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Abstract: In this paper, a new 3D chaotic system with three nonlinearities is in-
troduced. Basic dynamical properties of this new chaotic system are studied such
as equilibrium points and their stability, dissipativity and Lyapunov exponent, Lya-
punov exponent spectrum, Kaplan-Yorke dimension. Also, an adaptive integral slid-
ing mode control scheme is proposed for synchronization of the new chaotic system
with unknown system parameters based on the Lyapunov stability theory and adap-
tive control theory of this new chaotic system with unknown system parameters.
Finally, numerical simulations are presented to show the effectiveness of the proposed
chaos synchronization scheme using Matlab.
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1 Introduction

Chaos as an important nonlinear phenomenon has been studied in mathematics, engi-
neering and in many other disciplines. Synchronization of chaotic systems has become an
active research area because of its potential applications in different industrial areas [1, 2,
3]. For the first time chaotic synchronization was illustrated by Fujiska and Yamada [2] in
1983, then, Pecora and Carroll [3] in 1990, reported a new and very effective method for
the synchronization of two chaotic systems with different initial conditions. The control
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scheme has been applied in the recent decade for the synchronization of chaotic or hyper-
chaotic system, for example, the OYG method [4], adaptive control [5, 13, 14, 15, 19, 20],
backstepping design method [6], sliding mode control [7, 20], PC synchronization method
[3], passive control [8], fuzzy control [9], nonlinear active control [10], etc. The adaptive
control scheme is used when parameters are unknown or initially uncertain. The sliding
mode control method is often used because of its inherent advantages of easy realization,
fast response and good transient performance, as well as its insensitivity to parameter
uncertainties and external disturbances. Also, in the adaptive method, the control law
and parameter update law are designed in such a way that the chaotic response system to
behave like chaotic drive systems. As a result, the adaptive scheme maintains consistent
performance of a system in the presence of uncertainty as well as variations in plant pa-
rameters. The adaptive control technique is different from other control methods since it
does not need a priori information about the bounds on these uncertain or time varying
parameters because this method of control is concerned with the control law changing
themselves. Recently, many papers are available on synchronization of chaotic systems
using this method of control.

In this paper a new chaotic system is considered for synchronization using the sliding
mode control method and adaptive sliding mode control method when system parame-
ters are unknown. Stabilization and convergence of error dynamics are achieved using
the Lyapunov stability theory [11, 12]. This paper is organized as follows. The first
section deals with the description and some properties of the novel chaotic system. The
next two sections deal with the synchronization problem for globally and exponentially
synchronizing the identical 3-D novel chaotic systems using the integral sliding mode
control and adaptive integral sliding mode control law with unknown system parame-
ters, respectively. Finally, numerical simulations using MATLAB have been shown to
illustrate our results for the new chaotic system with unknown parameters.

1.1 Description of the novel chaotic system

A novel 3D autonomous chaotic system is expressed as follows:
dx
dt = a(y − x),
dy
dt = cx− y − xz − ex,
dz
dt = exy − dy − bz,

(1)

where x, y, z are the state variables and a, b, c are positive real parameters.
There are nine terms on the right-hand side but it mainly relies on three nonlinearities,

namely, exy, exand xz , respectively.
System (1) can generate a new strange attractor for the parameters a = 15, b = 3, c =

300, d = 1 with the initial conditions (x(0), y(0), z(0)) = (1, 1, 1). The chaotic attractor is
displayed in Figure 1. It appears that the new attractor exhibits the interesting complex
and abundant chaotic dynamics behavior, which is similar to the Lorenz chaotic attractor,
but is different from that of the Lorenz system or any existing systems.

1.2 Basic properties

In this section, some basic properties of the system (1) are given. We start with the
equilibrium points of the system and check their stability at the initial values of the
parameters a, b, c.
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1.3 Equilibrium points

Putting equations of the system (1) equal to zero, i.e., a(y − x) = 0,
cx− y − xz − ex = 0,
exy − dy − bz = 0,

(2)

gives numerically the only equilibrium point

p∗ =
(
3. 359 5× 10−3, 3. 359 5× 10−3, 0.332 22

)
.

1.4 Stability

In order to check the stability of the equilibrium points we derive the Jacobian matrix
at a point p (x, y, z) of the system (1)

J(p) =

 −a a 0
c− z − ex −1 −x
yexy −d+ xexy −b

 . (3)

For p∗, we obtain three eigenvalues

λ1 = 59. 297, λ2 = −3.0, λ3 = −75. 297. (4)

Since all the eigenvalues are real, Hartman-Grobman theorem implies that p is a
saddle point which is unstable according to the Lyapunov theorem of stability.

1.4.1 Dissipativity

In vector notation, we may express the system (1) as

.

X = f (X) =

 f1(x, y, z)
f2(x, y, z)
f3(x, y, z)

 .

Let Ω be any region in R3 with a smooth boundary and also, Ω(t) = φt(Ω), where
φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t). By Liouville’s
theorem, we have

V̇ (t) =

∫
Ω(t)

(∇.f) dxdydz (5)

with

∇.f =
∂ḟ1

∂x
+
∂ḟ2

∂y
+
∂ḟ3

∂z
= −(a+ b+ 1) < 0 (6)

and therefore

V̇ (t) =

∫
Ω(t)

(−19) dxdydz = −19V (t).

By integration, we get
V (t) = e−19tV (0), (7)

then, V (t)→ 0 as t→∞. This shows that the novel chaotic system (1) is dissipative.
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1.4.2 Lyapunov exponents and Kaplan-Yorke dimension

Lyapunov exponents are used to measure the exponential rates of divergence and con-
vergence of nearby trajectories, which is an important characteristic to judge the system
whether it is chaotic or not. The existence of at least one positive Lyapunov exponent
implies that the system is chaotic.

For the chosen parameter values of a, b, c, d, the Lyapunov exponents of the
novel chaotic system (1) are obtained using Matlab with the initial conditions
(x(0), y(0), z(0)) = (1, 1, 1)

L1 = 6.6231, L2 = −0.00206431, L3 = −20.621. (8)

The Lyapunov exponents spectrum is shown in Fig. 1.
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Figure 1: Lyapunov exponents spectrum.

Since the spectrum of Lyapunov exponents (8) has a maximal positive value L1, it
follows that the 3-D novel system (1) is a highly chaotic . The Kaplan-Yorke dimension
of system (1) is calculated as

DKL = 2 +
L1 + L2

|L3|
= 2.3211. (9)

In Figs. 2-6, the 2-D projections of the strange chaotic attractor of the novel chaotic
system (1) on the (x; y), (x; z), (y; z), (z; x), (z; y) planes are shown, respectively.

1.5 Synchronizing of the identical 3-D novel chaotic systems using integral
sliding mode control

In this section, an integral sliding mode controller will be designed for globally and
exponentially synchronizing the identical 3-D novel chaotic systems.

Thus, the master system is given by the novel chaotic system dynamics
dx1

dt = a(x2 − x1),

dx2

dt = cx1 − x2 − x1x3 − ex1 ,

dx3

dt = ex1x2 − dx2 − bx3.

(10)
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Figure 2: Projection on the x− y plane of the chaotic attractor of system (1).
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Figure 3: Projection on the x− z plane of the chaotic attractor of system (1).
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Figure 4: Projection on the y − z plane of the chaotic attractor of system (1).

Also, the slave system is given by the novel chaotic system dynamics
dy1

dt = a(y2 − y1) + u1,

dy2

dt = cy1 − y2 − y1y3 − ey1 + u2,

dy3

dt = ey1y2 − dy2 − by3 + u3.

(11)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (1) (2020) 38–50 43

-4

-2

 0

 2

 4

 10  20  30  40  50  60  70  80  90

y

z

Figure 5: Projection on the z − y plane of the chaotic attractor of system (1).
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Figure 6: Projection on the z − x plane of the chaotic attractor of system (1).

In (10) and (11), the system parameters a, b, c, d are a = 15, b = 3, c = 300, d = 1 and
the main objective here is to design the controllers u1, u2, u3 to synchronize two of the
identical 3-D novel chaotic systems in equation (11) with equation (10), respectively.

The synchronization error between the novel chaotic systems (10) and (11) is defined
as  e1 = y1 − x1,

e2 = y2 − x2,
e3 = y3 − x3,

(12)

(12) implies  ė1 = ẏ1 − ẋ1,
ė2 = ẏ2 − ẋ2,
ė3 = ẏ3 − ẋ3.

(13)

The sliding surface of the integral sliding mode controller is defined as

si =

(
d

dt
+ λi

) t∫
0

ei (τ) dτ

 = ei + λi

t∫
0

ei (τ) dτ (14)
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and the reaching law is given by

.
si = −ηisgn(si)− kisi, i = 1, 2, 3, (15)

where ηi > 0, which indicates that the rate of the system reaching the switching surface
si = 0, and the exponential reaching term, −kisi, can guarantee that the system state
can tend to the sliding mode with a large rate when si is bigger.

The derivative of equation in equation (14) results

.
si = ėi + λiei. (16)

The Hurwitz condition is realized if λi > 0 for i = 1, 2, 3.
Equation (16) by considering the exponential reaching law presented by equation (15)

gives 
.
e1 + λ1e1 = −η1sgn(s1)− k1s1,
.
e2 + λ2e2 = −η2sgn(s2)− k2s2,
.
e3 + λ3e3 = −η3sgn(s3)− k3s3.

(17)

Writing equation (17) with the provision of equations (12) and (13) yields a(e2 − e1) + u1 + λ1e1 = −η1sgn(s1)− k1s1,
ce1 − e2 − y1y3 + x1x3 − ey1 + ex1 + u2 + λ2e2 = −η2sgn(s2)− k2s2,
−de2 − be3 + ey1y2 − ex1x2 + u3 + λ3e3 = −η3sgn(s3)− k3s3.

(18)

Then, the following control laws result in u1 = −a(e2 − e1)− λ1e1 − η1sgn(s1)− k1s1,
u2 = −ce1 + e2 + y1y3 − x1x3 + ey1 − ex1 − λ2e2 − η2sgn(s2)− k2s2,
u3 = de2 + be3 − ey1y2 + ex1x2 − λ3e3 − η3sgn(s3)− k3s3.

(19)

Theorem 1.1 The response of the system in equation (11) with the arbitrary initial
condition y(0) ∈ R3, using the control laws in equation (19) and with ηi, λi and ki > 0,
is same as the response of the system in equation (10). This means equation (12) is
globally asymptotically stable.

Proof. We consider the quadratic Lyapunov function given by

V (s1, s2, s3) =
1

2

(
s2

1 + s2
2 + s2

3

)
, (20)

where si, i = 1, 2, 3., are the same as the ones in equation (14). Then, the derivative of
equation (20) gives

V̇ = s1
.
s1 + s2

.
s2 + s3

.
s3. (21)

By substituting equation (15) into equation (21) we get

V̇ = s1 (−η1sgn(s1)− k1s1) + s2 (−η2sgn(s2)− k2s2) + s3 (−η3sgn(s3)− k3s3) (22)

= −η1 |s1| − k1s
2
1 − η2 |s2| − k2s

2
2 − η3 |s3| − k3s

2
3,

which is a negative definite function on R3 for ηi, ki > 0, i = 1, 2, 3. Hence, by the
Lyapunov stability theory [11, 12], it follows that ei(t) −→ 0 as t −→ ∞ for i = 1, 2, 3.
Hence, the proof is complete.
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2 Adaptive Synchronization of the Identical 3-D Novel Chaotic Systems

In this section, we derive an adaptive integral sliding mode control law for globally and
exponentially synchronizing the identical 3-D novel chaotic systems with unknown system
parameters.

Thus, the master system is given by the novel chaotic system dynamics
dx1

dt = a(x2 − x1),

dx2

dt = cx1 − x2 − x1x3 − ex1 ,

dx3

dt = ex1x2 − dx2 − bx3.

(23)

Also, the slave system is given by the novel chaotic system dynamics
dy1

dt = a(y2 − y1) + u1,

dy2

dt = cy1 − y2 − y1y3 − ey1 + u2,

dy3

dt = ey1y2 − dy2 − by3 + u3.

(24)

In (23) and (24), the system parameters a, b, c, d are unknown and the design goal is
to find the adaptive feedback controls u1, u2, u3 using the states x1, x2, x3, y1, y2, y3 and
the estimates a1 (t) , b1 (t) , c1 (t) , d1 (t) of the unknown parameters a, b, c, d, respectively.

The synchronization error between the novel chaotic systems (23) and (24) is defined
as  e1 = y1 − x1,

e2 = y2 − x2,
e3 = y3 − x3,

(25)

(25) implies  ė1 = ẏ1 − ẋ1,
ė2 = ẏ2 − ẋ2,
ė3 = ẏ3 − ẋ3.

(26)

Thus, the synchronization error dynamics is obtained as ė1 = a(e2 − e1) + u1,
ė2 = ce1 − e2 − y1y3 + x1x3 − ey1 + ex1 + u2,
ė3 = −de2 − be3 + ey1y2 − ex1x2 + u3.

(27)

We take the adaptive control law defined by u1 = −a1(e2 − e1)− λ1e1 − η1sgn(s1)− k1s1,
u2 = −c1e1 + e2 + y1y3 − x1x3 + ey1 − ex1 − λ2e2 − η2sgn(s2)− k2s2,
u3 = d1e2 + b1e3 − ey1y2 + ex1x2 − λ3e3 − η3sgn(s3)− k3s3,

(28)

where k1, k2, k3 are positive gain constants.
Substituting (28) into (27), we obtain the closed-loop error dynamics as ė1 = (a− a1)(e2 − e1)− λ1e1 − η1sgn(s1)− k1s1,

ė2 = (c− c1)e1 − λ2e2 − η2sgn(s2)− k2s2,
ė3 = (d1 − d) e2 − (b− b1)e3 − λ3e3 − η3sgn(s3)− k3s3.

(29)
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The parameter estimation errors are defined as
ea (t) = a− a1 (t) ,
ec (t) = c− c1 (t) ,
eb (t) = b− b1 (t) ,
ed (t) = d− d1 (t) .

(30)

Differentiating (30) with respect to t, we obtain

dea(t)
dt = −da1(t)

dt ,

dec(t)
dt = −dc1(t)

dt ,

deb(t)
dt = −db1(t)

dt ,

ded(t)
dt = −dd1(t)

dt .

(31)

By using (31), we rewrite the closed-loop system (29) as ė1 = ea(e2 − e1)− λ1e1 − η1sgn(s1)− k1s1,
ė2 = ece1 − λ2e2 − η2sgn(s2)− k2s2,
ė3 = −ede2 − ebe3 − λ3e3 − η3sgn(s3)− k3s3.

(32)

We consider the quadratic Lyapunov function given by

V (s1, s2, s3, ea, eb, ec, ed) =
1

2

(
s2

1 + s2
2 + s2

3 + e2
a + e2

b + e2
c + e2

d

)
, (33)

which is a positive definite function on R6.
Differentiating V along the trajectories of the systems (31) and (32), we obtain the

following: V̇ = −
∑3

i=1 kis
2
i − (η1 |s1|+ η2 |s2|+ η3 |s3|) + ea

(
s1(e2 − e1)− da1(t)

dt

)
,

−eb
(
s3e3 + db1(t)

dt

)
+ ec

(
s2e1 − dc1(t)

dt

)
− ed

(
s3e2 + dd1(t)

dt

)
.

(34)

In view of (34), we take the parameter update law as follows:

da1(t)
dt = s1(e2 − e1),

db1(t)
dt = −s3e3,

dc1(t)
dt = s2e1,

dd1(t)
dt = −s3e2.

(35)

Substituting (35) into (34), we obtain

V̇ = −
3∑

i=1

kis
2
i ,

which is a negative definite function on R3 . Hence, by the Lyapunov stability theory
[11, 12], it follows that ei(t) −→ 0 as t −→ ∞ for i = 1, 2, 3. Hence, we have proved the
following theorem.

Theorem 2.1 The 3-D novel chaotic systems (23) and (24) with unknown parame-
ters are globally and exponentially synchronized for all initial conditions by the adaptive
feedback control law (28) and the parameter update law (35), where k1, k2, k3 are positive
constants.
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2.1 Numerical simulations

We used the classical fourth-order Runge-Kutta method with step size h = 10−8 to solve
the system of differential equations (23), (24) and (35) when the adaptive control law
(28) is applied.

The parameter values of the novel 3-D chaotic system (23) are chosen as in the chaotic
case, i.e., a = 15, b = 3, c = 300, d = 1. The positive gain constants are taken as ki = 5,
for i = 1, 2, 3.

The initial conditions of the drive system (23) are chosen as: x1(0) = 2, x2(0) =
−5, x3(0) = 7 and y1(0) = 12, y2(0) = 6, y3(0) = 10 for the slave system (24). Further-
more, as initial conditions of the parameter estimates of the unknown parameters, we
have chosen a1 (0) = 20, b1 (t) = 5, c1 (t) = 25, d1 (t) = 3.

In Figs. 7-9, the synchronization of the states of the master system (23) and slave
system (24) is depicted, when the adaptive control law (28) and parameter update law
(35) are implemented.
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Figure 7: Synchronization of the states x1(t) and y1(t).

3 Conclusion

In this paper, a new chaotic system is introduced. Basic properties of this system are
studied such as equilibrium points and their stability and the Lyapunov exponent and
Kaplan-Yorke dimension. Moreover, the synchronization problem for globally and expo-
nentially synchronizing the identical 3-D novel chaotic systems is solved using the integral
sliding mode control and adaptive integral sliding mode control law with unknown sys-
tem parameter, respectively. Numerical simulations using MATLAB have been shown to
illustrate our results for the new chaotic system with unknown parameters. The results
of this work are very important and have many applications in many fields such as se-
curity and communication. Therefore, further research on the system is still important
and insightful and will be taken into consideration in a future work.
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Figure 8: Synchronization of the states x2(t) and y2(t).
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Figure 9: Synchronization of the states x3(t) and y3(t).
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