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Periodic Solutions in Non-Homogeneous Hill Equation
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Abstract: Properties of T and 2T periodic solutions in the homogeneous Hill equa-
tion have been entirely determined, but there is hardly any information about the
existence of periodic solutions with different period. In this work, kT periodic solu-
tions in the Hill equation will be explicitly characterized, here k is a natural number.
Moreover, it will be shown that those kT periodic solutions become unstable when
the system is forced with a function having the same period (or an integer multiple
of it) of any of those solutions. As a consequence, two types of instability will be
presented for the first time on the Ince-Strutt diagram: the well-known parametric
resonance and the linear resonance due to the forcing signal.
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1 Introduction

1.1 Hill equation

The general class of homogeneous second order linear differential equations with real
periodic coefficients can be characterized by the Hill equation (1), it describes dynamical
systems with intrinsic periodicity and parametric behaviour such as the modulation of
radio carrier waves, transverse vibrations of a tense elastic member, the stability of a
periodic motion in a non-linear system (linearization in a neighbourhood of a periodic
motion) and the focus and defocus of particle beams in particle accelerators. Also, this
equation can be seen as a particular case of the Schrödinger equation with periodic
potential.

∗ Corresponding author: mailto:arodriguezm@ctrl.cinvestav.mx

c© 2020 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 78

mailto: arodriguezm@ctrl.cinvestav.mx
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (1) (2020) 78–91 79

Figure 1: Stability-chart of the Mathieu equation: ẍ+ [α+ β cos(t)]x = 0.

The Hill equation name arose after the transcendent publication ”of the memoir on the
motion of the lunar perigee” by G. W. Hill [1], in which he established the mathematical
foundations of the stability theory of parametric systems.

The Hill equation is denoted by

ẍ+ [α+ βf(t)]x = 0, f(t) = f(t+ T ),

∫ T

0

f(t)dt = 0, (1)

where α and β are two independent parameters.
√
α is the natural frequency of the

system of free oscillation in the absence of excitation, β is the amplitude of the parametric
excitation (in most cases it is small). T > 0 is the minimum period.

There are two particular forms of equation (1): the Mathieu equation [2]

ẍ+ [α+ β cos(ωt)]x = 0, (2)

when the function f(t) is purely sinusoidal and the Meissner equation, in its implest
form: ẍ+ [α+ β sgn(cos(t))]x.

Stability of the solutions in the Hill equation can be seen in a two-parameter bifur-
cation chart known as the Ince-Strutt diagram [3], see Fig. 1. The white areas represent
the values of parameters at which the solution is stable and the gray regions are the
Arnold tongues or parametric resonance tongues [4], they depict unstable solutions.

Equation (2) admits at least one non-trivial periodic solution on the tongue bound-
aries. The tongues that born at α = n2,β = 0, for n = 1, 2, .., have one T -periodic solu-
tion, and the instability that occurs upon crossing such a tongue boundary is referred to
as a harmonic instability. The other boundaries whose tongues arise at α = (2n+ 1)2/4
have one 2T -periodic solution, see Fig. 1.

1.2 Parametric and linear resonance

Parametric resonance is a topic well studied and inherent to the homogeneous Hill equa-
tion. However, as we will see later, linear resonance can also be linked to the Hill type
systems.
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With a few exceptions, [5–8], the forced Hill equation has not been widely studied
in the literature; in this work the kT -periodically forced system will be analysed, with
k ∈ Z+ \ {1, 2}.

Parametric excitation of a system differs from direct forcing in that the fluctuations
appear as a temporal modulation (usually periodic) of a parameter rather than as a
direct additive term. The time dependence is explicit, which implies an external energy
source and the possibility of unstable behaviour known as parametric resonance which is
dependent upon the frequency of the parameter variation and the natural frequency of
the system.

The rate of increase in amplitude of the response of a linear system with parametric
resonance is exponential [9], whereas the typical resonance is characterized by a linear
growth rate. Examples of parametric and linear resonance can be found in [10] and [11]
respectively.

Through the Ince-Strutt diagram, only T or 2T -periodic solutions appear, however
the system (1) admits other kT -periodic solutions (k ∈ Z+ \ {1, 2}), as it was specified
in [12].

Such kT -periodic solutions come out as very slim lines on the stable zones in the
stability diagram. The lines become unstable if the system (1) is forced by a periodic
function containing at least one spectral line in its Fourier series with the same period
as any of these kT -periodic lines, see Figures 5a and 5b. Further details will be provided
in Section 3.

Even though, the existence of periodic solutions inside the stable regions was already
known, the first one in obtaining (numerically) the values of parameters α, β for which
these periodic solutions arise was Jazar [13], he called them splitting lines. However, in
this text they will be termed as resonance lines for the reasons that will be clear later.

It is important to highlight that before this work, the above-mentioned kT -periodic
solutions were not studied in the context of stability for the Hill equation.

So far, we have only remarked the properties of the homogeneous Hill equation.
Nevertheless, the study of the forced equation (3) also leads to interesting features.

ẍ+ δẋ+ [α+ βf(t)]x = g(t), g(t) = g(t+ T ),

∫ T

0

g(t)dt = 0, (3)

Few studies have been developed around the non-homogeneous case, among them,
one can find the results of Slane and Tragesser [8] who modified the Floquet theory so as
to analytically examine the transitory and steady-state behaviour of a non-autonomous
inhomogeneous system, but only for g(t+T ) = g(t). Younesian et al. [7] used the strained
parameter technique to seek the asymptotic periodic solutions in the forced Mathieu
equation, Shadman and Mehri [5] worked with fixed point theorems to investigate the
existence of periodic solutions of the non-homogeneous Hill equation, Kwong and Wong
[6] applied the Floquet theory to prove the conjecture that all solutions of a second order
forced linear differential equation of Hill type are oscillatory on [0,∞). In addition, the
damped forcing Hill equation can be obtained, after some light modifications, from the
more general equation analyzed in [14].

Notice that in these previous contributions no damping effect was examined. Herein,
the stability of a specific type of the non-homogeneous Hill equation with a linear dissi-
pative term (δ) will be studied.
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Finally, the results will be illustrated through the forced Kapitza pendulum which mo-
tivates the work. The behaviour of the pendulum is illustrated by numerical simulations
for some specific values of α, β and δ.

2 Preliminaries

2.1 Floquet theory

A state-space representation of (1) is

ẋ = A(t)x x ∈ R2 and A(t) = A(t+ T ) ∈ R2×2, (4)

where A(t) is a piecewise continuous matrix and T is the fundamental period.
For any initial condition, the general solutions of (4) can be written in terms of the

state-transition matrix Φ(t, t0), with Φ(t0, t0) = I2. Thus,

x(t) = Φ(t, t0)x(t0). (5)

The state-transition matrix evaluated at the end of a period, M = Φ(T + t0, t0),
is known as monodromy matrix. Its eigenvalues, known as the Floquet multipliers or
characteristic multipliers, determine the stability of the system (1), see [12] and [15].
They are independent of t0 [16], then it is possible and convenient to write M = Φ(T, 0).

Theorem 2.1 ( Floquet [15] ) The state-transition matrix Φ(t, t0) of the system
(4) can be written as the product of two n× n-matrices,

Φ(t, 0) = P (t)eRt, (6)

where P (t) is a T -periodic n × n-matrix function and R = ln[Φ(T )]/T is a constant
n× n-matrix, not necessarily real [17].

Any solution x(t) of (4) can be expressed as x(t) = Φ(t, 0)x(0). Then, for all t ≥ 0,
t = kT + τ , k ∈ Z+ , {m ∈ Z : m ≥ 0} and τ ∈ [0, T ),

x(t) = Φ(kT + τ, kT )Φ(kT, (k− 1)T ) · Φ((k− 1)T, (k− 2)T ) . . .Φ(T, 0)x(0)

= Φ(kT + τ, kT )M kx(0),
(7)

it follows that the boundedness of ‖ x(t) ‖ depends exclusively on the boundedness of
Mk.

In other words, let x(0) be the bounded initial conditions and σ(M) = {λ1, λ2, . . . , λn}
are the spectrum of M (the set of all its eigenvalues), then

1. x(t)→ 0⇔ σ(M) ⊂
◦
D1 , {z ∈ C: |z| < 1}.

2. x(t) is bounded ⇔ σ(M) ⊂ D̄1 and ∀ λ ⊂ ∂D1 being simple roots of the minimal
polynomial of M . ∂D1 is the boundary of the set D1.

3. x(t)→∞⇔ ∃ λ ∈ σ(M): |λ| > 1 or σ(M) ⊂ D̄1 & ∃ |λ| = 1: is a multiple root of
the minimal polynomial of M .

An equivalent stability analysis can be carried out using the eigenvalues of matrix R
in (6) known as the Floquet characteristic exponents and defined by µ = ln(λ)/T . In
this version the position of the eigenvalues about the imaginary axis is examined. The
imaginary parts of the characteristic exponents are not determined uniquely, we can add
2πi/T to each of them [15]. Nevertheless, the real part is unique.
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2.2 Symplectic and ε-symplectic matrices

Definition 2.1 ( [18]) The matrix Q ∈ R2n×2n, n ∈ N, is said to be symplectic if

Q>JQ = J, J ,

[
0 In
−In 0

]
, J> = −J = J−1. (8)

Theorem 2.2 Let Q ∈ R2n×2n be a symplectic matrix, then it follows that

λ ∈ σ(Q)⇒ 1

λ
∈ σ(Q) and λ̄ ∈ σ(Q)⇒ 1

λ̄
∈ σ(Q). (9)

In words, the eigenvalues of Q are symmetric with respect to the unit circle.

Lemma 2.1 A matrix Q ∈ R2×2 is symplectic if and only if its determinant is 1.

Definition 2.2 A matrix Q ∈ R2n×2n is called symplectic with a multiplier ε (or
ε-symplectic) if

Q>JQ = εJ, ε > 0. (10)

Lemma 2.2 For ε > 0, Q ∈ R2×2 is ε-symplectic if and only if det[Q] = ε.

The eigenvalues of a ε-symplectic matrix Q ∈ R2n×2n are symmetric with respect to
the circle of radius 2n

√
ε.

3 Stability Analysis

3.1 Unstable periodic solutions in the non-homogeneous Hill equation

According to the Floquet theory, the state-transition matrix satisfies Φ(t + T ) =
Φ(t)Φ(T ). Therefore, for every solution x(t) of (1) with the initial condition x(0) = v
(v is an eigenvector of Φ(T ) associated to λ), the relation x(t + T ) = λx(t) holds. By
iteration

x(t+ T ) = λx(t),

x(t+ 2T ) = λ2x(t),

...

x(t+ kT ) = λkx(t).

(11)

It is easy to see that the kT -periodic solutions are obtained when λk = 1.
Then, from the last element of (11) and using the Euler formula,

x(t+ kT ) = λkx(t) = rkejkθx(t). (12)

Recalling that there are coordinates in which the Hill equation is Hamiltonian [15] and
the state-transition matrix of a linear Hamiltonian system is symplectic [18], it follows
that rk = 1 provided that λk ≡ 1 for any k ∈ N.

Then |ejkθ| = | cos(kθ) + j sin(kθ)| = 1 and it is true when kθ = ±2nπ (n ∈ Z), hence

θ = ±2π

k
, (13)
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Figure 2: The unit circle shows the eigenvalues’ positions for several kT -periodic solu-
tions corresponding to the curves shown on the Ince-Strutt diagram of the forced Mathieu
equation.

n is neglected because it only represents full rotations, i.e. spins of 2π radians. The angle
condition (13) determines for certain values of α and β, the kT -periodic solutions (see
Fig. 2). Thereby, the values of λ associated to the kT -periodic solutions are concluded
as follows

k = 1, θ = 2π ⇒ λ1,2 = {1, 1},
k = 2, θ = π ⇒ λ1,2 = {−1,−1},

k = 3, θ =
2π

3
⇒ λ1,2 =

{
− 1

2
± j
√

3

2
,

}
,

k = 4, θ =
π

2
⇒ λ1,2 = {j,−j}.

...

Remark 3.1 As k is increased, the kT -periodic solutions come close to the T -
periodic solutions. This can be appreciated principally in Fig. 2, but also in Fig. 5.

Now, consider the non-homogeneous Mathieu equation

ẍ+ [α+ β cos(ω0t)]x =

r∑
i=1

γi cos(ωit), ωi = 2π/Ti, (14)

Ti = 2π/ωi, T0 , T and ωi are the frequencies of the forcing component.
The systems represented by (14) exhibit typical resonance in the same sense as the

linear constant parameter systems.

Proposition 3.1 Linear resonance in the system (14) will arise when any forcing
term in the summation satisfies Ti = kiT0 for some ki ∈ Z+.
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The condition (13) and the relation ki = ω0/ωi allow to deduce

θi = 2π
ωi
ω0
, (15)

which establishes the Ti-periodic curves for the non-homogeneous system.
Two very important considerations arise from the previous analysis. First, the non-

homogeneous Hill equation has two sources of instability: a) the parametric resonance
which arises regardless of whether or not there is an input, and b) the linear resonance
that appears when condition (15) is satisfied and, the parameters (α0, β0) must be such
that they generate solutions of period Ti. Secondly, for every system, equivalently for
every stable point (α, β) on the Ince-Strutt diagram, there is only one frequency for the
system to come into resonance.

Notice that the parametric resonance appears when the system is evaluated at some
coordinate (α, β) on the dark regions of the stability diagram. The growth rate of the
response of a system that undergoes parametric resonance is exponential unlike the linear
resonance.

If the forcing signal has a T0-periodic term, the boundaries corresponding to the T -
periodic Arnold tongues become unstable [8]. Similarly, 2T0-periodic terms make the
boundaries of the 2T -periodic Arnold tongues unstable.

3.2 Non-homogeneous Mathieu equation with damping term

In this section, the dissipative effect on the inhomogeneous Mathieu equation is evaluated.
Consider the forced Mathieu equation and its state-space representation

ẍ+ δẋ+ [α+ β cos(ω0t)]x =

r∑
i=1

γi cos(ωit), δ > 0, (16)

[
ẋ1
ẋ2

]
=

[
0 1

−[α+ β cos(t)] −δ

] [
x1
x2

]
+

[
0
1

] r∑
i=1

γi cos(ωit). (17)

The results achieved in [8] suggest that the behaviour of the non-homogeneous Math-
ieu equation is practically the same as the homogeneous version, except when the char-
acteristic multipliers equal to 1 are simple roots of the minimal polynomial of M . This
justifies that the analysis is focused on system

ẋh = A(t)xh, A(t) =

[
0 1

−α− β cos(t) −δ

]
(18)

whose monodromy matrix is

M = M(T ) =

[
X1h(T ) X2h(T )

Ẋ1h(T ) Ẋ2h(T )

]
, M(0) =

[
1 0
0 1

]
. (19)

Using the Jacobi-Liouville formula [15], det[M(T )] = det[M(0)]e
∫ T
0
tr[A(u)]du, we get

det[M(T )] = e−δT < 1, δ > 0,

since det[M(0)] = 1 and tr[A(t)] = −δ.
To estimate the Floquet multipliers and determine the stability of (18) we compute

PM (λ) = λ2 − tr(M)λ + det[M ] = λ2 − [X1h(T ) + Ẋ2h(T )]λ + e−δT , the characteristic
polynomial of M .
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Figure 3: Eigenvalues of the ρ1-monodromy matrix on the circle of radius ρ (inside
the unitary circle), when they are complex {λ1, λ2} or on real-axis when they are real
{λ̄1, λ̄2}.

Proposition 3.2 Let 0 < ρ < 1, then the monodromy matrix M ∈ R2×2 is ρ2-
sympletic ⇔ det[M ] = ρ2.

Remark 3.2 All the complex eigenvalues of M ∈ R2×2 are on the circle of radius ρ.

Proof. If λ1 ∈ C ⇒ λ2 = λ̄1, thus λ1λ̄1 = ‖λ1‖2 = ρ2 ⇒ ‖λ1‖ = ρ.
From previous analysis and Fig. 3, we can see that the characteristic multipliers

{λ1, λ2} ∈ C (on the ρ-radius circle) and the pair {λ̄1, λ̄2} ∈ C (on real axis) are within
the stable region, i.e., inside the unit circle.

The Arnold tongues of the direct forced Mathieu equation affected by distinct damp-
ing coefficients are displayed in Fig. 7. Notice that the resonance lines disappeared, this
is owing to the Floquet multipliers that were on the unitary circle in Fig. 2 (which caused
the resonance) were translated to the circle of radius ρ in Fig. 3. That is, the damping
effect causes the characteristic multipliers move from the boundary of the unit circle to
the circle with radius ρ.

The damping effect reduces the Arnold tongues by an order of 1/e−δT , see Fig. 7.

4 The Kapitza Pendulum

The Kapitza pendulum is an inverted pendulum whose suspension point is changed peri-
odically in the vertical direction. The objective from the point of view of control theory
is the dynamic stabilization of the inverted position, usually when the suspension point
is constrained to vibrate with a high frequency along the vertical axis. Its name is due
to Pjotr Kapitza who explained in detail the particular behaviour of the system [19].

4.1 General equation of the Kapitza pendulum

Fig. 4 shows a simple diagram of the inverted pendulum, where l is the length of a
massless rigid rod with a small bob of mass m at the end, g is the gravitational constant,
q(t) is the harmonic excitation function and (x, y) are the coordinates of the system.
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Figure 4: The Kapitza pendulum.

From Fig. 4, it can be deduced that

x = l cos(ϕ), ẋ = −l sin(ϕ)ϕ̇; y = l sin(ϕ)− q, ẏ = l cos(ϕ)ϕ̇− q̇.

Recalling the kinetic and potential energy: K = 1/2m(ẋ2 + ẏ2), U = mgl(l sin(ϕ) − p),
applying the Euler-Lagrange equation d/dt · ∂L/∂ϕ̇ − ∂L/∂ϕ = 0, where L = K − U .
Linearizing the system around the upper equilibrium position, we obtain

ϕ̈+ (−g/l + q̈/l)ϕ = 0.

This is the general equation of motion. However, it is useful to make some variable
changes in order to recover the system (1). Hence, the Hill equation describes the Kapitza
pendulum linearized around its upper equilibrium position.

4.2 Numerical results of the forced Kapitza pendulum

Since the Hill equation features the inverted pendulum, the system (3) describes its
corresponding forced case.

The expressions

ẍ+ δẋ+ [α+ β cos(t)]x =
∑

k∈{3,5,9,14}

cos (t/k) , (20)

ẍ+ δẋ+ [α+ β sgn (sin(t))]x =
∑

k∈{3,5,9,14}

cos (t/k) , (21)

are tested to investigate the dynamics of the Kapitza pendulum.
Figures 5a and 5b show the stability diagram for the forced pendulum represented

by systems (20) and (21), respectively. The kT -periodic solutions in the homogeneous
system being forced by any kT -periodic external function become unstable leading to the
resonance lines represented by very slim dashed curves in Figures 5a and 5b. Each line
has a corresponding pair of eigenvalues on the unit circle, see Figure 2.

Fig. 6a exhibits the periodic behaviour of the homogeneous Kapitza pendulum at
the point (α, β) = (3, 2) on the Ince-Strutt diagram, notice that this point is intercepted
by a 3T -periodic solution. Whereas Figures 6b and 6c show the response of the forced
system, with the same (α, β)-coordinates. The first graph illustrates the linear resonance
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(a) The forced Kapitza pendulum described by
the Mathieu equation.

(b) The forced Kapitza pendulum described by
the Meissner equation.

Figure 5: The Ince-Strutt diagrams of: (a) ẍ + δẋ + [α+ β cos(t)]x =
∑7
k=3 cos (t/k)

and (b) ẍ+ δẋ+ [α+ β sgn (sin t)]x =
∑
k∈{3,5,9,14} cos (t/k), δ = 0.
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(a) ẍ+ (α+ β cos t)x = 0.
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(b) ẍ+ (α+ β cos t)x = cos (t/3).
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(c) ẍ+ (α+ β cos t)x = cos (t/3.2).

Figure 6: Response of the Kapitza pendulum: (a) homogeneous system, α and β belong
to a 3T -periodic solution, (b) non-homogeneous system, the forced term is 3T -periodic,
hence linear resonance arises and (c) non-homogeneous system, the forced term is 3.2T -
periodic, in this case there can be no resonance. α = 3, β = 2 in all the cases.
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Figure 7: Stability diagram of the forced Kapitza pendulum: ẍ+ δẋ+ [α+ β cos(t)]x =∑7
i=3 cos (t/i) for different values of damping.

which arises due to the coincidence of the 3T -periodic solution (in the non-homogeneous
system) and the forcing signal (cosine) with the same period. In the second graph we
see that the coincidence between the periods is lost (because the period of the cosine is
T = 3.2), consequently, the linear instability disappears.

Damping effect plays an essential role in the stability of the inverted pendulum, this
reduces the area of parametric resonance in relation to the δ-value (the greater dissipation
means the less area of parametric instability). Regarding the linear resonance, it vanishes
even with a relatively small value of dissipation, hence, the resonance lines disappear from
the stability diagram, see Fig. 7. This fact is a direct consequence of Remark 3.2.

Remark 4.1 A diagram similar to that of Fig. 5a for the forced Mathieu equation
(20), for α ∈ [−0.8, 0.6] and β ∈ [0, 1.5], was obtained in [20], but no analysis was shown.

5 Further Results

In this section, we will analyze the system ẍ+[α+ βf(t)]x = g(t), where f(t) = f(t+T )
and g(t) = g(t+T ) with T and T non-commensurable. More specifically, we will evaluate

ẍ+ [α+ β cos(t)]x = sin(πt), T1 = 2, (22)

ẍ+ [α+ β cos(t)]x = sin(et), T2 = 2π/e, (23)

where e ≈ 2, 7182818 is the Euler number and π ≈ 3.1415926, both are irrational num-
bers, and T1 and T2 are the fundamental periods of the forcing signals in (22) and (23)
respectively. Since the minimal period of the parametric excitation term is T = 2π, it
can be seen in a straight way that neither T and T1 nor T and T2 are commensurable.
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(a) Positions of the eigenvalues for eT ,
3T and πT -periodic solutions.

(b) Resonance lines generated by the external signals:
sin(et), sin(3t), sin(πt).

Figure 8: (a) Multipliers on the unitary disk representing eT , 3T and πT -periodic so-
lutions of the homogeneous Kapitza pendulum. (b) stability diagram of the inverted
pendulum forced with signals whose period is not commensurable with the parametric
excitation term.

Use the condition θ = 2π/k to obtain π and e-periodic solutions

k = π, θ =
2π

π
⇒ λ1,2 ≈ {−0.4161± j0.9092},

k = e, θ =
2π

e
⇒ λ1,2 ≈ {−0.6747± j0.7380}.

Fig. 8a shows the Floquet multipliers positions associated with πT , 3T and eT -periodic
signals. The multipliers of 3T -periodic signals are plotted as a reference.

Notice that the behavior referring to the periodic solutions (in the homogeneous Hill
equation) or the linear resonance (in the non-homogeneous Hill equation) is preserved
in spite of the forcing signals and the parametric excitations are incommensurable, i.e.,
the kT -periodic solutions can appear with k not necessary integer provided that the
eigenvalues of the monodromy matrix are on the unit circle. These solutions will resonate
if a forcing term, with the same (or multiple) period, is applied to the system.

Fig. 9 traces the trajectories x(t) of the solutions of (22) when α = 2 and β = 1.8,
which is a point located on one of πT -periodic lines on the stability diagram, see Fig.
8b, clearly these trajectories describe the linear resonance or instability caused by the
forcing signal.

6 Conclusion

The present note covers the non-homogeneous Hill equation, this particular case presents
new features in the stability diagram providing that the periodicity condition between the
parametric and forcing signal is fulfilled, when this occurs, very thin curves (here called
resonance lines) will appear inside the stable areas, such lines depict the linear resonance
and emerge independently whether or not there is a commensurable relation between
the forcing term and the parametric excitation signal. Then, it can be concluded that
there are two types of instability associated with the forced Hill equation: the parametric
resonance (well-known) and the linear resonance introduced in this paper.
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Figure 9: Response of the forced Kapitza pendulum: ẍ + [α+ β cos(t)]x = cos(πt),
α = 2 and β = 1.8.

This work also generalizes the results presented by Slane and Tragesser [8], about the
inhomogeneous Hill equation, they described the changes operated only in the T and 2T
periodic solutions (the boundaries of the Arnold tongues).

Additionally, it was shown that the multipliers lying on the unit circle were shifted
inside the circle when the damping effect was introduced in the non-homogeneous Hill
equation. Consequently, the resonance lines disappeared.

A challenging problem appears when we try to characterize the periodic solutions and
the resonance lines in the higher order Hill equation. Due to the fact that these systems
experience a phenomena that does not occur in the two degree of freedom systems.
Therefore, a greater effort is required.
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