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Abstract: In this paper, a novel class of fractional-order hyperchaotic systems is
proposed. In order to control hyperchaos in these systems, an appropriate sliding
mode controller is also designed. Based on the Lyapunov stability theory, the control
scheme guarantes the asymptotic stability of the fractional-order hyperchaotic sys-
tems in the presence of uncertainty and external disturbance. Simulation results of
control design of fractional-order Liu and Lorenz hyperchaotic systems are presented
to show the effectiveness of the proposed scheme and stabilization of the systems on
the sliding surface.
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1 Introduction

The concepts of derivation and fractional integration are often associated with the names
of Riemann and Liouville, while the question about the generalization of the notion of
fractional-order derivative is older. Indeed, the history of fractional calculus goes back
more than three centuries. Recently, fractional calculus has attracted the increasing
attention of physicists as well as engineers in several fields of engineering science [1].
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On the other hand, the chaos theory as a very interesting nonlinear phenomenon
has been intensively investigated due to its great importance for applications in several
areas of science and technology [2]. It is well known that chaotic systems are defined as
nonlinear dynamical systems which are very sensitive to initial conditions. The principal
feature used to identify a chaotic behaviour is the well-known Lyapunov exponent criteria.
In fact, a system that has one positive Lyapunov exponent is known as a chaotic system.
However, a hyperchaotic system is defined as a chaotic system with more than one
positive Lyapunov exponent. It is worth mentioning that hyperchaotic systems can
show more complex dynamical behaviors than a chaotic system. Thus, the behavior of
a hyperchaotic system has the characteristics of high security and it is widely used in
secure communication [3], encryption [4] and so on.

The chaos control is an important research problem in the chaos theory. Many con-
trol strategies have been developed in the literature for the stabilization of nonlinear
fractional-order chaotic and hyperchaotic systems such as the active control [5, 6], the
adaptive control [7], the backstepping control [8], the fuzzy adaptive control [9], and the
sliding mode control (SMC) [10].

A SMC is a robust nonlinear control. The main feature of the SMC is that it can
switch the control law very quickly to drive the states of the system from any initial
states onto some predefined sliding surface.

Recently, the SMC has been considered as a challenging research topic for the control
and synchronization of fractional-order chaotic systems. For example, in [11], Roopaei
et al. have introduced a class of integer-order chaotic systems covering about half of
the recently published integer-order chaotic models. In [12], Yin et al. have presented a
SMC law for a novel class of three different fractional-order nonlinear systems to realize
the chaos control.
Motivated by the above two contributions, in this paper, we first introduce a novel
class of fractional-order hyperchaotic systems. Then, we propose a SMC law to control
hyperchaos in such fractional-order systems. The controller is used to stabilize the novel
fractional-order hyperchaotic systems, even the fractional-order systems with uncertainty
and external disturbance. Numerical simulations show that the proposed method can
easily stabilize the system on the sliding surface.

The present manuscript is organized as follows. In Section 2 we present our novel
class of fractional-order hyperchaotic systems. Section 3 presents the employment of the
sliding mode control design of fractional hyperchaotic systems. Numerical simulations
are presented to show the viability and efficiency of the proposed method in Section 4.
Finally, the paper is concluded in Section 5.

2 Description of a Novel Class of Hyperchaotic Systems

Our proposed class of the fractional-order hyperchaotic systems is described as
Dα1x1 = x2f(x)− ξ1(x),
Dα2x2 = g(x)− βx2,
Dα3x3 = x2h(x)− ξ2(x),
Dα4x4 = x2k(x)− ξ3(x),

(1)

where x = (x1, x2, x3, x4)T ∈ R4 is the state variable, f, g, k, h, ξj , j = 1, 2, 3 are consid-
ered as a continuation of the nonlinear vector functions, which belong to R4 7→ R space,
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β is the known parameter for any negative or non-negative value, αi ∈ ]0, 1[ , i = 1, 2, 3, 4,
are the fractional orders, and Dα is the Caputo derivative which is defined as

Dαx(t) = Jn−αx(n)(t), α ∈ (0, 1), (2)

where n = dαe, i.e., n is the first integer which is not less than α; x(n) is the general
n-order derivative and Jγ is the γ-order Riemann–Liouville integral operator expressed
as follows:

Jγy =
1

Γ(γ)

∫ t

0

(t− τ)γ−1y(τ)dτ, (3)

where Γ(.) is the gamma function.

Remark 2.1 The major advantage of the Caputo definition is that the initial con-
ditions for fractional-order differential equations take the same form as for integer-order
differential equations.

Remark 2.2 In system (1), the fractional-order system is called a commensurate
fractional-order system if α1 = α2 = α3 = α4, otherwise the system is called an incom-
mensurate fractional-order system.

Remark 2.3 Note that many hyperchaotic systems can be described by the proposed
class (1). Table 1 details this class of fractional-order hyperchaotic systems.

3 Sliding Mode Control of a Fractional-Order Hyperchaotic System and
Stability Analysis

In the following context, we shall design a sliding mode controller to establish the asymp-
totic stability of the fractional-order hyperchaotic system in question.

3.1 Control design via the sliding mode methodology

Let us consider the fractional-order hyperchaotic system (1), which is perturbed by the
uncertainty ∆g(x) of g(x) and the external disturbance d(t).
Now, the control technique will be employed as

Dα1x1 = x2f(x)− ξ1(x),
Dα2x2 = g(x)− βx2 + ∆g(x) + d(t) + u,
Dα3x3 = x2h(x)− ξ2(x),
Dα4x4 = x2k(x)− ξ3(x).

(4)

In the sequel, the following assumptions are required.
Assumptions.

* Suppose that f, g, k , h and ξj , j = 1, 2, 3 are required to ensure the existence and
uniqunes of the system (4) in the presence of the uncertainty ∆g(x) and the external
disturbance d(t) under the controller u in the interval [t0,+∞[, t0 > 0 for any given
initial condition.
* The uncertainties ∆g(x) and the external perturbation d(t) are always bounded. Sup-
pose that m1,m2 are the upper bound of ∆g(x) and d(t), respectively, i.e.,{

‖∆g(x)‖ ≤ m1,

‖d(t)‖ ≤ m2.
(5)
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Name and Mode f(.), g(.),h(.) and k(.) ξ1(.), ξ2(.) and ξ3(.)

Lorenz’s system [14]
Dα1x1 = a(x2 − x1) + x4,
Dα2x2 = cx1 − x1x3 − x2,
Dα3x3 = x1x2 − bx3,
Dα4x4 = −x2x3 + rx4


f(x) = a,
g(x) = cx1 − x1x3,
h(x) = x1,
k(x) = −x3


ξ1(x) = −ax1 + x4,
ξ2(x) = −bx3,
ξ3(x) = rx4

Chen’s system [15]
Dα1x1 = a(x2 − x1) + x4,
Dα2x2 = dx1 + cx2 − x1x3,
Dα3x3 = x1x2 − bx3,
Dα4x4 = x2x3 + kx4.


f(x) = a,
g(x) = cx1 − x1x3,
h(x) = x1,
k(x) = −x3


ξ1(x) = −ax1 + x4,
ξ2(x) = −bx3,
ξ3(x) = rx4

Liu’s system [16]
Dα1x1 = a(x2 − x1),
Dα2x2 = bx1 − x4 + x1x3,
Dα3x3 = −x1x2 − cx3 + x4,
Dα4x4 = x2 + dx1.


f(x) = a,
g(x) = bx1 − x4 + x1x3,
h(x) = −x1,
k(x) = 1


ξ1(x) = −ax1,
ξ2(x) = −cx3 + x4,
ξ3(x) = dx1

Finance’s system [17]
Dα1x1 = x3 + (x2 − a)x1 + x4,
Dα2x2 = 1 − bx2 − x22,
Dα3x3 = −x1 − cx3,
Dα4x4 = −dx1x2 − kx4.


f(x) = x1,
g(x) = 1 − x21,
h(x) = 0,
k(x) = −dx1


ξ1(x) = x3 − ax1 + x4,
ξ2(x) = −x1 − cx3,
ξ3(x) = −kx4

Lű’s system [18]
Dα1x1 = a(x2 − x1) + x4,
Dα2x2 = cx2 − x1x3,
Dα3x3 = x1x2 − bx3,
Dα4x4 = x1x3 + dx4.


f(x) = a,
g(x) = −x1x3,
h(x) = x1,
k(x) = 0


ξ1(x) = −ax1 + x4,
ξ2(x) = −bx3,
ξ3(x) = x1x3 + dx4

Table 1: The class of fractional-order hyperchaotic systems characterized by the class (1).

To ensure the asymptotic stability of the dynamical system (4) on the switching surface,
the fractional integral-type sliding mode surface s is selected as

s(t) = Dα1−1x2 +

∫ t

0

λx2(τ) + Ψ(τ)dτ, (6)

where Ψ(.) is a function selected as

Ψ(t) = x1f(x) + x3h(x) + x4k(x). (7)

The controller gain λ has been introduced in the sliding mode surface s to confirm that
the dynamics of the system will be stabilized quickly.

It is well known that for the sliding mode technique, the sliding surface and its
derivative must satisfy

s(t) = 0, ṡ(t) = Dα1x2 + λx2 + x1f(x) + x3h(x) + x4k(x) = 0. (8)

Therefore, the equivalent control law is obtained by

ueq = Dα2x2 − g(x)−∆g(x)− d(t) + βx2 (9)

= −g(x)−∆g(x)− d(t)− x1f(x)− x3h(x)− x4k(x) + (β − λ)x2. (10)
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In the real world applications, ∆g(x) and d(t) are unknown. Therefore the equivalent
control input is modified to

ueq = −g(x)− x1f(x)− x3h(x)− x4k(x) + (β − λ)x2. (11)

To design the reaching mode control scheme, which drives the states onto the sliding
surface, the reaching law can be selected as

uad = −ηsign(s), (12)

where

sgn(s) =

 1, s > 0,
0, s = 0,
−1, s < 0

(13)

represents the sign function, and η is the reach gain of the controller, which is a positive
constant. In this way, the total control law is constructed as

u = ueq + uad

= −x1f(x)− x3h(x)− x4k(x)− g(x) + (β − λ)x2 − ηsign(s). (14)

3.2 Stability analysis

Theorem 3.1 If the controller u is selected as in the equation(14), then the trajec-
tories of the fractional-order dynamics (4) converge to the sliding surface s(t) = 0 for
m1 +m2 < η.

Proof. Define the following Lyapunov functional candidate:

V =
1

2
s2. (15)

The time derivative of V is given by

V̇ = ṡs =
{
Dα2x2 + λx2 + x1f(x) + x3h(x) + x4k(x)

}
s

= {g(x)− βx2 + ∆g(x) + d(t) + u+ λx2 + x1f(x) + x3h(x) + x4k(x)} s
= {∆g(x) + d(t)− ηsign(s)} s
≤ (m1 +m2 − η) |s| . (16)

Equation (16) implies that as long as suitable m1,m2 and η, which satisfy m1 +m2 < η,
are selected, one obtains V̇ < 0.

In view of Barbalat’s lemma [19], it can be concluded that s, ṡ ∈ L∞. As t → ∞, s
approaches zero, which shows that all trajectories of the proposed system will converge
to the sliding surface s(t) = 0. This completes the proof.

Remark 3.1 In the case when the system uncertainty and external disturbance are
ignored and if the controller u is selected as in equation(14), the trajectories of the
fractional-order systems (4) converge to the sliding surface s(t) = 0 for all η > 0.

Proof. Define the following Lyapunov functional candidate:

V =
1

2
s2. (17)
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The time derivative of V is given by

V̇ = ṡs =
{
Dα2x2 + λx2 + x1f(x) + x3h(x) + x4k(x)

}
s

= {g(x)− βx2 + ∆g(x) + d(t) + u+ λx2 + x1f(x) + x3h(x) + x4k(x)} s
= −ηsign(s)s

= −η |s| < 0. (18)

In view of Barbalat’s lemma [19], it can be concluded that s, ṡ ∈ L∞. As t → ∞, s
approaches zero, which shows that all trajectories of the proposed system will converge
to the sliding surface s(t) = 0, for all η > 0.

4 Simulation Results

To illustrate the performance of the proposed control approach, we present two examples,
namely, fractional-order hyperchaotic Liu’s system and fractional-order hyperchaotic
Lorenz’s system. Numerical simulations are implemented using the MATLAB software.

4.1 Sliding mode control design of hyperchaotic Liu’s system

Here, we will firstly consider a case when the system uncertainty and external disturbance
are ignored. By introducing the control input to the second state equation of fractional-
order hyperchaotic Liu’s system, the controlled system is derived as

Dα1x1 = a(x2 − x1),
Dα2x2 = bx1 − x4 + x1x3 + u,
Dα3x3 = −x1x2 − cx3 + x4,
Dα4x4 = x2 + dx1.

(19)

For the fractional order values α1 = 0.98, α2 = 0.97, α3 = 0.97 and α4 = 0.98, the system
(19) without the controller u exhibits a hyperchaotic behavior, as shown in Figure 1, when
the parameters are given by

(a, b, c, d, k) = (10, 35, 1.4, 5), (20)

and the initial value is taken as

(x1(0), x2(0), x3(0), x4(0))T = (10, 15, 1, 1)T . (21)

The sliding surface is given by

S(t) = Dα1−1x2 +

∫ t

0

λx2(τ) + Ψ(τ)dτ, (22)

where
Ψ(t) = ax1 − x1x3 + x4. (23)

According to the general control law given by equation(14), the vector controller u can
be designed as

u = −(a+ b)x1 − λ)x2 − ηsign(s). (24)
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Figure 1: Hyperchaotic attractors of Liu’s system (19).
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Figure 2: Time-history of the controlled states of equation(19).

With the gain of control law η = 0.02 and the parameter λ = 0.01, the states x1, x2, x3
and x4 of the system (19) with the sliding surface (22) in the presence of the controller
(24) are illustrated in Figure 2.

From Figure 2, it is clear that the control law (24) is efficient for controlling fractional-
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order hyperchaotic Liu’s system.

4.2 Sliding mode control design of uncertain hyperchaotic Lorenz’s system

In this part, we consider the fractional-order version of hyperchaotic Lorenz’s system in
the presence of uncertainty and external disturbance, which is expressed as

Dα1x1 = a(x2 − x1) + x4,
Dα2x2 = cx1 − x1x3 − x2 + ∆g(x) + d(t) + u,
Dα3x3 = x1x2 − bx3,
Dα4x4 = −x2x3 + rx4.

(25)

For the fractional order values α1 = 0.95, α2 = 0.96, α3 = 0.96 and α3 = 0.97, the system
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Figure 3: Hyperchaotic attractors of the Lorenz’s System (25).

(25) without the uncertainty ∆g(x), the external disturbance d(t) and the controller u,
exhibits a hyperchaotic behavior, as shown in Figure 3, when the parameters of the
system are given by

(a, b, c, r) = (10,
8

3
, 28,−1), (26)

and the initial value

(x1(0), x2(0), x3(0), x4(0))T = (40, 30,−20,−50)T . (27)

The uncertainty ∆f(x) applied to the system is given by

∆g(x) = 0.05 cos(2x2). (28)

The external disturbances d(t) are defined as

d(t) = 0.02 sin(2t). (29)
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Figure 4: Time-history of the controlled states of equation (25).

The sliding surface is given by

s(t) = Dα1−1x2 +

∫ t

0

λx2(τ) + Ψ(τ)dτ, (30)

where
Ψ(t) = ax1 + x1x3 − x3x4. (31)

According to the general control law given by equation(14), the vector controller u can
be designed as:

u = −(a+ c)x1 + x3x4 + (1− λ)x2 − ηsign(s). (32)

With the gain of control law η = 0.02 and the positive parameter λ = 1, the states
x1, x2, x3 and x4 of the system (25) with the sliding surface (30) in the presence of
the controller (32) are illustrated in Figure 4. From Figure 4, the control law (32) is
capable of controlling fractional-order hyperchaotic Lorenz’s system in the presence of
uncertainty and external disturbance.

5 Conclusion

In this paper, a novel class of fractional-order hyperchaotic systems with uncertainty and
external disturbance has been proposed. Based on the Lyapunov stability theorem, a slid-
ing mode control law has been designed to control hyperchaos in such fractional-order
systems. The sliding mode controller has been shown to guarantee the asymptotic stabil-
ity of the proposed fractional-order hyperchaotic systems in the presence of uncertainty
and external disturbance. From the numerical examples for the class of fractional-order
Liu and Lorenz systems, it is obvious that a satisfying control performance can be realised
by using the proposed scheme.
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