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Abstract: A metal oxide is a compound containing oxygen and metal. Certain pure
metals can form different oxides, and oxidation of such metals produces a multilayer
oxide scale on the metal. In one of their publications, F. Gesmundo and F. Viani
qualitatively analyzed the parabolic growth of three-layer oxide scales on those metals
which can form three oxides. They obtained a non-linear three-dimensional dynamical
system as a model for the growth of such scales. In the present paper we generalize
this dynamical system of Gesmundo and Viani to n-dimensions; we then qualitatively
analyze this n-dimensional dynamical system.
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1 Introduction

A metal oxide is a compound containing oxygen and metal. For instance, common rust
is caused by the oxidation of metal. Certain pure metals can form different oxides, and
oxidation of such metals produces a multilayer oxide scale on the metal, where the oxide
layer containing the highest concentration of metal is in contact with the surface of the
metal, while the oxide layer containing the highest concentration of oxygen is in contact
with the gas or oxygen to which the surface of the metal is exposed. In paper [4], F.
Gesmundo and F. Viani analyzed the parabolic growth of three-layer oxide scales on
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those metals which can form three oxides. They obtained the following non-linear three-
dimensional dynamical system as a model for the growth of such scales:

q̇1 = m1
K1

2q1
− m1 − 1

m1

K2

2q2
, (1)

q̇2 = −m1
K1

2q1
+

(
m1 − 1

m1
+
m2

m1

)
K2

2q2
− m2 − 1

m2

K3

2q3
,

q̇3 = −m2

m1

K2

2q2
+
K3

2q3
.

Here Ki > 0 (i = 1, 2, 3) are rate constants, m1,m2 are parameters, qi > 0 is the weight
of oxygen contained in oxide i per unit area, and q̇i (i = 1, 2, 3) is the derivative of qi
with respect to time, t.

In the present paper we present the following n-dimensional generalization of the
3-dimensional system (1). This n-dimensional dynamical system models the parabolic
growth of n-oxide scales on pure metals

q̇1 = m1
K1

2q1
− m1 − 1

m1

K2

2q2
, (2)

. . .

q̇i = −mi−1

mi−2

Ki−1

2qi−1
+

(
mi−1 − 1

mi−1
+

mi

mi−1

)
Ki

2qi
− mi − 1

mi

Ki+1

2qi+1
, 1 < i < n,

. . .

q̇n = −mn−1

mn−2

Kn−1

2qn−1
+
Kn

2qn
.

Here, for i = 1, ..., n, Ki > 0 are rate constants, mi are parameters (with m0 = 1), and
qi is the weight of oxygen contained in oxide i per unit area.

Theorem 1.1 below is the main result of the present paper; this theorem provides a
qualitative analysis of the n-dimensional system (2).

Theorem 1.1 Assume that in the dynamical system (2), we have n ≥ 3, and mi > 1,
i = 1, ..., n. Then every solution p[ 0, a ] → [ 0, a ] → Rn

++, 0 < a < +∞, of (2) extends
uniquely to a solution p : [ 0,+∞ ) → Rn

++ such that lim
t→+∞

pi(t) = +∞, i = 1, ..., n,

and this solution is eventually monotone strictly increasing on [0 +∞). Moreover, the
system (2) has a unique parabolic solution qi(t) = ci

√
t, ci > 0, i = 1, ..., n, 0 < t < +∞.

Finally, if p : [ 0,+∞ )→ Rn
++ is any other solution of (2), then

lim
t→+∞

‖p(t)− q(t)‖ = 0.

2 Preliminaries

In [1], [2], and [3], the present author (et al.) studied the following n-dimensional non-
linear dynamical system, of which (1) and (2) are special cases:

q̇i = −
n∑

j=1

aij
qj

, qi(t) > 0, i = 1, . . . , n. (3)

In [3], we established the following key result ( [3], Corollary I).
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Theorem 2.1 Assume that the n× n matrix A = (aij) in (3) satisfies the following
four conditions:

(i) det A 6= 0 and aij ≥ 0, for i 6= j;

(ii) A is irreducible;

(iii) for all x = (x1, . . . , xn) ∈ Rn
+, if xi

∑n
j=1 aijxj = 0 for i = 1, . . . , n, then x = 0;

(iv) every real eigenvalue of A is negative.

Then every solution of (3) of the form

q = (q1, . . . , qn) : [0, a]→ Rn
++, 0 < a < +∞,

extends uniquely to a solution

q : [0,+∞)→ Rn
++,

such that
lim

t→+∞
qi(t) =∞, i = 1, . . . , n.

Moreover, if r(t), t ∈ [0,+∞), is any other solution of (3) in Rn
++, then we have

lim
t→+∞

‖ q(t)− r(t) ‖= 0.

Finally, if the matrix A is tridiagonal, then any solution solution, q(t), t ∈ [0,+∞) of
(3) in Rn

++ is eventually monotonically increasing on [0,+∞).

Definition 2.1 Let A = (aij) be the tridiagonal matrix whose entries are defined as
follows, where the index i has range 1 < i < n,

a11 = −m1K1

2
, a12 =

m1 − 1

m1

K2

2
;

ai,i−1 =
mi−1

mi−1

Ki−1

2
, ai,i = −

(
mi−1 − 1

mi−1
+

mi

mi−1

)
Ki

2
, ai,i+1 =

mi − 1

mi

Ki+1

2
;

an,n−1 =
mn−1

mn−2

Kn−1

2
, an,n = −Kn

2
.

Theorem 2.2 Let (x1, x2, · · · , xn) ∈ R+ be arbitrary. Let 1 < j < n, and assume
that the following equations hold:

0 =
m1K1

2
x1 −

m1 − 1

m1

K2

2
x2, (4)

0 = −m1K1

2
x1 +

(
m1 − 1

m1
+
m2

m1

)
K2

2
x2 −

m2 − 1

m2

K3

2
x3,

. . .

0 = −mj−1

mj−2

Kj−1

2
xj +

(
mj−1 − 1

mj−1i
+

mj

mj−1

)
Kj

2
xj −

mj − 1

mj

Kj+1

2
xj+1.

Then we must have

0 =
mj

mj−1

Kj

2
xj −

mj − 1

mj

Kj+1

2
xj+1. (5)
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Note that in terms of the matrix A, the system (4) can be written as follows:

−
n∑

k=1

aikxk = 0, i = 1, · · · , j. (6)

Proof. It is easy to prove this by using mathematical induction on 2 ≤ j ≤ n − 1.
2

Theorem 2.3 Let (x1, x2, · · · , xn) ∈ R+ be arbitrary. Let 1 < i < j < n, and
assume that the following system of equations is satisfied:

0 = −mi−1

mi−1

Ki−1

2
xi−1 +

(
mi−1 − 1

mi−1
+

mi

mi−1

)
Ki

2
xi −

mi − 1

mi

Ki+1

2
xi+1, (7)

. . .

0 = −mj−1

mj−2

Kj−1

2
xj−1 +

(
mj−1 − 1

mj−1
+

mj

mj−1

)
Kj

2
xj −

mj − 1

mj

Kj+1

2
xj+1.

Then we must have

0 = −mi−1

mi−2

Ki−1

2
xi−1 +

mi−1 − 1

mi−1

Ki

2
xi +

mj

mj−1

Kj

2
xj −

mj − 1

mj

Kj+1

2
xj+1. (8)

Note that Equation (7) is equivalent to the following system:

−
n∑

k=1

apkxk = 0, p = i, · · · , j. (9)

Proof. This theorem is easily proved using induction on 3 ≤ j < n. 2

Theorem 2.4 For all (x1, · · · , xn) ∈ Rn
+, if

xi

n∑
j=1

aijxj = 0, for i =, · · · , n,

then xi = 0, for i = 1, · · · , n.

Proof. Assume that

xi

n∑
j=1

aijxj = 0, for i = 1, · · · , n. (10)

One of the following cases must hold.—We will show that only Case 1 does not lead to
a contradiction.
Case 1: In this case, xi = 0, for i = 1, · · · , n.
Case 2: In this case,

xi 6= 0, for i = 1, · · · , n.

Then (10) implies that

−
n∑

j=1

aijxj = 0, for i = 1, · · · , n− 1. (11)
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Hence, by taking j = n− 1 in Theorem 2.2, we see that (9) implies

0 =
mn−1

mn−2

Kn−1

2
xn−1 −

mn−1 − 1

mn−1

Kn

2
xn.

But (10) also implies that

0 =
mn−1

mn−2

Kn−1

2
xn−1 −

Kn

2
xn.

Adding together these last two equations produces

0 = − 1

mn−1

Kn

2
xn.

This contradicts the assumption that xn 6= 0.
Case 3: In this case, for some 1 ≤ j < n, we have

x1, · · · , xj 6= 0; xj+1, · · · , xn = 0.

Hence (10) implies that

−
n∑

k=1

aikxk = 0, i = 1, · · · , j. (12)

If j = 1, then (12) is equivalent to

0 =
m1K1

2
x1 −

m1 − 1

m1

K2

2
x2.

But if j = 1, then x2 = 0, so we get 0 = −m1K1

2 x1, which contradicts x1 6= 0. Hence in
(12) we may assume that 1 < j < n. Then Theorem 2.2 implies that

0 =
mj

mj−1

Kj

2
xj −

mj − 1

mj

Kj+1

2
xj+1.

By assumption, xj+1 = 0, hence we have

0 =
mj

mj−1

Kj

2
xj ,

i.e., xj = 0. This contradiction shows that Case 3 can not hold.
Case 4: In this case, for some 1 < i ≤ n, we have

x1, · · · , xi−1 = 0;xi, · · · , xn 6= 0.

Then (10) implies that

−
n∑

k=1

apkxk = 0, p = i, · · · , n. (13)

First, assume that i = n or i = n− 1. If i = n, then xn−1 = 0, and (13) implies that

0 =
mn−1

mn−2

Kn−1

2
xn−1 −

Kn

2
xn.
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This leads to the contradiction that −Kn

2
xn = 0. If i = n− 1, then (11) implies that

0 = −mn−2

mn−3

Kn−2

2
xn−2 +

(
mn−2 − 1

mn−2
+
mn−1

mn−2

)
Kn−1

2
xn−1 −

mn−1 − 1

mn−1

Kn

2
xn,

0 = −mn−1

mn−2

Kn−1

2
xn−1 +

Kn

2
xn.

Adding together these two equations, and taking into consideration that xn−2 = 0, we
see that

0 =
mn−1

mn−2

Kn−1

2
xn−1 +

1

mn−1

Kn

2
xn.

This contradicts the assumption that xn−1, xn 6= 0.—Thus, we may assume that 1 < i <
n− 1. Then (13) implies

n∑
k=1

apkxk = 0, p = i, · · · , n− 1. (14)

Now, (14) allows us to apply Theorem 2.3 to the case where 1 < i < j = n − 1 < n,
producing

0 = −mi−1

mi−2

Ki−1

2
xi−1 +

mi−1 − 1

mi−1

Ki

2
xi +

mn−1

mn−2

Kn−1

2
xn−1 −

mn−1 − 1

mn−1

Kn

2
xn.

But (14) also implies that

0 = −mn−1

mn−2

Kn−1

2
xn−1 +

Kn

2
xn.

Adding together these last two equations, we obtain

0 =
mi−1 − 1

mi−1

Ki

2
xi +

1

mn−1

Kn

2
xn.

Hence, xi, xn = 0. This contradicts our assumption that xi, · · · , xn 6= 0. Therefore,
Case 4 can not hold.
Case 5: In this case, there exist 1 < i < j < n such that

xi−1 = 0;xi, · · · , xj 6= 0;xj+1 = 0.

Then (10) implies that

−
n∑

k=1

apkxk = 0, p = i, · · · , j. (15)

Because (15) implies (9), we may invoke Theorem 2.3, obtaining

0 = −mi−1

mi−2

Ki−1

2
xi−1 +

mi−1 − 1

mi−1
+

mj

mj−1

Kj

2
xj −

mj − 1

mj

Kj+1

2
xj+1.

Because xi−1 = xj+1, this equation implies that

0 =
mi−1 − 1

mi−1

Ki

2
xi +

mj

mj−1

Kj

2
xj .
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But then we have the contradiction that xi = xj = 0. This shows that Case 5 can not
hold.
Case 6: In this final case, there exists 1 < i < n such that

xi−1 = 0;xi 6= 0;xi+1 = 0.

It then follows from (10) that

0 = −mi−1

mi−2

Ki−1

2
xi−1 +

(
mi−1 − 1

mi−1
+

mi

mi−1

)
Ki

2
xi +

mi − 1

mi

Ki+1

2
xi+1.

Because xi−1 = xi+1 = 0, we obtain

0 =

(
mi−1 − 1

mi−1
+

mi

mi−1

)
Ki

2
xi.

That is, xi = 0. This contradiction shows that Case 6 can not hold.
Because the above cases are the only possible cases consistent with assumption (10),

we conclude that Case 1 must hold. This completes the proof of the theorem. 2

Definition 2.2 Let B = (bij) be the tridiagonal matrix whose entries are defined as
follows, where the index i has range 1 < i < n,

b11 = −m1, b12 =
m1 − 1

m1
;

bi,i−1 =
mi−1

mi−1
, bi,i = −

(
mi−1 − 1

mi−1
+

mi

mi−1

)
, bi,i+1 =

mi − 1

mi

Ki+1

2
;

bn,n−1 =
mn−1

mn−2
, bn,n = −1.

Note that

A = B diag

(
K1

2
, · · · , Kn

2

)
.

Define P = (pij) to be following matrix:

P =



1
2

m1−1
2m1

(m1−1)(m2−1)
2m1m2

. . . (m1−1)(m2−1)···(mn−1)
2m1m2···mn

m1

2
m1

2
m1(m2−1)

2m2
. . . m1(m2−1)···(mn−1)

2m2m3···mn
m2

2
m2

2
m2

2 . . . m2(m3−1)···(mn−1)
2m3···mn

...
...

...
. . .

...
mn−1

2
mn−1

2
mn−1

2 . . . mn−1(mn−1)
2mn

mn

2
mn

2
mn

2 . . . mn

2


Observe that the entries of P are given by

Pij =

{
mi−1(mi−1)···(mj−1−1)

2mi···mj−1
, if 1 ≤ i < j ≤ n;

mi−1

2 , if 1 ≤ j ≤ i ≤ n.

Theorem 2.5 The matrices B and P satisfy

BP = −I
2
.

Hence B is invertible, with inverse

B−1 = −2P.
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Proof. We must prove that for all 1 ≤ i ≤ j ≤ n,

(BP )ij = −1

2
δij .

The following cases exhaust all possible cases for the pair 1 ≤ i ≤ j ≤ n.

Case 1: In this case, i = j = 1. We then have

(BP )11 = b11P11 + b12P21

= −m1

2
+
m1 − 1

m1

m1

2

= −1

2
.

Case 2: In this case, i = j = n. Then

(BP )nn = bn,n−1Pn−1,n + bnnPnn

=
mn−1

mn−2

mn−2(mn−1 − 1)

mn−1
− mn−1

2

=
mn−1 − 1

2
− mn−1

2

= −1

2
.

Case 3: In this case, 1 < i = j < n. We then obtain

(BP )ii = bi,i−1Pi−1,i + biiPii + bi,i+1Pi+1,i

=
mi−1

mi−2

mi−2(mi−1 − 1)

2mi−1
−
(
mi−1 − 1

mi−1
+

mi

mi−1

)
mi−1

2
+
mi − 1

mi

mi

2

=
mi−1 − 1

2
− mi−1 − 1 +mi

2
+
mi − 1

2

= −1

2
.

Case 4: In this case, 1 < i+ 1 < j ≤ n. We obtain

(PB)ij = bi,i−1Pi−1,j + biiPi,j + bi,i+1Pi+1,j

=
mi−1

mi−2

mi−2(mi−1 − 1) · · · (mj−1 − 1)

2mi−1 · · ·mj−1
−
(
mi−1 − 1

mi−1
+

mi

mi−1

)
×

× mi−1(mi − 1) · · · (mj−1 − 1)

2mi · · ·mj−1
+
mi(mi+1 − 1) · · · (mj−1 − 1)

2mi+1 · · ·mj−1

=
(mi−1 − 1) · · · (mj−1 − 1)

2mi · · ·mj−1
− ([mi−1 − 1] +mi)

(mi − 1) · · · (mj−1 − 1)

2mi · · ·mj−1
+

+
(mi − 1)(mi+1 − 1) · · · (mj−1 − 1)

2mi+1 · · ·mj−1

= 0.
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Case 5: In this case, 1 < i < j = i+ 1 ≤ n. We then have

(PB)ij = bi,i−1Pi−1,j + biiPij + bi,i+1Pi+1,j

= bi,i−1Pi−1,i+1 + biiPi,i+1 + bi,i+1Pi+1,i+1

=
mi − 1

mi−2

mi−2(mi−1 − 1)(mi − 1)

2mi−1mi
−
(
mi−1 − 1

mi−1
+

mi

mi−1

)
mi−1(mi − 1)

2mi

+
mi − 1

mi

mi

2

=
(mi−1 − 1)(mi − 1)

2mi
− (mi−1 − 1)(mi − 1)

2mi
−mi

(mi − 1)

2mi
+

(mi − 1)

2

= 0.

Case 6: In this case, we have i = 1 < 2 < j ≤ n. We see that

(BP )ij = (BP )1j = b11Pij + b12P2j

= −m1
(m1 − 1) · · · (mj−1 − 1)

m1 · · ·mj−1
+
m1 − 1

m1

m1(m2 − 1) · · · (mj−1 − 1)

m2 · · ·mj−1

= 0.

Case 7: In this case, 1 = i < 2 = j ≤ n. We then obtain

(BP )ij = (BP )12 = b11P12 + b12P22

= −m1
(m1 − 1)

m1
+
m1 − 1

m1

m2

2

= 0.

Case 8: In this case, 1 ≤ j < i < n. We then have

(BP )ij = bi,i−1Pi−1,j + biiPij + bi,i+1Pi+1,j

=
mi−1

mi−2

mi−2

2
−
(
mi−1 − 1

mi−1
+

mi

mi−1

)
mi−1

2
+
mi − 1

mi

mi

2

=
mi−1

2
− (mi−1 − 1 +mi)

2
+
mi − 1

2
= 0.

Case 9: In this final case, 1 ≤ j < i = n. Consequently,

(BP )ij = (BP )nj = bn,n−1Pn−1,j + bnnPnj

=
mn−1

mn−2

mn−2

2
− mn−1

2

= 0.

The proof of the theorem is now complete. 2

Theorem 2.6 Every real eigenvalue of the matrix A is negative.
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Proof. We apply Gershgoin’s Circle Theorem to the transpose of A, concluding
that the eigenvalues of A are contained in the union of the following closed disks in the
complex plane:

D1: center = −m1K1

2
, radius =

m1K1

2
;

Di: center = −
(
mi−1 − 1

mi−i
+

mi

mi−1

)
Ki

2
, radius =

(
mi−1 − 1

mi−i
+

mi

mi−1

)
Ki

2
, 1 < i < n;

Dn: center = −Kn

2
, radius =

mn−1 − 1

mn−1

Kn

2
.

Because mi > 1 for i = 1 · · ·n, these disks are all in the closed left half-plane, hence all
eigenvalues have non-positive real parts. By Theorem 2.5 the matrix B is invertible, and

hence A is invertible, because A = B diag

(
K1

2
, · · · , Kn

2

)
, with Ki > 0, i = 1, · · · , n.

Therefore, all real eigenvalues of A are negative. 2

Theorem 2.7 The matrix A satisfies conditions (i)-(iv) of Theorem 2.1.

Proof. By Theorem 2.5, A is invertible, hence condition (i) of Theorem 2.1 is satisfied.
Because A is tridiagonal and aij 6= 0 whenever |i− j| = 1, condition (ii) of Theorem 2.1
holds. By Theorem 2.4, condition (iii) of Theorem 2.1 is satisfied. Finally, Theorem 2.6
implies that condition (iv) of Theorem 2.1 holds. 2

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. We first prove that under the hypothesis of
Theorem 1.1, there exists a unique parabolic solution of (2). We prove the remainder of
Theorem 1.1 by an application of Theorem 2.1.

The next theorem is a key to proving the existence of a parabolic solution of (2). The
following notation is used. We denote by 4m the standard m-simplex, i.e., the set of all

points x = (x1, · · · , xm+1) ∈ Rm+1
+ such that

m+1∑
i=1

xi = 1; we denote the boundary of

4m by ∂4m. Let e1 = (1, 0, · · · , 0), · · · , em+1 = (0, · · · , 0, 1) be the standard basis for
4m. For 1 ≤ i, j ≤ m+ 1, we let [ei, ej ] be the boundary simplex determined by the pair
ei, ej , that is, [ei, ej ] is the convex hull of the pair ei, ej . Observe that ∂4m is the union
of all the boundaries [ei, ej ], i 6= j, 1 ≤ i, j ≤ m+ 1.

Theorem 3.1 Let f : 4m → 4m be a continuous map which maps each vertex to
itself and each edge into itself. Then f(4m) = 4m.

Proof. Standard theorems in algebraic topology show that any extension to the
simplex, of a continuous map of the boundary of a simplex to itself having nonzero
degree, must map onto the simplex. By looking at each edge it is easy to prove that the
restriction of f to the boundary is a map of the boundary to itself which is homotopic
to the identity; it is well known that this implies degree 1. Therefore f is onto. 2

Theorem 3.2 Define f = (f1, · · · , fn) : 4n−1 →4n−1 by

fi(x) =

xi n∑
j=1

Pijxj

/ n∑
k=1

xk

n∑
j=1

Pkjxj

 , x = (x1, · · · , xn) ∈ 4n−1, i = 1, · · · , n.
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Then f maps 4n−1 onto itself.

Proof. First of all, observe that f sends 4n−1 into itself, because the entries of P are
positive. It is easy to check that f is continuous and maps each vertex of the simplex to
itself and each edge of the simplex into itself. Therefore Theorem 3.1 implies f is onto.
2

Theorem 3.3 There exists a unique parabolic solution of (2).

Proof. Uniqueness: Let q = (q1, · · · , qn) and r = (r1, · · · , rn) be two parabolic
solutions of (2), with qi(t) = ci

√
t, ri(t) = di

√
t, ci > 0, di > 0, i = 1, · · · , n. By Theorem

2.7, the matrix A in (2) satisfies conditions (i)–(iv) of Theorem 2.1, hence by that theorem
we have lim

t→+∞
|qi(t) − ri(t)| = 0, for i = 1, · · · , n. But |qi(t) − ri(t)| =

√
t|ci − di|,

i = 1, · · · , n. We conclude that ci = di, for i = 1, · · · , n. Existence: Let Ki be as in (2)
and define y ∈ 4n−1 by

yi = Ki

/ n∑
j=1

Kj

 , i = 1, · · · , n.

Let f : 4n−1 → 4n−1 be defined as in Theorem 3.2; then by that theorem there exists
a point u ∈ 4n−1, such that y = f(u). Define ζ, η by

ζ =

 n∑
j=1

Kj

 1
2

, η =

 n∑
i=1

ui

n∑
j=1

Pijuj

 1
2

.

Let c = (ζ/η)x. Then y = f(u) implies Ki = ci
n∑

j=1

Pijcj , for i = 1, · · · , n. This last set

of equations is equivalent to:

1

2
ci = −

n∑
j=1

aij

(
1

cj

)
, i = 1, · · · , n.

Define q(t), t ∈ (0,+∞), by qi(t) = ci
√
t, i = 1, · · · , n. The preceding equations imply

that q(t) is a parabolic solution of (2). This proves the theorem. 2

3.1 Proof of Theorem 1.1

To prove Theorem 1.1, let p(t) = (p1(t), · · · , pn(t)), t ∈ [0, a], 0 < a < +∞, be a
solution of (2) in R3

++. By Theorem 2.7, the matrix A in (2) satisfies conditions (i)-
(iv) of Theorem 2.1, hence, by that theorem, there exists a unique extension of p(t),
t ∈ [0, a], to a solution p(t) = (p1(t), · · · , pn(t)), t ∈ [0,+∞), of (2) in R3

++, such that
lim

t→+∞
pi(t) = +∞, i = 1, · · · , n. Moreover, if r(t), t ∈ [0,∞) is any other solution of (2),

then by Theorem 2.1, we have

lim
t→∞

||p(t)− r(t)|| = 0.

Because the matrix A of the system (2) is tridiagonal, Theorem 2.1 implies that the
extended solution p(t) is eventually monotone increasing on [0,+∞). By Theorem 3.3,
there exists a unique parabolic solution q(t) = (c1

√
t, · · · , cn

√
t), (c1, · · · , cn) > 0, t ∈

(0,+∞), of (2). This completes the proof of Theorem 1.1.
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