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1 Introduction

A significant part of publications on the theory of oscillations deal with the stability of
solutions of evolution equations (see [1]– [5]) and, in particular, the absolute stability of
solutions of differential-difference equations (see [6], [7]– [11]). However, for such equa-
tions the instability of solutions is no less important. For example, stable evolutionary
processes occurring in complex dynamic systems are possible due to the instability of
some components of these systems [12]. The coexistence of stability and instability in
nonlinear dynamical systems is their characteristic property.

It is natural to pay attention to the study of the absolute instability of solutions of
differential equations with aftereffect. For the study of such equations see [10], [13]– [15].

In [13], sufficient conditions are obtained for the absolute instability of the zero solu-
tion of a nonlinear differential-difference equation

dx(t)

dt
= Ax(t) +G(t, x(t−∆))
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in a Banach space using the essentially approximative spectrum of the operator A. In [10]
and [14], necessary and sufficient conditions for the absolute instability of zero solutions
to linear scalar differential-difference equations of delay and neutral types and sufficient
conditions for absolute instability of solutions to systems of linear differential-difference
equations of delay type are obtained. In [15], necessary and sufficient conditions are
established for the absolute instability of zero solutions of linear differential-difference
equations with self-adjoint operator coefficients and an infinite number of deviations of
the argument.

Examples of absolutely stable and absolutely unstable systems are given in [8] and
[10].

Let E be a finite-dimensional Banach space over a field C with a norm ‖ · ‖E and
L(E,E) be a Banach algebra of linear continuous operators A : E → E with a unit
operator I and a norm ‖A‖L(E,E) = sup‖x‖E=1 ‖Ax‖E .

Consider the equations

dx(t)

dt
= A0x(t) +

n∑
k=1

Akx(t−∆k), t ≥ 0, (1)

and

dx(t)

dt
= A0x(t) +

n∑
k=1

Akx(t−∆k) + F (t, x(t), x(t−∆1), . . . , x(t−∆n)), t ≥ 0, (2)

where n ∈ N, A0, A1, . . . An are the elements of the algebra L(E,E), ∆1, . . . ,∆n are
non-negative numbers, and F : [0,+∞)× En+1 → E is a continuous mapping for which
F (t, 0, 0, . . . , 0) = 0 for all t ≥ 0.

The purpose of this paper is to find the conditions for the instability of zero solutions
of equations (1) and (2) for arbitrary ∆1 ≥ 0, . . . ,∆n ≥ 0. In this case, the zero solutions
of equations (1) and (2) will be called absolutely unstable.

2 Preliminaries

We will use the following sets:

C+ = {z ∈ C : Re z > 0},

C− = {z ∈ C : Re z < 0},

C0 = {z ∈ C : Re z = 0},

Cγ = {z ∈ C : Re z = γ},

C(γ1,γ2) = {z ∈ C : Re z ∈ (γ1, γ2)},

C[γ1,γ2] = {z ∈ C : Re z ∈ [γ1, γ2]},

iC+ = {iz : z ∈ C+},

−iC+ = {−iz : z ∈ C+},

Kn = {z = (z1, . . . , zn) ∈ Cn : |zl| ≤ 1, l = 1, n}

and
Tn = {z = (z1, . . . , zn) ∈ Cn : |zl| = 1, l = 1, n}.
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where Re z is the real part of the number z ∈ C, i is the imaginary unit, γ, γ1, γ2 ∈ R
and γ1 < γ2.

We denote by σ(A) the spectrum of the operator A ∈ L(E,E), and by coG, intG
and ∂ G the convex hull, the interior, and the boundary of the set G, respectively.

In the sequel the following two theorems on the properties of the spectrum of values
of operator functions are of importance as well as the theorem on the instability of the
zero solution of equation (2) in the first approximation.

Theorem 2.1 Let a function X(z) = X(z1, . . . , zn) with values in L(E,E) be con-
tinuous with respect to z = (z1, . . . , zn) on Ω = Ω1×, . . . ,×Ωn, where Ω1, . . . ,Ωn are
bounded closed subsets of the set C, and holomorphic for each variable zk on int Ωk,
i = 1, n, for arbitrary zl ∈ Ωl, l ∈ {1, . . . , n} \ {k}.

Then, co
⋃
z∈Ω σ(X(z)) = co

⋃
z∈Q σ(X(z)), where Q = ∂ Ω1×, . . . ,×∂ Ωn.

Note that the statement of Theorem 2.1 is correct if the Banach algebra L(E,E) is
replaced by an arbitrary Banach algebra with unit [16]. This statement is a generalization
of the maximum principle of module [17].

Theorem 2.2 Let the following conditions be satisfied:
(1) Y (z) is a continuous function on C[γ1,γ2] with values in L(E,E);
(2) σ(Y (z)) ⊂ C+ for all z ∈ Cγ1 ;
(3) σ(Y (z)) ⊂ C− for all z ∈ Cγ2 ;
(4) for the set

N(y) = {x+ yi : x ∈ (γ1, γ2), σ(Y (x+ yi)) ∩ C0 6= ∅}, y ∈ R, (3)

the relations

N(y1) ⊂ iC+ (4)

and

N(y2) ⊂ −iC+ (5)

are satisfied for some numbers y1 > 0 and y2 < 0.
Then there is a point z0 ∈ C(γ1,γ2) for which 0 ∈ σ(Y (z0)).

Proof. The spectrum σ(Y (z)) will be considered as a function defined on the set
C[γ1,γ2] with values in the set of non-empty compact subsets of the set C[γ1,γ2] using
the Hausdorff distance between two sets [18]. By virtue of the first condition of the
theorem and the finite dimension of the space E, this function is continuous on the set
C[γ1,γ2] [19]. Also, this function is bounded and uniformly continuous on each compact
subset of C[γ1,γ2]. Therefore, by the second and third conditions of the theorem, the set
N(y) is a non-empty and compact set for each y ∈ R.

According to (3), each point x+ yi ∈ N(y) corresponds to a set

M(x+ yi) ⊂ σ(Y (x+ yi)) ∩ C0

containing at least one element. Consider the set

N∗(y) =
⋃

x+yi∈N(y)

M(x+ yi).
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Due to the uniform continuity of σ(Y (x+ yi)) on

C[γ1,γ2] ∩ {z ∈ C : |Im z| ≤ max{y1, |y2|}},

the set N∗(y) continuously depends on y on [y2, y1]. Considering that by virtue of (4)
and (5)

N∗(y1) ⊂ iC+

and
N∗(y2) ⊂ −iC+,

we conclude that 0 ∈ N∗(y0) for some y0 ∈ (y2, y1). Then 0 ∈ σ(Y (x0 + y0i)) for some
x0 ∈ (γ1, γ2).

Theorem 2.2 is proven. 2

It is obvious that Theorem 2.2 is a generalization of the first Bolzano-Cauchy theorem.
Denote by B[0, r] the closed ball {x ∈ E : ‖x‖E ≤ r}.

Theorem 2.3 Suppose that

(1)
{
p ∈ C+ : 0 ∈ σ

(
− pI +A0 +

n∑
k=1

e−p∆kAk

)}
6= ∅;

(2) there are numbers r > 0 and N > 0 such that the relation

sup
t≥0
‖F (t, x1, x2, . . . , xn+1)− F (t, y1, y2, . . . , yn+1)‖E ≤ N max

l=1,n+1
‖xl − yl‖E

for all xl, yl ∈ B[0, r], l = 1, n+ 1, is satisfied;
(3) there are numbers r > 0, b > 0 and µ > 0 such that the relation

sup
t≥0
‖F (t, x1, x2, . . . , xn+1)‖E ≤ b max

l=1,n+1
‖xl‖1+µ

E ,

for all xl ∈ B[0, r], l = 1, n+ 1, is satisfied.
Then the zero solution of equation (2) is unstable.

Note that the substantiation of Theorems 2.1 and 2.3 is given in papers [16] and [6],
respectively.

3 Main Results

Theorem 3.1 Suppose that

⋃
z∈Tn

σ
(
A0 +

n∑
l=1

zlAl

)
⊂ C+. (6)

Then the zero solution of equation (1) is absolutely unstable.

Proof. We fix arbitrary ∆1 ≥ 0, . . . ,∆n ≥ 0. Consider the characteristic function
χ : C→ L(E,E), which corresponds to equation (1) and is determined by the equality

χ(p) = −pI +A0 +

n∑
k=1

e−p∆kAk.
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Theorem 2.2 is applicable to this function in the case of γ1 = 0 and γ2 =

2
n∑
l=0

‖Al‖L(E,E). Indeed, the function χ(p), as defined, is continuous in C[0,γ2]. Because

of (6) and Theorem 2.1 ⋃
z∈Kn

σ
(
A0 +

n∑
l=1

zlAl

)
⊂ C+.

Therefore, for all p ∈ C[0,γ2]

σ
(
A0 +

n∑
k=1

e−p∆kAk

)
⊂ C+.

Consequently, according to the Dunford theorem on the spectrum mapping of the oper-
ator, [20] σ(χ(p)) ⊂ C+ for all p ∈ C0 and σ(χ(p)) ⊂ C− for all p ∈ Cγ2 . Also, according
to the Dunford theorem, the set N(y) = {x+ yi : x ∈ (0, γ2), σ(χ(x+ yi))∩C0 6= ∅} for
y1 = γ2 and y2 = −γ2 satisfies relations (4) and (5).

Thus, for the function χ(p), the conditions of Theorem 2.2 are satisfied.
Consequently, by Theorem 2.2, there is a p0 ∈ C(0,γ2) for which 0 ∈ σ(χ(p0)). This

means that for some normalized vector a ∈ E, the vector function x(t) = ep0ta is a
solution of equation (1). By virtue of the linearity of equation (1) for each ε > 0,
the function εx(t) is also a solution of this equation. Since Re p0 > 0, we have
limt→+∞ ‖x(t)‖E = +∞. Therefore, the zero solution of equation (1) is unstable. From
the arbitrariness of the choice of ∆1 ≥ 0, . . . ,∆n ≥ 0, it follows that the zero solution of
equation (1) is absolutely unstable.

Theorem 3.1 is proven. 2

Theorem 3.2 Suppose that
(1) the relation (6) is satisfied;
(2) the second and third conditions of Theorem 2.3 are satisfied.
Then the zero solution of equation (2) is absolutely unstable.

Proof. Fix arbitrary ∆1 ≥ 0, . . . ,∆n ≥ 0. By virtue of the first condition of
the theorem and the proof of Theorem 3.1, the first condition of the Theorem 2.3 is
satisfied. Therefore, because of Theorem 2.3 and the second condition of Theorem 3.2,
the zero solution of equation (2) is unstable. Due to the arbitrariness of the choice of
∆1 ≥ 0, . . . ,∆n ≥ 0, this solution is absolutely unstable.

Theorem 3.2 is proven. 2

Corollary 3.1 If σ(A0) ⊂ C+ and the value of
n∑
l=1

‖Al‖L(E,E) is sufficiently small,

then the zero solutions of equations (1) and (2) are absolutely unstable.
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