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Fixed Point Regions, Unified Construction of Fixed

Point Mappings for Integral, Quadratic, and Fractional

Equations
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Abstract: This paper is a study of integral equations by means of mapping a closed
bounded convex nonempty set G into its interior. This tells us that all possible fixed
points reside in G which we then call a fixed point region. The study is restricted to
convolution kernels A(t−s) for which there is a transformation yielding an equivalent
equation. We then devise a method whereby we can often find the above mentioned
set G. This leads us to globally stable fixed points. The term which makes the
equation of quadratic type is added in after the transformation, whereas existing
theory along these lines adds it in directly to the Volterra equation. That method
produces difficulties with compactness of the mapping. In our work compactness is
never an issue.

Keywords: fixed point regions; integral equations; quadratic equations; fractional
equations; fixed points; transformations.

Mathematics Subject Classification (2010): 34A08, 34A12, 45D05, 45G05,
47H10.

1 Introduction

This paper was motivated by the fact that many fixed point theorems begin with an
integral equation and the preemptive assumption that there is a closed convex nonempty
bounded set G in a Banach or normed space of bounded continuous functions φ : [0,∞)→
< with the supremum norm, together with a continuous mapping of G→ G. Often the
first mapping which comes to mind is the natural one defined by the integral equation.

∗ Corresponding author: mailto:taburton@olypen.com
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348 T. A. BURTON AND I. K. PURNARAS

Then there are several additional conditions which would then yield a fixed point being
a solution of the integral equation.

First, if we say that G is bounded and the mapping maps G into itself, then we are
requiring that

The mapping maps bounded sets into bounded sets.
Accordingly, the first task of this paper is to give a coherent method for transforming

an integral equation of the type under consideration here into one which maps bounded
sets into bounded sets. In fact, we have long worked with exactly that transformation.

Second, there is such a wide class of integral equations that a paper of finite length
needs to have a way of driving diverse equations into a single flexible type whether we
start with a heat equation, a fractional differential equation of either Riemann-Liouville
or Caputo type, or a quadratic integral equation.

In fact, we do exactly that and the final form into which all can fit after several known
transformations is

x(t) = a(t) + g(t, x(t))

∫ t

0

R(t− s)x(s)

[
1− f(s, x(s))

J

]
ds.

Here, R > 0 is the resolvent of a kernel and
∫∞
0
R(t)dt = 1. It is this property which

assures us that the natural mapping

maps bounded sets into bounded sets.

Third, many fixed point theorems require mappings with compactness or contraction
conditions. This is known to fail for products g(t, x (t))

∫ t
0
R(t − s)f(s, x(s))ds. We are

not bothered by this because we never mention either compactness or contractions.
Fourth, we continue with the idea raised in several earlier papers that there is a

conclusion which is competitive with the conclusion that there is a fixed point. Our
conclusion is always that there is a closed bounded convex nonempty set G of such a
nature that any fixed point which exists will reside entirely in G.

2 A Roadmap to Unification

We will begin with several very different kinds of equations. Through a series of trans-
formations each will be brought down to the common Volterra integral equation of the
form

x(t) = a(t)−
∫ t

0

A(t− s)f(s, x(s))ds (1)

although the functions will change for each of them. But all of the functions are contin-
uous and A(t) > 0 and often ∫ ∞

0

A(s)ds =∞.

Clearly, something must be done because it cannot map bounded sets into bounded sets.
Next, through a variation of parameters formula and substantial theory going back

to Friedman in 1963 and organized by Miller in 1971, every one of those equations will
now pass through (1) and become

x(t) = b(t) +

∫ t

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds, (2)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (4) (2020) 347–364 349

where

b(t) = a(t)−
∫ t

0

R(t− s)a(s)ds

and R will vary from one equation to the next being the resolvent of A and depending on
the choice of J which can be any positive number. Regardless of the differences between
various A and J it will always be true that R is continuous on (0,∞), R(t) > 0 and∫ ∞

0

R(t)dt ≤ 1.

That condition will give our primary victory in having (2) map bounded sets into
bounded sets.

At this point we reach back in history to 1950 when Chandrasekhar [9] offered the
equation

x(t) = 1 + x(t)

∫ 1

0

φ(s)x(s)ds

to describe radiation transfer which jolted fixed point theory investigators into a cottage
industry called “quadratic integral equations”. They knew that∫ t

0

A(t− s)f(s, x(s))ds

was often a compact map (see [8] for example), as required in many fixed point theorems,
but a product

g(t, x(t))

∫ t

0

A(t− s)f(s, x(s))ds

is not compact even with g and f continuous. By simply Googling “quadratic integral
equations”, we find a myriad of publications including many in pdf format freely available
for download. Our bibliography contains several.

To take all of this into account we return to (2) and perturb it with g(t, x) obtaining
our final product as

x(t) = b(t) + g(t, x(t))

∫ t

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds (3)

with the assumption that g(t, x) is continuous and

|g(t, x)| ≤ 1. (4)

Thus, if g(t, x) is missing in an equation of interest, then it is simply replaced by 1. In
spite of all the equations which we are going to describe here, it is only (3) that we must
treat.

This is the unity.

But we will take it one step further. We will offer a result concerning a closed bounded
convex nonempty set G which will contain any possible fixed point of the natural mapping
defined by (3). It will be a single theorem encompassing all the problems treated.
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3 Some Related Problems

It is not at all necessary for the reader to be acquainted with fractional equations to
get the point that in each case we start with one type of equation, but always trans-
form it into one specific class. We will start with a fractional differential equation of
Riemann-Liouville type and continue down to its relationship with very common Volterra
equations. In preparation for that we offer some references. A modern introduction to
fractional differential equations is found in Diethelm [12]. A very readable history of
the theory up to 1974 is found in Chapter 1 of Oldham and Spanier [16] and a contin-
uation up to the present time is found in Abbas, Benchohra, Graef, and Henderson [1].
However, we quickly see in the work below that the fractional calculus is immediately
left behind and it is translated into an integral equation of common type going back
almost 100 years. We start with the fractional differential equation, translate it into
an integral equation with more than one singularity, introduce a shift of length T, and
then transform it into a classical integral equation. The reader may wish to simply start
with that final translation and follow the chain down from there. The next equation will
be a fractional differential equation of Caputo type which was introduced because the
Riemann-Liouville equation has a troublesome initial condition. In one step we translate
it into a common Volterra integral equation. From there on we are all on familiar ground
and the reader will need no guidance as we descend the chain.

We will see R(t) throughout this list. It is the resolvent of the kernel. For fractional
and some other kinds of equations it is the continuous resolvent of the kernel (t− s)q−1
satisfying

0 < R(t),

∫ ∞
0

R(s)ds = 1

and will be discussed in detail later. It is found in Miller [15, pp. 212-213]. It has the
most useful property found in fixed point theory, namely, it enables us to show that
the natural mapping defined by the integral equation maps bounded sets into bounded
sets. We frequently find that we need a closed bounded convex nonempty set G and a
continuous mapping of G into G.

(i) We begin with the Riemann-Liouville fractional differential equation

Dqx(t) = f(t, x(t)), lim
t→0+

t1−qx(t) = x0 6= 0, q ∈ (0, 1).

It is inverted as

x(t) = xotq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s))ds

and transformed in two steps to

y(t) = F (t) +

∫ t

0

R(t− s)
[
y(s) +

f(s+ T, y(s))

J

]
ds,

where J > 0 is an arbitrary constant. Here, T > 0 is a constant arising in a local
existence theorem and y(t) = x(t + T ). All of the details are found in [2, pp. 242-271]
(see, especially, p. 252 and (4.4)). It is the recurring form of that last equation which
enables us to find a closed bounded convex nonempty set G so that the natural mapping
maps G into the interior of G and contains all possible fixed points.
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(ii) Close to (i) is the fractional differential equation of Caputo type sought mainly
for the more direct initial conditions. It is

cDqx(t) = f(t)− g(t, x(t)), x(0) ∈ <, 0 < q < 1,

with f and g continuous, which inverts as

x(t) = x(0)− 1

Γ(q)

∫ t

0

(t− s)q−1[g(s, x(s))− f(s)]ds.

One more transformation brings it in line with (i) and the property that bounded sets
are mapped into bounded sets owing again to the function R. The final form is

x(t) = x(0)

[
1−

∫ t

0

R(s)ds

]
+

∫ t

0

R(t− s)
[
x(s)− g(s, x(s))− f(s)

JΓ(q)

]
ds.

Details may be found in [3], pp. 442-456. See, especially, Example 5.6, p. 450.
(iii) The next equation is the one which made this entire project possible by generating

the resolvent R which is used in each of the transformations. We begin with a heat
equation found in Miller [15, p. 209]

y(t) = −(πK)−1/2
∫ t

0

(t− s)−1/2g(s, y(s))ds,

where K is thermal conductivity of the medium. The construction of this equation can
be traced back to pp. 356-361 of the book by Weinberger [21]. Miller [15, p. 209] picks
it up and this is the beginning of his presentation which will lead us to the construction
of that all important transformation and the introduction of the resolvent R. We will
return to this and the construction of R later. In order to make the text consistent, we
will write this equation as

x(t) = −
∫ t

0

(t− s)−1/2f(s, x(s))ds.

Our transformation will yield

x(t) =

∫ t

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds

and we will refer to it as our heat equation.
There can now be gathered into this a large and basic theory of heat equations

generated near 1950 and published by Padmavally [17], Mann and Wolf [18], and Roberts
and Mann [19]. We will not detail it here.

This will conclude the discussion of problems which can be put in the form of

x(t) = a(t) +

∫ t

0

R(t− s)x(s)

[
1− f(s, x(s))

Jx(s)

]
ds.

When we consider that either of the fractional problems represent a theory about which
entire books have been written, it is clear that we are dealing with a substantial fraction
of problems from applied mathematics.
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But there is one more type which does not fit snuggly in this set of problems which
has generated an enormous literature. That is the so-called quadratic theory of integral
equations. Interest in the problem was sparked by a paper written in 1950 by Chan-
drasekhar [9] in the study of radiative transfer governed by

x(t) = 1 + x(t)

∫ 1

0

φ(s)x(s)ds

in which φ is a second order polynomial presumably giving rise to the name “quadratic”
integral equations. We discussed aspects of it with (3). Many applications of off shoots
may be found in Darwish [10] and Darwish and Henderson [11], for example, but the
form of the equation with that product with the integral has been the driving force for
a great many investigations in fixed point theory. At this time the area of study is so
active that one can get an idea of the amount of work done in it by asking “google” for
“quadratic integral or integro-differential equations”.

4 Transformations

In 1963, Friedman [13] isolated a wide and important set of kernels and the entire process
is well formulated by Miller [15, pp. 207-213] with refinements continuing to p. 224 and
with more recent refinements given by Gripenberg [14]. It is required that A(t) satisfy
the following three conditions (A1)–(A3) which are present in many important problems
in heat conduction and throughout fractional differential equations.

It is to be noted that if A satisfies (A1)–(A3) and
∫∞
0
A(s)ds =∞ and if g andf are

bounded by the real numbers ‖g‖ and ‖f‖, then in the equation

x(t) = a(t)− g(t, x(t))

‖g‖

∫ t

0

‖g‖A(t− s)f(s, x(s))ds

the kernel will still satisfy (A1)–(A3) and it will still be the same equation if ‖g‖ is a
fixed positive number, being the supremum on [0,∞). We are going to assume that f
and g are bounded because the entire focus here will be on a natural mapping which
maps bounded sets into bounded sets and we are interested in solutions on [0,∞).

Conditions (A1)–(A3) are defined as follows:
(A1) A(t) ∈ C(0,∞) ∩ L1(0, 1).
(A2) A(t) is positive and non-increasing for t > 0.
(A3) For each T > 0 the function A(t)/A(t+ T ) is non-increasing in t for 0 < t <∞.
In those references above it is shown that the resolvent equation is

R(t) = A(t)−
∫ t

0

A(t− s)R(s)ds (5)

and that its solution R is continuous on (0,∞) and

0 < R(t) ≤ A(t),

∫ ∞
0

R(t)dt = 1 (6)

when the integral of A is infinite. When the integral of A is finite, then the integral of R
is less than one.

Notice that if J is a positive constant, then JA(t) still satisfies (A1)–(A3). We have

noted just now that
∫ t
0
A(t−s)f(s, x(s))ds may map bounded sets into unbounded sets. If
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we could possibly exchange R(t) for A(t), then we could map bounded sets into bounded
sets. That is exactly what we do and the transformation can be reversed so that the
transformed equation has the same solutions as the original equation.

In a sequence of papers we showed the advantages of transforming the standard
integral equation

x(t) = a(t)−
∫ t

0

A(t− s)f(s, x(s))ds (7)

using a variation of parameters formula of Miller [15, pp. 191-192] into

x(t) = z(t) +

∫ t

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds, (8)

with

z(t) = a(t)−
∫ t

0

R(t− s)a(s)ds. (9)

Here are the steps. Start with (7) and a(t) continuous on [0,∞) while A satisfies
(A1)–(A3) and J is an arbitrary positive constant at this point, but later is chosen
precisely as previously discussed. We then have

x(t) = a(t)−
∫ t

0

A(t− s)[Jx(s)− Jx(s) + f(s, x(s))]ds

= a(t)−
∫ t

0

JA(t− s)x(s)ds+

∫ t

0

JA(t− s)
[
x(s)− f(s, x(s))

J

]
ds.

The linear part is

z(t) = a(t)−
∫ t

0

JA(t− s)z(s)ds (10)

and the resolvent equation is

R(t) = JA(t)−
∫ t

0

JA(t− s)R(s)ds (11)

so that by the linear variation-of-parameters formula we have

z(t) = a(t)−
∫ t

0

R(t− s)a(s)ds (12)

and by the non-linear variation of parameters formula [15, pp. 191-193]

x(t) = z(t) +

∫ t

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds.

We will always write this as

x(t) = a(t)−
∫ t

0

R(t− s)a(s)ds+

∫ t

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds (13)

which has a reversible mapping into (7).
The transformation from (7) to (13) was first given in [4] for a Caputo equation in

which case there are few difficulties. Further discussion of the transformation is found
in [2] which allows a(t) to be singular. In that reference the reader can follow from (2)
on p. 249 to its transformed form on p. 263.

We cannot overemphasize the role of J , as we will see later.
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5 Fixed Point Regions

The compactness required in so many fixed point theorems eludes us and we stop for a
moment of thought. If we just work a bit harder we may let the mapping map G into Go,
the interior of G. Perhaps that will be enough to provide for us some usable information.
This is where we pick up from earlier papers ( [5, p. 297], [6, p. 344], [7, p. 7]) in which
we showed that under our specified mapping condition the set G can be shown to

contain entirely every possible fixed point of (1).

Instead of fixed point theory, we are now studying what can be derived from fixed
point regions G. Our next task is to show how this concept relates to standard fixed
point theory and for this we begin with Schauder’s and Schaefer’s fixed point theorems.
We will find that the new concept is a simple counterpart of the combination of both of
those theorems. Here is the statement as given in [7].

Theorem 5.1 Let T > 0 and (B, ‖ · ‖) be the Banach space of continuous functions
φ : [0, T ]→ < with the supremum norm and let P be a Volterra operator mapping B → B
which is continuous. Let r > 0 and G be the closed ball of center zero and radius r in B:

G := {φ ∈ B : ‖φ‖ ≤ r}.

Suppose that P : G→ Go and that P has the property that if φ ∈ B and if (Pφ)(0) = φ(0),
then |φ(0)| < r. If φ ∈ B is a fixed point of P , then φ resides in Go.

Here is a typical example of quadratic type.

Example 5.1 Consider the scalar equation

x(t) = a(t) + λ(Arctanx(t))

∫ t

0

R(t− s)[x(s)− sinx(s))]ds.

Choose
0 < λ < 1/π, ‖a‖ ≤ π/4, G = {φ : [0,∞)→ <, ‖φ‖ ≤ π/2}.

Note that for ‖x‖ ≤ π/2 then

∣∣∣∣1− sin x
x

∣∣∣∣ ≤ 1.

Under these conditions the natural mapping P satisfies

|(Pφ)(t)| ≤ ‖a‖+ (λπ/2)

∫ t

0

R(t− s)|φ(s)|
∣∣∣∣1− sinφ(s)

φ(s)

∣∣∣∣ds
≤ ‖a‖+ λ(π/2)(π/2)

∫ t

0

R(t− s)ds

< π/4 + λ(π2/4),

so
‖Pφ‖ ≤ π/4 + λ(π2/4) < (π/4) + (π/4) = π/2.

Hence P : G→ Go.

Now, we may go through the proof and see that all is unchanged if λArctanx(t) is
replaced by λπ/2.
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Theorem 5.2 (Schauder [20, p. 25]) Let G be a non-empty convex subset of a normed
space B. Let P be a continuous mapping of G into a compact set K ⊂ G. Then P has a
fixed point.

Schauder’s theorem fails in our problem here because the map generated by our
equation is not compact. Schauder’s theorem fails us in another way also. Even if there
is a fixed point in G his theorem offers us no way to tell if there are other fixed points
outside of G. This can be a disaster. Generally, we select G for two reasons. First, we
find through trial and error that we can show that P maps G into G. But there is a far
more serious reason. In a given real-world problem there are points in the space which
are favorable to our project and so we select G to contain them. On the other hand there
may be points which are a total disaster for our project and we cannot move forward
with the project until we know that they cannot be selected. Here, our method helps in
two ways. Even if Schauder’s theorem applies we are well advised to proceed with the
mapping and be sure that G contains all possible fixed points. We can make choices to
put all fixed points in a predetermined ball.

Theorem 5.3 (Schaefer [20, p. 29]) Let B be a normed space, P , a continuous map-
ping of B → B which is compact on each bounded subset K of B. Then either

(i) the equation x = λPx has a solution for λ = 1, or
(ii) the set of all such solutions x (if any), for 0 < λ < 1, is unbounded.

Not only is this theorem replete with demands for compactnes, but there is not a hint
of where the fixed point might lie or how many there might be. Our method seems to
offer no help for Schaefer’s, but it does cast a light to show a somewhat equal worth. In
principle, would we prefer to know where all possible solutions lie, or would we prefer to
know that there is at least one lying somewhere? We are arguing that both conclusions
can be targets of equally high value.

6 Mapping Bounded Sets into Bounded Sets

The perfect choice of J

So many fixed point theorems begin with the assumption that there is a closed
bounded convex nonempty set G and a mapping of G into G. That part is stated
so smoothly that it is reasonable to get the impression that it is a simple condition and
that the real challenge consists of all the added conditions needed to ensure the existence
of a fixed point. Several decades of study reveal the very opposite for many of us. We
feel that the upcoming work which shows a simple way of getting the required G in this
context is, perhaps, the main contribution of this paper.

In the transformation of (7) to (13) we will see that J has entered and we would have
no idea how to select it. It will play a major role in our work. In case f(t, x) depends only
on x, there is a definite path to finding G so that the natural mapping, P , of G → Go

will contain the smallest possible fixed point region. It is successful if

lim
|x|↓0

f(x)

x
= J (14)

exists as a finite positive number. To explain the working here, we are asking that
xf(x) ≥ 0 so that

xf(x)

x2
≥ 0
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which implies that if the limit exists, then it is ≥ 0. In particular, then the limit as
|x| ↓ 0 satisfies

lim
|x|↓0

f(x)

Jx
= 1. (15)

From this we see that the limit as |x| ↓ 0 satisfies

lim
|x|↓0

[
1− f(x)

Jx

]
= 0 (16)

and that is the perfect choice for J . It will allow the integrand to completely control the
magnitude of the natural mapping P of G into G, making the fixed point region as small
as possible. The only magnitude it cannot control is ‖a‖ since by Theorem 5.1 a(t) is
always part of the fixed point region. In other words:

Remark 6.1 Equation (16) is exactly the property which helps us to find G and to
make G map into Go when f and g are bounded, f is independent of t, and (14) holds.

7 The Shrinking Functions

We have mentioned earlier that investigators started with the standard Volterra equation

x(t) = a(t)−
∫ t

0

A(t− s)f(s, x(s))ds

and studied the problems raised by addition of the term g(t, x(t)) in

x(t) = a(t)− g(t, x(t))

∫ t

0

A(t− s)f(s, x(s))ds,

which was actually an arbitrary choice. (Remember that J is chosen by (15) if possible.)
We choose instead to start with the equivalent transformed equation (13) and add in

the g(t, x(t)) to it obtaining

x(t) = a(t)−
∫ t

0

R(t− s)a(s)ds+ g(t, x(t))

∫ t

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds (17)

and noticing that a(t) −
∫ t
0
R(t − s)a(s)ds is the forcing function. Refer back to Chan-

drasekhar’s equation

x(t) = 1 + x(t)

∫ t

0

φ(s)x(s)ds

and notice that g(t, x) = x and that does not multiply the forcing function, namely 1. It
multiplies the integral.

In Example 5.1 there appeared an example of

S(x) =: x− f(x),

namely,

x− sinx,
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from which we obtained

|x|
∣∣∣∣1− sinx

x

∣∣∣∣
with

0 ≤ sinx

x
< 1, x 6= 0,

when we take
G = {φ : [0,∞)→ <, ‖φ‖ ≤ π/2}, ‖a‖ ≤ π/4.

Let us review Example 5.1 and the first line of the mapping P in the proof. We have

|(Pφ)(t)| ≤ ‖a‖+ (λπ/2)

∫ t

0

R(t− s)|φ(s)|
∣∣∣∣1− sinφ(s)

φ(s)

∣∣∣∣ds
≤ ‖a‖+ λ(π/2)(π/2)

∫ t

0

R(t− s)ds

< π/4 + λ(π/2)(π/2),

so for λ < 1
π

‖Pφ‖ ≤ π/4 + λ(π/2)(π/2) < π/4 + (1/π)(π2/4) = π/2.

In that first line we see that the last term shrinks the entire remainder of the mapping

(excluding a) yielding P : G→ Go. Thus, 1− f(x)
x is shrinking |x| which is exactly what

it must do if the mapping is to map G into Go.
We will now work a problem to see how it unfolds, writing a(t) instead of all of z. This

will not distort the norms we later encounter. Before we start notice that if xf(x) > 0
for x 6= 0, then f(0) = 0 and if f ′(0) exists and it is positive, then by L’Hospital’s rule

lim
x→0

f(x)

x
=

0

0
=
f ′(0)

1
> 0.

That is

lim
x→0

f(x)

x
= J > 0

so

lim
x→0

f(x)

Jx
= 1.

Example 7.1 Part I, f is not specified.
We begin with

x(t) = a(t) + g(t, x(t))

∫ t

0

R(t− s)x(s)

[
1− f(x(s))

x(s)

]
ds

and assume that

lim
|x|↓0

f(x)

Jx
= 1

so that if we define the function h to be zero at zero and by

h(x) = 1− f(x)

Jx
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then it is continuous. For a given ε > 0 there is a D > 0 such that |x − 0| < D implies
|h(x) − h(0)| < ε. But h(0) = 0, so taking ε = 1/2 we can find D > 0 so that |x| < D
implies

0 ≤
∣∣∣∣1− f(x)

Jx

∣∣∣∣ < 1/2

which happens when 1/2 < f(x)/Jx < 3/2. We cannot specify that in Part I because f
is unknown. Assume again that |g(t, x)| ≤ 1. We can now obtain G provided that

‖a‖ < D/2.

Now, let
G = {φ : [0,∞)→ <, ‖φ‖ ≤ D}.

Then
‖Pφ‖ ≤ ‖a‖+ (1)(1)‖φ‖(1/2) < (D/2) + (D/2) = D.

Thus P : G→ G0.
In view of the continuity of g, φ (thus boundedness of φ), one may see that for any

φ ∈ B (the space of continuous functions on [0, T ] with T > 0 arbitrary), we have
|P (φ)(0)| = |a(0)| < |D/2, thus by Theorem 5.1 every possible fixed point resides entirely
in G.

Continuing, notice that the same argument can be given as D → 0 with the result that
when a(t) = 0, then by inspection x = 0 is a solution and it is unique. This concludes
Part I of this example. We now turn to

Part II in which we specify

f(x) =
x

1 + x2

which satisfies xf(x) ≥ 0, f is bounded, and

lim
|x|↓0

f(x)

x
= lim
|x|↓0

1

1 + x2
= 1 = J.

Given ε = 1/2, we must determine D so that 0 ≤ |x| ≤ D implies

0 < 1− f(x)

x
< 1/2.

Write that as

0 < 1− 1

1 + x2
< 1/2.

Now 1 − 1
1+x2 was zero at x = 0, so we let x increase to the value one making

1
1+x2 = 1/2, telling us that D = 1 and

G = {φ : [0,∞)→ < : ‖φ‖ ≤ 1}.

This requires us to be able to choose ‖a‖ < D/2 = 1/2 since ‖φ‖ ≤ 1 implies that

|Pφ| ≤ ‖a‖+ (1/2)D = ‖a‖+ (1/2) < 1

requires ‖a‖ < 1/2. This makes P : G → Go and assures us that any fixed point lies
entirely in G.

This concludes Part II and the example.
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8 Another Perturbation

We are now concerned with a slightly different perturbation than the one studied in
Section 7. Recall that we deal with the Volterra integral equation

x (t) = a (t)−
∫ t

0

A (t− s) f (s, x (s)) ds, t ≥ 0, (18)

with a, f continuous and A continuous on (0,∞) with∫ ∞
0

A (s) ds =∞,

and satisfying specific assumptions yielding that∫ ∞
0

R (u) du = 1.

Equation (18) is often perturbed by multiplying the integral by the factor g(t, x), i.e, as

x(t) = a(t)− g(t, x(t))

∫ t

0

A(t− s)f(s, x(s))ds. (19)

Considering a properly chosen J > 0 we, again, transform equation (18) into the (equiv-
alent) equation

x (t) = a (t) +

∫ t

0

R (t− s)
[
x (s)− a (s)− f (s, x (s))

J

]
ds, (20)

where R is the resolvent kernel of A satisfying the equation

R (t) = JA (t)−
∫ t

0

JA (t− u)R (u) du. (21)

Now we choose to multiply the whole integral in (20) by the factor g(t, x), i.e., we consider
the equation

x (t) = a (t)− g (t, x (t))

∫ t

0

R (t− s)
[
a (s)−

(
x (s)− f (s, x (s))

J

)]
ds,

which we write as

x (t) = a (t)− g (t, x (t))

∫ t

0

R (t− s) a (s) ds (22)

+g (t, x (t))

∫ t

0

R (t− s)
[
x (s)− f (s, x (s))

J

]
ds.

Comparing to the perturbation in Section 7, here multiplication by g(t, x) includes
the part of the integral containing the function a. Our view now is that we leave x − a
untouched and perturb the integral part of the equation (20), just as it is done in equation
(19). It should be mentioned that while equations (18) and (20) share solutions, the
perturbations (19) and (22) do not.
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As already mentioned, J may be any positive number, but the proper choice of J > 0
is crucial for our study. Any (arbitrary) choice of J > 0 leads to a unique kernel satisfying
(21) as well as to the corresponding transformed equation (22) equivalent to the original
equation (20). Clearly, there are so many equations to work with, and one may wonder
which one might be a proper value of J that allows us to achieve our goal. In the two
propositions that follow, we use different techniques to spot proper values of J > 0
allowing us to obtain the desired results.

We may now proceed to presenting conditions yielding fixed point regions for equation
(22) when g, a are bounded. Note that f is not assumed to be bounded. Since we are
interested in continuous solutions on [0,∞), due to the continuity of g one may see that
for any continuous function φ, we have |T (φ)(0)| = |a(0)| with T being the natural
mapping defined by the right-hand side of the equation (22). It turns out that in order
to obtain a fixed point region for the equation (22) it is sufficient to find a suitable D > 0
(with |a(0)| < D) so that the corresponding ball in the space B of bounded continuous
functions with the usual sup-norm be mapped in its interior by T . The Propositions
below present sufficient conditions posed on g, a, f which yield the existence of such a D.

Proposition 8.1 Let g, a be bounded by ‖g‖ and ‖a‖, respectively. Assume that there
exist m,M > 0 with

m ≤ f (t, x)

x
≤M , x 6= 0, t ≥ 0, (23)

and such that

‖g‖
(

1− m

M

)
= k < 1. (24)

Then the set G := {x (t) , t ≥ 0 : ‖x‖ ≤ D} with D > 0 satisfying

‖a‖ (1 + ‖g‖)
D

+ k = k0 < 1, (25)

is a fixed point region for the equation (22) with J = M .

Proof. Firstly, note that by (23) we have

m ≤ f (t, x)

x
≤M =⇒ 0 ≤ 1− f (t, x)

Mx
≤ 1− m

M
,

thus choosing J = M it holds

0 ≤ 1− f (t, x)

Jx
≤ 1− m

M
. (26)

Then setting T : C ([0,∞),R)→ C ([0,∞),R) with

T x (t) : = a (t)− g (t, x (t))

∫ t

0

R (t− s) a (s) ds

+g (t, x (t))

∫ t

0

R (t− s)
[
x (s)− f (s, x (s))

J

]
ds,
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and choosing D by (25), in view of (24) and (26) we have for t ≥ 0, ‖x‖ ≤ D

|T x (t)| ≤ ‖a‖+ |g (t, x (t))|
∫ t

0

R (t− s) |a (s)| ds

+ |g (t, x (t))|
∫ t

0

R (t− s)
∣∣∣∣x (s)− f (s, x (s))

J

∣∣∣∣ ds
≤ ‖a‖+ ‖g‖ ‖a‖

∫ t

0

R (s) ds

+ ‖g‖
∫ t

0

R (t− s) |x (s)|
∣∣∣∣1− f (s, x (s))

Jx (s)

∣∣∣∣ ds
< ‖a‖+ ‖g‖ ‖a‖ · 1 + ‖g‖

∫ t

0

R (t− s)
(

1− m

M

)
‖x‖ ds

< ‖a‖ (1 + ‖g‖) + kD · 1

= D

[
‖a‖ (1 + ‖g‖)

D
+ k

]
= Dk0,

so ‖T x‖ ≤ Dk0 = D0 < D, and T (G) ⊂ Go ⊂ B (0;D) .
Clearly, if x is a fixed point of T , then by continuity we will have |x (0)| = |a (0)| < D,

so, due to T (G) ⊂ Go, the solution x cannot leave G.
In the same direction we consider the equation

x (t) = a (t) +

∫ t

0

A (t− s) f (s, x (s)) ds, t ≥ 0, (27)

with f, a and A as before, but now we relax condition (23). Note that condition (23)
includes the sign condition xf (x) > 0, x 6= 0. In fact, now we do not ask for any sign
condition.

As before, we want to transform equation (27) using a properly chosen J > 0 and
then perturb it to a quadratic equation by multiplying the integral by a bounded function
g (t, x). This time we assume that the bound of |g| is less than 1 and choose J > 0
depending on the bound of g. It turns out that by asking that ‖g‖ < 1 we may avoid
the left hand side assumption in (23) along with condition (24).

So we consider the perturbed transformed equation

x (t) = a (t)− g (t, x (t))

∫ t

0

R (t− s) a (s) ds (28)

+g (t, x (t))

∫ t

0

R (t− s)
[
x (s) +

f (s, x (s))

J

]
ds,

where J > 0 is some properly chosen constant depending on the bounds of g and a and

the behavior of f(t,x)
x on [0,∞)× {0}.

Proposition 8.2 Let g and a be bounded by ‖g‖ < 1 and ‖a‖, respectively, and
assume that

|f (t, x)| ≤ ψ (x) , (t, x) ∈ [0,∞)× R,

for a continuous function ψ : R→ [0,∞). If there exist K, δ > 0 with∣∣∣∣ψ (x)

x

∣∣∣∣ ≤ K, 0 < |x| ≤ δ, (29)
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then there exists a bounded set G which is a fixed point region for the equation (28) with
J satisfying (32) .

Proof. Since ‖g‖ < 1, we may consider a D > 0 such that

2 ‖a‖
D

< 1− ‖g‖ . (30)

Due to continuity of ψ(x)
x , |x| ≥ δ and (29), there exists an M > 0 with∣∣∣∣ψ (x)

x

∣∣∣∣ ≤M , |x| ≤ D. (31)

Now with this M in hand and in view of (30) and the assumption that ‖g‖ < 1 we
may take a J > 0 such that

2 ‖a‖
D

+ ‖g‖
(

1 +
M

J

)
= k1 < 1. (32)

Taking into consideration (32) and (31) we have for t ≥ 0, ‖x‖ ≤ D

|T x (t)| ≤ ‖a‖+ |g (t, x (t))|
∫ t

0

R (t− s) |a (s)| ds

+ |g (t, x (t))|
∫ t

0

R (t− s)
∣∣∣∣x (s) +

f (s, x (s))

J

∣∣∣∣ ds
≤ ‖a‖+ ‖g‖

∫ t

0

R (s) ‖a‖ ds

+ ‖g‖
∫ t

0

R (t− s) |x (s)|
[
1 +
|f (s, x (s))|
J |x (s)|

]
ds

≤ ‖a‖+ ‖g‖
∫ t

0

R (s) ‖a‖ ds

+ ‖g‖
∫ t

0

R (t− s) |x (s)|
[
1 +

1

J

∣∣∣∣ψ (x (s))

x (s)

∣∣∣∣] ds
< ‖a‖+ ‖a‖ · 1 + ‖g‖

∫ t

0

R (t− s)
(

1 +
M

J

)
‖x‖ ds

< 2 ‖a‖+ ‖g‖
(

1 +
M

J

)
D

= D

[
2 ‖a‖
D

+ ‖g‖
(

1 +
M

J

)]
= k1D,

so, for any k2 ∈ (k1, 1) it holds ‖T x‖ < k2D := D1 < D, ‖x‖ ≤ D, which implies that
for G := {x ∈ C ([0,+∞)) : ‖x‖ ≤ D} we have T (G) ⊂ B (0;D1) ⊂ Go.

Clearly, if x is a fixed point of T , then by continuity of x, a and f we find

lim
t→0+

|g (t, x (t))|
∫ t

0

R (t− s)
∣∣∣∣x (s) +

f (s, x (s))

J

∣∣∣∣ ds
≤

∣∣∣∣1 +
M

J

∣∣∣∣ ‖g‖D lim
t→0+

∫ t

0

R (t− s) ds = 0,
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so

|x (0)| = lim
t→0+

|T x (t)| =
∣∣∣∣a (0) + lim

t→0+
|g (t, x (t))|

∫ t

0

R (t− s) |a (s)| ds
∣∣∣∣ = |a (0)| < D

2

and we may conclude that any fixed point x of T is a function starting at x (0) with
|x (0)| = |a (0)| < D and due to T (G) ⊂ Go it cannot leave G.

When the function g is bounded by a bound which is greater than or equal to one,
then multiplying our equation by g, i.e.,

x (t) = a (t) + g (t, x (t))

∫ t

0

A (t− s) f (s, x (s)) ds

is equivalent to considering

x (t) = a (t) +
g (t, x (t))

‖g‖+ 1

∫ t

0

A (t− s) (‖g‖+ 1) f (t, x (s)) ds

or

x (t) = a (t) + g0 (t, x (t))

∫ t

0

A (t− s) f0 (s, x (s)) ds,

with f0 (t, x) := (‖g‖+ 1) f (t, x) and g0 (t, x) := g(t,x)
‖g‖+1 .

As the last equation may be seen as a perturbation (by g0 (t, x (t))) of the equation

x (t) = a (t) +

∫ t

0

A (t− s) f0 (s, x (s)) ds, (33)

alternatively, one may choose to perturb the transformed equation of (33) by multiplying
by g0 (t, x (t)), thus considering

x (t) = a (t) + g0 (t, x (t))

∫ t

0

R (t− s) a (s) ds

+g0 (t, x (t))

∫ t

0

R (t− s)
[
x (s) +

f0 (s, x (s))

J

]
ds.

Clearly, if f satisfies (29), then so does f0 (with K0 = K (‖g‖+ 1)), so the last Proposi-
tion is applicable and a fixed point region might be yielded.

Before closing the paper we cite three remarks. The first one concerns the assumptions
on the kernel A which allow the kernel to have singularities as long as conditions (A1)-
(A3) are satisfied. It is worth noticing that fractional kernels (t − s)q with q ∈ (0, 1)
do satisfy these conditions, so our results do apply in this case. The second remark
concerns L1 kernels. As it has already been mentioned, in such a case the integral of the
resolvent kernel is less than one. With this in hand one may see that the results in both
Propositions of this section still hold while conditions (24) and ‖g‖ < 1 may be relaxed
to

‖g‖
(

1− m

M

)
= k ≤ 1 (34)

and ‖g‖ ≤ 1, respectively, yet m is allowed to be zero. As a final remark, we would like
to emphasize on the fact that under the conditions of this study, not only the fixed point
regions ”trap” all bounded (continuous) solutions of the perturbed equation, but they
also yield that there do not exist any unbounded ones.
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Abstract: Based on the improved chaos searching strategy, an enhanced Bi-
directional chaotic optimization algorithm (EBCOA)is proposed in this study. A
Lozi chaos mapping is used as a chaos generator to produce a chaos variable. In
the process of EBCOA, and in order to make the chaos search more efficient, a new
sub-step local chaos optimization method is proposed and a global search is done to
find the current optimal solution in a certain range, and then a fine search reduces
the space of optimized variables. Compared with the algorithm of traditional chaos
search, the proposed algorithm is more accurate and can respond quickly. Simulation
and experimental results confirm the efficiency of the proposed algorithm.
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1 Introduction

In the field of mathematics, physics and engineering science, it is well recognized that
chaos theory can be applied as a very useful technique in practical application. Chaos
is aperiodic behavior in a deterministic system which exhibits sensitive dependence on
initial conditions, and thus provides great diversity based on the ergodic property of
the chaos phase, which transits every state without repetition in certain ranges. Chaos
is a term used to describe behavior that is seemingly random, but has an underlying
mathematical order to it [1–5]. Chaos is very common in nature, but is often mistaken
for random behavior. It is generated through a deterministic iteration formula. Due to
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these characteristics, chaos theory can be applied in the optimization algorithm [6, 7].
[9] proposed a chaotic differential evolution algorithm for multi-objective optimization.
Many deterministic, stochastic methods for solving the global optimization problem have
been proposed which, in turn, employed local moves or local exploitation, i.e., a new
candidate point is generated in a neighborhood of the current one. For example, all
Multistart-like algorithms generate candidate points in a neighborhood of the current
one, Genetic Algorithms use mutation to generate a point in the neighborhood of a
member of the current population, etc. The number of local minima is a critical issue for
global optimization problems. It is well known that local moves alone are not enough to
detect a global minimum because of geting trapped into a local minimum. Therefore, we
need to employ other techniques to escape from local minima such random generation
of starting points in Multistart-like algorithms; crossover in Genetic Algorithms, chaotic
generation of starting points in two-phase algorithms (COA) [10–17].

In this study, an enhanced bi-directional chaos optimization algorithm (EBCOA)
based on a new chaos search strategy is proposed in order to deal with premature con-
vergence in later evolution. From the testing results of the benchmark functions, the
results of EBCOA are obviously better than those of the standard bi-directional chaos
optimization algorithm (BCOA). The rest of the paper is organized as follows. In Section
2, we describe the BCOA presented in the literature and we present a new approach, the
EBCOA, based on the nested phases strategy and the use of 2-D chaotic sequences. In
Section 3, simulation results are provided to validate the effectiveness of the proposed
method. The paper ends with the conclusion as Section 4 followed by the references.

2 Chaos Search Strategy

Chaos occurs in many nonlinear systems, which is generated by deterministic equations.
Chaotic systems with their interesting properties such as topologically mixing and dense
periodic orbits, ergodicity and intrinsic stochasticity, can be used in various applications
such as global optimization. In feature selection, chaos search is more capable of es-
caping from local optima than random search. One way of application with chaos is a
chaotic optimization algorithm (COA) [6,7,13,16,17], which utilizes the nature of chaos
sequence including the quasi-stochastic property and ergodicity. The experimental stud-
ies assert that the benefits by chaotic variables instead of random variables are more
obvious although the mathematical theory can not be formulated.

2.1 Generation of chaotic sequences

In this section, we present the chaotic maps used, which generate chaotic sequences
in the process of evolutionary algorithms [12]. Chaos theory studies the behavior of
systems that follow deterministic laws but appear to be random and unpredictable,
i.e., dynamical systems. Chaotic variables can go through all states in certain ranges
according to their own regularity without repetition [10–12]. A chaotic map is a map
that exhibits some type of chaotic behavior. In this work, we applied 2-D chaotic maps
that are common in the literature, namely, the Lozi map [18] given by{

y1(k) = 1− a|(y1(k − 1))|+ by(k − 1),

y(k) = y1(k − 1),
(1)
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z(k) =
y(k)− α
α′ − α

, (2)

where k is the iteration number. In this work, the values of y are normalized in the
range [0;1] to each decision variable in n-dimensional space of the optimisation problem.
Therefore, y1 ∈ [−0.6417; 0.6716] and (α;α

′
) = (−0.6418; 0.6716).

The parameters used in this study are a = 1.7 and b = 0.5, see Figure 1, these values
are suggested in [13].

Figure 1: Attractor and temporal series of the Lozi map.

2.2 Two-phase methods and basic BCOA

In this section we briefly recall the BCOA introduced by Ying Song [1]. Many chaotic
strategies in global optimization consist of two phases: the global phase and the local
phase. During the global phase, chaotic points are drawn from the domain of searches
X according to a certain, often uniform, distribution. Then, the objective function is
evaluated in these points. During the local phase, the sample points are manipulated
by means of local search to yield a candidate global minimum. Consider the following
optimization problem for a nonlinear function:

minf(X), X = [x1, x2, x3, ....., xn],

Li ≤ xi ≤ Ui.

The chaotic variables are
Z(k+1) = g(Zk),

where Zk are chaotic states generated by the chaotic equation.
The basic process of the BCOA [1] strategy can be described as follows.
Step 1: also called the first carrier wave. Define a chaotic sequences generator based

on the Logistic map. Generate a sequence of the chaotic points and map it to a sequence
of decision points in the original decision space. Then, calculate the objective functions
with respect to the generated decision points, and choose the point with the minimum
objective function as the current optimum.

The ergodic area of chaotic variables to the variance range of optimisation variables
is

Xk = c+ d · Zk,
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where c and d are constant vectors such as amplification gains and, respectively, consist
of n elements ci = Li and di = Ui − Li.

Step 2: also called the second carrier wave. The current optimum is assumed to be
close to the global optimum after certain iterations, and it is viewed as the center with a
little chaotic perturbation and the global optimum is obtained through the fine search.
Repeat the above two steps until some specified convergence criterion is satisfied, and
the global optimum is obtained.

The approach of the second carrier wave is as follows:

X = X∗ + βX∗(0.5− Z),

so the search is on both two sides of the sub-optimal solution. Here X∗ is the so far best
solution. β is the parameter of the second carrier.

We have

−0.5β ≤ β(0.5− Z) ≤ 0.5β as β ≥ 0, (3)

0.5β ≤ β(0.5− Z) ≤ −0.5β as β ≤ 0, (4)

so the search is on both two sides of the sub-optimal solution.

3 Proposed EBCOA

3.1 Block flow diagram of EBCOA

Applying the local search technique has been hot and can bring two benefits to the whole
search procedure. First, the search can be driven into a better area further from local
optima. Second, but not less important, the exploitation of some promising areas of the
search space can be enhanced so as to speed up the convergence of the search.

The BCOA method [1] is then improved by the local search around every point
obtained by the chaotic series. The logistic map [1, 6, 7] is usually adopted in the COA.
But the distribution of chaotic sequences produced by the logistic map is uniformly
leading to the slow constringent. The Lozi map marked by (1) is a Gaussian map with
which we replace the logistic map to accelerate the rate of convergence.

The EBCOA can be illustrated as follows, where Mg, Ml and Mgl are the maximum
number of iterations of the chaotic global search, maximum number of iterations of the
chaotic local search and maximum number of iterations of the chaotic local search in the
global search, respectively. β is the step size in the chaotic local search, x̄i is the best
solution.

3.2 Step-size control

It is well-established that the convergence of a chaotic optimization algorithm directly
depends on how it controls the step size. Moreover, the step-size control influences to a
large extent the rate at which a chaotic optimization algorithm approaches the optimum.
The step-size adaptation mechanisms are all based on the idea that the smaller the step
size, the higher the probability of sampling good solutions.
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Figure 2: Block flow diagram of the EBCOA.

4 Simulation Results

In applied mathematics, test functions, known as artificial landscapes, are useful to eval-
uate characteristics of optimization algorithms. For testing our approach, and from the
standard set of benchmark problems available in the literature, we use two well known
nonlinear benchmark functions [21, 22]. In our study, we overcome this limitation using
a number of dimensions 2 and comparing with other heuristic optimization algorithms.
The Griewank function has many irregularities but there is only one unique global min-
imum. The Rastrigin function has many local optimal points and one unique global
minimum. Table 1 resumes the global optimum, the function value at global optimum
and the search range used for each test function. Figure 2 presents the plot for each test
function. All the programs were run on a 2 GHz Pentium IV processor with 2 GB of
random access memory in the MATLAB. In each case study, 50 independent runs were
made for each of the EBCOA methods. In the tested cases to benchmark problems, the
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maximum numbers of iterations maxK and maxK
′

were 10000 and 10000 iterations.

Figure 3: A perspective view and the related contour lines or some of functions when n = 2.

4.1 Results for the Rastrigin function

BCOA EBCOA

K
′

β optimum optimum
1001 700 4.2752e-6 0
1001 500 4.7997e-9 0
1001 400 1.1219e-11 0
2405 200 3.5527e-15 0
1023 0.1 3.9080e-14 3.90798505 e -14
6965 0.01 4.3343e-13 4.192202141 e -13

maxK
′

1e -3 2.6392e-5 5.419204974544 e - 6

maxK
′

1e -4 4.7111e-4 8.3677132572291 e-5

maxK
′

-(1 e -3) 2.8008e-5 2.1552183152806 e-5

maxK
′

-(1 e -4) 4.7392e-4 5.0020093164866 e -5

Table 1: Rastrigin optimum for n = 2 with different β.
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BCOA EBCOA

optimum β K
′

K
′

100 1206 10
0 10 399 10

1 368 10
-100 1918 10
-10 421 10

Table 2: Number of iterations with different β.

From Table 2, for β ≥ 200, the EBCOA can find the actual optimum 0. Here
|β| ∈ [1e − 4, 200]∪] − 120,−(1e − 4)]. The optimum is improved. From Table 3 for
β ∈]0.1, 100], the EBCOA can also find the actual optimum 0 but with the number of
iterations less than that in the BCOA.

The optimum value and the convergence speed are better than those in the COA [7]
and its improvements, such as the MSCOA [19], COA-BFGS [14] and other evolutionary
algorithms (such as the GA, PSO and its improvements) [20–22].

4.2 Results for the Griewank function.

BCOA EBCOA

K
′

β optimum optimum
802 11.12 0 0
346 11.10 0.2533 0
904 -9.93 0 0
372 -9.91 0.2516 0

Table 3: Griewank optimum for n = 2 with different β.

BCOA EBCOA

optimum β K
′

K
′

11.09 802 10
10 550 10

0 1.60 347 10
-9.90 904 10
-10 489 10

-1.33 369 10

Table 4: Number of iterations with different β.

From Table 4 we find that, for β ≥ 11.09 and β ≤ −9.90, the EBCOA can always find
the actual optimum 0, and for β ∈ [1.60, 11.09]∪ [9.90,−1.33], the EBCOA can also find
the actual optimum 0 but with the number of iterations less than that in the BCOA.
The optimum value and the convergence speed are better than those in the COA [7]
and its improvements such as the MSCOA [19], COA-BFGS [14] and other evolutionary
algorithms (such as the GA, PSO and its improvements) [20–22].
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5 Conclusion

Based on the ergodic property, chaos is adopted to enrich the search behavior and pre-
vent solutions from being trapped in the local optimum in optimization problems. This
paper focuses on exploring the effects of chaotic maps and giving guidance for improv-
ing the Bi-directional chaotic optimization algorithm in solving optimization problems.
Through proposing a new algorithm, the EBCOA, we have improved the BCOA doing
some modification in the global step of research, we refined the final solution using a
second bi-directional method of local search. The presented study allows us to conclude
that the proposed method is fast and converges to a good optimum.
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fast observer for the nonlinear closed loop with the obtained variable matrix. The
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1 Introduction

In a generator system, the Double Feed Induction Machine (DFIM) is more used in
different speed wind systems for electricity production [1], where in motor mode, it is
found in high power applications such as traction, marine propulsion and pump storage
systems [2,3]. In this application, the DFIM works in motor operation, it is supplied by
two Voltage Inverters (VI), one is for the stator and the second is for the rotor. This case
is explained in Figure 1. The switching state of the VI is checked according to the counted
values of the flux and the angle of this flux from the measured electrical amounts (voltages
and currents). The switching table that gives the control sequence of the inverter is
elaborated based on the ANN technique as the developed control ameliorates the torque
reply by minimizing the oscillations compared to the conventional table control. The
way exposed in this paper is the Direct Torque Control (DTC) which is applied to
ensure a good dynamic performance and stability. The control is supported by the initial
information on the flux, the rotor position and its fastness. In most cases, the latter is
gained by a mechanical sensor. However, this demands a location installation that gives
difficulty access or requires more space, decreases reliability in difficult environments and
rises the expense of the machine. In this content, the Extended Kalman Filter (EKF)
is used to estimate the speed of the DFIM as a work of the measured stator and rotor
electrical variables [4].

This paper is organized as follows. Section 2 and Section 3 give, with no details, the
modeling and control by DTC-ANN strategy of the DFIM with a speed sensor. Section
4 is dedicated to estimating the rotor speed by the EKF used in the evolved strategy.
Section 5 introduces the simulation effects obtained by the application of the DTC-ANN
strategy with and without a speed sensor. Concluding remarks are given in Section 6.

Figure 1: General schema of a DFIM powered by two Inverters.

2 Modeling of the DFIM

In order to achieve a good dynamic performance in DFIM control, it is necessary to have
the model which represents the machine’s behavior, not only in the permanent regimes,
but also in the transient regimes. The modelling of the DFIM is based on the general
equations in Concordia transformation applied on the stator and rotor windings, these



376 T. DJELLOULI, S. MOULAHOUM, A. MOUALDIA, M.S. BOUCHERIT AND P. WIRA

equations are given as follows [5]:{
Vαs = RsIαs + dφαs

dt ,

Vβs = RsIβs +
dφβr
dt ,

(1)

{
Vαr = RrIαr + dφαr

dt + ωφβr,

Vβr = RrIβr +
dφβr
dt − ωφαr,

(2){
φαs = LsIαs +MIαr,
φβs = LsIβs +MIβr,

(3){
φαr = MIαs + LrIαr,
φβr = MIβs + LrIβr,

(4)

where ωs, ω are the stator and rotor pulsations, ω = pΩ. Ω is the mechanical rotating
speed. The angular relationship is defined by Figure 2 [6]:

Figure 2: Stator and rotor flux position in the DFIM.

θs = θr + θ − γ, (5)

θs : Angular position of the rotating reference α− β,
θr : Angular position relative to α axis,
θ : The electrical angular position of the rotor relative to the stator reference frame.

So, in the steady state (dγ/dt = 0) and with
dθs
dt = ωs,

dθ
dt = ω,

ωs = ω + ωr,

(6)

the dynamical equation is given by

J
dΩ

dt
= Tem − Tr −KfΩ (7)

and the electromagnetic torque equation is

Tem =
P ·M
Lr

(ΦαrIβs − ΦβrIαs) . (8)
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The motor is powered directly by two three-phase voltage inverters, as it is represented
in Figure 1.

3 Strategy Applied on DFIM

The system, studied in this work, is the DFIM powered by two voltage inverters (VI)
for the stator and the rotor, Fig.1. The switching states of the inverters are generated
using a direct torque control (DTC) strategy, where the current and voltage sensors are
needed [7]. The DTC makes it possible to control the optimum electromagnetic torque
from the flow metrics and their positions. The main advantages of the DTC applied to
the induction machine are:

• The DTC has a simple structure and a robust control, if one ensures a good quality
of the estimation of the flows during operation, and consequently, a good estimate
of the couple.

• The DTC with two ST (switching tables) provides excellent torque dynamics, but
the positions of the stator and rotor flows and the angle between these fluxes must
be carefully controlled. In this paper, a separate control of the stator and rotor
flows is proposed. In order to apply the DTC strategy to two voltage inverters
on the DFIM, we define a first ST to control the stator flux vector and a second
ST to control the rotor flux vector. The next part of the control strategy controls
the interaction between the two streams. As a result, it is possible to regulate the
speed as long as the electromagnetic torque is controllable [7].

By using the stator flux ~Φs and the rotor flux ~Φr vectors as state variables, the DFIM
electromagnetic torque can be expressed as follows [7, 8]:

−−→
Tem = 3

2 ·
PM
σsLr

(
~Φs ∧ ~Φr

)
,

‖Tem‖ = K ·
(∥∥∥~Φs∥∥∥ · ‖−→Φr‖) · sin(γ),

(9)

where P is the number of pole pairs, Ls, Lr are the stator and rotor self-inductances, M
is the mutual inductance, and σ = 1− M

LsLr
is the dispersion coefficient. ~Φs and ~Φr are

the stator and rotor flux space vectors and γ is the angle between the fluxes as shown in
Figure 2. The constant ′K ′ is defined as below:

K =
3

2
· PM

σLsLr
. (10)

By analyzing relation (9), two strategies can be proposed for the torque control:

• by fixing the flux module and adjusting the γ angle,

• by fixing the γ angle and adjusting the flux module.

In this study, the authors [6,7] chose the first strategy. The DTC strategy applied to
this system will provide fast and robust torque and flux responses.
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3.1 Stator and rotor inverter control

The first inverter is connected to the stator winding (Stator Inverter (SI)), and the
second one is connected to the rotor winding (Rotor Inverter (RI)), S1, S2, and S3 are
the switching sequence sent to the IGBT gates. The instantaneous value of the stator flux
and its position are estimated from the measured electrical quantities. Using hysteresis
comparators, the flux and the position are controlled directly and independently with an
appropriate selection of the voltage vector imposed by the inverter. The inverter provides
eight voltage vectors. These vectors are chosen by a switching table based on the errors
of flux and its position. Table 1 is deduced according to the switching sequence from the
model of the induction machine in a stationary reference and the expression of the stator
voltage.

Table 1. Voltage Inverter Table.

voltage
vector

S1 S2 S3 Vab Vbc Vca

V0 0 0 0 0 0 0
V1 1 0 0 +U 0 −U
V2 1 1 0 0 +U −U
V3 0 1 0 −U +U 0
V4 0 1 1 −U 0 +U
V5 0 0 1 0 −U +U
V6 0 1 0 +U −U 0
V7 1 1 1 0 0 0

The stator flux is estimated from the following relation:

Φs(t) =

∫
(Vs −RsIs) dt. (11)

Over the time interval [0, Ts], corresponding to a sampling period Te, it is considered
that the term RsIs is negligible compared to the voltage Vs, thus

Φs = Φs0 + VsTe. (12)

The stator and rotor flux vectors can be estimated directly into the stator and rotor
voltage vectors {

d
dt
~φs = ~Vs,

d
dt
~φr = ~Vr.

(13)

We integrate (11) during a sampling period Te. Thus, the following equation is obtained:{
Φs (tn+1) = Φs (tn) + Te · Vs (tn),

Φr (tn+1) = Φr (tn) + Te · Vr (tn).
(14)

The voltage vector application time is Te. Consequently, Vs and Vr remain constant
during the time interval [tn, tn+1] , where tn+1 = tn + Te. Equation (8) can be rewritten
as  Φn+1

s =
−→
Φns + Te ·

−→
V ns ,

Φn+1
r =

−→
Φnr + Te · V nr .

(15)
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For each sampling time, the appropriate output voltage vector of the inverter can be
deduced from the estimated values of the flux. In Figure 3, six sectors are defined in the
stationary reference frame (α, β). Therefore, if θs (or θr ) is in the same sector, the use
of an identical voltage vector leads to a similar phase and amplitude evolution of the flux
vector. The rotor flux vector is defined in the same way [6]. Thus, the applied voltage

Figure 3: Applicable voltage vectors for the stator flux vector control.

vectors depend on the following:

1. The sector number (according to θs and θr ).

2. The required flux angular position.

3. The required flux magnitude evolution.

This is illustrated in ST shown in Table 2. Two independent STs are implemented in the
control system. They allow controlling the rotor and stator fluxes. The DTC strategy is
aimed to separate the stator and rotor flux adjustment. In this way, the flux interaction
is controlled, and consequently, the electromagnetic torque Tem(13).

Table 2. Switch positions and their voltage vectors
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3.2 DTC-ANN applied on DFIM

The proposed DTC-ANN consists to replace the switching table which provides the
voltage vector, the Artificial Neural Network (ANN) switching table inputs are:

- ∆Φs The flux error.

- ∆Φr : The angle error.

Ns is the number of sector from 1 to 6. This ANN is based on forward-forward propagation
with three hidden layers having, respectively [4, 14], 16 neurons in each layer and one
connection as activation functions. The output layer has three neurons providing a
voltage vector [9], the proposed ANN switching table is shown in Figure 4. It is well

Figure 4: The ANN structure for switching table.

known that the stator windings and the rotor windings are fed by two three-phase systems
where the rotor current frequency has a slip. The angular relation of rotor can be deduced
as (Figure 2):

θr = γ + θs − θ. (16)

The global scheme of the proposed control strategy is illustrated in Figure 5. In this
diagram, Ω is the mechanical rotation speed measured by a sensor installed on the rotor.

4 Speed Sensorless Control by EKF

The rotor position and DFIM speed data are indispensable in the check. They are
always obtained via a mechanical speed sensor. But, this sensor needs a place for its
installation, moreover, this leads to some problems in its installation; and it is affected
by noises and vibrations. Various techniques have been proposed in the literature to
remove this mechanical sensor. Among these techniques, there is the speed estimation
using the EKF. This Kalman filter is an observer for the nonlinear closed loop with the
obtained variable matrix. In every calculation stage, the Kalman filter gives the new
values of the state variables of the DFIM. The prediction values are made by minimizing
the noise impact and modeling the parameter faults or the unstable state. Noises are
supposed to be white, Gaussian and not correlated with the estimated states [10].
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Figure 5: Global block diagram of the DTC with a mechanical speed sensor.

4.1 Selection of DFIM model

We consider the angular rotor speed ω as a state variable which increases the size of the
state vector, in this case, this state vector becomes

x = [iαs iβs iαr iβr ω]
T
, (17)

u = [vαs vβs vαr vβr]
T . (18)

The time-domain of the motor model is given as[11]:

ẋ = f(x, u) = Ax+Bu, (19)

y = h(x) = [iαsiβs]
T
, (20)

A =


− RS
σLS

(1−σ)
σ ω RrM

σLsLr
M
σLS

ω

− (1−σ)
σ ω − RS

σLS
− M
σLSLr

ω RrM
σLSLr

RSM
σLsLr

−M
σLr

ω − Rr
σLr

− 1
σω

M
σLr

ω RSM
σLSLr

1
σω − Rr

σLr

 , (21)

B =


1
σLs

0 − M
σLsLr

0

0 1
σLs

0 − M
σLsLr

− M
σLsLr

0 1
σLr

0

0 − M
σLsLr

0 1
σLr

 , (22)

C =

[
1 0 0 0 0
0 1 0 0 0

]
. (23)
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The above equations can be written also as

d

dt


Iαs
Iβs
Iαr
Iβr
ω

 =


a1 a2pΩ a3 a4pΩ 0

−a2pΩ a1 −a4pΩ a3 0
a5 −a6pΩ a7 −a8pΩ 0
a6pΩ a5 a8pΩ a7 0

0 0 0 0 1



Iαs
Iβs
Iαr
Iβr
ω

+Bu (24)

with

Bu =


b1 0 b2 0
0 b1 0 b2
b2 0 b3 0
0 b2 0 b3
0 0 0 0



Vαs
Vβs
Vαr
Vβr

 , (25)

[
Iαs
Iβs

]
=

[
1 0 0 0 0
0 1 0 0 0

] [
Iαs Iβs Iαr Iβr ω]T , (26)

where the parameters ai and bi are given by

a1 = − Rs
σLs

, a2 = (1−σ)
σ , a3 = RrM

σLsLr
, a4 = M

σLs
, (27)

a5 = RsM
σLsLr

, a6 = −M
σLr

, a7 = − Rr
σLr

, a8 = 1
σ , (28)

b1 = 1
σLs

, b2 = − M
σLsLr

, b3 = 1
σLr

. (29)

4.2 DFIM discretization model

The DFIM discrete state space model is obtained from equations (23) and (24) as follows
[10,12]:

Xk+1 = f (Xk, Uk) = AkXk +BkUk, (30)

Yk = h (Xk) = CkXk, (31)

where Ak ,Bk and Ck are the discredited system matrix, input matrix and output matrix,
respectively, thus  Ak = 1 + TA,

Bk = BT,
Ck = C,

(32)

where T is the sampling time and I is an identity matrix.

Ak =


1 + a1T a2pΩT a3T a4pΩT 0
−a2pΩT 1 + a1T −a4pΩT a3T 0
a5T −a6pΩT 1 + a7T −a8pΩT 0
a6pΩT a5T a8pΩT 1 + a7T 0

0 0 0 0 1

 ,

Bk = T


b1 0 b2 0
0 b1 0 b2
b2 0 b3 0
0 b2 0 b3
0 0 0 0

 ,
Ck =

[
1 0 0 0 0
0 1 0 0 0

]
,

(33)
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Xk =


Iαs(k)
Iβs(k)
Iαr(k)
Iβr(k)
ω(k)

 , Xk+1 =


Iαs(k + 1)
Iβs(k + 1)
Iαr(k + 1)
Iβr(k + 1)
ω(k + 1)

 , Uk =


Vαs(k)
Vβs(k)
Vαr(k)
Vβr(k)

 . (34)

Let v be the noise vector of the system which perturbs the state vector, and w be the
measurement noise vector which perturbs the measurement vector [11]{

Xk+1 = f (Xk, Uk) + wk,
Yk = h (Xk) + vk.

(35)

The Kalman filter considers the system noise vector and the measurement noise vector
as the Gaussian white noise of zero mean, which is free of the basic state vector and their
covariance matrices, these are, respectively, Q and R, defined by{

Q = cov(w) = E
{
wwT

}
,

R = cov(v) = E
{
vvT

}
.

(36)

4.3 Determination of the noise and state covariance matrices

To obtain the best considerable speed value, it is necessary to use exact initial values for
the covariance system matrices of the noise measurement and the state noise Q, R and
P , respectively [12].They have important results on the stability filter and convergence
time. These matrices are supposed to be matrices of diagonal covariance.

4.4 Implementation of the discretized EKF algorithm

The filtering algorithm is formed of two major steps, a prediction step and a filtering
step [10, 11].

g In the prediction process, the following predicted states values X̂(k + 1) are got
by using a mathematical model (state-variable equations), also the former values
of the estimated states. Therefore, the predicted state covariance matrix (P) is
gained before the new measurement values. At the end, the mathematical model
and also the covariance matrix of the system (Q) are used.

g During the second step, which is the filtering step, the following estimated states,
X̂(k + 1), are got from the predicted ones, they estimate X(k + 1) by adding a
correction term K(y − ŷ) to the predicted value.

This correction term is a weighted variety between the current output vector (y) and
the predicted output vector ( ŷ ). Here K is the Kalman gain. The estimated states are
gained from the following stages [13,14].

• Initialization of the state vector and covariance matrices.

• Prediction of the state vector

X̂k+1/k = f
(
Xk/k, Uk

)
. (37)

• Covariance estimation of prediction.
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• Kalman filter gain computation.

• Covariance matrix of estimation error.

Finally, the global scheme of the proposed control strategy is illustrated in Figure 6.

Figure 6: Global block diagram of the DTC without speed sensor by the EKF observer.

5 Results and Discussion

The DFIM in this work is: 4kW; 220/380V − 50Hz 15/8.6A; 1440rpm whose nominal
parameters are reported in the Appendix. The simulations of the DFIM control and
speed estimation method with the extended Kalman filter have been done using the
MATLAB/Simulink software. An Artificial Neural Network (ANN) switching table and
a Classical Integral Proportional(IP) controller were used for the speed control and direct
torque control. Simulation results are shown in Figure 7. Figure 7(a) represents the speed
response using the mechanical sensor after applying a step at (t = 0.1s); then the load
torque application at (t = 0.5s). After that the reversal of the rotation direction at
(t = 1s). Figure 11(b) presents the same answer estimated speed by EKF, it shows also
the speed measured by the sensor and that estimated (without the sensor). Both curves
coincide and follow very well the reference, especially in the steady state. Almost the same
evolution of the magnitudes is noted: Electromagnetic torque in Figure 11(c) and (d);
Stator Currents in Figure 7 (e) and (f); Stator flux circle and rotor flux circle in Figure
7 (g) and (h). Except in the case of a sensorless control, there is a small fluctuation due
to the estimation by the Kalman filter. These results are shown in diagram, we develop
a speed sensorless DTC strategy of a DFIM using the EKF, eliminating the mechanical
speed sensor. Note that the EKF estimator presents a good tracking for the rotor speed
with a negligible error in steady state, the EKF is still robust during the load application
and reversal of the motor speed.
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Figure 7: Simulation results.
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6 Conclusion

In this paper, the direct torque control strategy by two switching tables developed by
ANN technique applied on DFIM, with and without a mechanical sensor, is presented.
In order to guarantee a good dynamic performance of the overall system and to solve the
problem of control, accompanied generally with the mechanical sensor fault, the EKF
approach is used as a speed observer in the DTC, which makes it possible to obtain a
good control for the voltages generated by the inverters, and consequently, a good metric
of flux and torque, in order to ensure a good dynamic performance of the controlled
system without a mechanical speed sensor. The results obtained show a good regulation
of the electrical and magnetic quantities, which ensures the efficiency of this strategy
without a speed sensor and the stability of the system in the event of load or sensor
fault.
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APPENDIX Table 3. DFIM parameters used in simulation.

Stator resistance Rs = 1.2Ω
Rotor resistance Rr = 1.8Ω
Stator inductance Ls = 0.1554H
Rotor inductance Lr = 0.1554H
mutual inductance M = 0.15H
Inertia moment J = 0.07Kg.m2

Coefficient of viscous friction f = 0.001
Number of pairs of poles P = 2
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1 Introduction

The LFDTM and LFVIM are powerful approximate methods for various kinds of linear
and nonlinear PDEs with LFDOs. For example, the Laplace variational iteration method
(LFLVIM) has been applied to PDEs in physics and mathematics. Jassim et al. applied
this method to diffusion and wave equations [1] and the Laplace equation [2]. Further-
more, Liu et al. [3] used the LFLVIM for a fractal vehicular traffic flow, and Li et al. to
a fractal heat conduction problem [4]. Furthermore, the LFDTM has been applied to
solve ordinary and partial differential equations on the Cantor sets. Jafari et al. utilized
this method to find the approximate solution of ODEs [5–7]. Yang et al. applied the
LFDTM to solve a two dimensional diffusion equation [8].

Our aim is to extend the applications of the proposed methods to obtain the analytical
approximate solutions to the Laplace equation within local fractional derivative operators
of the form

∂2ϑψ(η, κ)

∂κ2ϑ
+
∂2ϑψ(η, κ)

∂η2ϑ
= 0 (1)

with

ψ(η, 0) = φ1(η),
∂ϑ

∂κϑ
ψ(η, 0) = φ2(η), (2)

where φ1(η) and φ2(η) are given functions.
There are many approximate and numerical methods utilized to solve PDEs within

LFDOs, namely, the LFFDM [9], LFDM [10], LFSEM [11,12], LFVIM [13–15], LFLDM
[16], RDTM [17] and SVIM [18].

2 Local Fractional DTM

In the following the basic definitions and fundamental operations of the LFDTM are
shown [8].

The two dimensional differential transform of the LF analytic function ψ(η, κ) via
LFDOs is

Ψ(β, ε) =
1

Γ(1 + βϑ)

1

Γ(1 + εϑ)

[
∂(β+ε)ϑψ(η, κ)

∂ηβϑ∂κεϑ

]
η=η0,κ=κ0

, (3)

where β, ε = 0, 1, . . . , n and 0 < ϑ ≤ 1.
The 2D differential inverse transform of Ψ(β, ε) via LFDOs is

ψ(η, κ) =

∞∑
β=0

∞∑
ε=0

Ψ(β, ε)(η − η0)βϑ(κ− κ0)εϑ. (4)

By combining (3) and (4), it can be obtained that

ψ(η, κ) =

∞∑
β=0

∞∑
ε=0

1

Γ(1 + βϑ)

1

Γ(1 + εϑ)

[
∂(β+ε)ϑψ(η, κ)

∂ηβϑ∂κεϑ

]
η=η0,κ=κ0

(η − η0)βϑ(κ− κ0)εϑ.

(5)
If η0 = 0 and κ0 = 0, then (3) is shown as follows:

Ψ(β, ε) =
1

Γ(1 + βϑ)

1

Γ(1 + εϑ)

[
∂(β+ε)ϑψ(η, κ)

∂ηβϑ∂κεϑ

]
η=0,κ=0

, (6)
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and (4) is expressed as follows:

ψ(η, κ) =

∞∑
β=0

∞∑
ε=0

Ψ(β, ε)ηβϑκεϑ. (7)

Theorem 2.1 Suppose that ψ(η, κ), ϕ(η, κ) and θ(η, κ) are local fractional analytic
functions and Ψ(β, ε), Φ(β, ε)and Θ(β, ε) are their corresponding local fractional differ-
ential transforms with order of fraction ϑ, then we have

1. If ψ(η, κ) = ϕ(η, κ) + θ(η, κ), then Ψ(β, ε) = Φ(β, ε) + Θ(β, ε).

2. If ψ(η, κ) = ϕ(η, κ) + θ(η, κ), then Ψ(β, ε) =
∑β
r=0

∑ε
s=0 Φ(β, ε− s)Θ(β − r, ε).

3. If ψ(η, κ) = aϕ(η, κ), where a is a constant, then Ψ(β, ε) = Φ(β, ε).

4. If ψ(η, κ) =
∂ϑ

∂ηϑ
ϕ(η, κ), then Ψ(β, ε) =

Γ(1 + (β + 1)ϑ)

Γ(1 + βϑ)
Φ(β + 1, ε).

5. If ψ(η, κ) =
∂ϑ

∂κϑ
ϕ(η, κ), then Ψ(β, ε) =

Γ(1 + (ε+ s)ϑ)

Γ(1 + εϑ)
Φ(β, ε+ 1).

6. If ψ(η, κ) =
∂(r+s)ϑ

∂ηrϑ∂κsϑ
ϕ(η, κ), then

Ψ(β, ε) =
Γ(1 + (β + r)ϑ)

Γ(1 + βϑ)

Γ(1 + (ε+ s)ϑ)

Γ(1 + εϑ)
Φ(β + r, ε+ s).

7. If ψ(η, κ) =
(η − η0)rϑ

Γ(1 + rϑ)

(κ− κ0)sϑ

Γ(1 + sϑ)
, Ψ(β, ε) =

δϑ(β − r)
Γ(1 + rϑ)

δϑ(ε− s)
Γ(1 + sϑ)

,

where the local fractional Dirac delta function is given by

δϑ(β − r) =

{
1, β = r,
0, β 6= r,

and δϑ(ε− s) =

{
1, ε = s,
0, ε 6= s.

3 Local Fractional LVIM

Let us consider the following local fractional PDEs on the Cantor sets with LFDOs:

Lϑϕ(η, κ) +Rϑϕ(η, κ) +Nϑϕ(η, κ) = ω(η, κ), (8)

where Lϑ =
∂mϑ

∂κmϑ
denotes the linear LFDO, Rϑ is the remaining linear operator, Nϑ

represents the general nonlinear LFDO, and ω is the source term.
According to the rule of LFVIM, the correction local fractional functional for (8)

is [13–15]

ϕn+1(κ) = ϕn(κ) + (9)

1

Γ(1 + ϑ)

∫ κ

0

σ(κ− ξ)ϑ

Γ(1 + ϑ)
(Lϑ [ϕn(ξ)] +Rϑ [ϕ̃n(ξ)] +Nϑ [ϕ̃n(ξ)]− ω(ξ)) (dξ)ϑ,

where σ(κ−ξ)ϑ
Γ(1+ϑ) is a fractal Lagrange multiplier.
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For initial value problems of (8), we can start with

ϕ0(η, κ) = ϕ(η, 0) +
κϑ

Γ(1 + ϑ)
ϕ(ϑ)(η, 0) + · · ·+ κ(m−1)ϑ

Γ(1 + (m− 1)ϑ)
ϕ((m−1)ϑ)(η, 0). (10)

We now take the local fractional Laplace transform for (9), we get

L̃ϑ {ϕn+1(κ)} = L̃ϑ {ϕn(κ)}+ (11)

L̃ϑ

{
1

Γ(1 + ϑ)

∫ κ

0

σ(κ− ξ)ϑ

Γ(1 + ϑ)
(Lϑ [ϕn(ξ)] +Rϑ [ϕ̃n(ξ)] +Nϑ [ϕ̃n(ξ)]− ω(ξ)) (dξ)ϑ

}
,

or, equivalently,

L̃ϑ {ϕn+1(κ)} = L̃ϑ {ϕn(κ)}+ L̃ϑ

{
σ(κ)ϑ

Γ(1 + ϑ)

}
× (12)

L̃ϑ {Lϑ [ϕn(ξ)] +Rϑ [ϕ̃n(ξ)] +Nϑ [ϕ̃n(ξ)]− ω(ξ)} .

Take the local fractional variation of (12), which is given by

δϑ
(
L̃ϑ {ϕn+1(κ)}

)
= δϑ

(
L̃ϑ {ϕn(κ)}

)
+ (13)

δϑ
(
L̃ϑ

{
σ(κ)ϑ

Γ(1 + ϑ)

}
L̃ϑ {(Lϑ [ϕn(κ)] +Rϑ [ϕ̃n(κ)] +Nϑ [ϕ̃n(κ)]− ω(κ))}

)
.

By using the computation of (13), we get

δϑ
(
L̃ϑ {ϕn+1(κ)}

)
= δϑ

(
L̃ϑ {ϕn(κ)}

)
+ L̃α

{
σ(κ)ϑ

Γ(1 + ϑ)

}
δϑ
(
L̃ϑ {Lϑ [ϕn(κ)]}

)
= 0. (14)

Hence, from (14) we get

1 + L̃ϑ

{
σ(κ)ϑ

Γ(1 + ϑ)

}
smϑ = 0, (15)

where

δϑ
(
L̃ϑ {Lϑ [ϕn(κ)]}

)
= δϑ

(
smϑL̃ϑ {ϕn(κ)} − s(m−1)ϑϕn(0)− · · · − ϕ((m−1)ϑ)

n (0)
)

= smϑδϑ
(
L̃ϑ {ϕn(κ)}

)
. (16)

Therefore, we have

L̃ϑ

{
σ(κ)ϑ

Γ(1 + ϑ)

}
= − 1

smϑ
. (17)

Taking the inverse version of the Yang-Laplace transform into (17), we have

σ(κ)ϑ

Γ(1 + ϑ)
= L̃ϑ

(
− 1

smϑ

)
= − κ(m−1)ϑ

Γ(1 + (m− 1)ϑ
. (18)
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Hence, we have the following iteration algorithm:

L̃ϑ {ϕn+1(κ)} = L̃ϑ {ϕn(κ)} − 1

smϑ
L̃ϑ {Lϑ [ϕn(κ)] +Rϑ [ϕn(κ)] +Nϑ [ϕn(κ)]− ω(κ)}

= L̃ϑ {ϕn(κ)} − 1

smϑ
L̃ϑ

{
smϑϕn(κ)− · · · − ϕ((m−1)ϑ

n (0)
}

− 1

smϑ
L̃ϑ {Rϑ [ϕn(κ)] +Nϑ [ϕn(κ)]− ω(κ)}

=
1

sϑ
ϕn(0)− 1

s2ϑ
ϕ(ϑ)
n (0)− · · · − 1

smϑ
ϕ((m−1)ϑ
n (0) (19)

− 1

smϑ
L̃ϑ {Rϑ [ϕn(κ)] +Nϑ [ϕn(κ)]− ω(κ)} ,

where the initial value reads as

L̃ϑ {ϕ0(η, κ)} =
1

sϑ
ϕ(η, 0) +

1

s2ϑ
ϕ(ϑ)(η, 0) + · · ·+ 1

smϑ
ϕ((m−1)ϑ)(η, 0). (20)

Therefore, the local fractional series solution of (8) is

ϕ(η, κ) = lim
n→∞

L̃−1
ϑ

(
L̃ϑ {ϕn(η, κ)}

)
. (21)

4 Applications

In this section, an example for the Laplace equation involving LFDOs is presented in
order to demonstrate the simplicity and the efficiency of the above methods.

Example 4.1 Let us consider the Laplace equation within LFDOs:

∂2ϑϕ(η, κ)

∂κ2ϑ
+
∂2ϑϕ(η, κ)

∂η2ϑ
= 0, (22)

ϕ(η, 0) = −Eϑ(ηϑ),
∂ϑϕ(η, κ)

∂κϑ
= 0. (23)

I. Below we present the LFDTM.
Using the LFDTM on both sides of (22), we can write

Γ(1 + (ε+ 2)ϑ)

Γ(1 + εϑ)
Φ(β, ε+ 2) +

Γ(1 + (β + 2)ϑ)

Γ(1 + βϑ)
Ψ(β + 2, ε) = 0. (24)

The transformed initial conditions are

Φ(β, 0) = − 1

Γ(1 + βϑ)
, Φ(β, 1) = 0. (25)
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In view of (24) and (25), the results are listed as follows:

Ψ(0, 0) = −1, Ψ(0, 1) = 0, Ψ(0, 2) =
1

Γ(1 + 2ϑ)
, Ψ(0, 3) = 0,

Ψ(0, 4) =
1

Γ(1 + 4ϑ)
, Ψ(0, 5) = 0, Ψ(0, 6) =

1

Γ(1 + 6ϑ)
, Ψ(1, 0) = − 1

Γ(1 + ϑ)
,

Ψ(1, 1) = 0, Ψ(1, 2) =
1

Γ(1 + ϑ)

1

Γ(1 + 2ϑ)
, Ψ(1, 3) = 0,

Ψ(1, 4) = − 1

Γ(1 + ϑ)

1

Γ(1 + 4ϑ)
, Ψ(1, 5) = 0, Ψ(1, 6) =

1

Γ(1 + ϑ)

1

Γ(1 + 6ϑ)
,

Ψ(2, 0) = − 1

Γ(1 + 2ϑ)
, Ψ(2, 1) = 0,

Ψ(2, 2) =
1

Γ(1 + 2ϑ)

1

Γ(1 + 2ϑ)
, Ψ(2, 3) = 0, Ψ(2, 4) = − 1

Γ(1 + 2ϑ)

1

Γ(1 + 4ϑ)
,

Ψ(2, 5) = 0, Ψ(2, 6) =
1

Γ(1 + 2ϑ)

1

Γ(1 + 6ϑ)
, Ψ(3, 0) = − 1

Γ(1 + 3ϑ)
, Ψ(3, 1) = 0,

Ψ(3, 2) =
1

Γ(1 + 3ϑ)

1

Γ(1 + 2ϑ)
, Ψ(3, 3) = 0, Ψ(3, 4) = − 1

Γ(1 + 3ϑ)

1

Γ(1 + 4ϑ)
,

Ψ(3, 5) = 0, Ψ(3, 6) =
1

Γ(1 + 3ϑ)

1

Γ(1 + 6ϑ)
, Ψ(4, 0) = − 1

Γ(1 + 4ϑ)
, Ψ(3, 1) = 0,

Ψ(4, 2) =
1

Γ(1 + 4ϑ)

1

Γ(1 + 2ϑ)
, Ψ(4, 3) = 0, Ψ(4, 4) = − 1

Γ(1 + 4ϑ)

1

Γ(1 + 4ϑ)
,

Ψ(4, 5) = 0, Ψ(4, 6) =
1

Γ(1 + 4ϑ)

1

Γ(1 + 6ϑ)
, · · ·

and so on. Hence, ψ(η, κ) is evaluated as follows:

ψ(η, κ) =

∞∑
β=0

∞∑
ε=0

Ψ(β, ε)ηβϑκεϑ (26)

= −
[
1 +

ηϑ

Γ(1 + ϑ)
+

η2ϑ

Γ(1 + 2ϑ)
+ · · ·

] [
1− κ2ϑ

Γ(1 + 2ϑ)
+

κ4ϑ

Γ(1 + 4ϑ)
− · · ·

]
,

which is exactly the same as the solution obtained by the LFFDM [11] and it converges
to the closed form solution:

ψ(η, κ) = −Eϑ(ηϑ) cosϑ(κϑ). (27)

II. As the next step we apply the LFLVIM.
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In view of (19) and (22), we get the following iterative formula:

L̃ϑ {ϕn+1(η, κ)} = L̃ϑ {ϕn(η, κ)} − 1

s2ϑ
L̃ϑ

{
∂2ϑϕn
∂κ2ϑ

+
∂2ϑϕn
∂η2ϑ

}
= L̃ϑ {ϕn(η, κ)} − 1

s2ϑ

[
s2ϑL̃ϑ {ϕn(η, κ)} − sϑϕn(η, 0)− ϕ(ϑ)

n (η, 0)
]

− 1

s2ϑ
L̃ϑ

{
∂2ϑϕn(η, κ)

∂η2ϑ

}
=

1

sϑ
ϕn(η, 0) +

1

s2ϑ
ϕ(ϑ)
n (η, 0)− 1

s2ϑ
L̃ϑ

{
∂2ϑϕn(η, κ)

∂η2ϑ

}
. (28)

From (23), the initial value reads

ϕ0(η, κ) = −Eϑ(ηϑ). (29)

Hence, we get the first approximation, namely,

L̃ϑ {ϕ1(η, κ)} =
1

sϑ
ϕ0(η, 0) +

1

s2ϑ
ϕ

(ϑ)
0 (η, 0)− 1

s2ϑ
L̃ϑ

{
∂2ϑϕ0(η, κ)

∂η2ϑ

}
= − 1

sϑ
Eϑ(ηϑ) +

1

s3ϑ
Eϑ(ηϑ). (30)

The second approximation reads

L̃ϑ {ϕ2(η, κ)} =
1

sϑ
ϕ1(η, 0) +

1

s2ϑ
ϕ

(ϑ)
1 (η, 0)− 1

s2ϑ
L̃ϑ

{
∂2ϑϕ1(η, κ)

∂η2ϑ

}
= − 1

sϑ
Eϑ(ηϑ) +

1

s3ϑ
Eϑ(ηϑ)− 1

s5ϑ
Eϑ(ηϑ). (31)

The other approximations are written as

L̃ϑ {ϕ3(η, κ)} =
1

sϑ
ϕ2(η, 0) +

1

s2ϑ
ϕ

(ϑ)
2 (η, 0)− 1

s2ϑ
L̃ϑ

{
∂2ϑϕ2(η, κ)

∂η2ϑ

}
= − 1

sϑ
Eϑ(ηϑ) +

1

s3ϑ
Eϑ(ηϑ)− 1

s5ϑ
Eϑ(ηϑ) +

1

s7ϑ
Eϑ(ηϑ). (32)

Proceeding in this manner, we can derive the following formula:

L̃ϑ {ϕn(η, κ)} =
1

sϑ
ϕn−1(η, 0) +

1

s2ϑ
ϕ

(ϑ)
n−1(η, 0)− 1

s2ϑ
L̃ϑ

{
∂2ϑϕn−1(η, κ)

∂η2ϑ

}
=

n∑
r=0

(−1)r+1 1

s(2r+1)ϑ
Eϑ(ηϑ). (33)

Consequently, the LF series solution is

ϕ(η, κ) = lim
n→∞

L̃−1
ϑ

(
L̃ϑ {ϕn(η, κ)}

)
= L̃−1

ϑ

[ ∞∑
r=0

(−1)r+1 1

s(2r+1)ϑ
Eϑ(ηϑ)

]

= −Eϑ(ηϑ)

[ ∞∑
r=0

(−1)r
κ2rϑ

Γ(1 + 2rϑ)

]
= −Eϑ(ηϑ) cosϑ(κϑ), (34)

from Eqs. (27) and (34), the approximate solution of the Laplace equation (22) by using
the LFLVIM is the same result as that obtained by the LFDTM and it clearly appears
that the approximate solution remains closed form to the exact solution.
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5 Conclusions

In this work, the LFDTM and LFLVIM have been successfully applied to finding the
approximate analytical solutions for the Laplace equation with LFDOs. The solutions
obtained by the proposed methods are an infinite power series for the appropriate initial
condition, which can, in turn, be expressed in a closed form to the exact solution. The
example shows that the results of the LFDTM are in excellent agreement with the results
given by the LFLVIM and local fractional function decomposition method.
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Abstract: Solvability of Dirichlet’s problem for the subcritical fractional Burgers
equation is discussed here in the base spaces D((−∆)

s
2 ), s ≥ 0 fixed. A unique

solution in the critical case (α = 1
2
) for small data is obtained next as a limit of the

X
1
2α solutions to the subcritical equations, when the exponent α of (−∆)α tends to

1
2

+
.
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1 Introduction

We consider the Dirichlet boundary value problem for the fractional Burgers equation in
a bounded interval I ⊂ R

ut +
1

2
∇u2 + (−∆)αu = 0, x ∈ I ⊂ R, t > 0,

u = 0 on ∂I,

u(0, x) = u0(x),

(1)

where α ∈ [ 1
2 , 1] is a fractional exponent.

In our work we use the following Balakrishnan’s definition of the fractional Laplacian
(see [14]):

(−∆)βg =
sin(βπ)

π

∫ ∞
0

sβ−1(sI −∆)−1(−∆)g ds, g ∈ D(−∆), β ∈ (0, 1).
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Equivalence between the semigroup definition, Balakrishnan’s formula and Bochner’s
formula is a general result, see [14]. The above definition can be used to study problems
both in the case of a bounded and unbounded domain.

Over the last three decades a number of papers devoted to the Burgers equation
with fractional dissipation in R have been published (see [2, 3, 11, 12, 15]). In paper
[12], Kiselev, Nazarov and Shterenberg have conducted an extensive study for the 1-
dimensional Burgers equation in the periodic setting, which concerned the subcritical
cases 1

2 < α < 1, the critical case α = 1
2 , as well as the supercritical cases 0 < α <

1
2 . Karch, Miao and Xu investigated the asymptotics for the subcritical case in [11]
whereas Alibaud, Imbert and Karch studied the asymptotics for the critical as well as
supercritical case in [2]. In paper [15], the authors made use of the modulus of the
continuity method and Fourier localization technique to prove the global well-posedness

of the critical Burgers equation in critical Besov spaces Ḃ
1
p

p,1(R) with p ∈ [1,∞).
The global in time solvability of one-dimensional subcritical Burgers equation in

bounded domain was studied recently in [10] in two base spaces L2(I) and D((−∆)
s
2 )

with s > 1
2 . Moreover, it was shown there that the solutions to subcritical problems (1)

converge to the solution (not necessarily unique) of the critical problem when α→ 1
2

+
.

1.1 Description of the results

This paper is devoted to the global in time solvability and properties of solutions to
problem (1) for α ∈ [ 1

2 , 1] in a bounded domain I. Our aim is to include, in the subcritical
case of exponent α ∈ ( 1

2 , 1], the problem of interest in the framework of semilinear
parabolic equations with a sectorial positive operator (see [5, 9]). This offers a simple
but formalized proof of local solvability as well as the regularity of solutions. There are
different possible choices of the phase spaces for this problem. We choose D((−∆)

s
2 )

with s > 0 as the base spaces (in which the equation is fulfilled). The second section of
the paper is devoted to the local and then the global in time solvability of the subcritical
Burgers equation. Moreover, for small data we obtain a uniform in α ∈ ( 1

2 , 1] estimate

of the solutions uα in L∞(0, T ;D((−∆)
1
2 )) and L2(0, T ;D((−∆)

3
4 )), where T > 0 is

fixed but arbitrarily large. In Section 3, we show that for the small data the solutions
to subcritical problems (1) converge to the unique solution of the critical problem when

α→ 1
2

+
. It is a consequence of the well known compactness theorems. In this study, we

use a technique proposed in our recent publications [6–8,10].
Notation. Standard notation for Sobolev spaces is used. We indicate the dependence

of solution u of (1) on α ∈ ( 1
2 , 1], calling it uα. Let r− denote a number strictly less than

r but arbitrarily close to it.

2 Solvability of Subcritical Problem (1), α ∈ ( 1
2 , 1]

Formulation of the problem and its local solvability. Our first task is the local in
time solvability of the subcritical problem (1) for α ∈ ( 1

2 , 1]. We will use the standard
approach proposed by Dan Henry [9] for semilinear ’parabolic’ equations. We start from
recalling some usefull facts concerning Henry’s approach. So, when we have the abstract
Cauchy problem {

ut +Au = F (u), t > 0,
u(0) = u0,

(2)
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where

1. X is a Banach space. The space X is called the base space, that is, the space in
which the equation is fulfilled,

2. A : D(A)→ X is a sectorial positive operator in X,

3. F : Xγ → X is Lipschitz continuous on the bounded subset of Xγ for some non-
negative γ ∈ [0, 1),

4. u(0) = u0 ∈ Xγ ,

then by local Xγ solution of this problem we understood the function u, which satisfies
the following conditions.

Definition 2.1 The function u is called a local Xγ solution of (2) if, for some real
τ > 0, it satisfies

• u(0) = u0,

• u ∈ C([0, τ);Xγ),

• u ∈ C1((0, τ);X),

• u(t) belongs to D(A) for each t ∈ (0, τ),

• the equation ut +Au = F (u) holds in X for all t ∈ (0, τ).

The following theorem concerns the local Xγ solution of the abstract problem (2).

Theorem 2.1 Let X be a Banach space, A : D(A) → X be a sectorial positive op-
erator in X and F : Xα → X be Lipschitz continuous on the bounded subset of Xγ for
some non-negative γ ∈ [0, 1). Then for each u(0) = u0 ∈ Xγ , there exists a unique local
Xγ solution u = u(t, u0) of (2) defined on its maximal interval of existence [0, τu0

).

Now we use Henry’s approach to our problem. There are different possible choices
of the base space. We choose X = D((−∆)

s
2 ) ⊂ Hs(I), where s ≥ 0 is fixed, as the

base space. The operator Aα := (−∆)α acting in the Banach space X is equipped with

the domain D(Aα) ⊂ Hs+2α(I). The resulting phase space is X
1
2α = [X,D(Aα)] 1

2α
=

D((−∆)
s+1
2 ) ⊂ Hs+1(I) (since (Aα)

1
2α = (−∆)

1
2 ). Moreover, when Ω is a domain in

RN , then Wm,r(Ω) is the Banach algebra provided mr > N (see [1, p. 115]. Note that
in our case, Hs+1(I) is a Banach algebra.

Working with the sectorial positive operator Aα : D(Aα)→ X , α ∈ ( 1
2 , 1], in I with

the zero boundary condition (e.g. [5, 9]), we rewrite equation (1) in an abstract form:

(uα)t +Aαuα = F (uα), t > 0,

uα(0, x) = u0(x),
(3)

where

F (uα) = −1

2
∇u2

α (4)

is the Nemytskii operator corresponding to a nonlinear term − 1
2∇u

2
α. The following local

existence result holds.
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Theorem 2.2 Let s ≥ 0 be fixed and α ∈ ( 1
2 , 1]. Then for arbitrary u0 ∈ X

1
2α =

D((−∆)
s+1
2 ), there exists a unique local in time X

1
2α solution uα(t) to the subcritical

problem (3) defined on its maximal interval of existence [0, τu0
). Moreover,

uα ∈ C((0, τu0);X1) ∩ C([0, τu0);X
1
2α ), (uα)t ∈ C((0, τu0);Xγ),

with arbitrary γ < 1, (X1 = D(Aα) ⊂ Hs+2α(I)).

Proof. To guarantee the local solvability we need to check if the nonlinearity (4) is

Lipschitz continuous on bounded sets as a map from X
1
2α into X (see Theorem 2.1; [5],

p. 55 for more details ), that is, for any r > 0 there exists L(r) > 0 such that

‖F (v)− F (w)‖X ≤ L(r)‖v − w‖
X

1
2α

for all v, w ∈ B(r), where B(r) denotes an open ball in X
1
2α centered at zero of radius r.

Since Hs+1(I) is the Banach algebra, for v, w ∈ B(r), we get

‖F (v)− F (w)‖Hs(I) =
1

2
‖∇(v2 − w2)‖Hs(I) ≤ c‖v2 − w2‖Hs+1(I)

≤ ‖v + w‖Hs+1(I)‖v − w‖Hs+1(I).

Consequently, we obtain

‖F (v)− F (w)‖Hs(I) ≤ c′(‖v‖Hs+1(I), ‖w‖Hs+1(I))‖v − w‖Hs+1(I),

which proves the local solvability of (1) in the phase space X
1
2α .

Remark 2.1 The local solution constructed above fulfills Cauchy’s integral formula
(see [5, Lemma 2.2.1]):

uα(t) = e−Aαtu0 +

∫ t

0

e−Aα(t−s)F (uα(s))ds, t ∈ [0, τu0
),

where e−Aαt denotes the linear semigroup corresponding to the operator Aα := (−∆)α

in D((−∆)
s
2 ) and F (uα) = − 1

2∇u
2
α.

Remark 2.2 Note that since the function F is Lipschitz continuous on bounded
subsets of X

1
2α , as a consequence of the embeddings between the fractional power space,

it possesses this property as a map from Xβ to X for each β ∈ [ 1
2α , 1). Consequently,

for each β ∈ [ 1
2α , 1) and u0 ∈ Xβ , there exists a unique local in time Xβ solution to the

subcritical problem (3) defined on its maximal interval of existence.

Remark 2.3 Let ε = 2α − 1 > 0 and t0 > 0 be chosen arbitrarily close to 0. From
Theorem 2.2, we know that uα(t0, ·) ∈ D((−∆)

s
2 +α) ⊂ Hs+2α(I). Since ∂I is regular,

considering the equation (3) in the base space D((−∆)
s+ε
2 ) with a new initial condition

uα(t0, x) = (uα)t0(x), we obtain that uα(t, ·) varies continuously in D((−∆)
s+ε
2 +α) for

t > t0. Next, repeating this procedure n times with tn =
∑n
i=0

t0
2i and the base space

D((−∆)
s+(n+1)ε

2 ), we get additional regularity of the solution of (3), that is, uα(t, ·) ∈
D((−∆)

s+(n+1)ε
2 +α) ⊂ Hs+(n+1)ε+2α(I) for t > tn = t0(2 − 1

2n ). This phenomenon is
known in the literature as bootstrapping.
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Global solvability. Having obtained the local in time solution of (1), to guarantee
its global extensibility we need suitable a priori estimates. We start from the Maximum
Principle.

Lemma 2.1 Let k ∈ N. Then, for a sufficiently regular solution uα of (1), the
following estimates hold:

‖uα(t, ·)‖L2k (I) ≤ ‖u0‖L2k (I), (5)

‖uα(t, ·)‖
L2k (I)

≤ ‖u0‖L2k (I)
e−21−kλα1 t, (6)

where λ1 is the Poincaré constant (see [7])

λα1 ‖φ‖2L2(I) ≤ ‖(−∆)
α
2 φ‖2L2(I). (7)

Proof. Multiplying (1) by u2k−1
α , k = 1, 2 . . ., we get

1

2k
d

dt

∫
I

u2k

α dx+

∫
I

(−∆)αuα|uα|2
k−1sgnuα dx+

∫
I

(uα)xu
2k dx = 0.

Using the Kato-Beurling-Deny inequality in the bounded domain [7, Corollary 3.2] with
q = 2k, we have

2k − 1

22k−2

∫
I

[
(−∆)

α
2 (|uα|2

k−1

)
]2
dx 6

∫
I

[(−∆)αuα] |uα|2
k−1sgnuα dx. (8)

Since ∫
I

(uα)xu
2k

α dx =
1

2k + 1

∫
I

(u2k+1
α )x dx = 0,

and 2 ≤ 2k−1
2k−2 , thanks to (8) and (7), we obtain

d

dt

∫
I

u2k

α dx ≤ d

dt

∫
I

u2k

α dx+ 2λα1

∫
I

|uα|2
k

dx ≤ 0,

which leads to estimates (5) and (6).

Remark 2.4 Let q ∈ N. Since uα(t) ∈ L∞(I), the following convergence holds:

lim
q→∞

‖uα(t, ·)‖Lq(I) = ‖uα(t, ·)‖L∞(I)

(see [1, Theorem 2.8]). Consequently, letting k → +∞ in estimate (5), we obtain

‖uα(t, ·)‖L∞(I) ≤ ‖u0‖L∞(I). (9)

Remark 2.5 The constant λ
α− 1

2
1 can be estimated independently of α ∈ ( 1

2 , 1]. We
have

µb := min{1, λ
1
2
1 } ≤ λ

α− 1
2

1 ≤ max{1, λ
1
2
1 } =: µa. (10)

Remark 2.6 Multiplying (1) by uα, due to (7) and Remark 2.5, we obtain a differ-
ential inequality of the form

0 =
d

dt
‖uα‖2L2(I) + 2‖(−∆)

α− 1
2

2 (−∆)
1
4uα‖2L2(I) ≥

d

dt
‖uα‖2L2(I) + 2µb‖(−∆)

1
4uα‖2L2(I).

(11)



402 MARIA B. KANIA

Integrating (11) over (0, T ), we get∫ T

0

‖(−∆)
1
4uα‖2L2(I)ds =

1

2µb

(
‖u0‖2L2(I) − ‖uα(T )‖2L2(I)

)
≤ 1

2µb
‖u0‖2L2(I).

This implies a uniform in α ∈ ( 1
2 , 1] estimate of uα in L2(0, T ;D((−∆)

1
4 )), where T > 0

is fixed but arbitrarily large.

The Lp(I) a priori estimates obtained in Lemma 2.1 and Remark 2.4 are, unfortu-

nately, too weak to guarantee the global in time solvability of (3) in X
1
2α . For this

purpose, we need to estimate higher Sobolev norms of the solutions to (3). We will show
that ‖uα‖Hs+1(I) is bounded on the solutions. Consequently, we will obtain Lipschitz

continuity and boundedness of the nonlinear term F as a map from X
1
2α to X.

We will start from the H1(I) a priori estimate.

Lemma 2.2 For a sufficiently regular solution uα of (1), the following estimate
holds:

‖uα‖H1(I) ≤ c(‖u0‖H1(I), α). (12)

Proof. Multiplying (1) by −(uα)xx, we get

1

2

d

dt

∫
I

((uα)x)2 dx+

∫
I

[(−∆)
1+α
2 uα]2 dx−

∫
I

uα(uα)x(uα)xx dx = 0.

Since

−
∫
I

uα(uα)x(uα)xx dx =
1

2

∫
I

((uα)x)3 dx,

we have
d

dt

∫
I

((uα)x)2 dx+ 2

∫
I

[(−∆)
1+α
2 uα]2 dx+

∫
I

((uα)x)3 dx = 0. (13)

Note that (see [10, p. 63])

‖uα‖3W 1,3(I) ≤ c(α)‖uα‖3θH1+α(I)‖uα‖
3(1−θ)
L∞(I) (14)

with 4
3(2α+1) ≤ θ <

2
3 . Consequently, using the Young inequality, we get

d

dt

∫
I

((uα)x)2 dx+ c

∫
I

((uα)x)2 dx ≤ d

dt

∫
I

((uα)x)2 dx+

∫
I

[(−∆)
1+α
2 uα]2 dx

≤ c(‖uα‖L∞(I), α),

where an equivalent norm in H1+α(I) is used.

Lemma 2.3 For a sufficiently regular solution uα of (1), which satisfies the smallest
data condition (17), the following uniform in α ∈ ( 1

2 , 1] estimate

‖(uα)x(t)‖L2(I) ≤ ‖u0‖H1(I)e
−(2µb−C3‖u0‖L∞(I))t (15)

holds.
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Proof. Note that, when the Nirenberg-Gagliardo inequality (and an equivalent norm

in H
3
2 (I))

‖uα‖W 1,3(I) ≤ c‖uα‖
1
3

L∞(I)‖uα‖
2
3

H
3
2 (I)
≤ C‖uα‖

1
3

L∞(I)‖(−∆)
3
4uα‖

2
3

L2(I)

is used instead of (14), thanks to the Poincaré inequality (7) and (9), due to Remark 2.5,
the estimate (13) extends to

d

dt

∫
I

((uα)x)2 dx+ (2µb − C3‖u0‖L∞(I))

∫
I

[(−∆)
3
4uα]2 dx ≤ 0. (16)

Consequently, when the data are small

‖u0‖L∞(I) <
2µb
C3

(17)

we obtain the thesis.

Remark 2.7 Under the assumption (17) the estimate (16) implies a uniform in α ∈
( 1

2 , 1] estimate of uα in L∞(0, T ;H1
0 (I)) and L2(0, T ;D((−∆)

3
4 )). So, we have

‖uα‖L∞(0,T ;H1
0 (I)) + ‖uα‖

L2(0,T ;D((−∆)
3
4 ))
≤ const, (18)

where T > 0 is fixed but arbitrarily large and the constant on the right-hand side is
independent of α.

Lemma 2.4 For a sufficiently regular solution uα of (1), the following estimate
holds:

‖∆uα‖L2(I) ≤ c(‖u0‖H2(I), α). (19)

Proof. Multiplying (1) by (−∆)2uα, we get

d

dt
‖∆uα‖2L2(I) + 2‖(−∆)

2+α
2 uα‖2L2(I) + 3

∫
I

(∆uα)
2∇uα dx = 0.

Using the Nirenberg-Gagliardo inequality

‖u‖2W 2,4(I) ≤ c‖u‖
5
3

H
5
2 (I)
‖u‖

1
3

H1(I) (20)

and the Young inequality, we can estimate the nonlinear term as follows:∫
I

| (∆uα)
2∇uα| dx ≤ ‖∆uα‖2L4(I)‖∇uα‖L2(I) ≤

µb
3
‖uα‖2

H
5
2 (I)

+ c‖uα‖8H1(I).

Consequently, thanks to the Poincaré inequality (7), we get

d

dt
‖∆uα‖2L2(I) + µb‖(−∆)

5
4uα‖2L2(I) ≤ c‖u0‖8H1(I). (21)
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Remark 2.8 Since for the small data we have uniform in α estimate of solution uα
in H1(I), we get a uniform in α ∈ ( 1

2 , 1] estimate

‖uα‖L∞(0,T ;H2(I)) + ‖uα‖
L2(0,T ;H

5
2 (I))

≤ const,

where T > 0 is fixed but arbitrarily large.

Further we get the H l(I) estimate of solutions by recurrence.

Lemma 2.5 Let l = k
2 , k ≥ 5. Then, for a sufficiently regular solution of (1), the

following estimate holds:

‖uα‖Hl(I) ≤ c(‖u0‖Hl−α(I), α). (22)

Proof. Note first that by (12) we have ‖uα‖H1(I) ≤ c(‖u0‖H1(I), α). Multiplying (1)

by (−∆)luα we obtain

1

2

d

dt

∫
I

[(−∆)
l
2uα]2dx+

∫
I

[(−∆)
l+α
2 uα]2dx =

∫
I

(−∆)
l−α
2 (uα(uα)x)(−∆)

l+α
2 uαdx. (23)

Since H l−α(I) is a Banach algebra for l − α > 1
2 , the nonlinear term can be estimated

as follows:∣∣∣∣∫
I

(−∆)
l−α
2 (uα(uα)x)(−∆)

l+α
2 uαdx

∣∣∣∣ ≤ c‖uα(uα)x‖Hl−α(I)‖uα‖Hl+α(I)

≤ c‖uα‖Hl−α(I)‖uα‖Hl+1−α(I)‖uα‖Hl+α(I).

By the Nirenberg-Gagliardo inequality, we get

‖uα‖Hl+1−α(I) ≤ c‖uα‖
1
2α

Hl+α(I)
‖uα‖

1− 1
2α

Hl−α(I)
,

hence ∣∣∣∣∫
I

(−∆)
l−α
2 (uα(uα)x)(−∆)

l+α
2 uαdx

∣∣∣∣ ≤ c‖uα‖1+ 1
2α

Hl+α(I)
‖uα‖

2− 1
2α

Hl−α(I)
.

Consequently, using the Young inequality, we obtain from (23) a differential inequality

d

dt

∫
I

[(−∆)
l
2uα]2dx+

∫
I

[(−∆)
l+α
2 uα]2dx ≤ c(‖uα‖Hl−α(I), α).

The following global existence result holds.

Theorem 2.3 The local solution uα of (3) constructed in Theorem 2.2 exists globally
in time.

Lemma 2.6 Let α ∈ ( 1
2 ,

3
4 ]. For solution uα of (3) satisfying the smallest data

restriction (17) we have a uniform with respect to α estimate

‖(uα)t‖L2(0,T ;L2(I)) ≤ C(T ), (24)

where T > 0 is fixed but arbitrarily large.
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Proof. Since H1(I) is a Banach algebra from equation (1), thanks to the Poincaré
inequality (7), we obtain for α ∈ ( 1

2 ,
3
4 ]

‖(uα)t‖2L2(I) ≤ 2λ
4α−3

2
1 ‖(−∆)

3
4uα‖2L2(I)+c‖u

2
α‖2H1(I) ≤ 2µ−1

b ‖(−∆)
3
4uα‖2L2(I)+c‖uα‖

4
H1(I).

Integrating the result over (0,T), due to (18), we get∫ T

0

‖(uα)t‖2L2(I) dt ≤ c(T ; ‖u0‖H1(I)), (25)

with a positive constant c independent of α.

3 Critical Problem (1) with α = 1
2 for Small Data

Passing to the limit in equation (1). Using the Lions-Aubin compactness lemma we
will show now that for the small data (the condition (17)) the solutions of subcritical

problems (1) converge, as α → 1
2

+
, to the unique solution of the critical problem. The

below lemma will be useful in the limiting procedure.

Lemma 3.1 For any sequence αn → 1
2 such that {αn : n ∈ N} ⊂ ( 1

2 ,
3
4 ] there are a

subsequence (denoted in the same way) αn → 1
2 and a function u such that for any T > 0

1. uαn → u weakly in L2(0, T ;D((−∆)
3
4 )) and weakly-* in L∞(0, T ;D((−∆)

1
2 )),

2. uαn → u in L2(0, T ;D((−∆)
3
4
−

)),

3. (uαn)t → ut weakly in L2(0, T ;L2(I)).

Proof. Part (1). Note that uniform in α estimate (18) means that any sequence

{uαn} is bounded in L2(0, T ;D((−∆)
3
4 )). Consequently (see [4, Theorem 3.18]), there

exist a subsequence (denoted in the same way) and u ∈ L2(0, T ;D((−∆)
3
4 )) such that

{uαn} converges to u weakly when αn → 1
2 .

Part (2). Let

U =

{
uα; α ∈

(
1

2
,

3

4

]}
and

∂U

∂t
= {(uα)t : uα ∈ U} . (26)

Since the set U is bounded in L2(0, T ;D((−∆)
3
4 )) and ∂U

∂t is bounded in L2(0, T ;L2(I))
(see (18) and (24)), using the Lions-Aubin compactness lemma (see [13], [16, Corollary

4]) we claim that the set U is relatively compact in the space L2(0, T ;D((−∆)
3
4
−

)).
Consequently, for any sequence {uαn} there exist a subsequence (denoted in the same

way) and u ∈ L2(0, T ;D((−∆)
3
4
−

)) such that {uαn} converges to u strongly.
Part(3) is a consequence of estimate (24) (see [4, Theorem 3.18]).

Remark 3.1 Since the set U is bounded in L∞(0, T ;D((−∆)
1
2 )) and ∂U

∂t is bounded
in L2(0, T ;L2(I)) (see (18) and (24)), using the Corollary 4 from [16] we claim that the

set U is also relatively compact in the space C(0, T ;D((−∆)
1
2
−

)).

Theorem 3.1 Let {αn : n ∈ N} ⊂ ( 1
2 ,

3
4 ] and let uα be the solution of the subcriti-

cal problem (1) (constructed in Theorem 2.3 in D((−∆)
s
2 )) corresponding to the initial
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condition u0 ∈ D((−∆)
s+1
2 ) satisfying the smallest data restriction (17). Then, passing

over a subsequence (denoted in the same way), with αn to 1
2 in equation (1), we get a

weak solution u (not necessarily unique) to the critical problem (α = 1
2) satisfying a.e.

in each time interval [0, T ] the equality

d

dt
< u, φ > +

1

2
< ∇u2, φ > + < (−∆)

1
2u, φ >= 0,

for every function φ ∈ H1
0 (I), where < ·.· > is a scalar product in L2(I) and d

dt stands
for the distributional derivative.

Proof. Multiplying equation (1) by a ’test function’ φ ∈ H1
0 (I) (note, H1

0 (I) ⊂
L∞(I), N = 1), we obtain∫

I

(uα)t φdx+

∫
I

(−∆)αuαφdx = −1

2

∫
I

∇u2
αφdx.

Next for each smooth scalar test function η ∈ D((0, T )), we get∫ T

0

∫
I

(uα)t φdx η dt+

∫ T

0

∫
I

(−∆)αuαφdx η dt = −1

2

∫ T

0

∫
I

∇u2
αφdx η dt.

We will discuss now the convergence of components in the above equality one by one. In
the term containing the time derivative (uα)t, thanks to [18, Lemma 1.1, Chapt.III], we
have ∫ T

0

< (uα)t, φ > η dt =

∫ T

0

d

dt
< uα, φ > η dt = −

∫ T

0

< uα, φ > η′ dt

for all φ ∈ H1
0 (I). Since∫ T

0

∫
I

|uα − u||φ| |η′| dx dt ≤
∫ T

0

‖uα − u‖L2(I)‖φ‖L2(I)|η′| dt

≤ ‖uα − u‖L2(0,T ;L2(I))‖φ‖L2(I)‖η′‖L2(0,T ),

using part (2) of Lemma 3.1, we obtain∫ T

0

< uα, φ > η′ dt→
∫ T

0

< u, φ > η′ dt.

For the linear term∫ T

0

∫
I

(−∆)αuαφdx η dt =

∫ T

0

∫
I

(−∆)
1
2uα(−∆)α−

1
2φdx η dt (27)

we get ∣∣∣∣∣
∫ T

0

∫
I

(−∆)
1
2uα(−∆)α−

1
2φdx η dt−

∫ T

0

∫
I

(−∆)
1
2uφ dx η dt

∣∣∣∣∣
≤
∫ T

0

∫
I

∣∣∣(−∆)
1
2uα

∣∣∣ ∣∣∣((−∆)α−
1
2 − I

)
φ
∣∣∣ dx |η| dt

+

∫ T

0

∫
I

|φ|
∣∣∣(−∆)

1
2 (uα − u)

∣∣∣ dx |η| dt
≤ ‖uα‖

L2(0,T ;D((−∆)
1
2 )
‖
(

(−∆)α−
1
2 − I

)
φ‖L2(I)‖η‖L2(0,T )

+ ‖φ‖L2(I)‖η‖L2(0,T )‖uα − u‖L2(0,T ;D((−∆)
1
2 ))
.

(28)
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Passing to the limit, by [14, Theorem 3.1.6] and part (2) of Lemma 3.1, we obtain the
convergence ∫ T

0

∫
I
(−∆)

1
2uα(−∆)α−

1
2φdx η dt→

∫ T
0

∫
I
(−∆)

1
2uφ dx η dt. (29)

Next, for the nonlinear term, since H1(I) is Banach algebra, we prove that∣∣∣∣∣
∫ T

0

∫
I

∇u2
αφη −∇u2φη dx dt

∣∣∣∣∣ ≤
∫ T

0

‖u2
α − u2‖H1(I)‖φ‖L2(I) |η| dt

≤ c‖uα − u‖
L2(0,T ;D((−∆)

1
2 ))
‖uα + u‖

L∞(0,T ;D((−∆)
1
2 ))
‖φ‖L2(I)‖η‖L2(0,T ).

By collecting all the limits together, we find the form of the limit critical equation∫ T

0

d

dt
< u, φ > η dt+

1

2

∫ T

0

< ∇u2, φ > η dt+

∫ T

0

< (−∆)
1
2u, φ > η dt = 0.

Properties of the weak solutions to the critical fractional Burgers equation.
We will start from collecting the properties inherited by the solution u of the critical
problem(1) in the process of passing to the limit. We have the following results

Corollary 3.1 For arbitrary T > 0 we have

• u ∈ L2(0, T ;D((−∆)
3
4 )) ∩ L∞(0, T ;D((−∆)

1
2 )),

• ut ∈ L2(0, T ;L2(I)),

• u ∈ Cw(0, T ;D((−∆)
1
2 )).

Proof. Using the properties of the weak limit, due to Lemma 3.1 (1) and (3), we
obtain the first two regularies. Next, the Corollary 2.1 from [17] implies that there exists

a weakly continuous function on [0, T ] with the values in D((−∆)
1
2 ) which is equal to u

almost everywhere.
We will show now that the local solutions of the critical fractional Burgers equation

obtained in Theorem 3.1, are locally unique.

Lemma 3.2 The solution of the critical fractional Burgers equation satisfying

u ∈ L∞([0, τ);H1(I))

is locally unique.

Proof. Let U = u1−u2, where u1 and u2 are the local in time solutions of the critical
problem (1) (in the above class) corresponding to the same initial condition u0. Then U
satisfies

Ut + u1∇U +∇u2U + (−∆)
1
2U = 0, x ∈ I ⊂ R, t > 0,

U = 0 on ∂I,

U(0, x) = 0.

Multiplying the above equation in L2(I) by U , thanks to the integration by parts, we
obtain

d

dt

∫
I

U2 dx+

∫
I

∇u2U
2 dx+ 2

∫
I

[
(−∆)

1
4U
]2

dx = 0.
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From the Hölder and the Nirenberg-Gagliardo inequality the nonlinear term can be trans-
formed as follows:∫

I

∇u2U
2 dx ≤ ‖∇u2‖L2(I)‖U‖2L4(I) ≤ ‖∇u2‖L2(I)‖U‖L2(I)‖U‖H 1

2 (I)
.

Since ‖u2‖H1(I) is bounded, using the Cauchy inequality, we get a differential inequality
of the form

d

dt
‖U(t, ·)‖2L2(I) ≤ c(‖u2‖H1(I))‖U(t, ·)‖2L2(I),

U(0, x) = 0,

having only a zero solution on [0, τ).

Theorem 3.2 The solution of the critical fractional Burgers equation obtained in
Theorem 3.1, is unique.

4 Conclusion

This paper is devoted to the global in time solvability and properties of solutions to the
critical problem (1) (α = 1

2 ) in a bounded domain I. For this purpose we constructed first

the local and then the global in time X
1
2α solution uα of the subcritical fractional Burgers

equation (α ∈ ( 1
2 , 1]) in the base spaces D((−∆)

s
2 ), s ≥ 0 fixed. Moreover, for small data

we obtained a uniform in α ∈ ( 1
2 , 1] estimate of the solutions uα in L∞(0, T ;D((−∆)

1
2 ))

and L2(0, T ;D((−∆)
3
4 )), where T > 0 is fixed but arbitrarily large. Using the Lions-

Aubin compactness lemma, thanks to the above uniform in α estimates, we showed that,
for the small data (the condition (17)), the solutions of subcritical problems (1) converge,

as α→ 1
2

+
, to the unique solution of the critical problem. For any data, the uniqueness

of the solution to the critical problem (1) is an open problem.
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1 Introduction

The shunt active power filter is powered by a DC voltage source or a capacitor which
is expensive. Our paper proposes another free continuous source by the sun, it is the
photovoltaic solar energy which transforms the light energy into electrical energy via the
PV sensor.

Fig. 1 shows the principle schematics of the SAPF.

Figure 1: Principle Schematics of the Shunt Active Power Filter.

In this paper, the supply of the SAPF is provided by a photovoltaic solar module
as a clean and free source. In order to output active power in the electrical network
lines, it guarantees the harmonics compensation of the source current and a reduced cost
of the SAPF. The regulation of the voltage of the PV system allowed us to obtain the
reference of the active power by means of a PI regulator. Thus, the MPPT command by
the (P and O) controller of the Boost converter is made to maintain the output voltage
of the PV module constant and to follow the reference value. The three-phase two-level
inverter is controlled by the DPC technique which is based on hysteresis comparators
using a switchboard. This control approach shows a significant difference in terms of
dynamics, robustness and stability compared to the traditional P-Q method.

2 The Photovoltaic Solar System

Fig. 2 shows the photovoltaic system which supplies the shunt active filter by a delivered
voltage Vdc which is equal to 96 V.

2.1 Modeling of photovoltaic module

The basic element of each photovoltaic system is the photovoltaic module. It has PV cells
connected together [1–3]. The PV modules are of type BP-MSX120, their characteristics
are given in Tab. 1.

For PV solar module modeling, we applied the frequently used model to describe the
electrical characteristics of this module which takes into account the different internal
resistances (Fig. 3) [4, 5].

The equivalent circuit mathematical expression of the PV module is presented by

IPV = Iph − ID − IR, (1)
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Figure 2: PV solar system (Panel, Boost converter and MPPT).

Figure 3: Equivalent circuit of a PV solar module.

IPV = Iph − I0
[
exp

q(VPV +z·Rs·IPV )
z·n·k·Tck −1

]
− VPV + z ·Rs · IPV

z ·Rsh
. (2)

Or,
IPV : PV current [A] ,
Iph : Photo-current [A] ,
I0 : Reverse saturation current [A] ,
q : Electron charge

q = 1.6 10−19 coulomb

VPV : PV Voltage [V ] ,
z : Number of cells in series,
Rs : Series resistance [Ω] ,
Rsh : Shunt resistance [Ω] ,
n : Ideality factor varies between 1 and 2,
k : constant of Boltzmann

k = 1.38 10−23 J ·K−1
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BP SOLAR MSX 120
Maximum Power Point Pmax 120 W

Voltage at Pmax Vmp 33.7 V
Current at Pmax Imp 3.56 A

Open-circuit voltage Voc 42.1 V
Short-circuit current Isc 3.87 A

Series resistance Rs 0.473 Ω
Shunt resistance Rsh 1367 Ω

Ideality factor n 1.3977
Temperature coefficient of Isc ki (0.065± 0.015)%/C
Temperature coefficient of Voc kv − (80± 10) mV/C

Temperature coefficient of Pmax kp − (0.5± 0.05)%/C
NOCT (47± 2)C

Number of cells connected in series ns 72

Table 1: Datasheet parameters of the PV module.

2.2 Modeling of DC-DC converter and MPPT controller

In order to guarantee the level of voltage required to supply the shunt active power filter,
the voltage delivered by the PV module is insufficient (VPV = 42.1 V), while the inverter
must supply a voltage greater than VPV . For this, we used a DC-DC boost converter
(Fig. 4) [8].

Figure 4: Ideal circuit of boost converter.

The following equations are obtained from Fig. 3 when the switch S is open.

ic1 (t) = C1
dvPV (t)

dt
= iPV (t)− iL (t) , (3)

ic2 (t) = C2
dvdc (t)

dt
= iL (t)− i0 (t) , (4)

v1 (t) = L
diL (t)

dt
= vPV (t)− vdc (t) . (5)
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This transistor controlled by the (P and O) algorithm aims to tracking the maximum
power point MPPT. The latter is then controlled using a MPPT controller with the
Perturbation and Observation (P and O) algorithm, as shown in Fig. 5.

Figure 5: Perturbation and Observation algorithm [9].

The switch S is a MOSFET transistor and internal diode in parallel with a series
RC snubber circuit. When a gate signal is applied, the MOSFET conducts and acts as
a resistance (Ron) in both directions. If the gate signal falls to zero when current is
negative, current is transferred to the antiparallel diode. Their parameters are shown in
Tab. 2.

MOSFET Transistor
FET resistance Ron 0.1 Ω

Internal diode inductance Lon 0 H
Internal diode resistance Rd 0.01 Ω

Internal diode forward voltage Vf 0 V

Table 2: MOSFET Transistor parameters [10].

3 Modeling of Shunt Active Power Filter

Recently, there are fast switching power devices controlled by different strategies. These
devices can compensate the harmonics due to the nonlinear charge by producing counter-
harmonic currents [11]. The used SAPF is an inverter with two levels of IGBT Transistor
and internal diode in parallel. Their parameters are shown in Tab. 3.
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IGBT Transistor
IGBT resistance Ron 0.001 Ω
Snubber resistance Rs 100000 Ω

Snubber capacitance Cs Inf F

Table 3: IGBT Transistor parameters [10].

The work of the simulation model is as follows:

• Mainly the circuit consists of an inverter which consists of 6 IGBTs.

• The inverter is basically used to convert DC into AC. The input of the inverter is
96V dc and the output is connected between the supply network and non linear
load through the RL filter in order to inject the filter current if .

The simple voltages of the three phases a, b and c at the output of the inverter are
given as follows:

vfa = VAn = 2Uc
2Sa − Sb − Sc

3
= Vdc

2Sa − Sb − Sc
3

, (6)

vfb = VBn = 2Uc
2Sb − Sa − Sc

3
= Vdc

2Sb − Sa − Sc
3

, (7)

vfc = VCn = 2Uc
2Sc − Sa − Sb

3
= Vdc

2Sc − Sa − Sb
3

. (8)

Thus, we can express eight possible cases of the output voltage of the active filter Vfk
(referred to the neutral N of the source) as shown in Tab. 4 [12].

Case Sa Sb Sc vfa/Vdc vfb/Vdc vfc/Vdc
0 0 0 0 0 0 0
1 1 0 0 2/3 -1/3 -1/3
2 0 1 0 -1/3 2/3 -1/3
3 1 1 0 1/3 1/3 -2/3
4 0 0 1 -1/3 -1/3 2/3
5 1 0 1 1/3 -2/3 1/3
6 0 1 1 -2/3 1/3 1/3
7 1 1 1 0 0 0

Table 4: Possible voltages in the output of the inverter.

The structure of inverter is shown in Fig. 6.
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Figure 6: Structure of the three-phase inverter with two levels [13].

Figure 7: Block diagram of the SAPF controlled by the DPC connected with a PV solar panel.

3.1 Direct power control (DPC) technique

Fig. 7 shows the system of a shunt active power filtering controlled by the DPC technique
and connected with a solar photovoltaic panel.

These powers are expressed, respectively, by the following relations [10,12,14]:

ps (t) = vsa · isa + vsb · isb + vsc · isc, (9)

qs (t) =
1√
3

[(vsb − vsc) · isa + (vsc − vsa) · isb + (vsa − vsb) · isc] . (10)
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For this purpose, the stationary coordinates are divided into 12 sectors, as shown in
Fig. 8. The digitized signal errors dps, dqs and voltage phase θn are the inputs of switching
table shown in Table 1 whose output is the switching state (Sa, Sb, Sc) of the converter.
By using this switching table, the optimal state of the converter can be selected uniquely
during each time interval according to the combination of the table inputs. The selection
of the optimal switching state is performed so that the power errors can be restricted
within the hysteresis bands [10,15].

Figure 8: (α, β) twelve (12) sectors representation.

The digitized variables dps, dqs and grid voltage vector position θ (equation (11)),
form a digital word, for access to the address of switching table select the appropriate
control voltage vector

θ = arctan
vβ
vα
. (11)

Determination of the number of sector is given by

(n− 2)
π

6
< θn < (n− 1)

π

6
, (12)

where n indicates the sector number (n = 1, 2, . . . , 12) [10, 16]. The input voltage can
be estimated by the following equation:[

vα
vβ

]
=

1

i2α + i2β

[
iα −iβ
iβ iα

] [
p̂
q̂

]
. (13)

The same observation can be made for dq and even sectors (θi), i=even. So, this
shows the limits of this switching table DPC (Tab. 5) [10, 17]. The knowledge of the
estimated voltage sector is necessary to determine optimal switching states.

The conversion in the α − β coordinate system by the system voltages with the
Concordia transformation gives

[
vsα (θ)
vsβ (θ)

]
=
[
T32

]t ·
 vsa (θ)
vsb (θ)
vsc (θ)

 . (14)
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dp dq θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12
1 0 101 111 100 000 110 111 010 000 011 111 001 000
1 1 111 111 000 000 111 111 000 000 111 111 000 000
0 0 101 100 100 110 110 010 010 011 011 001 001 101
0 1 100 110 110 010 010 011 011 001 001 101 101 100

Table 5: Switching sectors of the DPC.

The d− q voltage components are derived by the Park transformation, where θ̂ rep-
resents the instantaneous reference voltage vector angle,[

vsd
vsq

]
= p

(
θ̂
)
·
[
vsα (θ)
vsβ (θ)

]
(15)

with

p
(
θ̂
)

=
1

i2α + i2β

[
cos θ̂ sin θ̂

− sin θ̂ cos θ̂

]
(16)

and after substituting (14) in (16), the voltages vsd and vsq are given by:

[
vsd
vsq

]
=
√

3 · Vm ·

 sin
(
θ − θ̂

)
− cos

(
θ − θ̂

)  . (17)

4 Simulation Results and Discussions

The simulation of the system made with the MATLAB/Simulink environment allowed
us to obtain the results below. Fig. 9 shows the voltage delivered by the PV module. We
note that this voltage is reached at its open-circuit value which is equal to 42.1 V in a
very fast time at time t = 0.005 s.

Figure 9: Photovoltaic voltage Vpv.

The curves (shown in Fig. 10) express current and power as a function of time. We
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observe that the parameters shown in Tab. 1 are completed according to the datasheet
of this module.

Figure 10: Current Ipv and power Ppv in the function of voltage Vpv for a PV solar module of
type BP-MSX120.

Fig. 11 shows the Duty cycle as a function of time. D increases from the value null
to the value 0.5 at the instant 0.01 s.

Figure 11: Duty cycle D in the function of time.

Fig. 12 shows the DC link voltage delivered by the boost DC-DC converter. We clearly
see that the voltage Vdc reaches the reference value which is equal to 96 V at the instant
0.035 s.

Fig. 13 shows the load current delivered by the non-linear load without the SAPF.
We see that the signal is distorted because of the harmonics injected by the rectifier with
an amplitude value equal to 2.402 A.

Its spectral analysis gives a total harmonic distortion and shows a very high THD to
the value accepted by the supply grid which requires a current THD of less than 5%. We
see that THDiLa = 25.32%, which is unacceptable. The harmonics that have appeared
are of order (6h ± 1) because of the three-phase source and the non-linear load, i.e., in
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Figure 12: DC link voltage in the output of the boost converter Vdc.

Figure 13: Load current iLa without the SAPF.

the marge of 30 orders, the order harmonics 5, 7, 11, 13, 17, 19, 23, 25 and 29 appeared
(Fig. 14).

Figure 14: Total Harmonic Distorsion of iLa.

After connecting the SAPF, we obtained the signal illustrated in Fig. 15. This is the
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source current iSa which becomes almost sinusoidal with an amplitude value equal to
4.412 A.

Figure 15: Source current iSa with the SAPF.

Its spectral analysis gives a THD is less than 5%. We see that THDiSa = 2.94%,
which is acceptable.

Figure 16: Total Harmonic Distorsion of iSa.

Fig. 17 shows the filter current iFa delivered by the SAPF.

Fig. 18 shows the system currents in same figure. The filter current iFa delivered by
the SAPF which compensates for the load current iLa by the following formula:

iSa = iLa − iFa. (18)

Fig. 19 represents the active Ps and its reference P ∗
s powers. This shows us that the

active power follows its reference which is equal to 200 W at permanent regime after
closing the switch placed between the shunt active filter and the line.

Fig. 20 represents the reactive Qs and its reference Q∗
s powers. This shows us that

the reactive power follows its reference which is equal to 0 VAR at permanent regime
after closing the switch placed between the shunt active filter and the line.
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Figure 17: Filter current iFa.

Figure 18: Load, source and filter currents iLa , isa and iFa.

Figure 19: Active power Ps and its reference P ∗
s .

5 Conclusion

The harmonics injected into the electricity grid by the nonlinear charges pollute the
lines of this network, which causes the deformation of the electric currents on the one
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Figure 20: Reactive power Qs and its reference Q∗
s .

hand and the malfunction of the electrical appliances on the other hand. To clean up
the supply network, several methods have been proposed between liabilities and assets.
Our proposal is parallel active filtering controlled by the Direct Power Control (DPC)
technique. The DC bus is powered by a photovoltaic source. The simulation results
under MATLAB/Simulink show us that the filter has improved the quality of electrical
energy, and especially the wave of electric current iSa source. We clearly see that:

1. THDiLa=25.32% before filtering decreased to THDiSa=2.94% after filtering;

2. The SAPF iLa current compensated the reagent in the feed lines;

3. The active and reactive powers have followed their references.

Finally, we can say that the application of the PV system in parallel active filters has
a better harmonic compensation performance and reactive power.

References

[1] K. Ishaque, Z. Salam, H. Taheri and S. Syafaruddin. Modeling and Simulation of Pho-
tovoltaic PV System During Partial Shading Based on a Two-Diode Model. Simulation
Modeling Practice and Theory 19 (07) (2011) 1613–1626.

[2] K. Ishaque, Z. Salam and S. Syafaruddin. A Comprehensive MATLAB Simulink PV Sys-
tem Simulator with Partial Shading Capability Based on Two-Diode Model. Solar Energy
85 (09) (2011) 2217–2227.

[3] N. Belhaouas, M. S. Ait-Cheikh, A. Malek and C. Larbes. Matlab-Simulink of photovoltaic
system based on a two-diode model simulator with shaded solar cells. Revue des Energies
Renouvelables 16 (01) (2013) 65–73.

[4] A. Hoque and K. A. Wahid. New Mathematical Model of a Photovoltaic Generator PVG.
Bangladesh Journal of Electrical Engineering 28 (01) (2000).

[5] A. Hansen, P. Sorensen, L. Hansen and H. Bindner. Models for Stand-Alone PV System.
Riso National Laboratory, Roskilde, Denmark, ISBN 87-550-2774-1.

[6] A. S. Golder. Photovoltaic Generator Modeling for Large Scale Distribution System Studies.
Thesis Master of Science in Electrical Engineering. October, 2006.
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Abstract: The purpose of this paper is to give some theoretical results, under
weaker hypotheses imposed on the external, internal, linear potential loads and three
measurable portions with non null area of the boundary of the shallow shell, for the
local existence and uniqueness of solution to the stationary von Karman equations,
with free-type boundary conditions of the elastic shallow shell. Finally, in some
theoretical results, we describe an iterative method for constructing a unique weak
solution for the problem.

Keywords: static von Karman equations; free-type boundary; elastic shallow shell.
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1 Introduction

In nonlinear three-dimensional elasticity theory, the stationary von Karman equations are
two dimensional equations for the nonlinearly elastic shallow shell. The mathematical
model is a modeling of the physical situation of buckling phenomenon of the elastic
shallow shell, which is perturbed by the external and internal forces and potentially non
conservative loads L(.) applied to the system, see [3]. In case of free-type and mixed
homogenous boundary conditions, we know the static von Karman equations for vertical
displacement u of the middle surface of the reference configuration of the shell from a
plane, and the Airy stress function φ has the form, see, for instance, [3].
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Find (u, φ) ∈
(
H2

0 (ω))2
)

such that

(P)



∆2u− [φ+ F0, u+ θ] + L(u) = p(x) in ω,

∆2φ+ [u, u+ 2θ] = 0 on ω,

u = ∂νu = 0 on Γ0,

u = 0, ∆u+ (1− µ)B1u = 0 on Γ1,

∆u+ (1− µ)B1u = 0 , ∂ν(∆u) + (1− µ)B2u− ϑu = 0 on Γ2,

φ = 0, ∂νφ = 0 on Γ.

Here ω is the middle surface of the initial configuration of the shell, the parameter µ is
the Poisson ratio, ϑ ≥ 0 is a positive reel and [u, v] is a von Karman bracket defined
by [15]

[φ, u] = ∂11φ∂22u+ ∂11u∂22φ− 2∂12φ∂12u. (1)

The shell is subjected to the internal force F0, which is a given function determined
by the in-plane mechanical loads, and the shell is subjected also to the external force p,
and θ(x, y), see [3, 7], is a mapping measuring the deviation of the middle surface of the
reference configuration of the shell from a plane. This function determines the initial
form of the shell and the case θ = 0 corresponds to the plate theory.

In [3], I.Chueshov and I.Lasiecka studied the stationary and dynamic von Karman
equations and established different theoretical results for generalized, strong and weak so-
lutions under weaker hypotheses imposed at different loads, namely, for free-type bound-
ary conditions the authors take the assumption F0 ∈ H

5
2 +ε(ω), by using the theory of

nonlinear semi-group. To justify the uniqueness, the authors used the limit definition
of generalized solution along weak continuity of the nonlinear terms involving the Airy
stress function and knowing the Lipschitz continuity of von Karman bracket with the
Airy stress function. Moreover, in [4], P.G. Ciarlet and L. Gratie justified the general-
ized von Karman equations by means of a formal asymptotic analysis and established
the existence of the system.

The aim of this paper is to find a condition verified by the internal and external
loads, the linear bounded operator L and, also, three measurable portions Γ0, Γ1, Γ2

with non null area of the boundary Γ = Γ0 ∪ Γ1 ∪ Γ2 of the shallow shell. Moreover,
in this paper, for justifying some theoretical results, we take only the following weak
assumption F0 ∈ H2(ω).

This paper will be organized as follows. After this introduction, Section 2 contains
some basic results and tools that will be needed later. Section 3 is devoted to the
description of the mathematical structure of the model under consideration by using
an iterative method for establishing the existence and uniqueness of the weak solution
associated to the static von Karman equations.

2 Preliminary Results and Needed Tools

In this paper, ω denotes a nonempty connected and bounded open domain in IR2,
with its boundary Γ = ∂ω of C∞ -regularity. We assume that in this section Γ =
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Γ0 ∪Γ1 ∪Γ2, where Γ0 , Γ1 and Γ2 are three measurable portions of Γ with non null area
and Γ0 ∩ Γ1 ∩ Γ2 = ∅.

Let us consider the following problem [3]. Find (u, φ) ∈ H2(ω)×H2
0 (ω) such that

(P)



∆2u− [φ+ F0, u+ θ] + L(u) = p(x) in ω,

∆2φ+ [u, u+ 2θ] = 0 on ω,

u = ∂νu = 0 on Γ0,

u = 0, ∆u+ (1− µ)B1u = 0 on Γ1,

∆u+ (1− µ)B1u = 0 , ∂ν(∆u) + (1− µ)B2u− ϑu = 0 on Γ2,

φ = 0, ∂νφ = 0 on Γ,

where [u, v] is defined in (1) and

B1u = 2n1n2∂12u− n2
1∂11u− n2

2∂22u,

B2u = ∂τ
[
(n2

1 − n2
2)∂12u+ n1n2(∂22u− ∂11u)

]
with n = (n1, n2) being the outer normal to Γ and τ = (−n2, n1) being the unit tangent
vector along Γ.

Let p ≥ 1 and m ∈ IN∗, we denote

|u|p = (

∫
ω

|u|p)1/p, ‖u‖ =
∑

α,β=1,2

|∂αβu|2 and ‖u‖20 =

∫
ω

(∆u)2

and ‖u‖m,ω is the classical norm in Hm(ω). For the sake of simplicity, we define

V =
{
u ∈ H2(ω)/u = ∂νu = 0 onΓ0 and u = 0 on Γ1

}
,

which is a subspace of H2(ω), and

a0(u, v) =

∫
ω

(∆u∆v − (1− µ) [u, v]). (2)

The following result is of interest.

Proposition 2.1 Let Γ0 and Γ1 be two portions of Γ, if we do not choose the next
two portions Γ0 or Γ1 of Γ in a linear segment, then the semi norm ‖.‖ is a norm in V
equivalent to the usual norm of H2(ω).

Proof. To establish that the semi-norm ‖.‖ is a norm in the subspace V, we show
the following result:

∀u ∈ V; ‖u‖ =
∑

α,β=1,2

|∂αβu|2 = 0 ⇒ u = 0.

Then, for ∀u ∈ V, we have

‖u‖ = 0 ⇒ ∀α, β = 1, 2, ∂αβu = 0.
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Now, by using a classical result from distribution theory [5], and since the set ω is
connected, with ∀α, β = 1, 2, ∂αβu = 0, we have that

∀(x, y) ∈ ω, ∃(a, b, c) ∈ IR3 such that u(x, y) = ax+ by + c.

If Γ0 or Γ1 is not in a linear segment, then

uΓ0 = (ax+ by + c)|Γ0 = 0 and uΓ1 = (ax+ by + c)|Γ1 = 0,

this implies that
Γ0 ⊂

{
(x, y) ∈ IR2/ax+ by + c = 0

}
or

Γ1 ⊂
{

(x, y) ∈ IR2/ax+ by + c = 0
}
,

that contradicts the assumption that one of two portions Γ0 or Γ1 is not in a linear
segment, and we conclude that a = b = c = 0.

Now, if we have that two portions Γ0 and Γ1 are in linear segments, then

Γ0 ⊂
{

(x, y) ∈ IR2/ax+ by + c = 0
}

and Γ1 ⊂
{

(x, y) ∈ IR2/ax+ by + c = 0
}
.

Since Γ0 and Γ1 are not in the identical linear segment, we deduce that

a = b = c = 0 ⇒ u = 0.

Finally, the semi-norm ‖.‖ is a norm in V.
Now we show that the subspace V is a Banach space in H2(ω). Let (un)n≥0 be the

sequence elements in the space V such that (un)n≥0 converge to u in H2(ω).
Since the operator ”trace” and ∂ν are continuous, we have the sequences (un)|Γ0

,

(un)|Γ1
and ∂ν(un)|Γ0

converge to u|Γ0
, u|Γ1

and ∂νu|Γ0
, then u|Γ0

= u|Γ1
= 0 and

∂νu|Γ0
= 0. Hence u ∈ V, then V is a closed subspace in H2(ω).

Moreover, we prove that the norm ‖.‖ in the space V is equivalent to the usual norm
of H2(ω).

The inequality ‖u‖ ≤ ‖u‖2,ω clearly holds. But if we suppose that the other inequality
is false, then there exists a sequence (un) in V, such that

∀n ∈ IN, ‖un‖2,ω = 1 and lim
n→+∞

‖un‖ = 0. (3)

For more detail, see [5].
So, un is bounded in the spaceH2(ω). We use the compact injectionH2(ω) ↪→c L

2(ω),
then there exists a subsequence um such that, with (3), we have um converges in the space
L2(ω) and also um converges to 0, with the norm ‖.‖ in the space V.

Finally, we conclude that um is a Cauchy sequence with the norm (|.|22 + ‖.‖2)1/2.

In [5], the norm (|.|22 + ‖.‖2)1/2 is equivalent to the usual norm of H2(ω), this implies
that um converges to u in V, therefore the limit u satisfies

‖u‖ = lim
m→+∞

‖um‖ = 0 ⇒ u = 0,

but this result contradicts the equality ∀m ∈ IN , ‖um‖2,ω = 1 and the desired result is
obtained.
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Remark 2.1 The norm ‖.‖ is equivalent to the norm ‖.‖0 in the space V.

Proof. By the analogous method as in Proposition 2.1, we prove that

∀u ∈ V, ∃α > 0, β > 0; α ‖u‖0 ≤ ‖u‖2,ω ≤ β ‖u‖0 ,

and, with the result of Proposition 2.1, we have

∀u ∈ V, ∃α1 > 0, β1 > 0; α1 ‖u‖ ≤ ‖u‖2,ω ≤ β1 ‖u‖ ,

then

∀u ∈ V,
α1

β
‖u‖ ≤ ‖u‖0 ≤

β1

α
‖u‖ .

Finally, the desired result is verified.
We recall the following results, see [1, 3, 8, 10,11] for instance.

Theorem 2.1 Let u ∈ H4(ω), v ∈ H2(ω) and µ ∈ IR, we have that, with (2),∫
ω

∆2uv = a0(u, v) +

∫
Γ

[(∂ν∆u+ (1− µ)B2u)v − (∆u+ (1− µ)B1u)∂νv] .

Lemma 2.1 The space V ∩ H4(ω) is dense in the space V for the induct norm of
H4(ω) and for every u and v in V the equality∫

ω

∆2uv = a0(u, v) +

∫
Γ

[(∂ν∆u+ (1− µ)B2u)v − (∆u+ (1− µ)B1u)∂νv]

holds.

Theorem 2.2 Let f ∈ L1(ω), then the following problem
∆2v = f in ω,

v = 0 on Γ,

∂νv = 0 on Γ

has one and only one solution v in H2
0 (ω) satisfying the relation

‖v‖0 ≤ c0 |f |1 ,

where c0 � 0 is a constant which depends only on mes(ω).

We are now in a position to state the following result.

Theorem 2.3 Let f ∈ L1(ω), the following problem

(Q)



∆2u = f in ω,

u = ∂νu = 0 on Γ0,

u = 0, ∆u+ (1− µ)B1u = 0 on Γ1,

∆u+ (1− µ)B1u = 0 on Γ2,

∂ν(∆u) + (1− µ)B2u− ϑu = 0 on Γ2,
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has one and only one solution in V such that

‖u‖ ≤ c00 |f |1 ,

where c00 � 0 is a constant which depends only on mes(ω).

Proof. By virtue of Lemma 2.1, for all (u, v) ∈ V2 we have∫
ω

∆2uv = a0(u, v) +

∫
Γ

[(∂ν∆u+ (1 − µ)B2u)v − (∆u+ (1 − µ)B1u)∂νv] . (4)

Since v ∈ V, we have

v|Γ0
= 0, v|Γ1

= 0, ∂νv|Γ0
= 0, (∂ν∆u+ (1− µ)B2u)|Γ2

= 0,

and

(∆u+ (1− µ)B1u)|Γ1∪Γ2
= 0,

∫
Γ2

(∂ν∆u+ (1− µ)B2u)v = ϑ

∫
Γ2

uv,

hence, with (4) we deduce that

a0(u, v) + ϑ

∫
Γ2

uv =

∫
ω

fv = l(v).

The mapping a0(., .) is a bilinear, symmetric and continuous in the Hilbert space V.
Moreover, the linear operator l(.) is also continuous.
So

∀u ∈ V, a0(u, u) =

∫
ω

(∆u)2 − (1− µ)

∫
ω

[u, u] = ‖u‖20 − (1− µ)

∫
ω

[u, u]

and ∫
ω

[u, u] =

∫
ω

(
2∂11u∂22u− 2(∂12u)2

)
≤
∫
ω

2∂11u∂22u.

Moreover,∫
ω

(∆u)2 =

∫
ω

(∂11u+ ∂22u)2 =

∫
ω

(∂11u)2 + (∂22u)2 + 2

∫
ω

(∂11u∂22u).

It follows that ∫
ω

[u, u] ≤ ‖u‖20 ,

this implies that

a0(u, u) =

∫
ω

(∆u)2 − (1− µ)

∫
ω

[u, u] ≥ ‖u‖20 − (1− µ) ‖u‖20 = µ ‖u‖20 .

Using Remark 2.1, we have

∃α > 0, a0(u, u) ≥ α ‖u‖2 .

Then the map a0(., .) is coercive.
It turns out that, by the Lax-Milgramme theorem, the following problem

∀v ∈ V, a0(u, v) + ϑ

∫
Γ2

uv =

∫
ω

fv = l(v)
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has one and only one solution in V.
To prove completely the theorem we show that

‖u‖ ≤ c0 |f |1 .

Since u is a solution of the following problem

∀v ∈ V, a0(u, v) + ϑ

∫
Γ2

uv =

∫
ω

fv = l(v),

and using the injection H2(ω) ↪→ C(ω), we have

∀u ∈ V, ∃β > 0 such that ‖u‖∞ ≤ β ‖u‖ ,

with a0(u, u) + ϑ
∫

Γ1
u2 being coercive, then there exists α � 0 such that

α ‖u‖2 ≤ a0(u, u) + ϑ

∫
Γ2

u2 =

∫
ω

fu ≤ ‖u‖∞ |f |1 ≤ β ‖u‖ |f |1 .

Finally,
‖u‖ ≤ c00 |f |1

with c00 = β
α .

Now, let us put
F1(u, φ) = [φ+ F0, u+ θ]− L(u). (5)

Before giving our main result, we now state the following results.

Proposition 2.2 Let (u, v) ∈ (H2
0 (ω))2, θ ∈ H2(ω) and F0 ∈ H2(ω) be with small

norms. Let φ, ϕ ∈ H2
0 (ω) be the solutions of the following two problems:

∆2φ = − [u, u] and ∆2ϕ = − [v, v] .

Then the following estimations∣∣∣ [u, φ]− [v, ϕ]
∣∣∣
2
≤ c1‖u− v‖

and
|F1(u, φ)− F1(v, ϕ)|1 ≤ c1 ‖u− v‖

hold for some 0 < c1 < 1.

Proof. Following [3] and Proposition 2.1 we have∣∣∣ [u, φ]− [v, ϕ]
∣∣∣
2
≤ k

(
‖u‖2 + ‖v‖2

)
‖u− v‖

for some k > 0. Let c > 0 be small enough so that ‖u‖ ≤ c and ‖v‖ ≤ c. We have∣∣∣ [u, φ]− [v, ϕ]
∣∣∣
2
≤ 2kc2 ‖u− v‖ ,

and ∣∣∣ [u, φ]− [v, ϕ]
∣∣∣
1
≤ k1

∣∣∣ [u, φ]− [v, ϕ]
∣∣∣
2
≤ 2kk1c

2 ‖u− v‖ .
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Moreover, we have

| [u− v, F0 ]|1 ≤ (
∫
ω
|∂11(u− v)| |∂22F0|) + (

∫
ω
|∂22(u− v)| |∂11F0|)

+2(
∫
ω
|∂12(u− v)| |∂12F0|)

≤ ‖∂22F0‖2 |∂11(u− v)|2 + ‖∂11F0‖2 |∂22(u− v)|2

+2 ‖∂12F0‖2 |∂12(u− v)|2

≤ 4c2 ‖F0‖2,ω ‖u− v‖ .

Using the similar proof for the next inequality, with Proposition 2.1 and Theorem 2.2 we
have

| [φ− ϕ, θ ]|1 ≤ 4c2 ‖θ‖2,ω ‖φ− ϕ‖ ≤ 4c0c2 ‖θ‖2,ω |[u, u]− [v, v]|1

≤ 4c0c2 ‖θ‖2,ω
(
|[u, u− v]|1 + |[v, u− v]|1

)
≤ 16c0c2 ‖θ‖2,ω (‖u‖+ ‖v‖) ‖u− v‖

≤ 32c0c2c ‖θ‖2,ω ‖u− v‖ ,

and so, with c3 = 3 max(4c2c0, 32cc0c2, 1)

|F1(u, φ)− F1(v, ϕ)|1 ≤
∣∣∣ [φ+ F0, u+ θ ]− [ϕ+ F0, v + θ ]

∣∣∣
1

+ |L(u− v)|1

≤
∣∣∣ [φ, u ]− [ϕ, v ]

∣∣∣
1

+
∣∣∣ [F0, u− v ]

∣∣∣
1

+
∣∣∣ [θ, φ− ϕ ]

∣∣∣
1

+ ‖L‖ ‖u− v‖

≤
(
2kk1c

2 + 4c2c0 ‖F0‖2,ω + 32cc0c2 ‖θ‖2,ω + ‖L‖
)
‖u− v‖

≤
(
2kk1c

2 + c3(‖F0‖2,ω + ‖θ‖2,ω + ‖L‖)
)
‖u− v‖ .

If we choose

‖θ‖2,ω + ‖F0‖2,ω + ‖L‖ < 1

c3
and 0 < c <

√
1− c3(‖F0‖2,ω + ‖θ‖2,ω + ‖L‖)

2c0kk1
,

we have
0 < c1 = 2kk1c

2 + c3(‖F0‖2,ω + ‖θ‖2,ω + ‖L‖) < 1,

we then conclude the proof.

Remark 2.2 In the next result, from the mechanical point of view, our weaker as-
sumptions concerning F0 in H2

0 (ω) mean that no external stresses are applied to the
shell [3]. F0 is a given function determined by mechanical loads. For some of the results,
less regularity on F0 is required. For example, to prove the uniqueness of weak solution
to the dynamic problem with free boundary conditions and, also, to the thermoelastic
plates, some authors take F0 in H3+ε

0 (ω).
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3 Iterative Approach: the Main Results

We will study the problem (P) by considering the following iterative problem.
Let n ≥ 1, 0 6= u0 ∈ V be given. We first find φn ∈ H2

0 (ω) as a solution of the
equation ∆2φn = − [un−1, un−1 + 2θ] and un as a solution of the following problem:

(Pn)



∆2un = F1(un−1, φn) + p in ω,

un = ∂νun = 0 on Γ0,

un = 0, ∆un + (1− µ)B1un = 0 on Γ1,

∆un + (1− µ)B1un = 0 , ∂ν(∆un) + (1− µ)B2un − ϑun = 0 on Γ2,

where F1 is defined by (5).
We are now in a position to state our main result of this section.

Theorem 3.1 Let p ∈ L2(ω). If |p|2, ‖θ‖2,ω, ‖L‖ and ‖F0‖2,ω are small, then the

problem (P) has one and only one solution (u, φ) ∈ V×H2
0 (ω).

Proof. We divide it into three steps.
Step 1: Let us consider the problem (Pn) with u0 6= 0. We will show that

∀n ∈ IN, ‖un‖ ≤ ‖u0‖ and ‖φn+1‖ ≤ ‖u0‖ .

For n = 0, we have ‖u0‖ ≤ ‖u0‖. Otherwise, for φ1 being the solution of the problem
∆2φ1 = − [ u0, u0 +2θ ], Proposition 2.1 and Theorem 2.2 ensure that there exists c0 > 0
such that

‖φ1‖ ≤ c0 |[ u0, u0 + 2θ ]|1 ,

using the proof of Proposition 2.2 with

‖u0‖ < c, 0 < c0kk1c < 1 and ‖θ‖2,ω ≤
1− c0kk1c

8c0
,

we can deduce that

‖φ1‖ ≤ c0kk1 ‖u0‖2 + 8c0 ‖θ‖2,ω ‖u0‖ ≤ (c0kk1c+ 8c0 ‖θ‖2,ω) ‖u0‖ ≤ ‖u0‖ .

The desired inequalities are true for n = 0.
Suppose that

∀k = 1, ..., n, ‖uk‖ ≤ ‖u0‖ and ‖φk+1‖ ≤ ‖u0‖ .

Since un+1 is a solution of the problem (Pn+1), Theorem 2.3 yields that there exists
c00 � 0, and by Proposition 2.2 we have that

‖un+1‖ ≤ c00(|F1(un, φn+1)|1 + |p|1)

≤ c00(c1 ‖un‖+ |p|1)

≤ c00(c1 ‖u0‖+ |p|1).
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If we choose c � 0 sufficiently small, such that

0 ≺ c1 ≺ 1, 0 < c00c1 ≺ 1 and |p|1 ≤
(1− c00c1)

c00
‖u0‖ ,

it follows that

‖un+1‖ ≤ ‖u0‖ .

Moreover, for φn+2 being the solution of the problem ∆2φn+2 = − [ un+1, un+1 + 2θ ]
and after the case n = 0, we have

‖u0‖ < c, 0 < c0kk1c < 1 and ‖θ‖2,ω ≤
1− c0kk1c

8c0
,

moreover, we can deduce that

‖φn+2‖ ≤ c0kk1 ‖un+1‖2 + 8c0 ‖θ‖2,ω ‖un+1‖ ≤ (c0kk1c+ 8c0 ‖θ‖2,ω) ‖un+1‖ ≤ ‖u0‖ .

Hence,

∀n ∈ IN, ‖un‖ ≤ ‖u0‖ , and ‖φn+1‖ ≤ ‖u0‖ .

Step 2: Let m ≺ n, un ( resp, um) be a solution of the problem (Pn) (resp, (Pm)),
then un − um is a solution of the following problem :

∆2(un − um) = F1(un−1, φn−1)− F1(um−1, φm−1) in ω,

un − um = 0 ∂ν(un − um) = 0 on Γ0,

un − um = 0, ∆(un − um) + (1− µ)B1(un − um) = 0 on Γ1,

∆(un − um) + (1− µ)B1(un − um) = 0 on Γ2,

∂ν(∆(un − um) + (1− µ)B2(un − um)− ϑ(un − um) = 0 on Γ2.

Using Theorem 2.3 again, we have

‖un − um‖ ≤ c00 |F1(un−1, φn−1)− F1(um−1, φm−1)|1

≤ c00c1 ‖un−1 − um−1‖

≤ (c00c1)m ‖un−m+1 − u0‖

≤ (c00c1)m
∑n−m−1
k=0 (c00c1)k ‖u1 − u0‖

≤ 2(c00c1)m
∑n−m−1
k=0 (c00c1)k ‖u0‖ .

Moreover, for φn − φm being the solution of the problem

∆2(φn − φm) = − [ un+1, un+1 + 2θ ] + [ um+1, um+1 + 2θ ] ,
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Theorem 2.2 ensures that there exists c0 > 0 such that

‖φn − φm‖ ≤ c0 |[ un+1, un+1 + 2θ ]− [ um+1, um+1 + 2θ ]|1

≤ c0
(
|[un+1, un+1 − um+1]|1

+ |[um+1, un+1 − um+1]|1 + |[2θ, un+1 − um+1]|1
)

≤ 8c0kk1c ‖un+1 − um+1‖+ 8c0 ‖θ‖2,ω ‖un+1 − um+1‖

≤ (8c0kk1c+ 8c0 ‖θ‖2,ω) ‖un+1 − um+1‖ .

Using the proof of Proposition 2.2 and Theorem 2.2 with

‖u0‖ < c, 0 < 8c0kk1c < 1 and ‖θ‖2,ω ≤
1− 8c0kk1c

8c0
,

we can deduce that

‖φn − φm‖ ≤ (8c0kk1c+ 8c0 ‖θ‖2,ω) ‖un+1 − um+1‖ .

This implies that the sequence (un, φn)n≥0 is a Cauchy sequence in V × H2
0 (ω), hence

the sequence (un, φn)n≥0 converges to (u, φ) in V×H2
0 (ω) and, with Proposition 2.2, we

deduce that F1(un, φn+1) + p converges to F1(u, φ) + p in L1(ω).
Since the operator ”trace” and the operator ”∂ν” are continuous, we have that

(un)|Γ0
, (un)|Γ1

, (un)|Γ2
and ∂ν(un)|Γ0

converge to u|Γ0
, u|Γ1

, u|Γ2
and ∂νu|Γ0

and φn converges to φ on Γ.

Finally, we have that u|Γ0
= u|Γ1

= 0, ∂νu|Γ0
= 0, φ|Γ = 0 and ∂νφ|Γ = 0.

To conclude that u is a solution of the problem (P), we show that u satisfies the
following equality:

(∆u+ (1− µ)B1u)|Γ1∪Γ2 = 0 and (∂ν∆u+ (1− µ)B2u− ϑu)|Γ2 = 0.

By Lemma 2.1 we have for all v ∈ V∫
ω

∆2(un − u)v = a0(un − u, v) +

∫
Γ

(
∂ν∆(un − u) + (1− µ)B2(un − u)

)
v

−
∫

Γ

(
∆(un − u) + (1− µ)B1(un − u)

)
∂νv.

But un is a solution of the problem (Pn), it follows that

(∆un + (1− µ)B1un)|Γ1∪Γ2
= 0 and (∂ν∆un + (1− µ)B2un)|Γ2

− ϑ(un)|Γ2
= 0, (6)

or v ∈ V implies that v|Γ1∪Γ2
= 0 and ∂νv|Γ0

= 0, then∫
Γ

(
∆(un−u)+(1−µ)B1(un−u)

)
∂νv =

∫
Γ0∪Γ1∪Γ2

(
∆(un−u)+(1−µ)B1(un−u)

)
∂νv,
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=

∫
Γ1∪Γ2

(
∆(un − u) + (1− µ)B1(un − u)

)
∂νv.

This, together with (6), yield∫
Γ1∪Γ2

(
∆(un − u) + (1− µ)B1(un − u)

)
∂νv = −

∫
Γ1∪Γ2

(
∆u+ (1− µ)B1u

)
∂νv,

hence ∫
Γ

(
∆(un − u) + (1− µ)B1(un − u)

)
∂νv = −

∫
Γ1∪Γ2

(
∆u+ (1− µ)B1u

)
∂νv.

Moreover,∫
Γ

(
∂ν∆(un−u)+(1−µ)B2(un−u)

)
v =

∫
Γ0∪Γ1∪Γ2

(
∂ν∆(un−u)+(1−µ)B2(un−u)

)
v,

=

∫
Γ2

(
∂ν∆(un − u) + (1− µ)B2(un − u)

)
v.

In view of (6), we deduce that∫
Γ

(
∂ν∆(un − u) + (1− µ)B2(un − u)

)
v = ϑ

∫
Γ2

unv −
∫

Γ2

(
∂ν∆u+ (1− µ)B2u

)
v.

It follows that∫
ω

∆2(un − u)v = a0(un − u, v) + ϑ

∫
Γ2

unv −
∫

Γ2

(
∂ν∆u+ (1− µ)B2u

)
v

+

∫
Γ1∪Γ2

(
∆u+ (1− µ)B1u

)
∂νv.

Now, letting n→ +∞ in the next equality, we deduce that

∀v ∈ V, ϑ
∫

Γ2

uv −
∫

Γ2

(
∂ν∆u+ (1− µ)B2u

)
v +

∫
Γ1∪Γ2

(
∆u+ (1− µ)B1u

)
∂νv = 0.

This equality implies that

∀v ∈ H1
0 (ω) ∩ V,

∫
Γ1∪Γ2

(
∆u+ (1− µ)B1u

)
∂νv = 0,

it turns out that
∆u+ (1− µ)B1u = 0, on Γ1 ∪ Γ2.

And also, we deduct

∀v ∈ V, ϑ
∫

Γ2

uv −
∫

Γ2

(
∂ν∆u+ (1− µ)B2u

)
v = 0,

it follows that
∂ν∆u+ (1− µ)B2u− ϑu = 0, on Γ2.
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Finally, (u, φ) is a solution of the static von Karman equations in V×H2
0 (ω).

Step 3 : For the uniqueness, we suppose that the problem (P) has two solutions
(u1, φ1) and (u2, φ2) in V×H2

0 (ω) such that

‖u1‖ ≤ c and ‖u2‖ ≤ c,

where, c is sufficiently small. Since u1 − u2 is a solution of the following problem:

∆2(u1 − u2) = F1(u1, φ1)− F1(u2, φ2) in ω,

u1 − u2 = 0, ∂ν(u1 − u2) = 0 on Γ0,

u1 − u2 = 0, ∆(u1 − u2) + (1− µ)B1(u1 − u2) = 0 on Γ1,

∆(u1 − u2) + (1− µ)B1(u1 − u2) = 0 on Γ2,

∂ν(∆(u1 − u2) + (1− µ)B2(u1 − u2)− ϑ(u1 − u2) = 0 on Γ2.

Theorem 2.3 implies that there exists c00 � 0 such that

‖u1 − u2‖ ≤ c00 |F1(u1, φ1)− F1(u2, φ2)|1 ≤ c00c1 ‖u1 − u2‖ ,

c is small, thus 0 < c00c1 < 1, then u1 = u2 and φ1 = φ2.
Lastly, the stationary von Karman equations have one and only one solution (u, φ)

in the space V×H2
0 (ω).

Remark 3.1 In this section we described an iterative method for constructing a
unique weak solution, this technique is a good tool for illustrating this weak solution
from the numerical point of view.

4 Conclusion

In this paper, we described an iterative method for constructing a unique weak solution
to the model with free boundary conditions of buckling and flexible phenomenon of
small nonlinear vibrations of the homogenous, isotropic and elastic thin shells of uniform
thickness. Our approach is a good tool for justifying the theoretical results under the
following weak assumption F0 ∈ H2(ω). Similar study for the models of dynamic von
Karman equations with and without rotational inertia and for free boundary conditions
of the shell could be the purpose for future research.
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1 Introduction

The classical restricted three-body problem (R3BP) consists of five libration points, three
of them are on the straight line joining the primaries, called collinear libration points,
and two of them set up equilateral triangle with the primaries. The collinear libration
points L1,2,3 are always unstable in the linear sense for any value of the mass parameter
µ whereas the triangular points L4,5 are stable if µ < µc = 0.03852..., see Szebehely [1].
In recent times, many perturbing forces such as oblateness, radiation forces of the pri-
maries, Coriolis and centrifugal forces etc., have been included in the study of the R3BP.
Subbarao and Sharma [2] have investigated the non-collinear libration points in the cir-
cular restricted three-body problem (CR3BP) by taking the bigger primary as an oblate
spheroid and found that these libration points form nearly equilateral triangle with the
primaries. Sharma et al. [3] have studied the existence and stability of libration points in
the R3BP by considering both the primaries as triaxial rigid bodies. In their study, they
have found five libration points, in which two are triangular and the remaining three
are collinear. Prado [4] has worked on the space trajectories in the circular restricted
three-body problem. Further, he assumed that the spacecraft moves under the gravita-
tional forces of two massive bodies which are in circular orbits. He also investigated the
orbits which can be used to transfer a spacecraft from one body back to the same body
or to transfer a spacecraft from one body to the respective Lagrangian points L4 and
L5. Correa et al. [5] introduced two models of the restricted three-body and four-body
problems. They have investigated the transfer orbits from a parking orbit around the
Earth to the halo orbit in both the dynamical models. Also, they have compared the
total velocity increment to both the models.

If continuous low-thrust is used by a spacecraft to balance the gravitational and
centrifugal forces, the new equilibrium points appear. These points are usually referred
as the Artificial Equilibrium Points (AEPs). The AEP overcomes the position limitation
of the classical equilibrium points as it provides a variety of choices for the design of space
missions. Therefore, it has been extensively studied by many authors. These studies
include the location, stability and periodic orbits of equilibrium points with different
types of propulsions such as solar-sail, solar electric propulsion and other low-thrust
propulsion.

Farquhar [6] studied the concept of telecommunication systems using the Lagrange
points and investigated ballistic periodic orbits about these points in the Earth-Moon
system. Dusek [7] and Broschart [8] have studied the stability of equilibrium points with
continuous control acceleration. Morimoto et al. [9] have studied the existence and sta-
bility of the AEPs in the low-thrust R3BP and found the stable regions. They have
used the discriminant of cubic equation and the Descartes sign rule to study the sta-
bility of these AEPs. Baig and McInnes [10] have investigated the artificial three-body
equilibria for hybrid low-thrust propulsion. In their study, they have introduced a new
concept of creating AEPs in the R3BP when the third body uses a hybrid of solar-sail
and electric propulsion. Further, Bombardelli and Pelaez [11] have found the locations of
AEPs, stability and minimum control acceleration in the CR3BP. Aliasi et al. [12] have
proposed a general mathematical model for different propulsion system such as solar-sail,
magnetic and electric sail in the CR3BP to study the existence, geometry and stability
of AEPs. Furthermore, Ceccaroni and Biggs [13] have investigated the stability condi-
tions and stable regions for the artificial equilibrium points in the low-thrust circular
R4BP. In their study, they have obtained eight natural equilibrium points, four of which
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are closed to the smaller body. Among the four equilibrium points close to the smaller
body, two are stable and two are unstable. Bu et al. [14] have investigated the positions
and dynamical characteristic of the AEPs in a binary asteroid system with continuous
low-thrust. Recently, Ranjana and Kumar [15] have studied the existence and stability
of the AEPs in the circular restricted problem of 2+2 bodies when the shape of a larger
mass is taken to be an oblate spheroid. More recently, Sushil et al. [16] have studied
the existence and stability of the equilibrium points in the restricted three-body problem
with a Geo-Centric satellite including the Earth’s equatorial ellipticity.

In this paper, we have studied the existence and linear stability of the AEPs by
considering the smaller primary as an oblate spheroid and the bigger one as a point
mass. This paper is organized as follows. In Section 2, we have derived the equations
of motion of the spacecraft. In Section 3, we have obtained the locations of AEPs. In
Section 4, we have derived the stability conditions and stable regions. In Section 5, we
have drawn the zero velocity curves. Finally, in Section 6, we have concluded the results
obtained.

Figure 1: Configuration of the problem.

2 Equations of Motion

Let two celestial bodies of masses m1 and m2 (m1 > m2) be the primaries moving with
angular velocity ω in circular orbits about their center of mass O taken as the origin,
and let the infinitesimal body (spacecraft) of mass m3 be moving in the plane of motion
of m1 and m2. The motion of the spacecraft is effected by the motion of m1 and m2

but not affects them. We shall determine the equations of motion of the infinitesimal
body of mass m3 in dimensionless synodic variables. The line joining the primaries
m1 and m2 is taken as the X-axis, and the line which passes through the origin O
and perpendicular to the OX-axis and is lying in the plane of motion of m1 and m2 is
considered as the Y -axis, the line which passes through the origin and is perpendicular
to the plane of motion of the primaries is taken as the Z-axis. In a synodic frame,
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the system of synodic coordinates O (xyz) is initially coincident with the system of
inertial coordinates O (XY Z), rotating with the angular velocity ω about the Z-axis
(the z axis is coincident with the Z-axis). Let the primaries of masses m1 and m2

be located at P1 (−µ, 0, 0) and P2 (1 − µ, 0, 0), respectively, and the spacecraft be at
the point P3 (x, y, z)(see Fig. 1). The angular velocity of the primaries is given by the

relation ω =
√

G(m1+m2)
l3 , where l is the distance between the primaries, and G is the

Gravitational constant. We scale the units by taking the sum of the masses and the
distance between the primaries both equal to unity. Therefore, m1 = 1 − µ, m2 = µ
and µ = m2

m1+m2
with m1 + m2 = 1. Also, the scale of the time is chosen so that the

gravitational constant is unity. The equation of motion of the spacecraft in vector form
is expressed as

d2r

dt2
+ 2ω × dr

dt
= a −5Ω = F, (1)

where Ω is the potential (McCuskey [17]) of the system that combines the gravitational
potential and the potential from the centripetal acceleration which is defined as

Ω = −n
2

2
(x2 + y2)− (1− µ)

r1
− µ

r2
− µA

2r32
,

and

F = total force acting on m3,

= F1 + F2,

F1 = gravitational force exerted on m3 due

to m1 along P3P1,

F2 = gravitational force exerted on m3 due

to m2 along P3P2.

The vector a = (ax, ay, az) is the low-thrust acceleration and r = (x, y, z)T is the
position vector of the spacecraft from the origin. Thus, the equations of motion of the
spacecraft with continuous low-thrust in the dimensionless co-ordinate system can be
written as (Morimoto et al. [9])

ẍ− 2n ẏ = −Ωx + ax = −Ω∗x,

ÿ + 2n ẋ = −Ωy + ay = −Ω∗y,

z̈ = −Ωz + az = −Ω∗z,

 (2)

where Ω∗ is the effective potential of the system with continuous low-thrust and can be
written as

Ω∗ = Ω− axx− ayy − azz = −n
2

2
(x2 + y2)− (1− µ)

r1
− µ

r2
− µA

2r32
− axx− ayy − azz,

where r1 =

√
(x+ µ)

2
+ y2 + z2, r2 =

√
(x+ µ− 1)

2
+ y2 + z2, a =

√
ax2 + ay2 + az2,

and n is the mean motion of the primaries which is also defined as n2 = (1 + 3A
2 ), where

A is the oblateness parameter of m2 which is defined as A =
a2
1−c

2
1

5 l2 , 0 < A < 1, a1 =
b1(a1 > c1), where a1, b1, c1 are the semi-axes of the rigid-body of mass m2, and l is the
distance between the primaries.
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3 Calculation of the Artificial Equilibrium Points

The AEPs are the solution of the equations Ω∗x = 0, Ω∗y = 0, Ω∗z = 0. The AEPs denoted
by (x0, y0, z0) are the solution of the equations given by

−n2x0 +
1− µ
r31

(x0 + µ) +
µ

r32
(x0 − µ1 − 1)

(
1 +

3A

2r22

)
− ax = 0,

−n2y0 +
1− µ
r31

y0 +
µ

r32
y0

(
1 +

3A

2r22

)
− ay = 0,

1− µ
r31

z0 +
µ

r32
z0

(
1 +

3A

2r22

)
− az = 0.


(3)

When A = 0, a = (0, 0, 0), the above Eqs. (3) reduce to the equations obtained by
Szebhely [1]. When A = 0, the above Eqs. (3) reduce to the equations obtained by
Morimoto et al. [9]. Solve the Eqs. (3) for z = 0, then the AEPs are the intersection
of Ω∗x = 0 and Ω∗y = 0. We have obtained five AEPs for given parameters denoted
by L1, L2, L3, L4 and L5. The numerical values of the AEPs are shown in Tables 1, 2.
From Table 1, we have observed that there exist three collinear and two non-collinear
AEPs when low-thrust acceleration is varying in the x direction. From Table 2, we have
observed that there exist five non-collinear AEPs for the fixed values of µ = 0.1, a =
(0, 0.0001, 0) and for the increasing values of the oblateness parameter A.

We have displayed the movements of AEPs shown graphically in Fig. 2(a, b). In
Fig. 2(a), we have plotted the AEPs for the fixed values of µ = 0.1, A = 0.01 and for
the increasing values of a = (ax, 0, 0). From Fig. 2 (a), we have observed that when
a = (ax, 0, 0) is increasing, the movements of the AEPs L1, L2, and L3 are almost
negligible whereas the AEPs L4 and L5 move towards the y-axes. The AEPs L4 and L5

are symmetric with respect to the x-axis.
In Fig. 2(b), we have plotted the AEPs for the fixed values of µ = 0.1, a =

(0, 0.0001, 0) and for the increasing values of the oblateness parameterA. From Fig. 2 (b),
we have observed that when A is increasing, the AEPs L1 and L2 move from right to
left towards the primaries m1 and m2, respectively, whereas the AEP L3 is shifted from
left to right towards the bigger primary m1 and the AEPs L4 and L5 move towards the
x-axis. Also, we have noticed that the AEPs L4 and L5 are not symmetric with respect
to the x-axis. We have observed that the AEPs are the new positions of the equilibrium
points, with the effect of continuous low-thrust acceleration and oblateness parameters,
which are different from the natural equilibrium points.

µ = 0.1
A = 0.01

a L1 L2 L3 L4, 5

(0.0001, 0, 0) (0.595693, 0) (1.27013, 0) (-1.03681, 0) (0.394700, ±0.863321)
(0.01, 0, 0) (0.595064, 0) (1.26863, 0) (-1.03989, 0) (0.356034, ±0.880338)
(0.03, 0, 0) (0.593786, 0) (1.26563, 0) (-1.04616, 0) (0.254245, ±0.918441)
(0.05, 0, 0) (0.592501, 0) (1.26267, 0) (-1.05252, 0) (0.0946093, ±0.957963)

Table 1: The AEPs when the low-thrust acceleration a = (ax, 0, 0) is varying in the x-direction.



444 MD. SANAM SURAJ, AMIT MITTAL, KRISHAN PAL AND DEEPAK MITTAL

(a) (b)

Figure 2: Locations of five AEPs in the low-thrust R3BP for µ = 0.1 under the ef-
fect of low-thrust acceleration and oblateness parameters a , A, respectively, (a) for A =
0.01 and for different values of a = (0.0001, 0, 0) (gray, red), (0.01, 0, 0) (gray, green),
(0.03, 0, 0) (gray, magenta), (0.05, 0, 0) (gray, orange), and (b) for a = (0, 0.0001, 0)
and for different values of A = 0.01 (gray, red), 0.15 (gray, green), 0.35 (gray, magenta),
0.55 (gray, orange)

µ = 0.1
a = (0, 0.0001, 0)

A L1 L2

A = 0.01 (0.595700, 0.0000172961) (1.27015, 0.0000656752)
A = 0.15 (0.517147, 0.0000140423) (1.33094, 0.0000541839)
A = 0.35 (0.469174, 0.0000122795) (1.35954, 0.0000424306)
A = 0.55 (0.438985, 0.0000112294) (1.37323, 0.0000347701)

L3 L4 L5

(-1.036780, 0.001068400) (0.395227, 0.863036) (0.394896, -0.863275)
(-0.977898, 0.000824811) (0.336840, 0.826193) (0.336620, -0.826353)
(-0.913935, 0.000611650) (0.277461, 0.782479) (0.277319, -0.782585)
(-0.864974, 0.000479622) (0.234858, 0.746633) (0.234756, -0.746711)

Table 2: The AEPs in the x− y-plane when the oblateness parameter A is varying.

4 Stability Analysis and Stable Region

For establishing the spacecraft at a non-equilibrium point, a continuous low-thrust is
provided to the spacecraft. Now, we give the small displacement to (x0, y0, z0) as x =
x0 + δx, y = y0 + δy, z = z0 + δz, (δx, δy, δz << 1). Using the above displacements, the
linearized equations corresponding to Eqs. (2) according to Morimoto et al. [9] are given
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by

δ̈x − 2nδ̇y = (Ω∗xx)0δx + (Ω∗xy)0δy + (Ω∗xz)0δz,

δ̈y + 2nδ̇x = (Ω∗yx)0δx + (Ω∗yy)0δy + (Ω∗yz)0δz,

δ̈z = (Ω∗zx)0δx + (Ω∗zy)0δy + (Ω∗zz)0δz,

 (4)

where the superscript ’0’ in Eqs. (4) indicates that the values are to be calculated at the
AEP (x0, y0, z0). Further, the characteristic root λ satisfies

λ6 + ((Ω∗xx)0 + (Ω∗yy)0 + (Ω∗zz)0 + 4n2)λ4 + ((Ω∗xx)0(Ω∗yy)0

+(Ω∗xx)0(Ω∗zz)0 + (Ω∗yy)0(Ω∗zz)0 − ((Ω∗xy)0)2 − ((Ω∗xz)0)2 − ((Ω∗yz)0)2

+4n2 (Ω∗zz)0)λ2 + (Ω∗xx)0(Ω∗yy)0(Ω∗zz)0 + 2 (Ω∗xy)0(Ω∗xz)0(Ω∗yz)0

−((Ω∗xy)0)2(Ω∗zz)0 − ((Ω∗xz)0)2(Ω∗yy)0 − ((Ω∗yz)0)2(Ω∗xx)0 = 0.

 (5)

Taking k = λ2, we have obtained

k3 + ((Ω∗xx)0 + (Ω∗yy)0 + (Ω∗zz)0 + 4n2) k2 + ((Ω∗xx)0(Ω∗yy)0

+(Ω∗xx)0(Ω∗zz)0 + (Ω∗yy)0(Ω∗zz)0 − ((Ω∗xy)0)2 − ((Ω∗xz)0)2 − ((Ω∗yz)0)2

+4n2 (Ω∗zz)0) k + (Ω∗xx)0(Ω∗yy)0(Ω∗zz)0 + 2 (Ω∗xy)0(Ω∗xz)0(Ω∗yz)0

−((Ω∗xy)0)2(Ω∗zz)0 − ((Ω∗xz)0)2(Ω∗yy)0 − ((Ω∗yz)0)2(Ω∗xx)0 = 0.

 (6)

We see that the Eqn. (6) is a cubic equation in k and it can be written as

k3 + d1k
2 + d2k + d3 = 0, (7)

where

d1 = (Ω∗xx)0 + (Ω∗yy)0 + (Ω∗zz)0 + 4n2,

d2 = (Ω∗xx)0(Ω∗yy)0 + (Ω∗xx)0(Ω∗zz)0 + (Ω∗yy)0(Ω∗zz)0 − ((Ω∗xy)0)2

−((Ω∗xz)0)2 − ((Ω∗yz)0)2 + 4n2 (Ω∗zz)0,

d3 = (Ω∗xx)0(Ω∗yy)0(Ω∗zz)0 + 2 (Ω∗xy)0(Ω∗xz)0(Ω∗yz)0 − ((Ω∗xy)0)2(Ω∗zz)0

−((Ω∗xz)0)2(Ω∗yy)0 − ((Ω∗yz)0)2(Ω∗xx)0.

Here, we shall study the linear stability of the AEPs by calculating the characteristic
roots of Eqn. (7). As we know that, all the characteristic roots of a cubic equation are
either real numbers or one of them is a real number and the other characteristic roots
are imaginary numbers. A necessary and sufficient condition for an AEP to be linearly
stable is that all the characteristic roots of Eqn. (5) lie in the left-hand side of the
λ-plane (i.e.,λ ≤ 0). If one or more characteristic roots of Eqn. (5) lie in the right-hand
side of the λ-plane, then the AEP is always unstable. If all the characteristic roots
of Eqn. (5) lie to the left-hand side of the λ-plane, then Eqn. (7) must have three real
and negative roots. The resulting linear stability conditions according to Morimoto et
al. [9] and Descartes sign rule are D ≥ 0, d1 > 0, d2 > 0 and d3 > 0, where D is the
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discriminant of the cubic Eqn. (7) and is given by

D =
1

4

(
d3 +

2 d 3
1 − 9 d1 d2

27

)2

+
1

27

(
d2 −

d21
3

)3

. (8)

Eventually, we have concluded that the system of AEPs is linearly stable when D ≥
0, d1 > 0, d2 > 0 and d3 > 0.

Furthermore, we have plotted the stability regions in the x−y, x−z and y−z-planes
as shown in Fig. 3(a, b, c, d, e, f). From Fig. 3, we have observed that the stability regions
reduce around both the primaries for the increasing values of the oblateness parameter
A ∈ (0, 1). According to stability theory, it is concluded that the AEPs located in the
stable regions are linearly stable, otherwise unstable. Further, it is concluded that the
stable AEPs in these stable regions can be obtained by designing the magnitude and
direction of the low-thrust acceleration for space missions.

5 Zero Velocity Curves

The Jacobi integral of the equations of motion is defined as

C = 2Ω + (ẋ2 + ẏ2 + ż2). (9)

The Jacobi integral of the equations of motion with continuous low-thrust is defined as

C ′ = 2Ω∗ + (ẋ2 + ẏ2 + ż2). (10)

We have drawn the ZVCs from Eq. (10) by taking ẋ = ẏ = ż = 0. The white domains
correspond to the Hill region, and the cyan color indicates the forbidden regions, while
the thick black lines show the ZVCs. In these ZVCs, the black dots indicate the positions
of the AEPs, while the blue dots indicate the positions of two primaries m1 and m2. In
Fig. 4, we have drawn the ZVCs for µ = 0.1, A = 0.01, a = (0, 0.0001, 0) and for the
different values of the Jacobi constant C ′. The ZVCs in Fig.4(a, b, c, d) are labeled as
C ′ = −3.640439, C ′ = −3.415439, C ′ = −3.116439 and C ′ = −2.945439, respectively.

Fig. 4 (a) indicates the ZVC for the value of the Jacobi constant C ′ = −3.640439 and
shows that, there exists a circular land (white domains) around both the primaries and
the spacecraft trapped in these regions, where the motion is possible and the circular
strip (the cyan color) shows the forbidden region where the motion is not possible. Thus,
the spacecraft can move around both the primaries and can not move from one primary
to other. Fig. 4 (b) shows the ZVC for C ′ = −3.415439, it is observed that the spacecraft
can freely move in the entire white domain. In Fig. 4 (c), there exist a limiting situation
for C ′ = −3.116439 and a cusp at L3, it is observed that the spacecraft can freely move in
the entire white domain. In Fig. 4 (d), the curves of zero velocity constitute two branches
for C ′ = −2.945439. The first branch contains L4 and the other branch contains L5. Also,
the curves split into two parts at L3 and shrink to the tadpole shaped curves around L4

and L5. Hence, there is only forbidden region around L4 and L5 in the tadpole shaped
region and the spacecraft is free to move everywhere in the plane. We have observed that
for the increasing values of the Jacobi constant C ′, the representing possible boundary
regions increase in which the spacecraft can freely move from one place to other place.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: The stable regions (gray area) in the low-thrust R3BP with the effect of oblateness
for the mass parameter µ = 0.1, panels-(a, b) in the x− y-plane for A = 0.01, 0.95, respectively,
panels-(c, d) in the x−z-plane for A = 0.01, 0.95, respectively, and panels-(e, f) in the y−z-plane
for A = 0.01, 0.95, respectively.
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(a) (b)

(c) (d)

Figure 4: Zero velocity curves for the fixed values of µ = 0.1, A = 0.01, a = (0, 0.0001, 0) and
for the different values of the Jacobi constant C′, (a) for C′ = −3.640439, (b) for C′ = −3.415439,
(c) for C′ = −3.116439 and (d) for C′ = −2.945439.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (4) (2020) 439–450 449

6 Conclusion

In this paper, we have studied the existence and stability of the AEPs in the low-thrust
R3BP problem when the smaller primary is an oblate spheroid and the bigger one is a
point mass. The AEPs are obtained by introducing the continuous control acceleration
at the non-equilibrium points. The numerical values of the AEPs are shown in Tables
1, 2. We have observed that there exist three collinear and two non-collinear AEPs at
the low-thrust acceleration varying in the x direction whereas there exist only five non-
collinear AEPs at the low-thrust acceleration in the y direction. The movements of
AEPs are shown graphically in Fig. 2. We have observed that the non-collinear points
L4 and L5 are symmetrical about the x-axis at the low-thrust acceleration varying in the
x direction. We have derived the equations of motion of the spacecraft in the synodic
coordinate system. Further, we have transformed these equations of motion into a six-
degree equation. Also, the six-degree equation has been transformed into a cubic equation
and we found the conditions for analyzing linear stability. The effect of the oblateness
parameter A ∈ (0, 1) is studied on the motion of the spacecraft. We have plotted the
stability regions in the x− y, x− z and y − z-planes as shown in Fig. 3. From Fig. 3, we
have observed that the stability regions reduce near both the primaries m1 and m2 for
the increasing values of the oblateness parameter A ∈ (0, 1).

Our results are different from those by Morimoto et al. [9] in some aspects, namely,
(i) they have obtained the AEPs in the low-thrust R3BP, whereas we have obtained the
AEPs in the low-thrust R3BP with the effect of the oblateness of the smaller primary. In
our case, the AEPs are new positions of natural equilibrium points different from those by
Morimoto et al. [9] due to the presence of the oblateness parameter A (0 < A < 1). When
the oblateness parameter A = 0, then the results obtained in this work are in agreement
with those by Morimoto et al. [9]. When a = (0, 0, 0) and A = 0, the obtained results are
in agreement with the results by Szebehely [1]; (ii) they have found the stability regions
in the Sun-Earth system, whereas we have found the stability regions for µ = 0.1 and
for different values of the oblateness parameter A (0 < A < 1). Finally, we have drawn
the ZVCs to determine the possible regions of motion of the spacecraft in which the
spacecraft is free to move. We have observed that for the increasing values of the Jacobi
constant C ′, the possible regions of motion increase, in which the spacecraft can freely
move from one place to another. This paper is applicable in the Sun-Earth system for
communications of the spacecraft missions.
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Abstract: In this paper, we consider the fully fuzzy linear programming problem at
which all the attributes and variables of the problem are fuzzy numbers represented
by a piecewise linear fuzzy number. This type of fuzzy numbers is used due to its
importance as a generalization of some other types of fuzzy numbers. We propose a
fuzzy version of the simplex method to solve the problem, which is shown to be a gen-
eralization of the conventional simplex method. We represent the simplex method in
a tabulated form and discuss whether a final solution exists, the problem is infeasible
or it is unbounded. Finally, it is shown that the proposed method is more realistic
than some of the existing methods.

Keywords: piecewise linear fuzzy number; linear programming; fully fuzzy linear
programming; polygonal fuzzy number.
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1 Introduction

Linear programming has been an important mathematical tool to solve real life problems
for a long time. If some of the data in a linear programming problem are vague, i.e.,
not precise due to unclear boundaries, then these data are usually represented by fuzzy
numbers. This fuzzy representation of the data gives a more realistic manipulation of the
problem under consideration since many real life problems contain fuzzy expressions such
as “approximately”, “almost” or “about”. Ignoring such expressions and representing
the data as crisp (unfuzzy) numbers cost losing some information about the resources,
costs or variables. Many applications of fuzziness can be found in different mathematical
fields [1, 9]. The literature is rich of applications of fuzzy linear programming problems
see, for example, [2,4,6]. A more general case is to have a fully fuzzy linear programming
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(FFLP) problem, where all the attributes and the variables in the problem are fuzzy
[5, 14].

Different solution approaches for FFLP problems can be found in the literature. For
instance, some authors convert the problem into one or more crisp linear programming
(CLP) problems with one or more objectives using some ranking method to get rid of the
fuzziness, then solve the new problems using the known methods for solving conventional
single or multi-objective linear programming problems [7, 14]. On the other hand, some
researchers prefer to solve the problem directly without converting it into another type
of problem. This is usually done using a fuzzy version of the simplex method [5, 11].

Many types of fuzzy numbers were used in the literature to represent this fuzziness,
namely, the triangular fuzzy number which was used by Ozkok et al. [14], the trapezoidal
fuzzy number which was considered by Das et al. [7] and by Kumar & Kaur [12], and
other types of fuzzy numbers used widely in the literature. A more general type of
fuzzy numbers is the n-polygonal fuzzy number, which generalizes the triangular and the
trapezoidal fuzzy numbers. It has been gaining a great interest recently, especially in
neural networks [13,17].

In a previous work [15], Tuffaha and Alrefaie studied the piecewise linear fuzzy number
of order n (PLFN-n), which is an n-polygonal fuzzy number with equidistant knots.
Convenient arithmetic operations were proposed on the PLFN-n in [15] and shown to
satisfy the most important properties such as commutativity, associativity, having an
identity and preserving the ranking value. Moreover, the operations were shown to give
a generalization of the conventional binary operations on the real numbers. Later on,
Tuffaha and Alrefaei [16] showed extra properties for the arithmetic operations. These
new definitions were used for solving a fully fuzzy transportation problem (FFTP) [3].
In this paper, we consider a fully fuzzy linear programming problem and represent the
fuzziness by the PLFN-n for the first time. A generalization of the known simplex method
is proposed using the arithmetic operations given in [15].

The paper is organized as follows. In Section 2, we give some preliminaries needed
throughout the paper. After that, in Section 3, the fully fuzzy linear programming
problem is constructed and the solution method is proposed. The advantages of the
proposed method are shown in Section 4, and some concluding remarks are given in
Section 5.

2 Preliminaries

In this section, we present the definition of PLFN-n and the binary operations on PLFN-
n’s. We also give some definitions to clarify some concepts related to the PLFN-n’s,
such as the fuzzy matrices and the maximum and minimum of a set of fuzzy values or
fuzzy-valued functions.

The following definitions are about the piecewise linear fuzzy number that is presented
in [15].

Definition 2.1 A fuzzy set Ã is called a Piecewise Linear Fuzzy Number of
Order n (PLFN-n) if its membership function is given by

fÃ(x) =


1
n [ x−pi

pi+1−pi
] + i

n ; pi ≤ x ≤ pi+1, i = 0, .., n− 1

1 ; pn ≤ x ≤ q0
−1
n [ x−qi

qi+1−qi ] + n−i
n ; qi ≤ x ≤ qi+1, i = 0, .., n− 1

0 otherwise.
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PLFN-n is represented by its knots: (p0, p1, .., pn; q0, q1, .., qn). The family of all
PLFN-n’s is denoted by PLn. Moreover, a crisp (unfuzzy) real number c can be repre-
sented in the PLFN-n form as c = (c, c, .., c; c, c, .., c).

Definition 2.2 Let (p0, p1, .., pn; q0, q1, .., qn) be a PLFN-n. Then its ranking value
is given by

R(P̃ ) =
1

4n
[p0 + 2p1 + 2p2 + ... + 2pn−1 + pn + q0 + 2q1 + 2q2 + ... + 2qn−1 + qn].

Definition 2.3 Let P̃ = (p0, p1, .., pn; q0, q1, .., qn), Q̃ = (r0, r1, .., rn; s0, s1, .., sn) ∈
PLn. The addition of P̃ and Q̃ is defined as follows:

P̃ ⊕ Q̃ = (p0 + r0, p1 + r1, .., pn + rn; q0 + s0, q1 + s1, .., qn + sn).

Moreover, the multiplication of P̃ and Q̃ is P̃ ⊗ Q̃ = (t0, t1, .., tn;u0, u1, .., un), where

un =
1

4n
[I +

n∑
i=1

(2i− 1)Xi + 2nXn+1 +

n∑
i=1

(2(n + i)− 1)Xn+1+i]

ui−1 = ui −Xn+1+i, for i = n, n− 1, .., 1

tn = u0 −Xn+1

ti−1 = ti −Xi, for i = n, n− 1, .., 1,

and I =
1

4n
[(p0 + 2p1 + .. + 2pn−1 + pn + q0 + 2q1 + .. + 2qn−1 + qn)∗

(r0 + 2r1 + .. + 2rn−1 + rn + s0 + 2s1 + .. + 2sn−1 + sn)]

Xi = (pi − pi−1) + (ri − ri−1), for i = n, n− 1, .., 1

Xn+1 = (q0 − pn) + (s0 − rn)

Xn+1+i = (qi − qi−1) + (si − si−1), for i = n, n− 1, .., 1.

This definition guarantees the preservation of the most common properties of PLFN-n’s.

Definition 2.4 Let P̃ = (p0, p1, .., pn; q0, q1, .., qn) ∈ PLn. If R(P̃ ) 6= 0, then the
multiplicative inverse of P̃ , in the sense that R(P̃ ⊗ P̃−1) = 1, is defined to be
P̃−1 = (t0, t1, .., tn;u0, u1, .., un), where

t0 =
1

R(P̃ )
+

1

4n
(p0 + 2p1 + .. + 2pn−1 + pn + q0 + 2q1 + .. + 2qn−1 − (4n− 1)qn)

ti = ti−1 + (qn−i+1 − qn−i) for all i = 1, .., n

u0 = tn + (q0 − pn)

ui = ui−1 + (pn−i+1 − pn−i) for all i = 1, .., n.

The following definitions are about the equalities, inequalities and matrices with
PLFN-n from [16].

Definition 2.5 Let ã and b̃ be two PLFN-n’s. Then

• ã and b̃ are equivalent, denoted ã ≈ b̃, if R(ã) = R(b̃).
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• ã is greater than b̃, denoted ã � b̃, if R(ã) ≥ R(b̃).

• ã is smaller than b̃, denoted ã � b̃, if R(ã) ≤ R(b̃).

Definition 2.6

• A matrix whose entries are PLFN-n’s is called a piecewise linear fuzzy matrix M̃.

• The set of all piecewise linear fuzzy matrices is denoted by M(PLn).

• The addition and multiplication of piecewise linear fuzzy matrices are similar to
those of real matrices, but using the binary operations given in Definition 2.3 on
PLn.

Definition 2.7 Let Ã = [ãij ]m×k, B̃ = [b̃ij ]m×k ∈M(PLn). Then

1. Ã and B̃ are equal or equivalent, written Ã = B̃ or Ã ≈ B̃, if their corresponding
entries are equal or equivalent, respectively.

2. A set of rows of Ã, {ãi1 , ãi2 , ..., ãip}, are linearly independent if the equation (c1⊗
ãi1)⊕ (c2⊗ ãi2)⊕ ...⊕ (cp⊗ ãip) ≈ 0̃ with c1, c2, ..., cp ∈ R can only be satisfied by
ci = 0 for all i = 1, .., p.

3. The rank of Ã is the maximal number of linearly independent rows of Ã.

4. If m = k, then Ã is a square fuzzy matrix, and we define the determinant of Ã,
denoted det(Ã), to be a PLFN-n computed in a similar way to how we compute
the determinant of a real square matrix, but using the binary operations given
in Definition 2.3 on PLn. Furthermore, if det(Ã) 6≈ 0, then the inverse matrix
Ã−1 can also be found by similar techniques to finding the inverse matrix of a real
matrix, but here Ã⊗ Ã−1 ≈ Ĩ, where the square matrix Ĩ is a fuzzy identity matrix
inM(PLn) whose entries are equivalent to zero, except for the entries in the main
diagonal which are equivalent to one.

It is known that a linear programming problem seeks the maximum or minimum of
a function subject to given constraints. The following definitions present the definition
of maximum or minimum of a set of fuzzy values or fuzzy-valued functions.

Definition 2.8 Let I be an arbitrary index set, and let S̃ = {ãi : i ∈ I} be a
set of PLFN-n’s. We define the maximum and minimum fuzzy value of the elements
of S̃, denoted max(S̃) and min(S̃), to be the elements of S̃ with the maximum and
minimum ranking values, respectively. In other words, if h1 = max{R(ãk) : ãk ∈ S̃} and
h2 = min{R(ãk) : ãk ∈ S̃}, then

max(S̃) = {ãi ∈ S̃ : R(ãi) = h1}, min(S̃) = {ãi ∈ S̃ : R(ãi) = h2}.

Note that max(S̃) and min(S̃) may have more than one element of S̃ if it contains
more than one PLFN-n with the maximum or minimum ranking value.

Definition 2.9 Let f̃ : (PLn)k → PLn, where k ∈ N, be a fuzzy-valued function.
Then the maximum and minimum of f̃ are defined by

max(f̃) = max{f̃(x̃) : x̃ ∈ (PLn)k}, min(f̃) = min{f̃(x̃) : x̃ ∈ (PLn)k}.

Remark 2.1 Note that max(f̃) = −min(−f̃).
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3 Fully Fuzzy Linear Programming with the Piecewise Linear Fuzzy Num-
ber

In this section, we construct the FFLP problem with PLFN-n and propose a solution
method. We generalize the simplex algorithm in order to solve a FFLP problem with
PLFN-n’s of the form

min z̃ = c̃x̃

s.t. Ãx̃ ≈ b̃

x̃ � 0̃,

(1)

where c̃ = [c̃j ]1×l, x̃ = [x̃j ]l×1, Ã = [ãij ]m×l, b̃ = [b̃i]m×1 are fuzzy matrices with

PLFN-n’s. Moreover, b̃i � 0̃ for all i = 1, ..,m, and the matrix Ã is with rank m.

3.1 Basic feasible solutions

After possibly rearranging the columns ãj of Ã, let Ã = [B̃Ñ], where B̃ is an m × m

invertible matrix consisting of m columns of ãj, and Ñ is an m× (l−m) matrix with the

rest of the columns. Then the constrains can be written as [B̃ Ñ]x̃ ≈ b̃. The variables

vector can then be split as follows: [B̃ Ñ]

[
x̃B

x̃N

]
≈ b̃, which gives B̃x̃B ⊕ Ñx̃N ≈ b̃ or

x̃B ⊕ B̃−1Ñx̃N ≈ B̃−1b̃. (2)

One solution is x̃ =

[
x̃B

x̃N

]
=

[
B̃−1b̃

0̃

]
, which is called a basic solution. B̃ is called the

basis, and the components of x̃B are called the basic variables. If x̃B � 0̃, then x̃ is called
a basic feasible solution (b.f.s.).

3.2 The fuzzy simplex method

Assume problem (1) has a basic feasible solution x̃′ =

[
x̃B

x̃N

]
=

[
B̃−1b̃

0̃

]
, whose objective

value is given by

z̃0 = c̃

[
B̃−1b̃,

0̃

]
= [c̃B c̃N ]

[
B̃−1b̃

0̃

]
= c̃BB̃−1b̃. (3)

The objective function in augmented form is

z̃ =
[
c̃B c̃N

] [x̃B

x̃N

]
= c̃Bx̃B ⊕ c̃N x̃N . (4)

From (2), we have
x̃B ≈ B̃−1b̃	 B̃−1Ñx̃N . (5)

Substituting (5) in (4) and simplifying give

z̃ ⊕ (c̃BB̃−1Ñ	 c̃N )x̃N ≈ c̃BB̃−1b̃.

Denote z̃N = c̃BB̃−1Ñ, then

z̃ ⊕ (z̃N 	 c̃N )x̃N ≈ c̃BB̃−1b̃. (6)
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From equations (6) and (2), and putting b̃ = B̃−1b̃, the current b.f.s. can be represented
in tabular form as

x̃B x̃N RHS

z̃ 0̃ z̃N 	 c̃N c̃BB̃−1b̃

x̃B Ĩ B̃−1Ñ b̃

We assume the absence of degeneracy, i.e., we consider that b̃ � 0. The case of
degeneracy, where b̃ has zero values, is known to cause some problems and needs a
special discussion that will be cited later.

Let J be the current set of indices of the non-basic variables, then z̃j 	 c̃j , where
j ∈ J are the elements of z̃N 	 c̃N . Now, from equation (6) we have

z̃ ≈ z̃0 	
∑
j∈J

(z̃j 	 c̃j)x̃j . (7)

If z̃j 	 c̃j ≺ 0 for all j ∈ J , then the current solution cannot be improved anymore,
and it is optimal. On the other hand, if z̃j	 c̃j � 0 for all j ∈ J , and z̃k	 c̃k ≈ 0 for some
k ∈ J , then increasing the value of x̃k does not affect the objective value, which means
that we have alternative optimal solutions with the same objective value. However, such
case is not treated differently than the previous case in this paper. In other words, even
if we have alternative optimal solutions, we will take only one of them into consideration.

Finally, if there exists z̃k 	 c̃k � 0 for some k ∈ J , then x̃k enters the basis because
this improves the objective value and one basic solution leaves the basis. To determine
the leaving variable, we use the ratio test in order to maintain feasibility, i.e., keep all
basic variables non negative. In order to maintain the nonnegativity of the variables, x̃k

is increased until the first point at which some basic variable x̃Br drops to zero. In fact,
we can increase x̃k until

x̃k =
b̃r
ỹrk

= min

{
b̃i
ỹik

; ỹik � 0, i = 1, ..,m

}
, (8)

and then x̃Br leaves the basis and we call it the blocking variable, and (8) is called the
minimum ratio. In fact, the only purpose of finding the minimum ratio is to determine the
blocking variable. However, we can use the ranking function to facilitate the calculations,
and the following ranked minimum ratio is enough to achieve the purpose:

R[b̃r]

R[ỹrk]
= min

{
R[b̃i]

R[ỹik]
; ỹik � 0, i = 1, ..,m

}
. (9)

In tabular format, we can change the basis using the elementary row operations,
which are known to maintain an equivalent problem, such that x̃k enters the basis and
x̃Br leaves it.

If ỹk � 0, i.e., the ranking values of all its elements are less than or equal to zero.
Then there is no blocking variable, and the value of x̃k can be increased indefinitely
giving always a better objective value without violating any of the constraints. Thus,

the problem is unbounded and the vector d̃ =

[
−ỹk

ẽk

]
is the direction of unboundedness.

To illustrate, we give two examples, one has optimal solution and the other is unbounded.
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Example 3.1 Consider the following FFLP problem:

min (1, 2, 3; 3, 4, 5)⊗ x̃1 ⊕ (−7,−4.5,−3;−1, 1, 2)⊗ x̃2

s.t. (−4,−2,−1; 2, 3, 5)⊗ x̃1 ⊕ (2, 3, 5; 6, 6.5, 8)⊗ x̃2 � (−1, 0, 1; 1, 3.5, 4)

(1, 3, 4; 4, 5, 7)⊗ x̃1 ⊕ (−3,−2.5,−2;−1, 0, 3)⊗ x̃2 � (5, 6, 7; 9, 10, 11)

x̃1, x̃2 � 0̃.

(10)

Adding the slack variables gives the following first simplex table:

x̃1 x̃2 ỹ1 ỹ2 RHS

z̃ (−5,−4,−3;−3,−2,−1) (−2,−1, 1; 3, 4.5, 7) 0 0 0

RV −3 2

ỹ1 (−4,−2,−1; 2, 3, 5) (2, 3, 5; 6, 6.5, 8) 1 0 (−1, 0, 1; 1, 3.5, 4)

RV 0.5 .5/ 1.5

ỹ2 (1, 3, 4; 4, 5, 7) (−3,−2.5,−2;−1, 0, 3) 0 1 (5, 6, 7; 9, 10, 11)

RV 4 −1 8

where the ranking value (RV) of each fuzzy number is written below it.
z̃k 	 c̃k = max{(−5,−4,−3;−3,−2,−1), (−2,−1, 1; 3, 4.5, 7), 0, 0} =
(−2,−1, 1; 3, 4.5, 7) � 0, thus the current solution is not optimal. From the ranked
minimum ratio test (9), we find
R[b̃r]
R[ỹrk]

= R[(−1, 0, 1; 1, 3.5, 4)]⊗R[(2, 3, 5; 6, 6.5, 8)−1] = 1.5 ∗ 0.2 = 0.3, so we pivot at

(2, 3, 5; 6, 6.5, 8) by performing the elementary row operations

R1 ←(2, 3, 5; 6, 6.5, 8)−1 ⊗R1

R0 ←(−(−2,−1, 1; 3, 4.5, 7)⊗R1)⊕R0

R2 ←(−(−3,−2.5,−2;−1, 0, 3)⊗R1)⊕R2.

This gives the second simplex table:

x̃1 x̃2 ỹ1 ỹ2 RHS

z̃
(−17.7,−10.7,−6.7;

−0.7, 5.3, 10.3)
(−15,−9,−3;

3, 9, 15)
(−8.4,−4.4,−2.4;

0.6, 4.6, 6.6)
0

(−11.1,−6.1,−3.1;
−0.1, 6.4, 8.9)

RV −3.2 0 −0.4 −0.6

x̃2
(−7.4,−3.9,−2.4;

1.6, 4.6, 7.6)
(−5,−2.5, 0;

2, 4.5, 7)
(−2.8,−1.3,−0.8;

0.2, 2.2, 3.2)
0

(−5.2,−2.7,−1.2;
−0.2, 4.3, 5.8)

RV 0.1 1 0.2 0.3

ỹ2
(−10.4,−1.9, 1.6;

6.6, 11.1, 16.6)
(−12,−6,−2;

2, 6, 12)
(−6.8,−2.3,−0.8;

1.2, 3.7, 5.2)
1

(−4.2, 2.3, 5.8;
9.8, 15.8, 18.8)

RV 4.1 0 0.2 8.3

z̃k 	 c̃k = max{(−17.7,−10.7,−6.7;−0.7, 5.3, 10.3), (−15,−9,−3; 3, 9, 15),
(−8.4,−4.4,−2.4; 0.6, 4.6, 6.6), 0} = 0, thus the solution is optimal. The optimal solution
for the problem is x̃1 = 0, x̃2 = (−5.2,−2.7,−1.2;−0.2, 4.3, 5.8) with the fuzzy objective
value z̃∗ = (−8.9,−6.4, 0.1, 3.1, 61, 11.1). Now, we solve the RLP problem for problem
(10), which is

min 3x1 − 2x2

s.t. 0.5x1 + 5x2 ≤ 1.5

4x1 − x2 ≤ 8

x1, x2 ≥ 0.
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Its optimal solution is x1 = 0, x2 = 0.3 with the optimal objective value z∗ = −0.6. As
expected, we have x1 = R(x̃1), x2 = R(x̃2) and z∗ = R(z̃∗).

Here is another example for an unbounded FFLP with PLFN-n’s.

Example 3.2 Suppose we have the following simplex table that represents some step
in the fuzzy simplex algorithm to solve some FFLP with PLFN-n’s:

x̃1 x̃2 x̃3 x̃4 RHS

z̃
(−13,−8,−3, 0;

0, 3, 8, 13)
(−13,−9,−3, 0;

0, 4, 8, 13)
(−16,−9,−4, 0;

2, 6, 11, 18)
(−17,−12,−7,−3;

−1, 3, 8, 13)
(−4,−1, 1, 4;
4, 7, 9, 12)

RV 0 0 1 −2 −10

x̃2
(−8,−6,−3,−1;

1, 3, 6, 8)
(−6,−4,−2, 0;

2, 4, 6, 8)
(−11,−8,−4,−2;

0, 2, 6, 9)
(−13,−6,−2, 1;

1, 6, 8, 11)
(−4,−1, 1, 4;
4, 7, 9, 12)

RV 0 1 −1 1 4

x̃1
(−2,−1, 0, 1;
1, 2, 3, 4)

(−3,−2,−1, 0;
0, 1, 2, 3)

(−7,−5,−3,−2;
−2,−1, 1, 3)

(−3,−1, 0, 1;
1, 2, 3, 5)

(−2,−1, 0, 2;
2, 4, 5, 6)

RV 1 0 −2 1 2

It is clear that the variable x̃3 needs to enter the basis. However,

ỹ3 =

[
ỹ23
ỹ13

]
=

[
(−11,−8,−4,−2; 0, 2, 6, 9)

(−7,−5,−3,−2;−2,−1, 1, 3)

]
� 0̃.

Therefore, the problem is unbounded with the direction of unboundedness:

d̃ =


−ỹ13
−ỹ23

1
0

 =


(−3,−1, 1, 2; 2, 3, 5, 7)

(−9,−6,−2, 0, 2, 4, 8, 11)
(1, 1, 1, 1; 1, 1, 1, 1)
(0, 0, 0, 0; 0, 0, 0, 0)

 .

4 Advantages of the Proposed Method

Applying the proposed method to a FFLP problem with PLFN-n’s preserves the ranking
values in each step of every iteration, which gives a fuzzy solution with ranking values
equal to the solution of the corresponding RLP problem. This property makes the
proposed method more realistic than the other methods existing in the literature that do
not guarantee the ranking values are preserved throughout the solution. To illustrate,
we implement the proposed method using the following example that was solved by Das
et al. [7]. The results are compared to the results obtained via the Das method. The
problem is a special case of the PLFN-n which is a trapezoidal fuzzy number that is
considered as a flat PLFN-1.

Example 4.1

max z̃ = (7, 10; 14, 17)⊗ x̃1 ⊕ (8, 13; 15, 20)⊗ x̃2

s.t. (11, 13; 15, 17)⊗ x̃1 ⊕ (7, 11; 13, 17)⊗ x̃2 � (94, 100; 102, 108)

(12, 14; 16, 18)⊗ x̃1 ⊕ (8, 12; 14, 18)⊗ x̃2 � (104, 112; 114, 122)

x̃1, x̃2 � 0̃.

(11)
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Solution by Das
Solution by the

proposed method

RS of

Das

RS of the

proposed

method

Solution of the

corresponding

RLP

x̃1 (0, 3; 3, 6) (0, 0; 0, 0) 3 0 0

x̃2 (4.38, 4.38; 4.38, 4.38) (−4312 , 77
12 ; 125

12 , 245
12 ) 4.38 101

12
101
12

z̃∗
(71.94, 86.94;
95.7, 110.7)

(−8156 , −7256 ;
−689

6 , −5996 )
91.32 117.8 117.8

It is clear that the solution by the proposed method coincide with the solution of the
RLP problem, while the solution in [7] does not.

Similarly, if the problem is solved by some existing methods, the solution does not
coinside with the solution of the RLP. For instance, Das et al. [7] have solved the previous
problem using two methods proposed by Kumar & Kaur [12] and Ganesan & Veeramani
[8]. The ranking values of the optimal objective values are 70.3 and 94, respectively. Both
of these values do not coinside with the optimal objective value for the RLP problem.

Another advantage is that the proposed method is a generalization of the conventional
simplex method. Suppose we have a crisp linear programming problem (P). Since every
crisp real number “a” can be written in the form of a PLFN-n as (a, a, .., a; a, a, .., a),
then we can replace every crisp number in problem (P) by its PLFN-n form. This results
in a FFLP problem, call it the fuzzified problem, that can be solved by the proposed
method. However, the proposed method preserves the ranking values in each step and
the arithmetic operations on the piecewise linear fuzzy number generalize the known
operations on the crisp numbers. This means that the solution of the fuzzified problem
by the proposed method is identical to the solution of the original crisp problem using
the known simplex method. This means that the simplex method is generalized by the
proposed fuzzy simplex method.

5 Conclusion

In this paper, a fully fuzzy linear programming problem with piecewise linear fuzzy
numbers is constructed. A solution method depending on extending the simplex method
is then proposed. The considered technique results in a generalization of the conventional
simplex algorithm. When the proposed method is applied to crisp linear programming
problems, it gives the same results as those obtained by using the classical simplex
method.

Considering the PLFN-n to represent the fuzziness in the problem gives a wider range
of problems that can be solved by the proposed method. The mostly used types of fuzzy
numbers in the literature are the triangular, the trapezoidal and the hexagonal fuzzy
numbers which are special cases of the PLFN-n.

Many applications of the constructed problem and the proposed solution method can
be done, such as transportation or supply chain problems with fuzzy data.

Finding the initial basic feasible solution in the case of having constraints of the type
“ ≈ ” or “ � ” is under study and will be presented in a future paper.
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