contains exactly one equilibrium point being asymptotically stable,

then ˜K is contained in the basin of attraction of this equilibrium point.
The Hartman-Olech condition ([20]) requires that α1(x) + α2(x) < 0 for all regular

points x ∈ ˜K. This is one of the most effective sufficient condition which guarantees that

in the present situation the set ˜K is contained in the basin of attraction of an equilibrium.
Note that this is always sufficient for the condition (6.4).

Let us formulate a further corollary from Theorem 4.2 for the case M = R3. Suppose

now that δ2(x) > 0 for all regular points x ∈ ˜K and that there exists a continuous

function s : ˜K → [0, d1) with d1 ∈ (0, 1] such that the inequalities

1 + s(x)

1 − s(x)
δ2(x) − ∆1(x) ≥ 0 and

s(x)

(1 − s(x))2
δ2(x)

2 −
s(x)

1 − s(x)
δ2(x)∆1(x) + δ1(x) + ∆2(x) ≥ 0

(6.5)

hold for all regular x ∈ ˜K. It follows from Corollary 4.1 that dimH K < 2 + d1. It is
well-known (see [39, 45]) that a sufficient condition for the dimension estimate dimH K <

2 + d1 is the inequality

α1(x) + α2(x) + d1α3(x) < 0 for all x ∈ ˜K. (6.6)

It is easy to show ([16]) that our condition (6.5) is always satisfied supposed that (6.6)
is satisfied.
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[2] Bhatia, N.P. and Szegö, G.P. Dynamical Systems: Stability Theory and Applications.

Springer, Lecture Notes in Math. 35, Berlin, 1967.
[3] Boichenko, V.A., Franz, A., Leonov, G.A. and Reitmann, V. Hausdorff and fractal dimen-

sion estimates for invariant sets of non-injective maps. ZAA 17(1) (1998) 207–223.
[4] Borg, G. A condition for existence of orbitally stable solutions of dynamical systems.
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Abstract: New sufficient conditions for the Liapunov stability of a class of
large scale systems described by ordinary differential equations are estab-
lished. In all cases we proposed a new construction for matrix-valued Lia-
punov function and the objective is the same: to analyze the stability of large
scale systems (nonautonomous and autonomous) in terms of sign definiteness
of specific matrices. In order to demonstrate the usefulness of the presented
results several examples are considered.

Keywords: Large scale systems; Liapunov function construction; stability; asymp-

totic stability; nonautonomous oscillator.
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1 Introduction

The methods of stability analysis of large-scale dynamical systems via one-level decom-
position of the system and a vector Liapunov functions were summarized in a series of
monographs. The necessity of further development of the known approaches for the men-
tioned class of dynamical systems and creation of new ones is caused by the fact that
the methods of qualitative analysis based on vector Liapunov function yield, as a rule,
“super-sufficient” stability conditions.

The aim of this paper is to present a new method of constructing the matrix-valued
function and then to obtain efficient stability conditions for one class of large scale systems
admitting one-level decomposition.

c© 2001 Informath Publishing Group. All rights reserved. 193
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2 A Class of Large Scale System

We consider a system with finite number of degrees of freedom whose motion is described
by the equations (2.1)

dxi

dt
= fi(xi) + gi(t, x1, . . . , xm), i = 1, 2, . . . ,m (2.1)

where xi ∈ Rni , t ∈ Tτ , Tτ = [τ,+∞), fi ∈ C(Rni , Rni), gi ∈ C(Tτ × Rn1 × · · · ×
Rnm , Rni).

Introduce the designation

Gi(t, x) = gi(t, x1, . . . , xm) −

m
∑

j=1, j 6=i

gij(t, xi, xj), (2.2)

where gij(t, xi, xj) = gi(t, 0, . . . , xi, . . . , xj , . . . , 0) for all i 6= j; i, j = 1, 2, . . . ,m. Tak-
ing into consideration (2.2) system (2.1) is rewritten as

dxi

dt
= fi(xi) +

m
∑

j=1, j 6=i

gij(t, xi, xj) +Gi(t, x). (2.3)

Actually equations (2.3) describe the class of large-scale nonlinear nonautonomously
connected systems. It is of interest to extend the method of matrix Liapunov functions to
this class of equations in view of the new method of construction of nondiagonal elements
of matrix-valued functions.

3 On Construction of Nondiagonal Elements of Matrix-Valued Function

In order to extend the method of matrix Liapunov functions to systems (2.3) it is neces-
sary to estimate variation of matrix-valued function elements and their total derivatives
along solutions of the corresponding systems. Such estimates are provided by the as-
sumptions below.

Assumption 3.1 There exist open connected neighborhoods Ni ⊆ Rni of the equi-
libriums state xi = 0, functions vii ∈ C1(Rni , R+), the comparison functions ϕi1, ϕi2

and ψi of class K(KR) and real numbers c
¯ii > 0, c̄ii > 0 and γii such that

(1) vii(xi) = 0 for all (xi = 0) ∈ Ni;
(2) c

¯iiϕ
2
i1(‖xi‖) ≤ vii(xi) ≤ c̄iiϕ

2
i2(‖xi‖);

(3) (Dxi
vii(xi))

Tfi(xi) ≤ γiiψ
2
i (‖xi‖) for all xi ∈ Ni,

i = 1, 2, . . . ,m.

It is clear (see [3, 5]) that under conditions of Assumption 3.1 the equilibrium states
xi = 0 of nonlinear isolated subsystems

dxi

dt
= fi(xi), i = 1, 2, . . . ,m (3.1)

are

(a) uniformly asymptotically stable in the whole, if γii < 0 and
(ϕi1, ϕi2, ψi) ∈ KR-class;

(b) stable, if γii = 0 and (ϕi1, ϕi2) ∈ K-class;
(c) unstable, if γii > 0 and (ϕi1, ϕi2, ψi) ∈ K-class.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 1(2) (2001) 193–203 195

The approach proposed in this section takes large scale systems (2.3) into consider-
ation, subsystems (3.1) having various dynamical properties specified by conditions of
Assumption 3.1.

Assumption 3.2 There exist open connected neighborhoods Ni ⊆ Rni of the equi-
librium states xi = 0, functions vij ∈ C1,1,1(Tτ × Rni × Rnj , R), comparison functions

ϕi1, ϕi2 ∈ K(KR), positive constants (η1, . . . , ηm)T ∈ Rm, ηi > 0 and arbitrary con-
stants c

¯ij , c̄ij , i, j = 1, 2, . . . ,m, i 6= j such that

(1) vij(t, xi, xj) = 0 for all (xi, xj) = 0 ∈ Ni×Nj , t ∈ Tτ , i, j = 1, 2, . . . ,m, (i 6= j);
(2) c

¯ijϕi1(‖xi‖)ϕj1(‖xj‖) ≤ vij(t, xi, xj) ≤ c̄ijϕi2(‖xi‖)ϕj2(‖xj‖) for all (t, xi, xj) ∈
Tτ ×Ni ×Nj , i 6= j;

(3) Dtvij(t, xi, xj) + (Dxi
vij(t, xi, xj))

Tfi(xi)

+(Dxj
vij(t, xi, xj))

Tfj(xj) + ηi

2ηj
(Dxi

vii(xi))
Tgij(t, xi, xj) (3.2)

+
ηj

2ηi
(Dxj

vjj(xj))
Tgji(t, xi, xj) = 0;

It is easy to notice that first order partial equations (3.2) are a somewhat variation of
the classical Liapunov equation proposed in [8] for determination of auxiliary function
in the theory of his direct method of motion stability investigation. In a particular case
these equations are transformed into the systems of algebraic equations whose solutions
can be constructed analytically.

Assumption 3.3 There exist open connected neighbourhoods Ni ⊆ Rni of the
equilibrium states xi = 0, comparison functions ψ ∈ K(KR), i = 1, 2, . . . ,m, real
numbers α1

ij , α
2
ij , α

3
ij , ν

1
ki, ν

1
kij , µ

1
kij and µ2

kij , i, j, k = 1, 2, . . . ,m, such that

(1) (Dxi
vii(xi))

TGi(t, x) ≤ ψi(‖xi‖)
m
∑

k=1

ν1
kiψ(‖xk‖) +R1(ψ)

for all (t, xi, xj) ∈ Tτ ×Ni ×Nj ;

(2) (Dxi
vij(t, ·))

Tgij(t, xi, xj) ≤ α1
ijψ

2
i (‖xi‖) + α2

ijψi(‖xi‖)ψj(‖xj‖) + α3
ijψ

2
j (‖xj‖)

+R2(ψ) for all (t, xi, xj) ∈ Tτ ×Ni ×Nj ;

(3) (Dxi
vij(t, ·))

TGi(t, x) ≤ ψj(‖xj‖)
m
∑

k=1

ν2
ijkψk(‖xk‖) +R3(ψ)

for all (t, xi, xj) ∈ Tτ ×Ni ×Nj ;

(4) (Dxi
vij(t, ·))

Tgik(t, xi, xk) ≤ ψj(‖xj‖)(µ
1
ijkψk(‖xk‖) + µ2

ijkψi(‖xi‖)) +R4(ψ)

for all (t, xi, xj) ∈ Tτ ×Ni ×Nj .

Here Rs(ψ) are polynomials in ψ = (ψ1(‖x1‖, . . . , ψm(‖xm‖)) in a power higher than
three, Rs(0) = 0, s = 1, . . . , 4.

Under conditions (2) of Assumptions 3.1 and 3.2 it is easy to establish for function

v(t, x, η) = ηTU(t, x)η =

m
∑

i,j=1

vij(t, ·)ηiηj (3.3)

the bilateral estimate (cf. [4])

uT
1H

TC
¯
Hu1 ≤ v(t, x, η) ≤ uT

2H
TC̄Hu2, (3.4)

where

u1 = (ϕ11(‖x1‖, . . . , ϕm1(‖xm‖))T,

u2 = (ϕ12(‖x1‖, . . . , ϕm2(‖xm‖))T,
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which holds true for all (t, x) ∈ Tτ ×N , N = N1 × · · · × Nm.
Based on conditions (3) of Assumptions 3.1, 3.2 and conditions (1) – (4) of Assump-

tion 3.3 it is easy to establish the inequality estimating the auxiliary function variation
along solutions of system (2.3). This estimate reads

Dv(t, x, η)
∣

∣

(2.1)
≤ uT

3Mu3, (3.5)

where u3 = (ψ1(‖x1‖), . . . , ψm(‖xm‖) and holds for all (t, x) ∈ Tτ ×N .
Elements σij of matrix M in the inequality (3.8) have the following structure

σii = η2
i γii + η2

i νii +

m
∑

k=1, k 6=i

(ηkηiν
2
kii + η2

i ν
2
kii) + 2

m
∑

j=1, j 6=i

ηiηj(α
1
ij + α3

ji);

σij =
1

2
(η2

i ν
1
ji + η2

j ν
1
ij) +

m
∑

k=1, k 6=j

ηkηjν
2
kij +

m
∑

k=1, k 6=i

ηiηjν
2
kij

+ ηiηj(α
2
ij + α2

ji) +

m
∑

k=1, k 6=i,
k 6=j

(ηkηjµ
1
kji + ηiηjµ

2
ijk + ηiηkµ

1
kij + ηiηjµ

2
jik),

i = 1, 2, . . . ,m, i 6= j.

4 Test for Stability Analysis

Sufficient criteria of various types of stability of the equilibrium state x = 0 of system
(2.3) are formulated in terms of the sign definiteness of matrices C

¯
, C̄ and M from

estimates (3.4), (3.5). We shall show that the following assertion is valid.

Theorem 4.1 Assume that the perturbed motion equations are such that all condi-

tions of Assumptions 3.1 – 3.3 are fulfilled and moreover

(1) matrices C
¯

and C̄ in estimate (3.4) are positive definite;

(2) matrix M in inequality (3.5) is negative semi-definite (negative definite).

Then the equilibrium state x = 0 of system (2.1) is uniformly stable (uniformly

asymptotically stable).

If, additionally, in conditions of Assumptions 3.1 – 3.3 all estimates are satisfied for

Ni = Rni ,Rk(ψ) = 0, k = 1, ...4 and comparison functions (ϕi1, ϕi2) ∈ KR-class,

then the equilibrium state of system (2.1) is uniformly stable in the whole (uniformly

asymptotically stable in the whole).

Proof If all conditions of Assumptions 3.1 – 3.2 are satisfied, then it is possible for sys-
tem (2.1) to construct function v(t, x, η) which together with total derivative Dv(t, x, η)
satisfies the inequalities (3.4), and (3.5). Condition (1) of Theorem 4.1 implies that
function v(t, x, η) is positive definite and decreasing for all t ∈ Tτ . Under condition
(2) of Theorem 4.1 function Dv(t, x, η) is negative semi-definite (definite). Therefore all
conditions of Theorem 2.3.1, 2.3.3 from [9] are fulfilled. The proof of the second part of
Theorem 4.1 is based on Theorem 2.3.4 from the same monograph [9].
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5 Nonautonomous Oscillator

We shall study the motion of two non-autonomously connected oscillators whose be-
haviour is described by the equations

dx1

dt
= γ1x2 + v cosωty1 − v sinωty2,

dx2

dt
= −γ1x1 + v sinωty1 + v cosωty2,

dy1

dt
= γ2y2 + v cosωtx1 + v sinωtx2,

dy2

dt
= −γ2y2 + v cosωtx2 − v sinωtx1,

(5.1)

where γ1, γ2, v, ω, ω + γ1 − γ2 6= 0 are some constants.
For the independent subsystems

dx1

dt
= γ1x2,

dx2

dt
= −γ1x1

dy1

dt
= γ2y2,

dy2

dt
= −γ2y1

(5.2)

the auxiliary functions vii, i = 1, 2, are taken in the form

v11(x) = xTx, x = (x1, x2)
T,

v22(y) = yTy, y = (y1, y2)
T.

(5.3)

We use the equation (3.2) (see Assumption 3.2) to determine the non-diagonal element
v12(x, y) of the matrix-valued function U(t, x, y) = [vij(·)], i, j = 1, 2. To this end set

η = (1, 1)T and v12(x, y) = xTP12y, where P12 ∈ C1(Tτ , R
2×2). For the equation

dP12

dt
+

(

0 −γ1

γ1 0

)

P12

+ P12

(

0 γ2

−γ2 0

)

+ 2v

(

cosωt − sinωt

sinωt cosωt

)

= 0,

(5.4)

the matrix

P12 = −
2v

ω + γ1 − γ2

(

sinωt cosωt

− cosωt sinωt

)

is a partial solution bounded for all t ∈ Tτ .
Thus, for the function v(t, x, y) = ηTU(t, x, y)η it is easy to establish the estimate of

(3.4) type with matrices C
¯

and C̄ in the form

C
¯

=

(

c
¯11 c

¯12

c
¯12 c

¯22

)

, C̄ =

(

c̄11 c̄12

c̄12 c̄22

)

,

where c̄11 = c
¯11 = 1; c̄22 = c

¯22 = 1, c̄12 = −c
¯12 = |2v|

|ω+γ1−γ2|
. Besides, the vector

uT
1 = (‖x‖, ‖y‖) = uT

2 since the system (5.1) is linear.
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For system (5.1) the estimate (3.5) becomes

Dv(t, x, y)
∣

∣

(5.1)
= 0

for all (x, y) ∈ R2 ×R2 because M = 0.
Due to (5.4) the motion stability conditions for system (5.1) are established basing on

the analysis of matrices C
¯

and C̄ property of having fixed sign.
It is easy to verify that the matrices C

¯
and C̄ are positive definite, if

1 −
4v2

(ω + γ1 − γ2)2
> 0.

Consequently, the motion of nonautonomously connected oscillators is uniformly stable
in the whole, if

|v| <
1

2
|ω + γ1 − γ2|.

6 Large Scale Linear System

Assume that in the system

dx1

dt
= A11x1 +A12x2 +A13x3,

dx2

dt
= A21x1 +A22x2 +A23x3,

dx3

dt
= A31x1 +A32x2 +A33x3,

(6.1)

the state vectors xi ∈ Rni , i = 1, 2, 3, and Aij ∈ Rni×nj are constant matrices for
all i, j = 1, 2, 3.

For the independent systems

dxi

dt
= Aiixi, i = 1, 2, 3 (6.2)

we construct auxiliary functions vii(xi) as the quadratic forms

vii(xi) = xT
i Piixi, i = 1, 2, 3 (6.3)

whose matrices Pii are determined by

AT
iiPii + PiiAii = −Gii, i = 1, 2, 3, (6.4)

where Gii are prescribed matrices of definite sign. In order that to construct non-diagonal
elements vij(xi, xj) of matrix-valued function U(x) we employ equation (3.2) from As-
sumption 3.2. Note that for system (6.1)

fi(xi) = Aiixi, fj(xj) = Ajjxj ,

gij(xi, xj) = Aijxj , Gi(t, x) = 0, i = 1, 2, 3.
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Since for the bilinear forms

vij(xi, xj) = vji(xj , xi) = xT
i Pijxj , (6.5)

the correlations

Dxi
vij(xi, xj) = xT

jP
T
ij , Dxj

vij(xi, xj) = xT
i Pij ,

are true, equation (3.2) becomes

xT
i

(

AT
iiPij + PijAjj +

ηi

ηj

PiiAij +
ηj

ηi

AT
jiPii

)

xj = 0.

From this correlation for determining matrices Pij we get the system of algebraic equa-
tions

AiiPij + PijAjj = −
ηi

ηj

PiiAij −
ηj

ηi

AT
jiPii,

i 6= j, i, j = 1, 2, 3.

(6.6)

Since for (6.3), and (6.5) the estimates (see [4, 6])

vii(xi) ≥ λm(Pii)‖xi‖
2, xi ∈ Rni ;

vij(xi, xj) ≥ −λ
1/2
M (PijP

T
ij)‖xi‖‖xj‖, (xi, xj) ∈ Rni ×Rnj ,

hold true, for function v(x, η) = ηTU(x)η the inequality

wTHTCHw ≤ v(x, η) (6.7)

is satisfied for all x ∈ Rn, w = (‖x1‖, ‖x2‖, ‖x3‖)
T and the matrix

C =







λm(P11) −λ
1/2
M (P12P

T
12) −λ

1/2
M (P13P

T
13)

−λ
1/2
M (P12P

T
12) λm(P22) −λ

1/2
M (P23P

T
23)

−λ
1/2
M (P13P

T
13) −λ

1/2
M (P23P

T
23) λm(P33)






.

For system (6.1) the constants from Assumption 3.3 are:

α1
ij = α2

ij = 0; α3
ij = λM (AT

ijPij + PT
ijAij),

ν1
ki = ν2

ijk = 0; ν1
ijk = λ

1/2
M [(PT

ijAik)(PT
ijAik)], µ2

ijk = 0.

Therefore the elements σij of matrix M in (3.5) for system (6.1) have the structure

σii = −η2
i λm(Gii) + 2

3
∑

j=1, j 6=i

ηiηjα
3
ij , i = 1, 2, 3,

σij =
3
∑

k=1, k 6=i,
k 6=j

(ηkηjν
1
ijk + ηiηkν

1
kij), i, j = 1, 2, 3, i 6= j.

Consequently, the function Dv(x, η) variation along solutions of system (6.1) is estimated
by the inequality

Dv(x, η)
∣

∣

(6.1)
≤ wTMw (6.8)

for all (x1, x2, x3) ∈ Rn1 ×Rn2 ×Rn3 .
We summarize our presentation as follows.
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Corollary 6.1 Assume for system (6.1) the following conditions are satisfied:

(1) algebraic equations (6.4) have the sign-definite matrices Pii, i = 1, 2, 3 as their

solutions;

(2) algebraic equations (6.6) have constant matrices Pij , for all i, j = 1, 2, 3, i 6= j

as their solutions;

(3) matrix C in (6.7) is positive definite;

(4) matrix M in (6.8) is negative semi-definite (negative definite).

Then the equilibrium state x = 0 of system (6.1) is uniformly stable (uniformly

asymptotically stable).

This corollary follows from Theorem 4.1 and hence its proof is obvious.

7 Discussion and Numerical Example

To start to illustrate the possibilities of the proposed method of Liapunov function con-
struction we consider a system of two connected equations that was studied earlier by
the Bellman-Bailey approach (see [7, 8], etc.).

Partial case of system (6.1) is the system

dx1

dt
= Ax1 + C12x2,

dx2

dt
= Bx2 + C21x1,

(7.1)

where x1 ∈ Rn1 , x2 ∈ Rn2 , and A, B, C12 and C21 are constant matrices of corresponding
dimensions. For independent subsystems

dx1

dt
= Ax1,

dx2

dt
= Bx2

(7.2)

the functions v11(x1) and v22(x2) are constructed as the quadratic forms

v11 = xT
1P11x1, v22 = xT

2P22x2, (7.3)

where P11 and P22 are sign-definite matrices.
Function v12 = v21 is searched for as a bilinear form v12 = xT

1P12x2 whose matrix is
determined by the equation

ATP12 + P12B = −
η1

η2
P11C12 −

η2

η1
CT

21P22, η1 > 0, η2 > 0. (7.4)

According to Lankaster [7, p.240] equation (7.4) has a unique solution, provided that
matrices A and −B have no common eigenvalues.

Matrix C in (6.7) for system (7.1) reads

C =

(

λm(P11) −λ
1/2
M (P12P

T
12)

−λ
1/2
M (P12P

T
12) λm(P22)

)

. (7.5)
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Here λm(·) are minimal eigenvalues of matrices P11, P22, and λ
1/2
M (·) is the norm of

matrix P12P
T
12.

Estimate (6.7) for function Dv(x, η) by virtue of system (7.1) is

Dv(x, η) |(7.1)≤ wTΞw, (7.6)

where w = (‖x1‖, ‖x2‖)
T, Ξ = [σij ], i, j = 1, 2;

σ11 = λ1η
2
1 + η1η2α22,

σ22 = λ2η
2
2 + η1η2β22,

σ12 = σ21 = 0.

The notations are
λ1 = λM (ATP11 + P11A),

λ2 = λM (BTP22 + P22B),

α22 = λM (CT
12P12 + PT

12C12),

β22 = λM (CT
21P

T
12 + P12C21),

λ(·) is maximal eigenvalue of matrix (·). Partial case of Assumption 3.1 is as follows.

Corollary 7.1 For system (7.1) let functions vij(·), i, j = 1, 2 be constructed so that

matrix C for system (7.1) is positive definite and matrix Ξ in inequality (7.6) is negative

definite. Then the equilibrium x = 0 of system (7.1) is uniformly asymptotically stable.

We consider the numerical example. Let the matrices from system (7.1) be of the form

A =

(

−2 1

3 −2

)

, B =

(

−4 1

2 −1

)

, (7.7)

C12 =

(

−0.5 −0.5

0.8 −0.7

)

, C21 =

(

1.1 0.5

−0.6 −0.3

)

. (7.8)

Functions vii for subsystems

ẋ = Ax, x = (x1, x2)
T,

ẏ = By, y = (y1, y2)
T

are taken as the quadratic forms

v11 = 1.75x2
1 + x1x2 + 1.5x2

2,

v22 = 0.35y2
1 + 0.9y1y2 + 0.95y2

2.
(7.9)

Let η = (1, 1)T. Then λ1 = λ2 = −1,

P12 =

(

−0.011 0.021
−0.05 −0.022

)

,

α22 = 0.03, β22 = −0.002.
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It is easy to verify that σ11 < 0, and σ22 < 0, and hence all conditions of Corollary 7.1,
are fulfilled in view that

λ
1/2
M (P12P

T
12) ≤ (λm(P11)λm(P22))

1/2,

for the values of λ
1/2
M (P12P

T
12) = 0.06, λm(P11) = 1.08, λm(P22) = 0.115. This implies

uniform asymptotic stability in the whole of the equilibrium state of system (7.1) with
matrices (7.7), and (7.8).

Let us show now that stability of system (7.1) with matrices (7.7), and (7.8) can not
be studied in terms of the Bailey [2] theorem.

We recall that in this theorem the conditions of exponential stability of the equilibrium
state are

(1) for subsystems (7.2) there must exist functions (7.3) satisfying estimates
(a) ci1‖xi‖

2 ≤ vi(t, xi) ≤ ci2‖xi‖
2,

(b) Dvi(t, xi) ≤ −ci3‖xi‖
2,

(c) ‖∂vi/∂xi‖ ≤ ci4‖xi‖ for xi ∈ Rni ,
where cij are some positive constants, i = 1, 2, j = 1, 2, 3, 4;

(2) the norms of matrices Cij in system (2.4.17) must satisfy the inequality (see
Abdullin, et al. [1, p. 106])

‖C12‖‖C21‖ <

(

c11c21

c12c22

)1/2(
c13c23

c14c24

)

. (7.10)

We note that this inequality is refined as compared with the one obtained firstly by
Bailey [2].

The constants c11, . . . , c24 for functions (7.9) and system (7.1) with matrices (7.7),
and (7.8) take the values

c11 = 1.08, c21 = 0.115, c12 = 2.14,

c22 = 2.14, c22 = 1.135, c13 = c23 = 1, c14 = 4.83, c24 = 2.4.

Condition (7.10) requires that ‖C12‖‖C21‖ < 0.0184 whereas for system (7.1), (7.7), and
(7.8) we have

‖C12‖‖C21‖ = 1.75.

Thus, the Bailey theorem turns out to be nonapplicable to this system and the condition
(7.10) is “super-sufficient” for the property of stability.
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Abstract: Generally speaking, it is relatively easy to design a feedback con-
troller to eliminate the possibility of chaos in a nonlinear dynamical system.
Here we examine chaotic control not from the prospective of eliminating chaos,
but from the prospective of producing chaotic motion in order to take advan-
tage of the random like “free ride” a chaotic attractor provides. The idea
is stay with this free ride until the system moves into a target containing a
desired fixed point. Once inside this target, feedback control is applied that
provides asymptotic stability for the fixed point. A basic requirement with
this approach is to determine an appropriate target. It must be a subset of
the domain of attraction to the fixed point under state variable feedback con-
trol. In addition, the target must be large enough so that the time it takes
for the system to reach it, under chaotic control, is not unreasonably large.
After addressing the question as to why this might be a desirable approach for
nonlinear control system design, the focus of this paper is on the presentation
of a general method for applying chaotic control and then demonstrating its
use in controlling an inverted pendulum and a bouncing ball.

Keywords: Chaos; control; inverted pendulum; bouncing ball.

Mathematics Subject Classification (2000): 49J15, 70Q05, 93C15.

1 Introduction

The full potential of control system design is often overlooked since there exists a strong
prejudice, in classical control text books, to only deal with linear systems. A major
focus of control system design is to achieve asymptotic stability to an equilibrium point.
Since nonlinear systems are generally “linearized” before applying linear control design
methods, chaotic or other motion which can only occur in nonlinear systems is not
generally considered to be a part of the design process. However, for years, controls
engineers have been using traditional linear control methods to control systems which

c© 2001 Informath Publishing Group. All rights reserved. 205
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have the potential for chaos. This is not thought of as “controlling chaos” as chaos or

any motion other than asymptotic stability or tracking is suppressed.

Poincaré [1] noted in 1892 that certain mechanical systems could display chaotic mo-
tion. However the notion that deterministic models of discrete or continuous nonlinear

dynamical systems could behave chaotically did not attract wide attention until Lorenz [2]

in (1963), May [3] in (1976), and others reported chaotic behavior in very simple dynam-
ical models.

In 1990, Ott, Grebogi and York [4] published the first paper to point out that chaos
could be advantageous in achieving control objectives. Their method, now called the

OGY method, involves stabilizing one of the unstable periodic orbits embedded in the
chaotic attractor using small time dependent perturbations of a system parameter. Chao-

tic motion allows this method to work since all of the unstable periodic orbits will even-
tually be visited. One simply waits until the chaotic motion brings the system near

a neighborhood of the proper unstable periodic orbit, at which time the small control

is applied. Many variants of this method have appeared in the literature [5]. A more
traditional control approach to regulating the Lorenz equations appeared in 1991 [6].

Since that time there have been a number of other papers dealing with the control of

chaotic systems [7 – 12] including feedback control of the Lorenz equations [13, 14]. These

references tend to focus on the problem of designing a stabilizing controller for systems
which, without control, would be chaotic. However, since chaos can be useful in moving

a system to various points in state space, the systems of interest here are not necessarily
chaotic but as in [15 – 17] chaotic motion can be created as a part of the total control

design. We make use of the fact that for many nonlinear systems chaos is easy to create
using open-loop control. In particular, see [18] for a discussion of producing chaos in the

driven pendulum system.

In the chaotic control algorithm given below, two essential ingredients are needed:

a chaotic attractor and a controllable target. It is assumed that chaos can be created
using open loop control. A controllable target is any subset of the domain of attraction

to a equilibrium point, under a corresponding feedback control law, that has a non-

empty intersection with the chaotic attractor. Thus the equilibrium point itself need
not be on the chaotic attractor. If we start the system at any point within the basin of

attraction of the chaotic attractor, the resulting chaotic motion will ultimately arrive in
the controllable target. The chaotic control algorithm simply has to keep track of when

the system enters the controllable target. When it does, the open loop control used to
create chaos is turned off and at the same time the closed-loop feedback control is turned

on.

The chaotic control algorithm has some distinct advantages in designing controllers

for nonlinear systems. Its main advantage is simplicity. Consider for a moment one

of the alternatives. Optimal control [19 – 21] is well suited for nonlinear problems and
numerical methods are available [22] for solving complex problems. However optimal

control solutions, for nonlinear problems, obtained by applying Pontryagin’s maximum
principle are generally open-loop. One could use this open-loop control to drive the

system to a controllable target in a direct fashion. However such a control program
would not be robust in the sense that if a perturbation were to drive the system outside

of the controllable target, one could not simply turn the open loop control back on. The

only alternative would be to start over again.
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2 Stability under Chaotic Control

Consider the class of dynamical systems, subject to control, which can be described by
either nonlinear difference equations of the form (discrete system)

X(t+1) = F(X,U) (2.1)

or nonlinear differential equations of the form (continuous system)

Ẋ = F[X,U], (2.2)

where F = [F1 · · · FNX
] is an NX dimensional vector function of the state vector

X = [X1 · · · XNX
], and control vector U = [U1 · · · UNU

]. Current time is indicated
by t and the subscript (t + 1) is used to denote one time unit latter. The dot (˙)
denotes differentiation with respect to time. For the discrete system, t is just a counter
and need not denote actual time. The functions Fi are assumed to be continuous and
continuously differentiable in their arguments. The control will, in general, be bounded
and it is assumed that at every time t, the control U must lie in a subset of the control
space U defined by the inequalities

Uimin
≤ Ui ≤ Uimax

for i = 1 · · ·NU .
The control input U is either a specified function of time, U(t) (open-loop) or a speci-

fied function of the state, U(x) (closed-loop). Assume that for all t there exists a specified

open-loop control input ̂U(t) such that the system has a chaotic attractor. Furthermore

assume that for a specified constant control, ̂U(t) ≡ Ū, there is a corresponding fixed
point of interest which is near the chaotic attractor. The fixed point satisfies

X̄ = (X̄, Ū)

for the discrete difference equation system and it satisfies

F(X̄, Ū) = 0

for the continuous differential equation system.
Given the above assumptions, the controllable target is obtained using a method

of linearization and Lyapunov function estimates [16, 21]. The nonlinear system is first
linearized about the fixed point. The resulting linear system is assumed to be controllable
and the LQR method [23, 24] is used to design a full state variable feedback controller
that will guarantee the origin for this system is asymptotically stable. This, in turn,
implies that for the nonlinear system, the fixed point will be asymptotically stable in
some neighborhood containing the fixed point. An under estimate for this neighborhood
is then determined using a Lyapunov function obtained from the linear system. This
under estimate is used as the controllable target. Full details of this approach is given in
[17]. We will now illustrate the application of this chaotic control method to two systems.
The first is continuous and the second is discrete.
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Figure 3.1. Inverted pendulum attached to a DC motor.

3 Inverted Pendulum

Consider the inverted pendulum, attached to a DC motor as shown in Figure 3.1. The
pendulum is free to rotate through all angles so that it has stable downward equilibrium
positions at θ = π(1 ± 2n), (n = 0, 1, 2, . . . ) and unstable upright equilibrium position
at θ = 2nπ, (n = 0, 1, 2, . . . ). Let x1 = π− θ be the angle of the pendulum as measured
from the downward position, ẋ1 be the rate of change of this angle, and bu be the torque
applied by the motor. Positive values are in the counter clockwise direction. In terms of
these variables, the equations of motion are given by

ẋ1 = x2,

ẋ2 = a1 sinx1 + a2x2 + bu,
(3.1)

where a1, a2, and b are constants associated with the system. The term a1 sinx1 is the
torque provided by gravity, a2x2 is damping provided by friction and back EMF of the
motor, bu is the control torque provided by a DC motor, and u is the voltage applied to
the motor, with |u| ≤ umax. The particular system that we will examine here has [21]

a1 = −17.627 rad/sec2

a2 = −0.187 sec−2

b = 0.6455 rad/volt-sec2

umax = 18 volts.

Our objective is to stabilize the inverted pendulum in the vertical upright position.
If we linearize this system about X̄ = [π 0 ]T, then we can use LQR design [24] with

Q and R identity matrices to obtain the feedback gains

K =
[

54.6333 12.7624
]

,
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Figure 3.2. Domain of attraction for the inverted pendulum.

with the eigenvalues for the linearized controlled system given by λ1 = −4.5397 and
λ2 = −3.8855. Under LQR design the feedback control law is given by

u(x) = −K(x− X̄). (3.2)

However since there are bounds on the control, the actual feedback control law used is
that of saturating feedback control [21].

We can find the domain of attraction under saturating LQR control as applied to the
nonlinear system (3.1) by integrating backward from points very close to the equilibrium
points obtained when the control is set equal to ±umax. The results are illustrated in
Figure 3.2. In order to “see” the domain of attraction in this figure, first pinpoint the
star located inside the ellipse. This represents X̄. The domain of attraction, to this point
is the set of all points obtained by “flooding” with a color, from the star, or by drawing
all continuous curves from the star which do not cross any of the curves contained in the
figure other than the ellipse. Observe that, in places, the domain of attraction narrows
down and becomes tubular.

Note that the x1 and x2 axis are in multiples of π. The equilibrium point X̄ and the
first 2π multiple to the right and left are marked with a star, the squares locates stable
equilibrium points, and the circles locate the equilibrium solutions obtained if saturating
LQR control is used outside the domain of attraction.

Consider any one of the lob-like objects which contain a square and a small circle. If
the system, under saturating LQR control is started anywhere inside the lob, including
its tubular extension, it will remain in it, ultimately arriving at the equilibrium point
contained in the lobe. Clearly these regions are not in the domain of attraction to X̄.
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In fact, the domain of attraction to X̄ is simply all other points. Note that these other
points include the stars located at 2π multiples of θ = 0. Saturating LQR controller
will not stabilize the system to these points since it does not recognize any vertical

equilibrium position other than the one corresponding to θ = θ̇ = 0. In other words if
the system were started at the upright position x1 = 3π, x2 = 0, the LQR controller
would “unwind” the pendulum to bring it to x1 = x2 = 0.

3.1 Controllable targets

Under LQR control the linearized system is stable and we can solve the matrix Lyapunov
equation [21] to find a Lyapunov function for this system

V = xTPx, where P =

[

1.3450 0.0283

0.0283 0.0627

]

. (3.3)

Since P is a positive definite matrix, lines of constant V are ellipses. We now seek the

largest level curve V = Vmax for which V̇ < 0 everywhere inside the ellipse using (3.1)
under saturating LQR control. Since the problem is two dimensional, a value for Vmax

may be obtained by choosing a sufficiently small value for Vmax so that integrating around

the ellipse results in V̇ < 0 everywhere on this curve. A larger value for Vmax may then

be chosen and the process repeated until the inequality is satisfied with V̇ very close to
zero. Using this procedure results in Vmax = 0.18 for this problem. One advantage of
this method for finding Vmax is that it provides a numerical verification that the region
inside the ellipse defined by (3.3) is a region of guaranteed asymptotic stability for the
equilibrium point x1 = π, x2 = 0. The ellipse of Figure 3.2 is the one given by (3.3)
with V = Vmax.

3.2 Chaotic attractor

In seeking an open loop control which will provide chaotic motion, it must be able to
swing the pendulum to the upright vertical position from any given starting condition.
An easy way to do this is to apply a sinusoidal voltage to the motor. For example,
applying the control

u = 11 cos 3t (3.4)

will drive the system “over the top”. This is a necessary but not a sufficient condition
for chaos. While there are many amplitude-frequency combinations which will produce
chaos, a small change in one of these values, may result in motion which is not chaotic
[18]. It is not proven here that the control given by (3.4) does actually produce chaos.
What is obtained may be a long chaotic transient [6] with the possibility that after a
sufficiently long time period the trajectory could settle down to a limit cycle. However
as long as (3.4) produces a long term chaotic transient (if not true chaos) over a range
of starting conditions of interest, it remains a viable chaotic controller.

Given a sufficiently long running time, a chaotic controller will wind up the pendulum
for many revolutions in both directions, moving past the origin many times in a random
way as depicted in Figure 3.3. The small circles represent the location of the pendulum in
state space at every 0.1 second. Clearly the chaotic attractor is very large in comparison
with the controllable target just obtained. This implies that the waiting time between
chaotic control and feedback control may be large. One way to improve the odds is to
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Figure 3.3. Chaotic attraction for the inverted pendulum.

simply increasing the number of targets. One obvious way of doing this is to introduce
the ellipse just obtained at each of the points indicated by the stars in Figure 3.2. At each
of these points the pendulum is in the upright position at zero velocity. The feedback
control at these new targets must be adjusted accordingly. Three targets are illustrated
in Figure 3.3. While the targets appear to have received many “hits” (especially the left
one), there are only 21 points which lie inside the ellipses out of the 2,500 points (which
lie inside the left/right limits of the figure and outside these limits). It should also be
noted that the results shown in Figure 3.3 are only representative. It is possible that
changing the initial conditions only slightly, using the same integration time, could result
in more hits, no hits, or with most of the points lying outside the figure.

3.3 Intermediate targets

It is evident that it would be desirable to add additional targets. It has been previously
shown that the waiting period required with the OGY method can be substantially
reduced by using a “targeting method” [25]. This procedure uses intermediate targets in
moving the system to a final target. We will use a similar procedure here. One way to
arrive at additional intermediate targets is to simply integrate backward, under saturating

LQR control from the neighborhood of the original equilibrium point X̄ =
[

π 0
]T

using the initial conditions x(0) =
[

π ε
]T

and x(0) =
[

π − ε
]T

for a period of

time, ts. This results in two stopping points x+
s and x−

s . At each of these stopping point
we know that there exists some neighborhood about x±

s such that if we integrate the
system forward in time under saturating LQR control the system will be returned to X̄.
Here we will choose ts to be relatively small (e.g. so that the approximation sinx1 = x1
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Figure 3.4. Utilizing chaos in the control of the inverted pendulum.

is valid) and use the controllable target ellipse centered at x±
s to be an estimate of this

additional neighborhood. If the system were indeed linear, the flow of all trajectories
though the new intermediate target would converging to the line described by the retro
trajectory. Unfortunately, for nonlinear systems there is no guarantee that all points in
these intermediate targets will be controllable to the equilibrium point. This possibility
does not defeat the method provided that we allow for it in the control algorithm. One
way to do this is to make sure that chaotic control will be used in a small neighborhood of
all equilibrium points other than the stars. In this way if the system enters a intermediate
target, saturating LQR control is turned on, and the resultant trajectory does not arrive
at a star, the chaotic control sequence will begin again. Clearly the majority of points in
the intermediate target, under saturating LQR control must drive the system to a star
in order for an intermediate target to be of any use.

A sample run using one control target at X̄ and two intermediate targets is illustrated
in Figure 3.4. The system starts at the origin under (3.4) and remains under this control
until it intersects the upper intermediate target. At this point saturating LQR control
is applied which brings the system to X̄. In this case, since the chaotic trajectory is
relatively short, it is shown as a solid line. Other example runs are similar and illustrate
the usefulness of intermediate targets.

4 Bouncing Ball

A theoretical study of the motion of a ball bouncing on an oscillating plate is given in [26].
They construct an approximate map relating the velocity and phase between successive
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impacts of a ball bouncing on an oscillating plate of infinite mass, and show that the
motion of the ball can be chaotic, by demonstrating the existence of a horseshoe. For
certain frequencies of the plate and certain initial conditions of the ball it is possible to
get periodic motion for any integer period. Some of these periodic orbits are stable and
some are not.

Two variables, the position of the plate and the time interval between bounces, can
be used as state variables used to model the ball map. Each time the ball bounces on
the plate there is an opportunity to measure the state of the system and apply a control.
We will be controlling the frequency of the plate in order to achieve a specified objective
for the motion of the ball. In particular, our objective is to position the ball so as to
maintain the system at a specified fixed point of the ball map when the plate is moving
at a specified nominal frequency ω̄.

The command frequency applied just after a bounce (at time tj) is given by

ωj = ω̄ + uj

where uj is the change in frequency from the nominal value. Between the last bounce
and the next, therefore, the plate is controlled according to

y(t) = A sin(ωjτ + φj) (4.1)

where y(t) is the displacement of the plate in the vertical direction, A is the amplitude
of the plate, τ = t− tj , is time since the last bounce and

φj = ωj(tj − tj−1) + φj−1

is the phase angle of the plate at the time of the last bounce. For this situation, it is not
difficult to show that under the assumption that the bounce height is large compared to
A, that the ball map is given by [27]

φj+1 = φj +
ωj

ω̄
ψj ,

ψj+1 = −a2ψj + â1ω̄ωj cosφj+1,

(4.2)

where ψj is the change in phase between bounces (related to the time interval between
bounces) a2 and â1 are constants whose values depend on the mass ratio of the ball to
the plate, the coefficient of restitution, the amplitude of the plate, and the acceleration
of gravity.

When equations (4.2) are iterated to produce a dynamical solution, the first equation
is evaluated modulo 2π since φ refers to a physical position of the plate. The second
equation is not evaluated modulo 2π since the plate may go through more than one cycle
before the next bounce.

There are many possible periodic solutions to (4.2). For example the ball can bounce
to a fixed height at every n cycles of the plate. It can also bounce to m different heights
at n×m cycles of the plate before repeating the pattern.

Figure 4.1 shows some of the kinds of dynamics possible with an actual bouncing ball
system. In the top figure, the initial conditions were set very close to those correspond-
ing to an unstable period-1 solution. We see the ball diverge from this solution and
approaches a stable period-2 solution corresponding to m = 2, n = 1. In the middle
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Figure 4.1. Ball and plate motion. (top) A stable period-2 solution at ω =
30 rad/sec. (middle) Chaotic motion at ω = 45 rad/sec. (bottom) The ball can

ride on the plate when ω = 22 rad/sec.

figure, the ball bounces chaotically, with different n values between different steps. In
the bottom figure, the plate frequency is such that a stable period one solution exists,
however in this case, the initial conditions are not near this solution and the ball ends
up riding on the plate after a few bounces.

4.1 Chaotic attractor

For the experimental bouncing ball system located at the University of Arizona non-linear
control system laboratory, the parameters are given by a2 = −0.733 and â1 = 0.00459.
With these values, it turns out that the high-bounce map (4.2) produces chaotic motion
with ω̄ = 45 rad/sec as shown in the middle illustration of Figure 4.1. Figure 4.2
illustrates the corresponding chaotic attractor. The map was obtained by starting the
system at φ(0) = 0 and ψ(0) = 9.1743 radians and run for 1000 iterations. The values
of φ and ψ are divided by 2π before plotting. The resulting chaotic attractor lies between
an upper and lower bound as indicated in the figure. The upper bound is related to the
height the ball would bounce, if it could bounce periodically at the phase angle φ and
the lower bound is related to the height the ball would achieve if were to impact the
plate at the phase angle φ with zero velocity. Under the high-bounce map (4.2) negative
values for ψ are possible (corresponding to a negative bounce height). Since this is not
physically possible, a slight modification of the map was used to produce Figure 4.2.
Details of this modification are discussed in [17].
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Figure 4.2. Chaotic attractor for the high-bounce map when ω = 45 rad/sec.

4.2 Feedback controllers for the ball

We will consider only one case with m = n = 1 for a bounce pattern that is unstable in
the absence of control.

We seek fixed point solutions (with ωj = ω̄) for

φ̄ = φ̄+ ψ̄,

ψ̄ = −a2ψ̄ + â1ω̄
2 cos(φ̄+ ψ̄).

(4.3)

In order to obtain equilibrium solutions from (4.3) the right hand side of the first equation
must be evaluated modulo 2π, in which case we obtain

ψ̄ = 2π,

cos φ̄ =
2π(1 + a2)

â1ω̄2
.

(4.4)

In order to design an LQR feedback controller, it is assumed that system is near enough
to the fixed point to so that the motion may be approximated by a linear map. Let

x1 = φ− φ̄,

x2 = ψ − ψ̄

be perturbations in φ and ψ from the nominal values given by (4.4) and let

u = ω − ω̄
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be a perturbation in frequency from the nominal value ω̄. First order changes in (4.2)
are given by

x1j+1
= x1j

+
ωj

ω̄
x2 +

ψj

ω̄
uj,

x2j+1
= −â1ω̄ωj sinφjx1j+1

− a2x2j
+ â1ω̄ cosφj+1uj.

Evaluating these equations at ωj = ω̄, ψj = ψ̄, φj = φ̄, and φj+1 = φ̄+ ψ̄, results in

xj+1 = Axj + Buj

with

A =

[

1 1

a21 −a2 + a21

]

B =

[

ψ̄

ω̄

a21
ψ̄

ω̄
+ â1ω̄ cos φ̄

]

,

where a21 = −â1ω̄
2 sin φ̄.

The LQR method for discrete systems may now be applied [23]. Once the gains have
been determined by this process the system is controlled by adjusting the frequency every
time the ball bounces according to

ω = ω̄ − k1(φ − φ̄) − k2(ψ − ψ̄). (4.6)

4.3 Ball under control

With a plate frequency of ω̄ = 30 there is an unstable period-1 (m = 1, n = 1) solution
to the high-bounce map, with φ̄ = 1.154 and ψ̄ = 2π. The eigenvalues have magnitudes
−0.4625 and −1.5855, so the solution is unstable. This is shown in the top illustration
of Figure 4.1 where the initial condition was chosen very close to the fixed point solution.
We see in this case that while the period-1 solution is unstable, the period-2 solution
corresponding to ω̄ = 30 is obviously stable. Our objective in this case is to stabilize
the unstable solution.

The linearization of the high-bounce map results in

A =

[

1 1

−3.780 −3.047

]

b =

[

0.2094

−0.7358

]

.

Using LQR design with Q = I, R = 1, the MATLAB command dlqr results in the
feedback gains

k =
[

3.931 2.843
]

with eigenvalues for the controlled system Ā = A − Bk given by

λ = −0.3890± 0.1975i (|λ| = 0.4363)

all of which demonstrates that the system is locally asymptotically stable. Thus there
must exist a 2 × 2 symmetric positive definite solution for P satisfying the discrete
Lyapunov equation

P = Q̂ + ATPA,
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where Q̂ is any 2 × 2 symmetric positive definite matrix such that

V = xTPx

is a Lyapunov function for the system. Choosing Q̂ = I, we obtain

P =

[

2.6290 1.5560

1.5560 2.5834

]

.

Finding the largest V for which V̇ < 0 around a constant V contour results in Vmax =
0.5. This is the elliptical level curves illustrated in Figure 3.3. A small “+” locates the
equilibrium solution.

5 Discussion

The procedures used here have actually been used to control both the inverted pendu-
lum and the bouncing ball and have resulted in very satisfactory performance [16]. The
bouncing ball is the more difficult system to control and it was found that due to inac-
curacies in measuring φ and ψ, a somewhat larger value of Vmax needs to be used. As a
consequence, from time to time, the ball is not captured when the closed-loop feedback
control is turned on. However the overall performance is quite satisfactory. The system
is always started with the ball at rest on the plate. Generally fewer bounces under the
ω = 45 rad/sec control are needed to enter a controllable target than might be expected
from the ball map results illustrated in Figure 4.2.
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