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1 Introduction

Differential equations with deviated arguments have received considerable attention in
recent years due to their ability to generalize differential equations that show an un-
known quantity and their derivatives in different values of their arguments. It is an ideal
model for the study of automatic control theory, self-oscillating systems theory, long-term
planning problems in economics, etc. For more details about differential equations with
deviated arguments, we refer to the papers [8, 11,15] and the references therein.

Interestingly, in this paper, we will enhance the study of differential equations with
deviated arguments by fractional calculus, which, in turn, is currently attracting consid-
erable interest from researchers, due to its wide range of applications in various scientific
and technological fields such as thermal engineering, electromagnetism, control, robotics,
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viscoelasticity, edge detection, signal processing, and many other physical and biologi-
cal processes. Fractional differential equations have also been applied in the modeling of
many physical and engineering problems. For more details, the reader is kindly requested
to go through [12,14,17] and the references therein.

On the other hand, impulsive differential equations have become the target of several
authors, mainly because of their ability to model processes that undergo sudden changes
of their states. They appear in nano-electronics, population dynamics, heat propagation,
electromagnetic wave radiation, control theory and pharmacology. See [1, 3, 4, 10, 18–20]
and the references therein.

Controllability of linear and nonlinear systems for various type of differential equa-
tions and inclusions was studied, on a large scale, using fixed point and semigroup theo-
ries, for more details the reader is kindly requested to go through [2, 5, 7, 9, 13] in order
to know more details about these results. However, the controllability of fractional im-
pulsive systems with deviated arguments requires a lot of attention since it has not yet
received a careful study, and many aspects of this field have not been discovered yet.

In this paper, we consider the approximate controllability of fractional impulsive
differential equations with deviated argument of the form

CDαx(t) = Ax(t) +Bu(t) + f(t, x(t), x(ϕ(x(t), t))), t ∈ [0, b], 0 < α < 1,

∆x(tk) = Ik(x(tk)), k = 1,m, 0 < t1 < t2 < · · · < tm < b,

x(0) = x0,

(1)

where the state function ϕ(·) takes values in a Hilbert space E. CDα is the Caputo
fractional derivative of order α. The control function u(·) is given in L2([0, b], U), where
U is a Hilbert space. B is a bounded linear operator from U into E. The linear operator
A generates a strongly continuous semigroup (T (t))t≥0 on E. f and ϕ are suitably
defined functions satisfying certain conditions to be specified in Section 3. Ik ∈ C(E,E),
k = 1, 2, · · · ,m, and ∆x(tk) = x(t+k )− x(t−k ) = x(t+k )− x(tk).

This paper is organized as follows. In Section 2, we introduce some notations and
necessary preliminaries. In Section 3 we prove the existence of mild solutions for control
systems and we establish its approximate controllability. In Section 4, an example is
given to illustrate our results.

2 Preliminaries

Let J = [0, b], 0 < t1 < t2 < · · · < tm < b, and J
′

= [0, b]\{t1, t2, · · · , tm} ⊂ J . (E, ‖ · ‖)
is a Hilbert space and C(J,E) is the Hilbert space of all E-valued continuous functions
from J into E,

PC(J,E)=
{
x : [0, b]→ E; x ∈ C(J

′
, E), x(t+k ) and x(t−k ) exist, x(t−k ) = x(tk), 1 ≤ k ≤ m

}
,

PC(J,E) is a Banach space with norm ‖x‖ = sup
t∈J
‖x(t)‖,

D = CL(J,E) =
{
x ∈ PC(J,E) : ‖x(t)− x(s)‖ ≤ L|t− s|, ∀t, s ∈ J

′
}
, (2)

where L is a positive constant. It is clear that D is a Banach space with the sup-norm
‖x‖ = sup

t∈J
‖x(t)‖.
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Definition 2.1 [17] The fractional (arbitrary) order integral of the function f ∈
L1([a, b],R+) of order α ∈ R+ is defined by

Iαa f(t) =
1

Γ(α)

t∫
a

f(s)

(t− s)1−α
ds,

where Γ is the Gamma function, when a = 0, we write Iαa f(t) = Iαf(t).

Definition 2.2 [17] For a function f given on the interval [a, b], the Riemann-
Liouville fractional-order derivative of order α of f is defined by

(R−L)Dα
a f(t) =

1

Γ(n− α)

(
d

dt

)n t∫
a

(t− s)n−α−1f(s) ds,

here n = [α] + 1 and [α] denotes the integer part of α, when a = 0, Dα
a f(t) = Dαf(t).

Definition 2.3 [17] For a function f given on the interval [a, b], the Caputo
fractional-order derivative of order α of f is defined by

CDα
a f(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds,

where n = [α] + 1.

Definition 2.4 [16] A one parameter family (T (t))t≥0 of bounded linear operators
from E into E is a semi group of bounded linear operators on E if

(1) T (0) = I ( I is the identity operator in E ).

(2) T (t+ s) = T (t)T (s), for every t ≥ 0, s ≥ 0 (the semigroup property).

A semigroup of bounded linear operators T (t) is uniformly continuous if

lim
t→0
‖T (t)− I‖ = 0.

The linear operator A defined by

D(A) =

{
x ∈ E : lim

t→0

T (t)x− x
t

exists

}
and

Ax = lim
t→0

T (t)x− x
t

=
d+T (t)x

dt

∣∣∣∣
t=0

, for x ∈ D(A),

is the infinitesimal generator of the semigroup T (t), D(A) is the domain of A.

Definition 2.5 A mild solution of problem (1) is defined as a function x(.) ∈ D that
satisfies:

(i) x(0) = x0.

(ii) ∆x(tk) = Ik(x(tk)), k = 1, 2, · · · ,m.



468 D. AIMENE, K. LAOUBI AND D. SEBA

(iii) The restriction of x(t) to the interval J ′ is continuous and the following integral
equation is satisfied:

x(t) = T (t)x0 +
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)Bux(s)ds

+
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)Bux(s)ds

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds

+
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds

+
∑

0<tk<t

T (t− tk)Ik(x(tk)), 0 ≤ s < t < b, and t 6= tk. (3)

Let xb(x0;u) be the state value of (1) at terminal time b corresponding to the control u
and the initial value x0. Introduce the set

R(b;x0) = {xb(x0;u) : u ∈ L2(J, U)}

which is called the reachable set of system (1) at terminal time b, its closure in E is
denoted by R(b, x0).

Definition 2.6 The system (1) is said to be approximately controllable on J if
R(b;x0) = E, that is, given an arbitrary ε > 0, it is possible to steer from the point
x0 to within a distance ε from all point in the state space E at time b.

Consider the linear fractional differential system{
CDαx(t) = Ax(t) +Bu(t), t ∈ J = [0, b], 0 < α < 1,
x(0) = x0,

(4)

is approximately controllable. It is convenient at this position to introduce the control-
lability operator associated with (4), thus

Γb0x =
1

Γ(α)

b∫
0

(b− s)α−1T (b− s)BB∗T ∗(b− s)xds, for x ∈ E.

For λ > 0, we consider the relevant operator R(λ; Γb0) = (λI + Γb0)−1. It is convenient
at this point to define the operators

Γbtk =
1

Γ(α)

b∫
tk

(b− s)α−1T (b− s)BB∗T ∗(b− s)ds,

Γtktk−1
=

1

Γ(α)

tk∫
tk−1

(tk − s)α−1T (tk − s)BB∗T ∗(tk − s)ds,

R(λ; Γtktk−1
) = (λI + Γtktk−1

)−1, for λ > 0, k = 1, · · · ,m,
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where B∗ denotes the adjoint of B and T ∗(t) is the adjoint of T (t). It is straightforward
that the operator Γb0 is a linear bounded operator.

3 Main Result

This section deals with the existence and uniqueness of mild solutions and approximate
controllability of the problem (1). Before stating and proving the main results, we intro-
duce the following hypotheses:

(H1) A generates a strongly continuous semigroup (T (t))t≥0 in the Hilbert space E (T (t)

is compact for t ≥ 0) and there exists a constant M̂ ≥ 1 such that

‖T (t)‖ ≤ M̂ for every t ≥ 0

has an inverse operator T−1(t) and there exists a positive constant M̂1 such that

‖T−1(t)‖ ≤ M̂1 for every t ≥ 0.

(H2) The nonlinear map f : J × E × E → E satisfies the Lipschitz condition such that
there exist constants M1 = M1(t, x, y, r) > 0 and M2 = M2(t, 0, x, r) > 0, we have
for all xi, yi ∈ Br, i = 1, 2.

‖f(t, x1, y1)− f(t, x2, y2)‖ ≤M1 {‖x1 − x2‖+ ‖y1 − y2‖} for each t ∈ J

and max
t∈J
‖f(t, 0, x(0))‖ = M2.

(H3) ϕ : D × R+ → R+ is globally continuous on E × R+ and satisfies ϕ(·, 0) = 0 and
there exists a constant Lϕ = Lϕ(x, t, r) > 0 such that

|ϕ(x, t)− ϕ(y, s)| ≤ Lϕ {‖x− y‖+ |t− s|}

for every x, y ∈ Br, and t, s ∈ J .

(H4) B is a bounded linear operator from U into E, such that ‖B‖ = M̃ , for a constant

M̃ > 0.

(H5) for each 0 ≤ t < b and t 6= tk, k = 1, · · · ,m the operators λR(λ; Γbtk) → 0 and

λR(λ; Γtktk−1
)→ 0 as λ→ 0+ in the strong operator topology.

(H6) There exist constants d, Lk, `, dk > 0, k = 1,m, such that ‖Ik(·)‖ < dk,
m∑
k=1

dk = d,

‖Ik(x)− Ik(y)‖ ≤ Lk‖x− y‖, for every x, y ∈ E, and
m∑
k=1

Lk = `.

For brevity, let ω1, ω2 be the positive numbers

M̂2

λ
M̃

(
‖ẑb‖+ M̂‖x0‖+

bα

Γ(α+ 1)
M̂(rM1 +M2) +

bα+1

Γ(α+ 1)
M̂M1LLϕ(1 + L)

)
= ω1,

M̂2

mλ
M̂1M̃

(
‖z̃b‖+m

bα

Γ(α+ 1)
M̂(rM1 +M2) +m

bα+1

Γ(α+ 1)
M̂M1LLϕ(1 + L) +mM̂d

)
= ω2,

and put

M̂‖x0‖+
bα

Γ(α+ 1)
M̂M̃(mω2+ω1)+mM̂d+(m+1)

bα

Γ(α+ 1)
M̂
(
rM1+M2+M1LLϕ(1+L)

)
≤ r,

(5)

where r > 0 is a constant.
We denote Br = {x ∈ D; ‖x(t)‖ ≤ r} .
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Theorem 3.1 Suppose (H1)− (H6) and (5) hold, moreover, let

ρ =
bα

Γ(α+ 1)
M̂M1(2 + LLϕ)

( bα

λΓ(α+ 1)
M̂3M̃2 + 1

)
+m

( bα

Γ(α+ 1)
M̂M1(2 + LLϕ) + M̂`

)( bα

λΓ(α+ 1)
M̂3M̂1M̃

2 + 1
)

(6)

be such that ρ ∈ (0, 1). Then the problem (1) is approximate controllable on J .

In this section, it will be shown that the system (1) is approximately controllable if
for all λ > 0, there exists a continuous function x(·) ∈ D such that

x(t) = T (t)x0 +
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)Bux(s)ds

+
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)Bux(s)ds

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds

+
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds

+
∑

0<tk<t

T (t− tk)Ik(x(tk)) = ẑ(t) + z̃(t). (7)

For k = 1, · · · ,m, we put

ẑ(t) = T (t)x0 +
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)Bux(s)ds

+
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds.

z̃(t) =
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)Bux(s)ds

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds

+
∑

0<tk<t

T (t− tk)Ik(x(tk)).

Proof. Transform the problem (1) into a fixed-point problem. For λ > 0, we define
the operators Fλ, Gλ : D → D as (Fλx+Gλx) = x(t), where

Fλx(t) = T (t)x0 +
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)Bu(s)ds

+
1

Γ(α)

t∫
tk

(t− s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds, for k = 1, · · · ,m. (8)
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Gλx(t) =
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)Bv(s)ds

+
1

Γ(α)

∑
0<tk<t

tk∫
tk−1

(tk − s)α−1T (t− s)f(s, x(s), x(ϕ(x(s), s)))ds

+
∑

0<tk<t

T (t− tk)Ik(x(tk)), for k = 1, · · · ,m. (9)

We take the controls

u(t) = B∗T ∗(b− t)R(λ,Γbtk)p(x(·)), (10)

v(t) =
1

m
B∗T ∗(tk − t)T−1(b− tk)R(λ,Γtktk−1

)q(x(·)), (11)

where, for k = 1, · · · ,m

p(x(·)) = ẑb − T (b)x0 −
1

Γ(α)

b∫
tk

(b− s)α−1T (b− s)f(s, x(s), x(ϕ(x(s), s)))ds, (12)

q(x(·)) = z̃b −
1

Γ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1T (b− s)f(s, x(s), x(ϕ(x(s), s)))ds

−
m∑
k=1

T (b− tk)Ik(x(tk)), (13)

for any λ > 0, we shall show that Fλ+Gλ has a fixed point on D, which is a mild solution
of the system (1). Clearly, (Fλx+Gλx) (b) = xb = ẑb + z̃b.

From (10) and (11), we have

‖u(t)‖ ≤ M̂2

λ
M̃‖p(x(·))‖; ‖v(t)‖ ≤ M̂2

mλ
M̂1M̃‖q(x(·))‖,

using (H1)− (H6) and (2), we get

‖p(x(·))‖ ≤ ‖ẑb‖+‖T (b)‖‖x0‖+
1

Γ(α)

b∫
tk

(b−s)α−1‖T (b− s)‖‖f(s, x(s), x(ϕ(x(s), s)))‖ds

≤ ‖ẑb‖+ M̂‖x0‖+
M̂

Γ(α)

b∫
tk

(b− s)α−1
{
‖f(s, x(s), x(ϕ(x(s), s)))−f(s, 0, x(0))‖

+ ‖f(s, 0, x(0))‖
}
ds

≤‖ẑb‖+M̂‖x0‖+
M̂

Γ(α)
M1

b∫
tk

(b−s)α−1
{
‖x(s)‖

+ ‖x(ϕ(x(s), s))−x(ϕ(x(0), 0))‖
}
ds+

bα

Γ(α+ 1)
M̂M2
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‖p(x(·))‖ ≤ ‖ẑb‖+ M̂‖x0‖+
bα

Γ(α+ 1)
M̂(rM1 +M2)

+
M̂

Γ(α)
M1L

b∫
tk

(b− s)α−1|ϕ(x(s), s)− ϕ(x(0), 0)|ds

≤ ‖ẑb‖+ M̂‖x0‖+
bα

Γ(α+ 1)
M̂(rM1 +M2)

+
M̂

Γ(α)
M1LLϕ

b∫
tk

(b− s)α−1{‖x(s)− x(0)‖+ |s|}ds

≤ ‖ẑb‖+ M̂‖x0‖+
bα

Γ(α+ 1)
M̂(rM1 +M2) +

bα+1

Γ(α+ 1)
M̂M1LLϕ(1 + L),

in the same way for tk < b, k = 1, · · · ,m, we get

‖q(x(·))‖ ≤ ‖z̃b‖+m
bα

Γ(α+ 1)
M̂(rM1 +M2) +m

bα+1

Γ(α+ 1)
M̂M1LLϕ(1 + L) +mM̂d.

Thus there exist positive numbers ω1, ω2 such that

‖u(t)‖ ≤ M̂2

λ
M̃

(
‖ẑb‖+ M̂‖x0‖+

bα

Γ(α+ 1)
M̂(rM1 +M2)

+
bα+1

Γ(α+ 1)
M̂M1LLϕ(1 + L)

)
= ω1,

‖v(t)‖ ≤ M̂2

mλ
M̂1M̃

(
‖z̃b‖+m

bα

Γ(α+ 1)
M̂(rM1 +M2)

+m
bα+1

Γ(α+ 1)
M̂M1LLϕ(1 + L) +mM̂d

)
= ω2.

(14)

The proof will be given in two steps.

Step 1. Fλ +Gλ maps Br into itself.
Let x ∈ Br. By (14), we have for each t ∈ J

‖(Fλx)(t) + (Gλx)(t)‖ ≤ ‖T (t)‖‖x0‖+
1

Γ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1‖T (t− s)‖‖B‖‖v(s)‖ds

+
1

Γ(α)

t∫
tk

(t− s)α−1‖T (t− s)‖‖B‖‖u(s)‖ds

+
1

Γ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1‖T (t− s)‖‖f(s, x(s), x(ϕ(x(s), s)))‖ds

+
1

Γ(α)

t∫
tk

(t− s)α−1‖T (t− s)‖‖f(s, x(s), x(ϕ(x(s), s)))‖ds

+
m∑
k=1

‖T (t− tk)‖‖Ik(x(tk))‖.
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Using the same method to find ‖p(x(·))‖, ‖q(x(·))‖ and (14), we get

‖(Fλx+Gλx)(t)‖ ≤ M̂‖x0‖+
bα

Γ(α+ 1)
M̂M̃(mω2 + ω1) +mM̂d

+ (m+ 1)
bα

Γ(α+ 1)
M̂
(
rM1 +M2 +M1LLϕ(1 + L)

)
≤ r.

Thus, Fλ +Gλ maps Br into itself.
Step 2. We shall show now that the operator Fλ +Gλ is a contraction mapping.
Let x, y ∈ Br. By (10) and (11), for each t ∈ J , we have

‖Fλ(x)(t)− Fλ(y)(t)‖ ≤ 1

Γ(α)

t∫
tk

(t− s)α−1‖T (t− s)‖‖B‖‖B∗‖‖T ∗(b− t)‖‖R(λ,Γbtk )‖

×

(
1

Γ(α)

b∫
tk

(b− τ)α−1‖T (b− τ)‖

×
{
‖f(τ, y(τ), y(ϕ(y(τ), τ)))− f(τ, x(τ), x(ϕ(x(τ), τ)))‖

}
dτ

)
ds

+
1

Γ(α)

t∫
tk

(t− s)α−1‖T (t− s)‖‖f(s, x(s), x(ϕ(x(s), s)))

− f(s, y(s), y(ϕ(y(s), s)))‖ ds

≤ bα

λΓ(α+ 1)
M̂4M̃2M1

( 1

Γ(α)

b∫
tk

(b− s)α−1
{
‖y(s)− x(s)‖

+ ‖y(ϕ(y(s), s))− x(ϕ(x(s), s))‖
}
ds
)

+
M̂

Γ(α)
M1

t∫
tk

(t− s)α−1
{
‖x(s)− y(s)‖

+ ‖x(ϕ(x(s), s))− y(ϕ(y(s), s))‖
}
ds

≤ bα

λΓ(α+ 1)
M̂4M̃2M1

( 1

Γ(α)

b∫
tk

(b− s)α−1
{
‖y(s)− x(s)‖

+ ‖y(ϕ(y(s), s))− x(ϕ(y(s), s))‖

+ ‖x(ϕ(y(s), s))− x(ϕ(x(s), s))‖
}
ds
)

+
M̂

Γ(α)
M1

t∫
tk

(t− s)α−1
{
‖x(s)− y(s)‖

+ ‖x(ϕ(x(s), s))− y(ϕ(x(s), s))‖

+ ‖y(ϕ(x(s), s))− y(ϕ(y(s), s))‖
}
ds
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‖Fλ(x)(t)− Fλ(y)(t)‖ ≤ bα

λΓ(α+ 1)
M̂4M̃2M1

( 1

Γ(α)

b∫
tk

(b− s)α−1
{
‖y(s)− x(s)‖

+ ‖y(ϕ(y(s), s))− x(ϕ(y(s), s))‖+ L|ϕ(y(s), s)− ϕ(x(s), s)|
}
ds
)

+
M̂

Γ(α)
M1

t∫
tk

(t− s)α−1
{
‖x(s)− y(s)‖

+ ‖x(ϕ(x(s), s))− y(ϕ(x(s), s))‖+ L|ϕ(x(s), s)− ϕ(y(s), s)|
}
ds

≤ bα

λΓ(α+ 1)
M̂4M̃2M1

( 1

Γ(α)

b∫
tk

(b− s)α−1
{
‖y(s)− x(s)‖

+ ‖y(ϕ(y(s), s))− x(ϕ(y(s), s))‖+ LLϕ‖y(s)− x(s)‖
}
ds
)

+
M̂

Γ(α)
M1

t∫
tk

(t− s)α−1
{
‖x(s)− y(s)‖

+ ‖x(ϕ(x(s), s))− y(ϕ(x(s), s))‖+ LLϕ‖x(s)− y(s)‖
}
ds

≤ b2α

λ(Γ(α+ 1))2
M̂4M̃2M1(2 + LLϕ)‖y − x‖

+
bα

Γ(α+ 1)
M̂M1(2 + LLϕ)‖x− y‖

≤ bα

Γ(α+ 1)
M̂M1(2 + LLϕ)

( bα

λΓ(α+ 1)
M̂3M̃2 + 1

)
‖x− y‖.

On the other hand, we have

‖(Gλx)(t)− (Gλy)(t)‖ ≤ 1

mΓ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1‖T (t− s)‖‖B‖‖B∗‖‖T ∗(tk − t)‖

× ‖T−1(b− tk)‖‖R(λ,Γ
tk
tk−1

)‖

(
1

Γ(α)

m∑
k=1

tk∫
tk−1

(tk − τ)α−1‖T (b− τ)‖

× ‖f(τ, y(τ), y(ϕ(y(τ), τ)))− f(τ, x(τ), x(ϕ(x(τ), τ)))‖dτ

+
m∑
k=1

‖T (b− tk)‖‖Ik(y(tk))− Ik(x(tk))‖

)
ds

+
1

Γ(α)

m∑
k=1

tk∫
tk−1

(tk − s)α−1‖T (t− s)‖

× ‖f(s, x(s), x(ϕ(x(s), s)))− f(s, y(s), y(ϕ(x(s), s)))‖ds

+

m∑
k=1

‖T (t− tk)‖‖Ik(x(tk))− Ik(y(tk))‖

≤m
( bα

Γ(α+1)
M̂M1(2+LLϕ)+M̂`

)( bα

λΓ(α+1)
M̂3M̂1M̃

2+1
)
‖x−y‖.
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So, we write

‖(Fλx+Gλx)(t)− (Fλ +Gλ)(y)(t)‖ ≤ ‖Fλ(x)(t) + Fλ(y)(t)‖+ ‖Gλ(x)(t)−Gλ(y)(t)‖

≤

{
bα

Γ(α+ 1)
M̂M1(2 + LLϕ)

( bα

λΓ(α+ 1)
M̂3M̃2 + 1

)
+m

( bα

Γ(α+ 1)
M̂M1(2 + LLϕ) + M̂`

)
×
( bα

λΓ(α+ 1)
M̂3M̂1M̃

2 + 1
)}
‖x− y‖.

From (6), we have
‖(Fλ +Gλ)(x)− (Fλ +Gλ)(y)‖ ≤ ρ‖x− y‖.

So, for λ > 0, we say the operator Fλ + Gλ is a contraction mapping on Br. Hence
there exists a unique fixed point x ∈ Br such that (Fλx + Gλx)(t) = x(t). The unique
fixed point of Fλ + Gλ is a mild solution of (1) on J , which satisfies x(b) = xb. Hence,
by the Banach contraction principle, the semilinear fractional system (1) is approximate
controllable on J .

4 An Example

Throughout this section, we provide an illustrative example to demonstrate the effec-
tiveness of the previously proven theoretical results using the heat equation, which is a
parabolic partial differential equation, to describe the physical phenomenon of thermal
conduction in a metal bar. Then, we consider an initial boundary value problem with
time-fractional differential equation of the following form:

∂αν

∂tα
(t, ε) =

∂2ν

∂ε2
(t, ε) + µ(t, ε) + sin

(
|ν(t, ε)|

)
+
(
1 + e(ν(t,ε))

)β
, β ∈ R,

ν(t, 0) = ν(t, 1) = 0, t ∈ [0, b],

ν(0, ε) = ν0(ε), ε ∈ (0, 1),

∆ν(tk)(ε) = ε
(∣∣ν(tk)(ε)

∣∣+ etk
)
, k = 1, · · · ,m,

(15)

where α ∈ (0, 1), and µ : J×(0, 1)→ (0, 1) is the control function and it is continuous.

• ν(t, ε) is the temperature at any point ε and any time t.

• Q(t, ε) = sin
(
|ν(t, ε)|

)
+
(
1+e(ν(t,ε))

)β
is the heat energy generated per unit volume

per unit time.

If Q(t, ε) > 0, then the heat energy is being added to the system at that location
and time, and if Q(t, ε) < 0, then the heat energy is being removed from the system
at that location and time.

• ν(t, 0) and ν(t, 1) are the temperatures at the ends of the bar. These are called the
boundary conditions.
To keep things simple, we will solve the IBVP (15) for the heat equation with
ν(t, 0) = ν(t, 1) = 0 ◦C. These are called the homogeneous boundary conditions.
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• ν(0, ε) is the initial temperature distribution. This is called the initial condition.

• ∆ν(tk)(ε) is the sudden instantaneous perturbation in heat distribution. This is
called the impulsive condition.

One end of the bar is assumed to be at ε0 = 0 and the other is at ε1 = 1 (a long metal
bar of length |ε0 − ε1| = 1). The bar is much longer than it is thick, so we can treat the
distribution of heat as a function of just t and ε. Assuming that the bar specific heat
capacity is known, we will know how heat is distributed if we can find a function for the
temperature ν(t, ε).

Now, we will satisfy the previous assumptions and theoretical results using the IBVP
(15) and get the required controllability.

Set E = L2
[
(0, 1)

]
, and A : D(A) ⊂ E → E is an operator defined by

Aω = ω
′′
, ω ∈ D(A)

with the domain

D(A) = {ω ∈ E;ω, ω
′

are absolutely continuous, ω
′′
∈ E,ω(0) = ω(1) = 0}.

Then

Aω =

∞∑
n=1

n2(ω, ωn)ωn, ω ∈ D(A),

where ωn(x) =
√

2 sin(nx), n ∈ N is the orthogonal set of eigenvectors of A.
It is well known that A is a generator of an analytic semigroup

(
T (t)

)
t≥0 in E which

is given by

T (t)ω =

∞∑
n=1

e−n
2t(ω, ωn)ωn, ω ∈ E, t > 0.

Further, for each t ∈ J , we have T ∗(t)x = T (t)x, where x ∈ E.
Therefore, for (t, ε) ∈ [0, b]× (0, 1), we have

x(t)(ε) = ν(t, ε),
f(t, ν(t), ν(a(ν(t), t)))(ε) = Q(t, ε),

I(ν(tk))(ε) = ε
(∣∣ν(tk)(ε)

∣∣+ etk
)
, k = 1, 2, · · · ,m,

Bu(t)(ε) = µ(t, ε).

The system (15) is the abstract form of (1).
We define an infinite dimensional control space as

U = {u : u =

∞∑
n=2

unωn,

∞∑
n=2

|un|2 <∞},

endowed with the norm ‖u‖U =
( ∞∑
n=2
|un|2

)1/2
.

Let B : U → E and

Bu = 2u2ω1 +

∞∑
n=2

unωn.
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Then B is a bounded linear map and the adjoint is

B∗v = (2v1 + v2)ω2 +

∞∑
n=3

vnωn.

Moreover,

B∗T ∗(t)y = (2y1e
−t + y2e

−4t)ω2 +

∞∑
n=3

yne
−n2tωn

for v =
∞∑
n=1

vnωn and y =
∞∑
n=1

ynωn. For t ∈ J , it can be shown that

‖B∗T ∗(t)y‖ = 0⇒ ‖2y1e−t + y2e
−4t‖2 +

∞∑
n=3

‖yne−n
2t‖2 = 0⇒ y = 0.

Therefore, by Theorem 4.1.7 [6], the linear system corresponding to (15) is approx-
imately controllable. On the other hand, we have λR(λ,Πb

tk
) → 0, λR(λ,Πtk

tk−1
) → 0,

as λ → 0+, for k = 1, · · · ,m in the strong operator topology, which is a necessary
and sufficient condition for the linear system to be approximately controllable. Further,
the conditions (H1) − (H6) are satisfied. Hence, by Theorem 3.1, the IBVP (15) is
approximate controllable on J.

5 Conclusions

This paper focuses on establishing the approximate controllability of an impulsive frac-
tional semilinear system with deviated argument in Hilbert spaces through the applica-
tion of one of the most important results of the analysis and it is considered the main
source of the metric fixed point theory known as the ”Banach Contraction Principle”
that accompanied the formulation of a certain set of sufficient conditions. These ease the
proof of the existence and uniqueness of the mild solution attached to the system under
study.

In the future, we aim to expand this study by adapting some techniques used to
other ideas and extracting new results that show the effectiveness of this study and its
effect in the midst of scientific research. The closest result we would like to prove is the
establishment of the approximate controllability of an impulsive stochastic differential
system with deviated argument delay of fractional order.
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