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Professor V.M. Starzhinskii
To the 100th Birthday Anniversary

On March 10, 2018, the renowned Russian scientist in the area of mathematics and
mechanics, Viacheslav Mikhailovich Starzhinskii, would have turned 100 years old. To
commemorate Professor Starzhinskii’s valuable contribution to nonlinear dynamics,
the Editorial Board of the Journal presents a short biographical sketch of his life
and academic activities. A detailed review of his scienti�c and pedagogical activities
is presented in the Section \Personage in Science" in the article \Professor V.M.
Starzhinskii" by A.A. Martynyuk, J.H. Dshalalow, and V.I. Zhukovskii, Nonlinear
Dynamics and Systems Theory, 8(1) (2008) 1{6.

Viacheslav Mikhaylovich Starzhinskii was born on March 10, 1918, in the village of
Lemeshevichi of the Pinsky district, part of the Pinsky region (now the Brest region in
Belarus). In 1935, he was admitted to the Department of Mechanics and Mathematics
of Moscow State University to study mechanics. His graduation from Moscow State
University coincided with the beginning of the Second World War. As a result, from
1941 to 1944, he worked as a constructor engineer at the military plants in Stupino
town of the Moscow region and Verkhnyaya Salda town of the Sverdlov region. Then,
from August 17, 1944 till September 9, 1945, he taught at the Verkhne-Salda Avia-
Metallurgical Technical School of Narkomaviaprom (The Ministry of Aircraft Industry).

In October, 1945, Viacheslav Mikhailovich was accepted to a full-time post-graduate
school at the Scienti�c Research Institute of Mechanics of Moscow State University. At
that time he got interested in automatic control systems. This inuenced the topic of
his upcoming PhD thesis \Some problems in the theory of tracking systems", which
he successfully defended in June, 1948. That same year (on February 2, 1948) he was

c 2020 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/ http://e-ndst.kiev.ua 1



2 PROFESSOR V.M. STARZHINSKII

appointed as a senior researcher in one of the scienti�c research institutes of the Ministry
of Industry of Communications.

From September 1, 1950, he became an associate Professor of Mathematics in Calculus
Program at the All-Union Correspondent Institute of Textil and Light Industry (A-
UCITLI). On August 1, 1957, Viacheslav Mikhailovich became an associate Professor
of Theoretical Mechanics Program at the A-UCITLI. In March, 1958, after defending
his habilitation thesis, he became a Professor and then the Chair of the Program of
Theoretical Mechanics.

Forty three years of his work at the A-UCITLI proved to be the most fruitful ones
in the life of Viacheslav Mikhailovich. In 1952, he published his �rst paper \Su�cient
stability conditions for a mechanical system with one degree of freedom". For the period
of 1952{1957, he published seven more papers on the problems of stability of periodic
motions. At that time, Viacheslav Mikhailovich entered a post-doctoral program for his
habilitation degree at the Institute of Problems of Mechanics of the Academy of Sciences
(his supervisor was the Corresponding Member of the Ac. of Sci. of the USSR, Professor
N.G. Chetayev), and in 1957, he defended his habilitation thesis.

V.M. Starzhinskii published more than 150 papers and books (including 27 mono-
graphs and textbooks). His work covers the following areas:

1) The second Lyapunov method: �rst, second, third and fourth order equations;
2) Stability of periodic motions: estimations of characteristic constants in the second

and n-th order systems; the theory of parametric resonance Mathieu and Hill equations;
3) Oscillations of substantially nonlinear systems, combination of the Lyapunov and

Poincare methods, oscillating chains, energy jump, damped oscillating systems, compu-
tation of normal modes; normal modes for third, fourth and sixth order systems;

4) Application of parametric resonance theory to acoustic and electromagnetic waveg-
uides;

5) Dynamics of a solid body: dimensionless form of the Euler-Poisson equations,
oscillations of a heavy body with a �xed point, exclusive cases of Kovalevskaya gyroscope
motion, QP -procedure for Kovalevskaya’s case;

6) Applied problems: calculation of thread tension, elastic shaft, dynamical stability
of rods, problem of three bodies, torsion oscillations of crank-shafts, pendulum on spring,
thread mechanics, servo systems, cyclical accelerators.

Viacheslav Mikhailovich was a skillful lecturer. He conveyed a very complex material
to his students in a clear fashion, without a compromise to the depth. His long-term
teaching experience has also eventuated in the publication of many textbooks on theo-
retical mechanics.

During 1980 to 1988, Professor Starzhinskii delivered a series of lectures on nonlinear
oscillations and parametric resonance for post-graduate students of the Mechanical and
Mathematical Department of Moscow State University. His lectures have always been a
success as they attracted many listeners who were inspired by his teaching. He worked
actively with post-graduates and supervised four doctoral and �ve habilitation theses.

Professor Starzhinskii was a member of the Scienti�c-Methodical Council of Theoret-
ical Mechanics of the Ministry of Education, the USSR, and a member of the Editorial
Board of the Publishing House \Mir". He was among the active contributors to the
Mathematical Encyclopedia.

V.M. Starzhinskii was rewarded with three medals of honor. In 1985, he received the
reward \For Successes in the Field of Higher Education".

A.A. Martynyuk, N.A. Izobov, A.G. Mazko, V.I. Zhukovskii
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Generalized Monotone Method for Nonlinear Caputo
Fractional Impulsive Di�erential Equations

Y. Bai and A. S. Vatsala�

Department of Mathematics, University of Louisiana at Lafayette, Louisiana { 70504.
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Abstract: Generalized monotone method is a useful technique to prove the existence
of coupled minimal and maximal solutions when the nonlinear function is the sum of
an increasing and decreasing functions. In this work, we develop generalized monotone
method for Caputo fractional impulsive di�erential equations with initial conditions,
using coupled lower and upper solutions of Type 1. For that purpose we develop
comparison results for Caputo fractional impulsive di�erential equation. Further,
under uniqueness assumption, we prove the existence of the unique solution of the
nonlinear Caputo fractional impulsive di�erential equation with initial conditions.

Keywords: nonlinear Caputo fractional di�erential equations; impulsive di�erential
equations; generalized monotone method.

Mathematics Subject Classi�cation (2010): 34A08, 34A37.

1 Introduction

In the past few decades, the impulsive equations have exhibited more advantages in the
mathematical models of physical and biological models. See [2,3,6{8,14,23] for details.
These equations can describe more naturally and more closed to the real world problems.
See [9,12,15]. In the past four decades, the study of fractional di�erential equations has
gained lots of importance due to its applications. See [1,4,5,10,11,13,25,26]. In fact, the
dynamic equations with fractional derivative have represented as better and economical
models in various branches of science and engineering. See [12,13,15{17].

In this work, we develop generalized monotone method combined with coupled lower
and upper solutions for nonlinear Caputo fractional impulsive di�erential equations with
initial conditions. In general, explicit solution for nonlinear problems is rarely possible.

� Corresponding author: mailto:vatsala@louisiana.edu
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4 Y. BAI AND A. S. VATSALA

In addition, explicit solution even for linear Caputo fractional di�erential equations with
variable coe�cients with or without impulses and initial conditions is not trivial either.
However, explicit solution of the solution and/or representation form of the solution of
linear Caputo fractional impulsive di�erential equation with initial condition is possible.
See [22] for more details. In addition, in [22], the uniqueness of the solution of the
linear Caputo fractional impulsive di�erential equation has been proved by developing a
comparison result.

We apply generalized monotone method, Laplace transform and some properties in
the main result. See [6, 18{21, 24, 27, 28] for more details. In [22], we have obtained
explicit solutions for the linear Caputo fractional impulsive di�erential equations with
initial condition. In addition, we have also developed a comparison result in [22] relative
to coupled lower and upper solutions.

In the present work, we have also developed linear comparison results as an auxil-
iary result which is useful in our main result. We have developed monotone sequences
f vn g and f wn g which are piece-wise left continuous using the coupled lower and upper
solutions, when the nonlinear function is the sum of non-decreasing and non-increasing
functions. We have established the monotone sequences which converge uniformly and
monotonically to coupled minimal and maximal solutions of the nonlinear problem. Fur-
thermore, under uniqueness assumptions on the nonlinear terms, we prove that the cou-
pled minimal and maximal solutions reduce to the unique solutions of the nonlinear
problem.

2 Preliminary Results

In this section, we introduce some known de�nitions and results, which are needed for
the main results. First, we recall some basic de�nitions.

De�nition 2.1 The Riemann-Liouville fractional integral of u(t) of order q is de�ned
by

D � q
t u =

1
�( q)

Z t

0
(t � s)q� 1u(s)ds; (1)

where 0< q � 1.

De�nition 2.2 The Caputo (left) fractional derivative of u(t) of order q, when 0<
q < 1, is de�ned as:

cD q
t u(t) =

1
�(1 � q)

Z t

0
(t � s) � qu0(s)ds: (2)

De�nition 2.3 The Riemann-Liouville (left-sided) fractional derivative of u(t) of
order q, when 0< q < 1, is de�ned as

D qu(t) =
1

�(1 � q)
d
dt

Z t

0
(t � s) � qu(s)ds; t > 0: (3)

The relation between Caputo derivative and Riemann-Liouville derivative of a function
f (t) is given by

cD qu(t) = D q(u(t) � u(0)) :

This relation will be useful for results relative to di�erential inequalities.
Next we de�ne the Mittag-Le�er function which is useful in computing the solution

of the linear fractional di�erential equations.
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De�nition 2.4 The two parameter Mittag-Le�er function is de�ned as

Eq;r (�t q) =
1X

k=0

(�t q)k

�( qk + r )
: (4)

If r = q, the relation (4) reduces to

Eq;q(�t q) =
1X

k=0

(�t q)k

� q(k + 1)
: (5)

If r = 1 ; the Mittag-le�er function is de�ned as

Eq;1(�t q) =
1X

k=0

(�t q)k

� q(k + 1)
: (6)

See [5, 10, 13, 16] for more details.
In our next de�nition we assume p = 1 � q, when 0< q < 1; J = (0 ; T] and J0 = [0 ; T].

De�nition 2.5 A function � (t) 2 C(J; R) is a Cp continuous function on J if
t1� q� (t) 2 C(J0; R): The set of Cp continuous functions is denoted byCp(J; R): Fur-
ther, given a function � (t) 2 Cp(J; R); we call the function t1� q� (t) the continuous
extension of � (t).

Next, we introduce some theorems and lemmas which are useful to our main results.

Lemma 2.1 Let J = [0 ; T]; m 2 Cp(J; R) be such that for somet0 2 J; we have
m(t0) = 0 and m(t) � 0 for t 2 [0; t0]; then (Riemann-Liouville fractional derivative)
D qm(t0) � 0:

See [4, 5] for the details of the proof.

Lemma 2.2 Let J = [0 ; T]; such that 0 < t 1 < t 2 < ::: < t N � 1 < t N � 1 = T; and m
be piece-wise left continuous on each(t i ; t i +1 ]. Suppose there exists at0 2 J; such that
m(t0) = 0 and m(t) � 0 for t 2 [0; t0]; then D qm(t0) � 0:

See [4, 21] for the details of the proof.
Remark: The above result is also true with Caputo derivative in place of Riemann-

Liouville derivative. The proof can be easily obtained by applying the relation be-
tween the Caputo derivative and the Riemann-Liouville derivative, which is cD qm(t) =
D q (m(t) � m(0)) :

Consider the linear Caputo fractional di�erential equation

cD qu = �u + f (t); u(0) = u0: (7)

Then the solution of (7) is given by

u(t) = u0Eq;1(�t q) +
Z t

0
(t � s)q� 1Eq;q(� (t � s)q)f (s)ds: (8)
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Consider the nonlinear Caputo fractional impulsive di�erential equations with initial
condition

8
>>>><

>>>>:

cD qu(t) = �u (t) +
NP

i =1
ci � (t � t i )si (t � t i )u(t i )

+
NP

i =1
bi � (t � t i )r i (t � t i )u(t i ) + f (t; u(t)) + g(t; u(t)) ;

u(o) = u0;

(9)

where t 2 [0; T]; and 0 < t 1 < t 2 < � � � < t N = T: Also, � (t � t i ) is the Heaviside unit
step function which is left continuous,

� (t � t i ) =
�

1; if t > t i ;
0; if t � t i :

(10)

Furthermore, we assume that � 6= 0 ; and for each 1� i � N; ci � (t � t i )si (t � t i ) � 0
and bi � (t � t i )r i (t � t i ) � 0: The function f (t; u) is nondecreasing inu and g(t; u) is
nonincreasing in u: In addition, si (t � t i ) and r i (t � t i ) are continuous on each interval
[t i ; t i +1 ] for i = 1 ; : : : ; N � 1: Therefore, they are bounded on each interval.

Next we de�ne the coupled lower and upper solutions of natural type as well of Type
1. See [9] for other types of coupled lower and upper solutions.

De�nition 2.6 If u : C[0; T] ! R which is piecewise left continuous att i ; i =
1; 2; : : : ; N , such that 0 < t 1 � t2 � � � � � tN = T; and whose Caputo derivative of order
q exists on [0; T]. Then we denotef 2 PCq[[0; T]; R]:

De�nition 2.7 We say that v; w are PCq[[0; T]; R] piecewise left continuous on
(t i ; t i +1 ) for i = 1 ; : : : ; N � 1: Then we say v and w are coupled lower and upper so-
lutions of natural type of (9) if they satisfy the inequalities:

cD qv(t) � �v (t) +
NX

i =1

ai � (t � t i )si (t � t i )v(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )v(t i )

+ f (t; v) + g(t; v);

v(0) � u0;

(11)

cD qw(t) � �w (t) +
NX

i =1

ai � (t � t i )si (t � t i )w(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )w(t i )

+ f (t; w) + g(t; w);

w(0) � u0:

(12)

De�nition 2.8 We say that v; w are PCq[[0; T]; R] piecewise left continuous on
(t i ; t i +1 ) for i = 1 ; : : : ; N � 1: Then we say v and w are coupled lower and upper so-
lutions of type 1 if they satisfy the inequalities:

cD qv(t) � �v (t) +
NX

i =1

ai � (t � t i )si (t � t i )v(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )w(t i )

+ f (t; v) + g(t; w)

v(0) � u0;

(13)
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cD qw(t) � �w (t) +
NX

i =1

ai � (t � t i )si (t � t i )w(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )v(t i )

+ f (t; w) + g(t; v);

w(0) � u0:

(14)

Theorem 2.1 If � 6= 0 ; v(t) and w(t) are coupled lower and upper solutions of type
1 of the nonlinear Caputo impulsive fractional di�erential equation (9), where f (t; u) and
g(t; u) satisfy the one-sided Lipschitz condition inu; of the following form with u1 � u2

f (t; u1) � f (t; u2) � L 1(u1 � u2); (15)

g(t; u1) � g(t; u2) � � L 2(u1 � u2); (16)

where L 1 � 0 and L 2 � 0: Then v(0) � w(0) implies that v(t) � w(t); 8t � J = [0 :T]:

See [22] for the details of the proof.

3 Auxiliary Results

In this section, we prove a comparison theorem which will be used to prove the generalized
monotone method in the main result.

Theorem 3.1 If the functions P(t) and Q(t) are PCq[[0; T]; R] such that satisfy the
following inequalities:

cD qP � �P +
NX

i =1

ci � (t � t i )si (t � t i )P(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )Q(t i ); (17)

cD qQ � �Q +
NX

i =1

ci � (t � t i )si (t � t i )Q(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )P(t i ); (18)

where� � 0; and for each1 � i � N; ci � (t � t i )si (t � t i ) � 0 and bi � (t � t i )r i (t � t i ) � 0;
then the initial condition P(0) � 0 and Q(0) � 0 implies P(t) � 0 and Q(t) � 0 for all
t 2 [0; T]:

Proof. We prove by the method of mathematical induction. For t 2 [0; t1)

cD qP(t) � �P (t); cD qQ(t) � �Q (t): (19)

Then we can get

P(t) � P(0)Eq;1(�t q) � 0; Q(t) � Q(0)Eq;1(�t q) � 0: (20)

For t = t1; we have

P(t1) � P(0)Eq;1(�t q
1) � 0; Q(t1) � Q(0)Eq;1(�t q

1) � 0: (21)

Assume the result is true for t 2 [tk � 1; tk ); for 0 � k � N � 1; which yields P(tk ) � 0
and Q(tk ) � 0 for all 0 � k � N � 1. Then, for t 2 [tk ; tk+1 );

cD qP(t) � �P (t)+
kX

i =1

ci � (t � t i )si (tk+1 � t i )P(t i )+
kX

i =1

bi � (t � t i )r i (tk+1 � t i )Q(t i ): (22)



8 Y. BAI AND A. S. VATSALA

With the result of P(tk ) � 0 and Q(tk ) � 0 for all 0 � k � N � 1; we can getcD qP � �P :
Therefore we haveP(t) � P(0)Eq;1(�t q) � 0 on [0; tk+1 ): Then for t = tk+1 ; we have
P(tk+1 ) � 0: Similarly, we have the results for Q(t);

Q(t) � Q(0)Eq;1(�t q) � 0:

Then Q(tk+1 ) � 0: Since it is true for i = 1 ; therefore, by induction, for all t i ; 0 � i � N;
P(t i ) � 0 and Q(t i ) � 0: Then we haveP(t) � 0 and Q(t) � 0 for all 0 � t � tN ; which
completes the proof.

Lemma 3.1 If the functions P(t) and Q(t) are PCq[[0; T]; R] such that to satisfy the
following inequalities:

cD qP � �P +
NX

i =1

ci � (t � t i )si (t � t i )P(t i ); (23)

cD qQ � �Q +
NX

i =1

ci � (t � t i )si (t � t i )Q(t i ): (24)

where� 6= 0 ;
NP

i =1
ci � (t � t i )si (t � t i ) � 0, then the initial condition P(0) � 0 and Q(0) � 0

implies P(t) � 0 and Q(t) � 0 for all t 2 [0; T]:

Proof. This is a special case of Theorem 3.1 withbi = 0 for all i = 1 ; 2; � � � ; N:
Therefore the proof is almost the same as the one in Theorem 3.1.

4 Main Result

In this section, we consider the nonlinear Caputo impulsive di�erential equation of the
form (9), which has application in science and biology. Since it is rarely possible to
compute the solution of the nonlinear problem with or without impulses and with integer
derivatives or fractional derivatives, hence we develop generalized monotone method
together with coupled lower and upper solution. See [9, 18] for more details.

The method yields monotone sequences which converge uniformly and monotonically
to coupled minimal and maximal solutions of (9) on the sector de�ned by coupled lower
and upper solutions. Furthermore, if the nonlinear functions satisfy uniqueness condition,
then the coupled minimal and maximal solutions coincide to be the unique solution of
(9).

Note that the generalized monotone method is a more appropriate method to prove
the existence of the nonlinear Caputo fractional impulsive di�erential equations when
the nonlinear function is the sum of nondecreasing and nonincreasing functions.

In order to prove our main results, we need the existence and uniqueness of solution
of two linear systems of Caputo fractional impulsive di�erential equations with initial
condition. This is precisely the next result.

Theorem 4.1 Let v0; w0 be coupled lower and upper solutions of (9) of type 1, such
that v0(t) � w0(t) on t 2 [0; T]: Suppose� and � are any two functions such that
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v0 � � � � � w0 on [0; T], then the solution of the following linear Caputo fractional
impulsive di�erential equations:
8
<

:

cD qp = �p + f (t; � ) + g(t; � ) +
NP

i =1
ci � (t � t i )si (t � t i )p(t i )+

NP

i =1
bi � (t � t i )r i (t � t i )q(t i );

p(0) = u0;
(25)8

<

:

cD qq = �q + f (t; � ) + g(t; � ) +
NP

i =1
ci � (t � t i )si (t � t i )q(t i )+

NP

i =1
bi � (t � t i )r i (t � t i )p(t i );

q(0) = u0;
(26)

exists and it is unique.

Proof. Since � (t) and � (t) are known functions of t, it is easy to see that f (t; � );
f (t; � ); g(t; � ) and g(t; � ) become functions oft and let us denote

f (t; � ) + g(t; � ) = F (t); f (t; � ) + g(t; � ) = G(t): (27)

Then the equations (25) and (26) become linear system of Caputo fractional impulsive
di�erential equations, namely

cD qp = �p + F (t) +
NX

i =1

ci � (t � t i )si (t � t i )p(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )q(t i );

p(0) = u0;

(28)

cD qq = �q + G(t) +
NX

i =1

ci � (t � t i )si (t � t i )q(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )p(t i );

q(0) = 0 :

(29)

Applying the Laplace transformation, the solution of the p(t) and q(t) are given by
8
>>>>>>><

>>>>>>>:

p = u0Eq;1(�t q) +
Rt

0 (t � s)q� 1Eq;q(� (t � s)q)F (s)ds

+
NP

i =1
ci � (t � t i )Si (t � t i )p(t i ) +

NP

i =1
bi � (t � t i )Ri (t � t i )q(t i );

q = u0Eq;1(�t q) +
Rt

0 (t � s)q� 1Eq;q(� (t � s)q)G(s)ds

+
NP

i =1
ci � (t � t i )Si (t � t i )q(t i ) +

NP

i =1
bi � (t � t i )Ri (t � t i )p(t i );

(30)

where Si (t � t i ) = L � 1
�

L (si )
sq � �

�
and Ri (t � t i ) = L � 1

�
L (r i )
sq � �

�
; for i = 1 ; 2; � � � ; N: L and

L � 1 are the Laplace transformation and the inverse Laplace transformation, respectively.
Then for t 2 [0; t1), the equations (28) and (29) reduce to

cD qp = �p + F (t); cD qq = �q + G(t): (31)

Use the result of (8). The solution p(t) and q(t) can be given by
(

p = u0Eq;1(�t q) +
Rt

0 (t � s)q� 1Eq;q(� (t � s)q)F (s)ds;
q = u0Eq;1(�t q) +

Rt
0 (t � s)q� 1Eq;q(� (t � s)q)G(s)ds:

(32)
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For t = t1; we get
(

p(t1) = u0Eq;1(�t q
1) +

Rt 1

0 (t1 � s)q� 1Eq;q(� (t1 � s)q)F (s)ds;
q(t1) = u0Eq;1(�t q

1) +
Rt 1

0 (t1 � s)q� 1Eq;q(� (t1 � s)q)G(s)ds:
(33)

For t 2 [t1; t2), the equations (28) and (29) reduce to

cD qp = �p + F (t) + c1s1(t � t1)p(t1) + b1r 1(t � t1)q(t1); (34)

cD qq = �q + G(t) + c1s1(t � t1)q(t1) + b1r 1(t � t1)p(t1): (35)

The solution can be given as

8
>>><

>>>:

p = u0Eq;1(�t q) +
Rt

0 (t � s)q� 1Eq;q(� (t � s)q)F (s)ds
+ c1S1(t � t1)p(t1) + b1R1(t � t1)q(t1);

q = u0Eq;1(�t q) +
Rt

0 (t � s)q� 1Eq;q(� (t � s)q)G(s)ds
+ c1S1(t � t1)q(t1) + b1R1(t � t1)p(t1):

(36)

After substituting p(t1) and q(t1); the equation (36) reduces to

8
>>>>>>>>>><

>>>>>>>>>>:

p = u0Eq;1(�t q) +
Rt

0 (t � s)q� 1Eq;q(� (t � s)q)F (s)ds

+ c1S1(t � t1)
�

u0Eq;1(�t q
1) +

Rt 1

0 (t1 � s)q� 1Eq;q(� (t1 � s)q)F (s)ds
�

+ b1R1(t � t1)
�

u0Eq;1(�t q
1) +

Rt 1

0 (t1 � s)q� 1Eq;q(� (t1 � s)q)G(s)ds
�

;

q = u0Eq;1(�t q) +
Rt

0 (t � s)q� 1Eq;q(� (t � s)q)G(s)ds

+ c1S1(t � t1)
�

u0Eq;1(�t q
1) +

Rt 1

0 (t1 � s)q� 1Eq;q(� (t1 � s)q)G(s)ds
�

+ b1R1(t � t1)
�

u0Eq;1(�t q
1) +

Rt 1

0 (t1 � s)q� 1Eq;q(� (t1 � s)q)F (s)ds
�

;

(37)

where S1(t � t1) = L � 1
�

L (s1 )
sq � �

�
and R1(t � t1) = L � 1

�
L (r 1 )
sq � �

�
: Then we can �nd the

value of p(t2) and q(t2) by substituting t2 into the equation (37). Then after another
iteration, we can get the solution for t 2 [t2; t3). If we continue the above process, we
can obtain a closed form of solution of (25)-(26) for allt 2 [0; T]:

In order to prove the uniqueness of the solution of the equations (25) and (26), let
(p1; q1) and (p2; q2) be two solutions. Then let m = p1 � p2 and n = q1 � q2: Then,

cD qm = �m +
NX

i =1

ci � (t � t i )si (t � t i )m(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )n(t i );

m(0) = 0 ;

(38)

cD qn = �n +
NX

i =1

ci � (t � t i )si (t � t i )n(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )m(t i );

n(0) = 0 :

(39)

Then by applying Theorem 3.1, we can get thatm � 0 and n � 0 for all t 2 [0; T];
which means p1 � p2 and q1 � q2 for all t 2 [0; T]: Hence the solution of the system
(25)-(26) is unique. This concludes the proof.
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In the next result, we construct the sequencesvn and wn , which are monotonically
increasing and decreasing sequences. The sequencesvn and wn are the solution of the
following linear system of Caputo fractional impulsive di�erential equation. They are
de�ned as

cD qvn = �v n + f (t; vn � 1) + g(t; wn � 1)

+
NX

i =1

ci � (t � t i )si (t � t i )vn (t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )wn (t i );

vn (0) = u0;

(40)

cD qwn = �w n + f (t; wn � 1) + g(t; vn � 1)

+
NX

i =1

ci � (t � t i )si (t � t i )wn (t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )vn (t i );

wn (0) = u0:

(41)

Here v0 and w0 are coupled lower and upper solutions of Type 1 of the problem (9).
In order to prove our �rst next main result, we need the following sector 
 ; de�ned

as

 = [( t; u) : v0(t) � u � w0(t); t 2 [0; T]]; (42)

where v0 and w0 are coupled lower and upper solution of suitable type of equation (9)

Theorem 4.2 Assume
(A1). v0 and w0 are coupled lower and upper solutions of type 1 of the equation (9), such
that v0 � w0 on [0; T];
(A2). f (t; u) and g(t; u) are nondecreasing and nonincreasing, respectively, on
 .
Then the sequencesf vn g and f wn g de�ned by (40)-(41) are well de�ned and satisfy the
following results:
(i). f vn g and f wn g satisfy the inequality

v0 � v1 � v2 � � � � � vn � wn � wn � 1 � � � � � w1 � w0; 8t 2 [0; T]: (43)

(ii). If u is any solution of equation (9) such thatv0 � u � w0, then the sequencesf vn g
and f wn g converge uniformly and monotonically to the coupled minimal and maximal
solutions v(t) and w(t), respectively, such thatv(t) � u � w(t):
(iii). Furthermore, if f (t; u) and g(t; u) satisfy the one-sided Lipschitz condition of the
form

f (t; u1) � f (t; u2) � L 1(u1 � u2); g(t; u1) � g(t; u2) � L 2(u1 � u2); (44)

where u1 � u2, L 1 � 0 and L 2 � 0; 8t 2 [0; T]; then we havev(t) = w(t) = u(t) being
the unique solution of (9) on [0; T]:

Proof. We know that v0 � w0. Then from Theorem 4.1, it is easy to see thatv1(t)
and w1(t) exist and are unique as well asvn (t) and wn (t) for each n � 1: In order to
prove that vn and wn are monotonically non-decreasing and non-increasing respectively
and vn � wn for all n � 1; we use the method of mathematical induction. Initially, we
prove v0 � v1 and w1 � w0. AssumeP(t) = v0(t) � v1(t) and Q(t) = w0(t) � w1(t): Then
we have

P(0) � u0 � u0 = 0 Q(0) � u0 � u0 = 0 ; (45)
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and

cD qP = cD q(v0 � v1) = cD qv0 � cD qv1

� �P +
NX

i =1

ci � (t � t i )si (t � t i )P(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )Q(t i );

cD qQ = cD q(w0 � w1) = cD qw0 � cD qw1

� �Q +
NX

i =1

ci � (t � t i )si (t � t i )Q(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )P(t i ):

(46)

Using Theorem 3.1, we haveP(t) � 0 and Q(t) � 0: This proves v0 � v1 and w1 � w0

for all t 2 [0; T]:

Assume that vn � vn +1 and wn +1 � wn are true for n = k; k � 0. Therefore,
vk � vk+1 and wk+1 � wk for all t 2 [0; T]. Then let n = k + 1 ; let P(t) = vk+1 � vk+2

and Q(t) = wk+1 � wk+2 : Therefore P(0) = Q(0) = 0 :

With the assumption ( A2) on f and g, we can get

cD qP = �P + f (t; vk ) � f (t; vk+1 ) + g(t; wk ) � g(t; wk+1 )

+
NX

i =1

ci � (t � t i )si (t � t i )P(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )Q(t i )

� �P +
NX

i =1

ci � (t � t i )si (t � t i )P(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )Q(t i ):

(47)

Similarly, for Q(t) we can get

cD qQ = �Q + f (t; wk ) � f (t; wk+1 ) + g(t; vk ) � g(t; vk+1 )

+
NX

i =1

ci � (t � t i )si (t � t i )Q(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )P(t i )

� �Q +
NX

i =1

ci � (t � t i )si (t � t i )Q(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )P(t i ):

(48)

Using Theorem 3.1, we haveP(t) � 0 and Q(t) � 0: This proves vk+1 � vk+2 and
wk+2 � wk+1 for all 0 � t � tN : Certainly, it is true for k = 1 ; hence, by induction, we
have the result

v0 � v1 � � � � � vn � 1 � vn ; wn � wn � 1 � � � � � w1 � w0: (49)

Next we prove that vn � wn on t 2 [0; T] for all n � 1: We prove it using the method
of mathematical induction.

Let p(t) = v1(t) � w1(t); then p(0) = v1(0) � w1(0) = u0 � u0 = 0 : Using the
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assumption (A2) on f and g, we can get

cD qp = �p + f (t; v0) � f (t; w0) + g(t; w0) � g(t; v0)

+
NX

i =1

ci � (t � t i )si (t � t i )p(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )( � p(t i ))

� �p +
NX

i =1

ci � (t � t i )si (t � t i )p(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )( � p(t i ))

� �p +
NX

i =1

�
ci � (t � t i )si (t � t i ) � bi � (t � t i )r i (t � t i )

�
p(t i ):

(50)

By Lemma 3.1, we havep(t) � 0: Therefore, v1 � w1 for all t 2 [0; T]:
Assume the resultvn � wn is true for n = k; which is vk � wk for all t 2 [0; T]:

For n = k + 1 ; we let p(t) = vk+1 (t) � wk+1 (t); then p(0) = u0 � u0 = 0 : With the
assumption (A2), we have

cD qp = �p + f (t; vk ) � f (t; wk ) + g(t; wk ) � g(t; vk )

+
NX

i =1

ci � (t � t i )si (t � t i )p(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )( � p(t i ))

� �p +
NX

i =1

ci � (t � t i )si (t � t i )p(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )( � p(t i ))

� �p +
NX

i =1

�
ci � (t � t i )si (t � t i ) � bi � (t � t i )r i (t � t i )

�
p(t i ):

(51)

Using the result of Lemma 3.1, we havep(t) � 0: Therefore,vk+1 � wk+1 for all t 2 [0; T]:
Since it is true for k = 1, therefore, by induction, we have the conclusionvn � wn is
true for every n � 1: Since we have already assumed thatv0 � w0; we can obtain the
inequality

v0 � v1 � � � � � vn � 1 � vn � wn � wn � 1 � � � � � w1 � w0: (52)

In the next result, we will show that v0 � u � w0 implies vn � u � wn for all n � 1:
We prove by the method of mathematical induction. For n = 1 ; let

P(t) = v1(t) � u(t); Q(t) = u(t) � w1(t): (53)

The initial condition is P(0) = Q(0) = u0 � u0 = 0 :
Then with the assumption (A2), we have

cD qP = �P + f (t; v0) � f (t; u) + g(t; w0) � g(t; u)

+
NX

i =1

ci � (t � t i )si (t � t i )P(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )Q(t i )

� �P +
NX

i =1

ci � (t � t i )si (t � t i )P(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )Q(t i ):

(54)
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Similarly, for Q(t) we have

cD qQ = �Q + f (t; u) � f (t; w0) + g(t; u) � g(t; v0)

+
NX

i =1

ci � (t � t i )si (t � t i )Q(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )P(t i )

� �Q +
NX

i =1

ci � (t � t i )si (t � t i )Q(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )P(t i ):

(55)

Then, by Theorem 3.1, we can getP(t) � 0 and Q(t) � 0: Therefore, v1 � u � w1 for
all t 2 [0; T]:

Assume the result vn � wn is true for n = k; then we havevk � u � wk : Then for
n = k + 1 ; let

P(t) = vk+1 (t) � u(t); Q(t) = u(t) � wk+1 (t): (56)

The initial condition is P(0) = Q(0) = u0 � u0 = 0 :
Using the assumption (A2), we can get

cD qP = �P + f (t; vk ) � f (t; u) + g(t; wk ) � g(t; u)

+
NX

i =1

ci � (t � t i )si (t � t i )P(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )Q(t i )

� �P +
NX

i =1

ci � (t � t i )si (t � t i )P(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )Q(t i ):

(57)

Similarly, for Q(t) we have

cD qQ = �Q + f (t; u) � f (t; wk ) + g(t; u) � g(t; vk )

+
NX

i =1

ci � (t � t i )si (t � t i )Q(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )P(t i )

� �Q +
NX

i =1

ci � (t � t i )si (t � t i )Q(t i ) +
NX

i =1

bi � (t � t i )r i (t � t i )P(t i ):

(58)

Then, by Theorem 3.1, we can getP(t) � 0 and Q(t) � 0. Therefore, vk+1 � u � wk+1

for all t 2 [0; T]: Since the result is true for k = 1, then by induction, we have vn (t) �
u(t) � wn (t) for all n � 0 and t 2 [0; T];

If we consider the result above and the result (i) we proved, we can have

v0 � v1 � � � � � vn � u � wn � wn � 1 � � � � � w1 � w0: (59)

For the next result, we will prove that the sequencesf vn g and f wn g are uniformly
bounded and equicontinuous.

Since v0(t) and w0(t) are continuous on each interval [tk ; tk+1 ]; we can get they are
bounded on the whole interval [0; T]: Then assumejv0(t)j � M v and jw0(t)j � M w : Then
for every n and t 2 [0; T]; by monotonicity we have

0 � vn � v0 � w0 � v0: (60)
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We take the absolute value to obtain

jvn j � j vn � v0j + jv0j � j w0 � v0j + jv0j � j w0j + jv0j + jv0j � M w + 2M v : (61)

Therefore, there exists some positive constantM which is independent of t or N; such
that jvn j � M:

Similarly,

jvn j � j wn � w0j + jw0j � j v0 � w0j + jw0j � j v0j + jw0j + jw0j � M v + 2M w : (62)

Therefore, there exists some positive constantM 0 which is independent of t or N such
that jwn j � M 0: Furthermore, M and M 0 do not depend onn or t: Then the sequences
f vn (t)g and f wn (t)g are uniformly bounded on the interval [0; T]:

In order to prove the equicontinuity, we use the integral representation ofvn (t) ,

vn (t) = u0 +
1

�( q)

Z t

0
(t � s)q� 1

�
f (s; vn � 1(s)) + g(s; wn � 1(s)) + �v n (s)

+
kX

i =1

ci si (t � t i )vn (t i ) +
kX

i =1

bi r i (t � t i )wn (t i )
�

ds:

(63)

Then for any k = 0 ; 1; : : : ; N � 1; let t1 2 [tk ; tk+1 ] , t2 2 [tk ; tk+1 ]: Without losing
the generalization, we assume thatt1 > t 2 and

�
�t1 � t2

�
� < �; where M is some positive

constant. Sincesi (t � t i ) , r i (t � t i ) and f (t; u(t)) , g(t; u(t)) are continuous in t on the
interval [ t i ; t i +1 ]; we can let jci si (t � t i )j � Cs, jbi r i (t � t i )j � Cr and jf (t; u(t)) j � M f ,
jg(t; u(t)) j � M g: Based on the uniformly boundedness, we havejvn j � M v and jwn j �
M w , then we have

�
�vn (t1) � vn (t2)

�
� =

�
�
�
�

1
�( q)

Z t 1

0
(t1 � s)q� 1

�
f (s; vn � 1(s)) + g(s; wn � 1(s)) + �v n (s)

+
kX

i =1

ci si (t1 � t i )vn (t i ) +
kX

i =1

bi r i (t1 � t i )wn (t i )
�

ds

�
1

�( q)

Z t 2

0
(t2 � s)q� 1

�
f (s; vn � 1(s)) + g(s; wn � 1(s)) + �v n (s)

+
kX

i =1

ci si (t2 � t i )vn (t i ) +
kX

i =1

bi r i (t2 � t i )wn (t i )
�

ds

�
�
�
� :

(64)

For any t 2 [tk ; tk+1 ] we have

�
�
�
� f (t; vn � 1(t)) + g(t; wn � 1(t)) + �v n (t) +

kX

i =1

ci si (t � t i )vn (t i ) +
kX

i =1

bi r i (t � t i )wn (t i )

�
�
�
�

� M f + M g +
kX

i =1

CsM v +
kX

i =1

bi M w :

(65)



16 Y. BAI AND A. S. VATSALA

We let M = M f + M g +
kP

i =1
CsM v +

kP

i =1
bi M w ; then for any t 2 [tk ; tk+1 ],

�
�
�
� f (t; vn � 1(t))+ g(t; wn � 1(t))+ �v n (t)+

kX

i =1

ci si (t � t i )vn (t i )+
kX

i =1

bi r i (t � t i )wn (t i )

�
�
�
� � M:

(66)
Therefore, we have

�
�vn (t1) � vn (t2)

�
� �

M
�( q)

Z t 2

0

�
�
�
�(t

1 � s)q� 1 � (t2 � s)q� 1

�
�
�
�ds +

M
�( q)

Z t 1

t 2

�
�(t1 � s)q� 1

�
� ds

�
M

�( q + 1)
(t1 � t2)q +

M
�( q + 1)

(t1 � t2)q =
2M

�( q + 1)

�
�t1 � t2

�
�q

< �:

(67)

Providing
�
�t1 � t2

�
� � � =

�
� �( q+1)

2M

� 1
q

; we can have thatvn is equicontinuous.

Similarly, for wn we have

�
�
�
� f (t; wn � 1(t)) + g(t; vn � 1(t)) + �w n (t) +

kX

i =1

ci si (t � t i )wn (t i ) +
kX

i =1

bi r i (t � t i )vn (t i )

�
�
�
�

� M f + M g +
kX

i =1

CsM w +
kX

i =1

bi M v :

(68)

Let M 0 = M f + M g +
kP

i =1
CsM w +

kP

i =1
bi M v ; then for any t 2 [tk ; tk+1 ],

�
�
�
� f (t; wn � 1(t))+ g(t; vn � 1(t))+ �w n (t)+

kX

i =1

ci si (t � t i )wn (t i )+
kX

i =1

bi r i (t � t i )vn (t i )

�
�
�
� � M 0:

(69)
Therefore, we have

�
�wn (t1) � wn (t2)

�
� �

M 0

�( q)

Z t 2

0

�
�
�
�(t

1 � s)q� 1 � (t2 � s)q� 1

�
�
�
�ds +

M 0

�( q)

Z t 1

t 2

�
�(t1 � s)q� 1

�
� ds

�
M 0

�( q + 1)
(t1 � t2)q +

M 0

�( q + 1)
(t1 � t2)q =

2M 0

�( q + 1)

�
�t1 � t2

�
�q

< �:

(70)

We provide
�
�t1 � t2

�
� � � =

�
� �( q+1)

2M 0

� 1
q

; then wn is equicontinuous. Therefore,

if we take the minimum of these two, � = min
� �

� �( q+1)
2M

� 1
q

;
�

� �( q+1)
2M 0

� 1
q

�
, then can

obtain that f vn (t)g and f wn (t)g are equicontinuous on the interval [tk ; tk+1 ]: Since
k = 0 ; 1; : : : ; N � 1 was arbitrary, we proved that f vn (t)g and f wn (t)g are equicon-
tinuous on the interval [0; tN = T]:

Since we have proved thatf vn (t)g and f wn (t)g are equicontinuous and uniformly
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bounded on the interval [0; T]; by Ascoli-Arzela's theorem, there exist subsequences
f vn k (t)g and f wn k (t)g, which converge uniformly to v(t) and w(t), respectively, on [0; T]:
Because of the monotonicity of the sequencesf vn (t)g and f wn (t)g we have shown, we can
get that the entire sequencesf vn (t)g and f wn (t)g converge uniformly and monotonically
to v(t) and w(t), respectively.

For the next step, we will prove that v(t) and w(t) we have above are the minimal
and maximal solutions of the problem (9). Furthermore, we want to show that they are
equivalent to the solution of the equation (9).
We use the integral representation.

vn (t) = u0 +
1

�( q)

Z t

0
(t � s)q� 1

�
f (s; vn � 1(s)) + g(s; wn � 1(s)) + �v n (s)

+
kX

i =1

ci si (t � t i )vn (t i ) +
kX

i =1

bi r i (t � t i )wn (t i )
�

ds:

(71)

Then, we take the limit of n on both sides. Sincef vn g converges uniformly, we have

lim
n !1

vn = lim
n !1

�
u0 +

1
�( q)

Z t

0
(t � s)q� 1

�
f (s; vn � 1(s)) + g(s; wn � 1(s)) + �v n (s)

+
kX

i =1

ci si (t � t i )vn (t i ) +
kX

i =1

bi r i (t � t i )wn (t i )
�

ds:

(72)

Then,

v(t) = u0 +
1

�( q)

Z t

0
(t � s)q� 1

�
f (s; v(s)) + g(s; w(s)) + �v (s)

+
kX

i =1

ci si (t � t i )v(t i ) +
kX

i =1

bi r i (t � t i )w(t i )
�

ds:

(73)

Similarly, for wn we have

wn (t) = u0 +
1

�( q)

Z t

0
(t � s)q� 1

�
f (s; wn � 1(s)) + g(s; vn � 1(s)) + �w n (s)

+
kX

i =1

ci si (t � t i )wn (t i ) +
kX

i =1

bi r i (t � t i )vn (t i )
�

ds:

(74)

After taking the limits of n on both sides, we can get

lim
n !1

wn = lim
n !1

�
u0 +

1
�( q)

Z t

0
(t � s)q� 1

�
f (s; wn � 1(s)) + g(s; vn � 1(s)) + �w n (s)

+
kX

i =1

ci si (t � t i )wn (t i ) +
kX

i =1

bi r i (t � t i )vn (t i )
�

ds
�

:

(75)

Then,

w(t) = u0 +
1

�( q)

Z t

0
(t � s)q� 1

�
f (s; w(s)) + g(s; v(s)) + �w (s)

+
kX

i =1

ci si (t � t i )w(t i ) +
kX

i =1

bi r i (t � t i )v(t i )
�

ds:

(76)
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Now we can get that v(t) and w(t) satisfy the equation (9). Therefore, v(t) and
w(t) are coupled minimal and maximal solutions of equation (9). Thus, we have already
shown that vn � u � wn : Taking the limits of n we can get lim

n !1
vn � lim

n !1
u � lim

n !1
wn :

Then we can obtain v � u � w.
In the last result, we will show that if f and g satisfy the one-sided Lipschitz condition,

then the coupled minimal and maximal solutions are equivalent to the solutionu of the
equation (9).
Let m(t) = w(t) � v(t); then m(0) = w(0) � v(0) = u0 � u0 = 0 ; and we can get

cD qm(t) = cD q(w(t) � v(t) = cD qw(t) � cD qv(t)

= � (w(t) � v(t)) + [ f (t; w(t)) � f (t; v(t))] + [ g(t; v(t)) � g(t; w(t))]

+
NX

i =1

ci � (t � t i )si (t � t i )(w(t i ) � v(t i )) +
NX

i =1

bi � (t � t i )r i (t � t i )(v(t i ) � w(t i )) :

(77)

Let � = � + L 1 + L 2; we can get

cD qm(t) � � m(t) +
NX

i =1

ci � (t � t i )si (t � t i )m(t i ) �
NX

i =1

bi � (t � t i )r i (t � t i )m(t i ): (78)

Then, by using the Laplace transformation, we can get

m(t) � m(0)Eq;1(� tq) +
N � 1X

i =1

ci Si (t � t i )m(t i ) �
N � 1X

i =1

bi Ri (t � t i )m(t i ): (79)

We know that m(0) = 0 ; then according to the result of Theorem 3.1, we havem(t) � 0;
8t 2 [0; tN ]: By de�nition of m(t) we can get8t 2 [0; T]; w(t) � v(t): Since we have proved
the monotonicity v(t) � u(t) � w(t); we can get that 8t 2 [0; T]; v(t) = u(t) = w(t),
which concludes the proof.

Theorem 4.3 Assume
(A1). v0 and w0 are coupled lower and upper solutions of natural type of the equation
(9), such that v0 � u � w0 on [0; T];
(A2). f (t; u) and g(t; u) are nondecreasing and nonincreasing, respectively, on
 .
Then the sequencesvn and wn de�ned by (40)-(41) are well de�ned and satisfy the fol-
lowing results:
(i). For all n � 1; on [0; T] we have

v0 � v1 � v2 � � � � � vn � wn � wn � 1 � � � � � w1 � w0; (80)

provided v0 � v1 and w1 � w0:
(ii). The sequences vn and wn converge uniformly and monotonically to the coupled
minimal and maximal solutions v(t) and w(t), respectively. Furthermore, if u is any
solution of equation (9), then v(t) � u � w(t):
(iii). Furthermore, if f (t; u) and g(t; u) satisfy the one-sided Lipschitz condition, which
is for any u1 � u2, we have

f (t; u1) � f (t; u2) � L 1(u1 � u2); g(t; u1) � g(t; u2) � L 2(u1 � u2); (81)

where L 1 � 0 and L 2 � 0; then 8t 2 [0; T]; we havev(t) = u(t) = w(t); the uniqueness
of (9) holds on [0; T]:
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Proof. The proof follows the same lines as the proof of Theorem 4.2 except in the
�rst part, instead of proving v0 � v1 and w1 � w0; we have this result provided. The
rest of the proof is the same.

5 Conclusion

We generalized the monotone method and use the method to prove that for the nonlinear
Caputo fractional impulsive di�erential equation (9), under certain conditions, the cou-
pled lower and upper solutions of both the natural type and type 1 converge to the exact
solution of the problem. Therefore, in the future work, the monotone method will be
signi�cantly useful to approximate the solution of the problem. In the numerical results,
we will discuss another method which converges faster than this method.
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trol is applied to a distributed collector �eld of a solar power plant based on cylindrical
parabolic trough concentrators. The non-linear uncertain system is represented by
two PDEs of both the uid and the metal. To design the control, a linearization of
the non-linear system is made around an equilibrium point to have a transfer func-
tion, this point represents the simulation's steady state of the real system, then the
controller is obtained using the form of Manabe for the CDM. Comparing the results
of this method with those of the PID controller, it is shown that the CDM design is
an easy and robust control for a non-linear system, that gives enhanced stability with
good settling time with respect to the large rise time.
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1 Introduction

In the last decade, renewable energies have received more and more attention in order to
meet the exponential growth of energy demand. Among renewable energies, the interest
in solar energy has increased, many solar electricity systems were developed, such as
concentrated solar thermal, and more precisely, cylindrical-parabolic trough collectors
(Fig. 1), which are the most used technologies for concentrating solar energy. Today,
some plants are under construction, while others are already operating, such as the
Platform Solar of Almeria (ACUREX) [1].

The main problem in solar energy sources is the independency of the solar radiation
variations, in addition, it can not be adjusted to suit demands that we desire. We note,
for example, cloud cover, humidity and air transparency as atmospheric conditions that
may a�ect the solar radiation by unpredictable variations [2].

From the perspective of research, many works have been proposed to either model,
control or observe the system [1]. The authors in [3{7] have given di�erent models of the
solar system with di�erent levels of complexity and accuracy, like the bilinear reduced or
the non-linear distributed system [1].

On the other side, many automatic control strategies have been implemented, that is
to make the plant work close to the nominal operating point. In what follows, we cite
well known tests experimented at the plant ACUREX: with a self-tuning PID controller
in [2], in [8] the authors have designed a fuzzy logic controller, the model predictive
control (RMPCT) has been implemented in [9], etc. Additionally, other controller's
strategies are based on the predictors and the estimators of variables like e�ective solar
radiation or the system's temperature as in [10].

It is well known that even with a development in the control side, the PID remains
a very important controller in the industry with a percentage of 95 % among the con-
trollers used in the practice [11]. However, many constraints are imposed in the practical
applications as noted in the previous reference, such as the upper limit of magnitude of
the control signal, the unexpected non-linear e�ects occurred by the saturation or others.
For these reasons, it is necessary to develop a robust control application to obtain better
control performances of double integrating unstable systems, where the stability is not
ensured by the PID controller which is developed for stable systems [12].

Figure 1 : Parabolic distributed solar collector with the schematic diagram of solar ther-
mal hydraulic circuit.

Hence, in this work we propose the use of an algebraic approach that has proved its
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robustness in several works. It is a new robust controller known as a Coe�cient Diagram
Method (CDM), developed for uncertain systems and introduced by many researchers
such as Manabe, see [13], [14] and [15] (it is important to note that we will not talk about
the advanced controls applied in other works, because we are interested in controls to
apply in practical and in industrial systems such as PID and RQG).

The CDM is based on a spatial diagram called a coe�cient diagram, which is used as
a vehicle to carry the necessary design information and as a criteria of good design. The
method is recently used because of the simplest and robust controller that can be found for
any plant under practical limitations, in addition, this simplicity makes it very powerful
for systems with various uncertainties. In other words, the CDM can give a controller
design which is both stable and robust, and has the desired system response speed, and
also is less sensitive to disturbances and parameter variations, without overshoots and is
obtained for speci�ed settling time [16].

This paper is organized as follows. First, the solar plant is described in Section 2 with
the system modelling, approximations, discretization and linearization. Subsequently, the
CDM structure and its design are presented in Section 3 followed by its application on the
plant in Section 4. Then, numerical tests and simulations to assess the robustness and
stability of the controller are also shown in this section. Finally, Section 5 summarizes
the obtained results.

2 Solar Power Plant Description and Modeling

2.1 Plant description

Most of the thermo-plants in the world use the cylindrical-parabolic collectors because
of their signi�cant energy productivity, and the simplicity of the method. It consists
of linear parabolic mirrors that reect and concentrate solar energy (irradiations) on
a metal tube which represents the receiver that is positioned along a focal line. This
allows to heat oil, used as a heat-transfer uid (HTF), to reach temperatures that ensure
evaporation on the level of the turbine (Fig. 1).

Moreover, the Platform ACUREX of ALMERIA is a well-known station in the �eld
of research. It consists of 10 loops, each one is made up of two lines of 12 modules, and
the length of each loop is 172 m, it also consists of a pump with a limited operation
between the maximum capacity 12 L/s and the safety threshold 2 L/s.

2.2 Plant modeling

The distributed solar collector �eld can be described by a distributed parameter model
of the temperature while considering general assumptions and hypotheses. The model
is represented by the following system of partial di�erential equations (PDE) which
describes the energy balance [17]:

@Tf
@t

=
� pH t

� f Cf A f
(Tm � Tf ) �

q
A f

@Tf
@l

; (1)

@Tm
@t

=
K opt � 0G
� m Cm Am

I �
GH l

� m Cm Am
(Tm � Ta) �

� pH t

� m Cm Am
(Tm � Tf ); (2)

where the subindexm refers to the metal and that of f to the uid. The parameters of
the system and their values are given in Table 1, where

H � = 2 :17� 106 � 5:01� 104Tf + 4 :53� 10T2
f � 1:64T3

f + 2 :1 � 10� 3T4
f ; (3)
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Tin , Tout and Ta are the inlet temperature, the outlet temperature and the ambient
temperature, respectively.

Parameter Description Value Unit
� p Wet perimeter 0.1257 m
� f Density of f 903 - 0.672.Tf kg.m� 3

Cf S.H.C of f 1820 + 3.478.Tf J.kg� 1� C � 1

D f & Dm Diameters 0.04 & 0.07 m
A f & Am Sections 0.0013 & 0.0038 m2

H t C.H.T.C q0:8H � W. � C � 1m� 2

H l C.H.T.C 0.00249 � �T - 0.06133 W. � C � 1m� 2

I Irradiation variable W.m � 2

q Fluid ow to control m3:s� 1

K opt Optical e�ciency � opt = � 0:K opt = 0 :7 |
� 0 Collector e�ciency |
G Collector aperture = � p:� = 1 :83 |
� m density of m 1100 Kg.m � 3

Cm S.H.C of m 840 J.Kg � 1.� C � 1

� �T | =
� T in + Tout

2 � Ta
�

� C

Table 1 : Parameters description.

Many authors used di�erent simpli�ed models, based on simpli�ed energy balances,
such as neglecting heat losses, or controlling the system using just one equation which
corresponds to the variation of the uid temperatures. However, the system should be
used under a non-simpli�ed model, as described in equations (1) and (2), to have an
accurate control. Hence, that is the �rst contribution of this paper.

The aim of our work is to control the outlet temperature of the tube denoted Tout (t) =
Tf (t; L ) around a set-point. The incoming energy depends on several parameters such
as the e�ciency of the collectors, the mirror reectivity and on the e�ective reecting
surface.

We used this model for control synthesis and simulation. The parameters and the
properties of the uid used may be considered constant or variable depending on the
variations of the temperature. We also remind that the ow of the uid is comprised
between

2L:s � 1 � q � 12L:s � 1; (4)

and the di�erence betweenTout and Tin must be less than 80� C:

Tout � Tin � 80 � C: (5)

The �rst equation of the PDEs obtained from the energy balance, contains two dif-
ferentials depending on space (x) and time (t). For simpli�cation reasons, the �rst
di�erential will be eliminated using a discretization on the space as mentioned in Fig. 2,
so we discretize the system onn

2 segments (n2 is just a token, to have a dimension of the
system equaln which will be explained in Section 2.3, and it represents the number of
segments of the tube). In this case, we may introduce a truncation error

@Tf
@l

=
Tf (l i ) � Tf (l i � 1)

� l
+ �(� l ): (6)
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But, as long as this approximation of the derivative may not be very accurate for the
control synthesis, the truncation error will be added to the general perturbation terms.

Hence, we rewrite the �rst system as follows :

@Tf (l i )
@t

=
� pH t

� f Cf A f
(Tm (l i ) � Tf (l i )) �

q
A f :� l

(Tf (l i ) � Tf (l i � 1)) ; (7)

@Tm (l i )
@t

=
K opt � 0G
� m Cm Am

I �
GH l

� m Cm Am
(Tm (l i ) � Ta) �

� pH t

� m Cm Am
(Tm (l i ) � Tf (l i )) ; (8)

where the state vector is as follows:

X = [ Tf (l1) Tf (l2) � � � Tf (l n
2

) Tm (l1) Tm (l2)Tm (l3) � � � Tm (l n
2

)]T

= [ x1 x2 � � � x n
2 � 1 x n

2
x n

2 +1 x n
2 +2 � � � xn � 1 xn ]T ; (9)

and �
x1 = Tout ;
x n

2
= Tin : (10)

Also, we write the system equations in the following state form:

�
_X = F (X; u );

Y = h(X ) = x1;
(11)

where

u = q(t); (12)

and

dim( _X ) = dim(X ) = n � 1: (13)

_X is given by

_X = F (X; u ) =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� p :H t (1)
� f (1) :C f (1) :A f

(x n
2 +1 � x1) � u

A f :� l
(x1 � x2)

� p :H t (2)
� f (2) :C f (2) :A f

(x n
2 +2 � x2) � u

A f :� l
(x2 � x3)

...
� p :H t ( n

2 � 1)
� f ( n

2 � 1) :C f ( n
2 � 1) :A f

(xn � 1 � x n
2 � 1) � u

A f :� l
(x n

2 � 1 � x n
2

)
� p :H t ( n

2 )
� f ( n

2 ) :C f ( n
2 ) :A f

(xn � x n
2

) � u
A f :� l

(x n
2

� Tin )
K opt � 0 G

� m Cm A m
I � GH l

� m Cm A m
(x n

2 +1 � Ta) � � p H t (1)
� m Cm A m

(x n
2 +1 � x1)

K opt � 0 G
� m Cm A m

I � GH l
� m Cm A m

(x n
2 +2 � Ta) � � p H t (2)

� m Cm A m
(x n

2 +2 � x2)
...
...

K opt � 0 G
� m Cm A m

I � GH l
� m Cm A m

(xn � Ta) � � p H t (n )
� m Cm A m

(xn � x n
2

)

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5
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Figure 2 : Diagram of the collector showing parameters and spatial discretization.

2.3 Operating point and control model

In this work we use the three blocks structure of Fig. 3 based on the CDM. This method
requires the transfer function of the system, but knowing that the model is non-linear,
we must have a linearization around an operating pointP0(x0; u0).

Besides, to have _X = 0, this point must be an equilibrium point where the state
is steady, we propose to use the results of real simulations of controls applied on the
ACUREX in some works such as [18]. For the linearization we will use Taylor's series.

Using Taylor's series we get the system
� _X ' _X 0 + @F

@X j(X 0 ;u 0 ) (X � X 0) + @F
@u j(X 0 ;u 0 ) (u � u0) + � (X; u );

Y ' @h
@X j(X 0 ;u 0 ) ;

(14)

where 8
<

:

u � u0 = � u;
X � X 0 = � X;
Y � Y0 = � Y;

(15)

and
_(X � X 0) = _X � _X 0 = _X ( _X 0 = 0) : (16)

Thus
_� X = _X: (17)

We take 8
>>><

>>>:

AF = @F
@X j(X 0 ;u 0 ) ;

B = @F
@u j(X 0 ;u 0 ) ;

C = @h
@X j(X 0 ;u 0 ) :

(18)

Finally, the system may be written on state space eliminating the error of second
order as follows : �

_� X = AF :� X + B:� u;
� Y = C:� X:

(19)

After the deduction of system matrices in state space, we conclude the transfer func-
tion G(s):

G(s) =
� Y (s)
� U(s)

= C:(sI � AF ) � 1:B: (20)
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For the simulation, the number of the discretization segments is taken as desired, for
example, 15. If so doing, the denominator of the transfer function calculated has, in
general,dim = n = 30.

3 Recall on CDM Control Design

The CDM is a novel robust controller which uses an algebraic approach and is developed
for uncertain non-linear systems. It is based on a spatial digram called a coe�cient
diagram [14,19].

The design of the CDM controller is composed of three blocks (Fig. 3),A(s) is the
forward denominator polynomial, F (s) and B (s) are two numerators polynomials, the
�rst for the reference and the second for feedback. These polynomials in this structure
are designed to have better performance on tracking the desired reference signal and
rejection disturbances, in addition to that, it helps to avoid the cancellation of unstable
pole-zero. [14]

For the controller synthesis, we must have a transfer function, let it beG(s), formed
by the numerator N (s) and the denominator D(s).

The characteristic polynomial of the closed loop P(s) is as follows [20] :

P(s) = D(s)A(s) + N (s)B (s) =
nX

i =0

ai si : (21)

To make the design of the CDM, we must also know three parameters on which
the design is based, the equivalent time constant (� ), the stability indices (  i ) and the
stability limits (  �

i ), they are de�ned in function of the coe�cients of the characteristic
polynomial [20,21]:

 i =
a2

i

ai +1 ai � 1
; i = 1 ; :::; n � 1; (22)

 0 =  n = 1 ; (23)

� =
a1

a0
; (24)

 �
i =

1
 i � 1

+
1

 i +1
: (25)

Using these relations between the parameters and the coe�cients, the characteristic
polynomial P(s) (also called the target characteristic polynomial) can be formulated in
terms of (� ) and ( i ) as follows [15]:

P(s) = a0

"(
nX

i =2

 
i � 1Y

j =1

1
 i

i � j

!

(�s ) i

)

+ �s + 1

#

: (26)

Note that we can give the expression of the equivalent time function of the settling
time ts as follows [15]:

� = �:t s; � 2 [0:33; 0:4]: (27)

Many authors recommend the standard Manabe form to be used for the CDM design
[14]. This form has been found after many studies, and stability indices have been chosen
as [22]

 i = f 2:5; 2; 2; :::; 2g for i = 1 � (n � 1): (28)



28 Z. FENCHOUCHE, M. CHAKIR, O. BENZINEB, M.S. BOUCHERIT AND M. TADJINE

Figure 3 : The block diagram of the CDM applied on the non-linear plant.

The procedure to design a controller using the CDM is given in [13]. Following this
procedure step by step, we apply the method on our system.

Thus, the transfer function in polynomial form is given by

N (s)
D(s)

=
bm sm + bm � 1sm � 1 + � � � + b1s + b0

dn sn + dn � 1sn � 1 + � � � + d1s + d0
; (29)

where N (s) and D(s) are the numerator polynomial of degreem and the denominator
polynomial of degreen, respectively, with m � n.

The controller structure shown in Fig. 3 is based on two polynomials, namely, A(s)
and B(s), that are given by

A(s) =
pX

i =0

l i si ; B (s) =
qX

i =0

ki si : (30)

Many criteria are considered to choose the degree of the controller polynomials, where
the perturbations are one of these criteria.

To de�ne the degrees for the di�erent cases of the disturbances, a table is given by [14],
where n is given as a degree of the denominator's polynomial of the transfer function
G(s), and the pre-controller de�ned by the polynomial F (s) is chosen to be

F (s) =
�

P(s)
N (s)

�

j s =0

: (31)

The coe�cients of the controller polynomials are computed using the Diophantine
equation given by

A(s)D(s) + B (s)N (s) = P(s): (32)

We note that P(s) is determined by substituting values of the parameters i , a0 and
� in the equation (26).  i , i = � (n � 1) are chosen from the Manabe form. a0 and � are
replaced by di�erent values until we obtain the desired results.

D(s) and N(s) are given from the polynomial form of the transfer function of the
system. It remains to �nd l i and ki being the parameters ofA(s) and B (s), respectively,
using the linear relation of coe�cients [19].
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For instance, with m = 2 ; n = 3 and taking the model of step disturbances, we have
deg(P(s)) = 6, deg(B(s)) = 3 and deg(A(s)) = 3 with l0 = 0 . We can write

0

B
B
B
B
B
B
B
B
@

d3 0 0 0 0 0 0
d2 d3 0 b2 0 0 0
d1 d2 d3 b1 b2 0 0
d0 d1 d2 b0 b1 b2 0
0 d0 d1 0 b0 b1 b2

0 0 d0 0 0 b0 b1

0 0 0 0 0 0 b0

1

C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
@

l3

l2

l1

k3

k2

k1

k0

1

C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
@

a6

a5

a4

a3

a2

a1

a0

1

C
C
C
C
C
C
C
C
A

; (33)

which is also called the Sylvester form that can be shortened as follows:

[C]7� 7

�
l i
ki

�

7� 1
= [ ai ]7� 1: (34)

Parameters are simply calculated by solving the linear equation, thenF (s) can be
computed by the equation (31):

�
l i
ki

�
= [ C]� 1[ai ]: (35)

Generally, after using the standard Manabe form, no adjustments in the parameters
are needed, except when dealing with systems that require accurate control. In this case,
we may need some adjustments after doing the �rst design of the controller, modifying
the design parameters and repeating the process until getting the best response and
desired results.

For instance, if the system reaches saturation, we may increase� su�ciently and
repeat the process. While decreasing� can accelerate the response as desired.

4 Solar Plant Controller with CDM

The block diagram of CDM applied on the solar plant is shown on Fig. 3.
First, we choose an equilibrium point, and we linearize the system around this point.

Taking P0(T out = 250 � C, T in = 180 � C, I = 750 W/m 2, u = 7.3 L/s (0.0073 m3:s� 1 )),
the linear system around P0 is represented by the following transfer function :

G(s) =
� 54:03s29 � 157:9s28 � ::: � 1:945� 10� 31 s

s30 + 2 :764s29 + ::: + 3 :868� 10� 36 s
� 3:27 � 10� 34

+3 :846� 10� 39
; (36)

where G(s) is obtained from the formula in (20).
Model reduction: As we see, the denominator ofG(s) hasdim = n = 30. Hence, the

synthesis of the regulator is di�cult because of the high order of the transfer function. In
this case, we must reduce the order of our system, using a Matlab function that calculates
the Gramians, it reduces the order fromdim = n to 2 or 3 as desired (modred function
with balreal) to obtain a reduced function denoted Gr (s).

The transfer function Gr (s) will be used only in synthesizing the regulator. Then,
this regulator will be applied on the non-linear system.

Using the model reduction function we obtain

Gr (s) =
N (s)
D(s)

=
� 3610s2 � 41:55s � 1:287

s2 + 0 :00667s + 1 :513� 10� 5 : (37)
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Figure 4 : Comparison of the Bode diagram of G(s) model (in green) versus its approxi-
mated second-order model Gr (s) (in blue).

The comparison of the Bode diagram of G(s) model versus its approximated second-
order model Gr (s) is given in Fig. 4.

It is seen that the reduced system magnitude and phase are the same as those of the
original system in frequency less than 10� 2Hz, for our case it does not impose a problem,
because the study will be made in low frequencies.

Simulation will be done using Matlab and Simulink programs, where in Simulink we
control the non-linear system with CDM and PID controllers in the structure shown
before, this system is represented by two partial di�erential equations written in �le of
Matlab (�le.m) and introduced to Simulink by s-function.

In this simulation, we will consider models related to step disturbances taking the
A(s) and B (s) degrees according to the rules mentioned in the table given in [14] to get
the correct polynomials.

For the CDM controller synthesis, we give values of� and a0 to �nd the polynomials
using the Sylvester form. As mentioned in the method description in Section 3, we vary
the value of � until obtaining the best response.

In this case, we have
� = 278:5 [s]; a0 = 0 :4: (38)

Thus, the controller polynomials are found as follows:

A(s) = 5836s2 + 201900s; (39)

B (s) = � 5331s2 � 74:17s � 0:3109; (40)

and the pre-controller is given by

F (s) =
�

P(s)
N (s)

�

j ( s =0)

=
0:4

� 1:287
= � 0:3109: (41)
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Controller Response IAE ISE ITAE Rise Settling Peak Disturbance's
time time time overshoot peak

CDM 278.5 s 2472 15640 2.525.107 432 s 612 s 0 ( 0 % ) 0 ( 0 % )
PID 270 s 5828 8156 5.441.107 108 s 1260 s 0.5 (5 % ) 2.5 (25 % )

Table 2 : Performance of CDM and PID controllers applied on the solar plant A.

Parameters of PID controller have been chosen using the block of PID controller in
Simulink containing the PID tuning tool, knowing that a transfer function of a conven-
tional PID controller is written as

Gc(s) = K p(1 +
K i

s
+ sK d); (42)

where K p is the proportional gain, K I is the integral constant and K D is the derivative
constant.

We took PID parameters that ensure the best system's response according to stability,
robustness and response time. These parameters correspond to the PID controller, where

K p = � 8:274:10� 3; K I = � 6:412:10� 4; K D = 8 :913:10� 3 (43)

(small values because the output of the controller is �u with the unit m3:s� 1).

4.1 Performances tests

The comparison between the two controllers is based on the following performance cri-
teria. These criteria are based on the integral error, they are used as a good measure for
evaluating the precision of the set point tracking and disturbances rejection [23].

IAE is the integral of the absolute tracking error which penalizes small errors [24]:

IAE =
Z 1

0
je(t)jdt: (44)

ITAE is the integral of the time-weighted absolute error which penalizes the errors
that persist for a long time:

ITAE =
Z 1

0
te(t)dt; (45)

and ISE is the integral of the tracking error squared which penalizes large errors:

ISE =
Z 1

0
e2(t)dt: (46)

For simulation, we propose a pro�le of variant inlet temperature, ambient temperature
and solar irradiance that are shown in Fig. 5, Fig. 6 and Fig. 7, respectively (the pro�les
have been taken approximately to real values as used in other papers).
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Figure 5 : Inlet temperature.
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Figure 6 : Ambient temperature.
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Figure 7 : Solar irradiations. Figure 8 : Response to a step reference
for CDM and PID controllers.

Fig. 8 and Fig. 9 illustrate responses of CDM and PID controllers for a step reference
with the corresponding uid ow.

Figure 9 : Fluid ow.

As we see in Table 2, the PID controller has better rise time. Nevertheless, the CDM
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controller presents better performance indexes in comparison with the PID controller,
with a better settling time with no peak overshoots or disturbance's peak. Except that,
ISE is little wide because of the large rise time in the case of CDM controller response.

To make more tests to the CDM controller, we did another simulation for the 5 hours
and half (between 11:00 and 16:30). The controllers were evaluated with reference vari-
ations (between 235� C and 265 � C), using the same pro�les of variant solar irradiation,
inlet temperature and ambient temperature.
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Figure 10 : Reference temperature and average outlet temperature for the CDM (impulse-
sinusoidal type disturbances) and PID controller.

From Fig. 10 and Table 3, it appears that the CDM exhibits better performance
than the PID control, even with a large rise time compared to the �rst type, especially in
the case of the supposed brutal change in the solar irradiance as an e�ect of the passing
clouds (at 14,8 h) or the brutal change in the inlet temperature (at 13,5 h).

We also note that the pump's performance is better and widely admissible with in-
stantaneous small impulses, which may give a considerable lifetime to this pump. Which
is not the case in the PID controller with a huge impulses in case of reference variation.

Fig. 11 and Fig. 12 describe the temperature evolution inside the pipe in 2D and
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Controller IAE ISE ITAE
CDM 1.087� 104 4.937� 104 9.838� 107

PID 1.375� 104 2.747� 104 1.299� 108

Table 3 : Performance of CDM and PID controllers applied on the solar plant B.

3D, respectively. The performance of CDM controller in terms of time response (settling
time, even with a small rise time in comparison with the PID), reference tracking and
disturbances rejection clearly appears in Fig. 11 where the outlet temperature tracks the
reference even with disturbed inlet temperature with an admissible pump control.
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Figure 11 : Inlet, outlet and segments
temperatures of uid in 2-D for the tube
with the ow.

Figure 12 : Internal dynamics showing
the temperature distribution in 3D.

4.2 Robustness tests

In this part, some robustness tests are given to show the di�erence between the two
controllers. This robustness will be supposed against both the modelling errors and the
system parameters variations over time, such as uid density and thermal capacity.

The �rst test will correspond to the increase in uid density by 15 % ( � f 1 = 1 :15 � f 0 ).
see Fig. 13, and the second will correspond to the decrease in uid thermal capacity by
15 % (Cf 1 = 0 :85 Cf 0 ), see Fig. 14.

As seen in the two �gures, the CDM controller is more robust against the parameters
variations.
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Figure 13 : Responses in case of uid
density increase.

Figure 14 : Responses in case of thermal
capacity decrease.

5 Conclusion

In this work, a control system for the cylindrical-parabolic collector of a solar plant is
designed employing the coe�cient diagram method (CDM), which is an algebraic method.
The cylindrical-parabolic solar collector is considered as an uncertain non-linear system,
represented by two partial di�erential equations (PDEs), that usually complicates the
control.

The performance and robustness of the CDM-controller has been tested with digital
simulations using Matlab functions and Simulink programs. The CDM results have been
compared with those of the PID-controller. It is shown by the comparative design exam-
ples in Section 4, that the controlled system using the CDM exhibits better performance
than the PID-control with the external disturbances. The designed controller is simple,
easy, robust against parameter variations, capable of decreasing the steady state error
to zero and reducing the settling time (even with a large rise time), while supervising an
admissible pump control signal applied to the actual plant, which may give a signi�cant
life to the pump.

Therefore, the CDM is exible and can be used perfectly for the precise control in
di�erent conditions, replacing the traditional PID and LQG controllers and others (it
is important to note that the PID controller may assume the control object as seen in
di�erent works, also the LQG controller has the same form as the CDM one, but the
CDM controller synthesis is easier and have better performance and more robustness).

We also remind that it is still necessary to make a system of CDM controllers combined
with fuzzy logic to ensure the control with all parameter variations such as solar radiation,
inlet temperature and reference temperature, as done in [25]
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Abstract: In this paper, a new 3D chaotic system with three nonlinearities is in-
troduced. Basic dynamical properties of this new chaotic system are studied such
as equilibrium points and their stability, dissipativity and Lyapunov exponent, Lya-
punov exponent spectrum, Kaplan-Yorke dimension. Also, an adaptive integral slid-
ing mode control scheme is proposed for synchronization of the new chaotic system
with unknown system parameters based on the Lyapunov stability theory and adap-
tive control theory of this new chaotic system with unknown system parameters.
Finally, numerical simulations are presented to show the e�ectiveness of the proposed
chaos synchronization scheme using Matlab.

Keywords: chaotic system; strange attractor; Lyapunov exponent; Lyapunov stabil-
ity theory; adaptive control; synchronization.
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1 Introduction

Chaos as an important nonlinear phenomenon has been studied in mathematics, engi-
neering and in many other disciplines. Synchronization of chaotic systems has become an
active research area because of its potential applications in di�erent industrial areas [1, 2,
3]. For the �rst time chaotic synchronization was illustrated by Fujiska and Yamada [2] in
1983, then, Pecora and Carroll [3] in 1990, reported a new and very e�ective method for
the synchronization of two chaotic systems with di�erent initial conditions. The control
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scheme has been applied in the recent decade for the synchronization of chaotic or hyper-
chaotic system, for example, the OYG method [4], adaptive control [5, 13, 14, 15, 19, 20],
backstepping design method [6], sliding mode control [7, 20], PC synchronization method
[3], passive control [8], fuzzy control [9], nonlinear active control [10], etc. The adaptive
control scheme is used when parameters are unknown or initially uncertain. The sliding
mode control method is often used because of its inherent advantages of easy realization,
fast response and good transient performance, as well as its insensitivity to parameter
uncertainties and external disturbances. Also, in the adaptive method, the control law
and parameter update law are designed in such a way that the chaotic response system to
behave like chaotic drive systems. As a result, the adaptive scheme maintains consistent
performance of a system in the presence of uncertainty as well as variations in plant pa-
rameters. The adaptive control technique is di�erent from other control methods since it
does not need a priori information about the bounds on these uncertain or time varying
parameters because this method of control is concerned with the control law changing
themselves. Recently, many papers are available on synchronization of chaotic systems
using this method of control.

In this paper a new chaotic system is considered for synchronization using the sliding
mode control method and adaptive sliding mode control method when system parame-
ters are unknown. Stabilization and convergence of error dynamics are achieved using
the Lyapunov stability theory [11, 12]. This paper is organized as follows. The �rst
section deals with the description and some properties of the novel chaotic system. The
next two sections deal with the synchronization problem for globally and exponentially
synchronizing the identical 3-D novel chaotic systems using the integral sliding mode
control and adaptive integral sliding mode control law with unknown system parame-
ters, respectively. Finally, numerical simulations using MATLAB have been shown to
illustrate our results for the new chaotic system with unknown parameters.

1.1 Description of the novel chaotic system

A novel 3D autonomous chaotic system is expressed as follows:

8
<

:

dx
dt = a(y � x);
dy
dt = cx � y � xz � ex ;
dz
dt = exy � dy � bz;

(1)

where x; y; z are the state variables anda; b; care positive real parameters.
There are nine terms on the right-hand side but it mainly relies on three nonlinearities,

namely, exy , ex and xz , respectively.
System (1) can generate a new strange attractor for the parametersa = 15; b = 3 ; c =

300; d = 1 with the initial conditions ( x(0); y(0); z(0)) = (1 ; 1; 1). The chaotic attractor is
displayed in Figure 1. It appears that the new attractor exhibits the interesting complex
and abundant chaotic dynamics behavior, which is similar to the Lorenz chaotic attractor,
but is di�erent from that of the Lorenz system or any existing systems.

1.2 Basic properties

In this section, some basic properties of the system (1) are given. We start with the
equilibrium points of the system and check their stability at the initial values of the
parametersa; b; c:
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1.3 Equilibrium points

Putting equations of the system (1) equal to zero, i.e.,
8
<

:

a(y � x) = 0 ;
cx � y � xz � ex = 0 ;
exy � dy � bz = 0 ;

(2)

gives numerically the only equilibrium point

p� =
�
3: 359 5� 10� 3; 3: 359 5� 10� 3; 0:332 22

�
:

1.4 Stability

In order to check the stability of the equilibrium points we derive the Jacobian matrix
at a point p(x; y; z) of the system (1)

J (p) =

0

@
� a a 0

c � z � e
x

� 1 � x
yexy � d + xexy � b

1

A : (3)

For p� , we obtain three eigenvalues

� 1 = 59: 297; � 2 = � 3:0; � 3 = � 75: 297: (4)

Since all the eigenvalues are real, Hartman-Grobman theorem implies thatp is a
saddle point which is unstable according to the Lyapunov theorem of stability.

1.4.1 Dissipativity

In vector notation, we may express the system (1) as

:
X = f (X ) =

0

@
f 1(x; y; z)
f 2(x; y; z)
f 3(x; y; z)

1

A :

Let 
 be any region in R3 with a smooth boundary and also, 
( t) = � t (
), where
� t is the ow of f . Furthermore, let V (t) denote the volume of 
( t). By Liouville's
theorem, we have

_V(t) =
Z


( t )

(r :f ) dxdydz (5)

with

r :f =
@_f 1

@x
+

@_f 2

@y
+

@_f 3

@z
= � (a + b+ 1) < 0 (6)

and therefore
_V(t) =

Z


( t )

(� 19)dxdydz = � 19V(t):

By integration, we get
V (t) = e� 19t V(0); (7)

then, V (t) ! 0 ast ! 1 : This shows that the novel chaotic system (1) is dissipative.
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1.4.2 Lyapunov exponents and Kaplan-Yorke dimension

Lyapunov exponents are used to measure the exponential rates of divergence and con-
vergence of nearby trajectories, which is an important characteristic to judge the system
whether it is chaotic or not. The existence of at least one positive Lyapunov exponent
implies that the system is chaotic.

For the chosen parameter values ofa; b; c; d; the Lyapunov exponents of the
novel chaotic system (1) are obtained using Matlab with the initial conditions
(x(0); y(0); z(0)) = (1 ; 1; 1)

L 1 = 6 :6231; L 2 = � 0:00206431; L 3 = � 20:621: (8)

The Lyapunov exponents spectrum is shown in Fig. 1.
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Figure 1 : Lyapunov exponents spectrum.

Since the spectrum of Lyapunov exponents (8) has a maximal positive valueL 1; it
follows that the 3-D novel system (1) is a highly chaotic . The Kaplan-Yorke dimension
of system (1) is calculated as

DKL = 2 +
L 1 + L 2

jL 3j
= 2 :3211: (9)

In Figs. 2-6, the 2-D projections of the strange chaotic attractor of the novel chaotic
system (1) on the (x; y), (x; z), (y; z), (z; x), (z; y) planes are shown, respectively.

1.5 Synchronizing of the identical 3-D novel chaotic systems using integral
sliding mode control

In this section, an integral sliding mode controller will be designed for globally and
exponentially synchronizing the identical 3-D novel chaotic systems.

Thus, the master system is given by the novel chaotic system dynamics
8
>><

>>:

dx 1
dt = a(x2 � x1);

dx 2
dt = cx1 � x2 � x1x3 � ex 1 ;

dx 3
dt = ex 1 x 2 � dx2 � bx3:

(10)
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Figure 2 : Projection on the x � y plane of the chaotic attractor of system (1).

Figure 3 : Projection on the x � z plane of the chaotic attractor of system (1).

Figure 4 : Projection on the y � z plane of the chaotic attractor of system (1).

Also, the slave system is given by the novel chaotic system dynamics
8
>><

>>:

dy1
dt = a(y2 � y1) + u1;

dy2
dt = cy1 � y2 � y1y3 � ey1 + u2;

dy3
dt = ey1 y2 � dy2 � by3 + u3:

(11)
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