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Abstract: To estimate the ultimate bound and positively invariant set for a dy-
namical system is an important but quite challenging task in general. This paper
attempts to investigate the bounds of a novel four-dimensional hyperchaotic system
using a technique combining the generalized Lyapunov function theory and the La-
grange multiplier method. Finally, a numerical example is provided to illustrate the
main result.
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1 Introduction

Hyperchaos characterized by more than one positive Lyapunov exponent has attracted an
increasing attention of various scientific and engineering communities. It is very impor-
tant to generate hyperchaos with more complicated dynamics as a model for theoretical
research and practical implication. Hyperchaos was firstly reported by Rossler [18] in
1979, and the first circuit implementation of hyperchaos was realized by Matsumoto et
al. [10]. Since then, some other hyperchaos generators have also been found. Typical ex-
amples are the hyperchaotic Lorenz–Haken system [11], hyperchaotic Chua’s circuit [6],
hyperchaotic modified Chua’s circuit [20], these examples in themselves indicate that
hyperchaos has a board range of applications in such fields as nonlinear circuit [2], secure
communications [21], lasers [22], neural network [1], control [4], synchronization [5] and
so on. In fact, the study of hyperchaos has recently become a central topic of the research
in nonlinear sciences.
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In particular, the ultimate boundedness is very important for the study of the qual-
itative behavior of a chaotic system. If one can show that a chaotic or a hyperchaotic
system under consideration has a globally attractive set, one knows that the system can-
not have the equilibrium points, periodic or quasi-periodic solutions, or other chaotic or
hyperchaotic attractors existing outside the attractive set. This greatly simplifies the
analysis of dynamics of a chaotic or hyperchaotic system [9]. The boundedness of a
chaotic system also plays an important role in chaos control and chaos synchronization.

Such an estimation is quite difficult to achieve technically, however, several works on
this topic were realized for some 3D and 4D dynamical systems [3], [7], [8], [12], [13],
[14], [15], [16], [17], [19], [23], [25].

Furthermore, there are no unified methods for constructing the Lyapunov functions
to study the boundedness of the chaotic systems. Therefore, it is necessary to study the
boundedness of the hyperchaotic systems.

In the present paper, we study the bounds of solutions of a new of hyperchaotic
system based on a technique combining the generalized Lyapunov function theory and
optimization. The paper is organized as follows : the problem formulation and main
result are presented in Section 2. A numerical example is given in Section 3 to illustrate
the main result. Finally, conclusion is made in Section 4.

2 Problem Formulation and Main Result

A novel four-dimensional hyperchaotic system with four nonlinearity terms presented
in [24] by Wenjuan, Zengqiang and Zhuzhi can be described by the following system:

x
′

= ay − ax+ eyz − kw,
y′ = cx− xz − dy,
z′ = xy − bz,
w′ = ry + fyz,

(1)

where a, b, c, d, e, f , k and r are all real constant parameters. For the chosen a = 56,
b = 16, c = 49, d = 9, k = 8, e = 30, f = 40 and r = 48 system (1) exhibits complex
hyperchaotic dynamical behaviors. The corresponding three-dimensional phase diagrams
in (x− y − w), (y − z − w) spaces are shown in Figure 1.

Fig. 1. Phase portrait of the system (1) in the x− y − z space with
parameters α = 5, β = 0.7, γ = 26.
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Some basic dynamical properties of the novel four-dimensional hyperchaotic system
(1) were studied in [24]. But many properties of the system (1) remain to be uncovered.
In the following, we will discuss the boundedness of the novel hyperchaotic system (1).

Lemma 2.1 Define a set

Γ =

{
(y, z) /

y2

b2
+

(z − c)2

c2
= 1, b > 0, c > 0

}
(2)

and G = y2 + z2, H = y2 + (z − 2c)
2
, (y, z) ∈ Γ. Then we have

max
(y,z)∈Γ

G = max
(xy,z)∈Γ

H =

 b4

b2 − c2
, b ≥

√
2c,

4c2, b <
√

2c.
(3)

Proof. It can be easily calculated by the Lagrange multiplier method.

Theorem 2.1 When a > 0, b > 0, c > 0, d > 0, k > 0, e > 0, f > 0, r > 0, the
following set defined by

Ω =

{
(x, y, z, w) /y2 + (z − c)2 ≤ R2, (ax+ kw)

2 ≤
(
aB + kA

a

)2
}

(2)

is the bound for system (1), where

R2 =


b2c2

4d (b− d)
, if b ≥ 2d,

c2 , if b < 2d,
(3)

A = R [r + f (R+ c)] , B = aR+ eR (R+ c) . (4)

Proof. Define the following Lyapunov function

V1 (y, z) = y2 + (z − c)2
. (5)

Then, its time derivative along the orbits of system (1) is

.

V1 = 2yy′ + 2 (z − c) z′

= −2dy2 − 2bz2 + 2cbz

= −2dy2 − 2b
(
z − c

2

)2

+
bc2

2
. (6)

That is to say, for a > 0, b > 0, c > 0, d > 0, k > 0, e > 0, f > 0, r > 0, the equation
.

V1 = 0 holds, that means the surface

Γ =

(y, z) /
y2

bc2

4d

+

(
z − c

2

)2

c2

4

= 1

 (7)

is an ellipsoid in 2D space for certain values of a, b, c, d, k, e, f and r. Outside Γ, we

have
.

V1 < 0, while inside Γ, we have
.

V1 > 0. Since the function V1 = y2 + (z − c)2
is
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continuous on the closed set Γ, V1can reach its maximum on the surface Γ. Denote the
maximum value of V as R2, that is, R2 = maxV1(y,z)∈Γ.

By Lemma 1, we can easily get

V1 (y, z) ≤ R2 =


b2c2

4d (b− d)
, if b ≥ 2d,

c2 , if b < 2d.
(8)

From the formula (8), we obtain

|y| ≤ R, |z| ≤ R+ c. (9)

At the same time, the first equation of formula (1) and (9) yield

x
′

= ay − ax+ eyz − kw
≤ a |y|+ e |y| |z| − ax− kw
≤ aR+ eR (R+ c)− ax− kw
= B − ax− kw,

where

B = aR+ eR (R+ c) .

Also, the fourth equation of formula (1) and (9) yield

w′ = ry + fyz ≤ r |y|+ f |y| |z|
≤ rR+ fR (R+ c) = A.

Let

V2 = ax+ kw.

Then

V ′2 = ax′ + kw′ ≤ aB + kA− aV2. (10)

Integrating both sides of formula (10), we have

V2 (t) ≤ aB + kA

a
+

(
V2 (t0)− aB + kA

a

)
e−a(t−t0). (11)

So, we get

lim
t→+∞

V2 (t) ≤ aB + kA

a
. (12)

That is to say, the inequality (ax+ kw)
2 ≤

(
aB + kA

a

)2

holds as t → +∞.Therefore,

we have the conclusion that

Ω =

{
(x, y, z, w) /y2 + (z − c)2 ≤ R2, (ax+ kw)

2 ≤
(
aB + kA

a

)2
}

(13)

is the bound for the hyperchaotic systems (1). This completes the proof.
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3 Example

Consider the system (1), when a = 56, b = 16, c = 49, d = 9, k = 8, e = 30, f = 40 and
r = 48, we have

Ω =

{
(x, y, z, w) /y2 + (z − 49)

2 ≤ 492, (56x+ 8w)
2 ≤

(
56B + 8A

56

)2
}

is the bound for the hyperchaotic system (1).
Consequently, we have  (56x+ 8w)

2 ≤ 1745802,
|y| ≤ 49,

0 ≤ z ≤ 98.

It is obvious that the orbits of system (1) locate in the section where z ≥ 0.

4 Conclusion

In this paper, we have investigated the boundedness for a novel four-dimensional hyper-
chaotic system using a combination of the Lyapunov stability theory with optimization.
Finally, a numerical example is provided to illustrate the main result.
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