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Abstract: The aim of this work is to present the notion of a conform semi-dynamical
system, unlike the concept of a dynamical system, here we can work with the continu-
ous functions. Some examples are presented to illustrate the result of the autonomous
case.
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1 Introduction

Fractional calculus is generalization of ordinary differentiation and integration to arbi-
trary non-integer order. The subject is as old as the differential calculus, starting from
some speculations of G.W. Leibeniz (1967) and L. Euler (1730) and since then, it has
continued to be developed up to nowadays. Integral equations are one of the most use-
ful mathematical tools in both pure and applied analysis. This is particularly true for
problems in mechanical vibrations and the related fields of engineering and mathematical
physics. We can find numerous applications of differential and integral equations of frac-
tional order in finance, hydrology, biophysics, thermodynamics, control theory, statistical
mechanics, astrophysics, cosmology and bioengineering. We recall that the fractional par-
tial derivatives are difficult to handle analytically, especially those describing real world
processes, and the researchers sometimes have to rely on the numerical methods to solve
these equations. One of the well-known fractional derivatives is the Riemann-Liouville
fractional order derivative, which is not always appropriate for modeling real world prob-
lems. The second one is the so-called Caputo derivative, this one is opposite with relation
to displaying physical field complications and has been intensively used for this purpose.
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However, new derivatives should be proposed in order to deal better with the dynam-
ics of the complex systems [9, 11]. In [8] the authors give a new definition of fractional
derivative and fractional integral. The form of the definition shows that it is the most
natural definition, and the most fruitful one. The definition for 0 < α < 1 coincides with
the classical definitions on polynomials (up to a constant). Further, if α = 1, the defi-
nition coincides with the classical definition of the first derivative. They presented some
applications to fractional differential equations. A. Atanagana in [3] investigated in more
detail some new properties of the conform derivative and has proved some useful related
theorems. Dynamical systems as a generalization of solutions of ordinary differential
equations are already a classical subject in the mathematical literature. Its systematic
generalization to systems with nonunique solutions was developed by Barbashin [7]. We
note that this study depends on the nature of derivative, our objective is to give the ana-
logue with the conform derivative, in order to weaken the hypothesis of class C functions
in continuous functions.

The paper is organized as follows. After this introductory section, we will present
and demonstrate some properties concerning the conform derivative in Section 2. The
definitions of α-semi-dynamical system, orbit and omega-set and their properties are
given in Section 3. The last Section 4 contains qualitative studies of autonomous system
in dimension 2.

2 Conform Fractional Derivative

In this section, we will give some definitions and properties concerning the new derivative
important in the following.

Definition 2.1 (see [8]) Let α ∈ (n, n+ 1] and f : [0,∞)→ R be n-differentiable at
t > 0, then the conformable fractional derivative of f of order α is defined by{

f (α)(t) = limε→0
f(n)(t+εtn+1−α)−f(n)(t)

ε , f (α)(0) = limt→0 f
(α)(t).

Remark 2.1 (see [8]) As consequence of the previous definition, one can easily show
that

f (α)(t) = tn+1−αf (n+1)(t),

where α ∈ (n, n+ 1], and f is (n+ 1)-differentiable at t > 0.

In [3] we find the following proposition.

Proposition 2.1 [3] We have the following properties:

1. (af + bg)
(α)

= af (α) + bg(α),

2. (fg)
(α)

= f (α)g + fg(α),

3. (tp)
(α)

= ptp−α,

4.
(
f
g

)(α)
= f(α)g−fg(α)

g2 ,

5. If c ∈ R, c(α) = 0.
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Proposition 2.2 If x is a continuous map, then t→ x(α)(t) is a continuous map.

Proof. Since x is a continuous map, t ∈ R∗+ → x
(
t+ εt1−α

)
is continuous, thus

∀β > 0, ∃α > 0, ∣∣x (t+ εt1−α
)
− x

(
t0 + εt1−α0

)
ε

∣∣ ≤ β,
whenever |t − t0| ≤ α, by passing to the limit ε → 0 we get |x(α)(t) − x(α)(t0)| ≤ β as
desired.

Proposition 2.3 Let f : X → X be a Lipschitziane map, i.e.,
|f(x)− f(y)| ≤ k|x− y|, ∀x, y ∈ X and k ∈]0, 1[. The Cauchy problem{

x(α)(t) = f (x(t)) , t > 0,

x(0) = x0,
(1)

has a unique solution.

Proof. By Proposition 2.2 x is continuous, the sequence xx+1 = f(xn) is a Cauchy
sequence, since R is a complete space, then xn converges to the unique solution of (1).

Definition 2.2 (see [8]) Let α ∈ (1, 2], (Iαf)(t) =
∫ t
0
sα−2f(s)ds.

Theorem 2.1 (see [8]) (Iαf)
(α)

(t) = f(t) for t ≥ 0.

Example 2.1

Iα(sin(t)) =

∞∑
n=0

(−1)nt2n+α

(2n+ α)(2n+ 1)!

where α ∈ (1, 2).

Definition 2.3 (see [6]) Let α > 0. For a Banach space X, a family {T (t)}t≥0 ⊂
L(X,X) is called a fractional α-semigroup if

1. T (0) = I.

2. T
(

(s+ t)
1
α

)
= T

(
s

1
α

)
T
(
t

1
α

)
, for all s, t ∈ [0,∞).

Example 2.2 Let A be a bounded linear operator on X. Define T (t) = e2
√
tA. Then

T (t)t≥0 is a 1
2 semigroup. Indeed,

1. T (0) = e0A = I.

2. ∀s, t ∈ [0,∞), T
(
(s+ t)2

)
= e2(t+s)A = e2tAe2sA = T (s)T (t).

Definition 2.4 (see [6]) An α-semigroup T (t) is called a c0-semigroup if, for each
fixed x ∈ X, T (t)x→ x as t→ 0+.

The conformable α-derivative of T (t) at t = 0 is called the α-infinitesimal generator of

the fractional α-semigroup T (t), with the domain equal to
{
x ∈ X : lim

t→0
T (t)x exists

}
.
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3 Conform Fractional Dynamical Systems

3.1 Definition and examples

In this subsection we will introduce the notion of α-dynamical system.

Definition 3.1 Let X be a complete metric space. An α-semi-dynamical system is
a couple (X,πα), where X state space of the system. Each point of X is a state of the
system, and πα : R+ ×X −→ X satisfies{

πα(0, x) = x, ∀x ∈ X,
πα
(
t, πα(s, x)

)
= πα(t+ s, x), ∀x ∈ X, t, s > 0.

Example 3.1 1. Here X is a Banach space. Let f : X → X, be a Lipschitzian
map, i.e., |f(x)− f(y)| ≤ k|x− y|, ∀x, y ∈ X and k ∈]0, 1[. The Cauchy problem{

x(α)(t) = f (x(t)) , t > 0,

x(0) = x0.

has unique solution. The mapping πα(t, x0) = x
(
t

1
α

)
defines an α-semi-dynamical

system.

2. Here X = C
(
[0, 1],R

)
, X is a Banach space. For all f ∈ X, we define πα(t, f) by

πα(t, f)(s) = f
(

min
(

(t
1
α + s), 1

))
, 0 ≤ s ≤ 1.

We will demonstrate that this corresponds well to the α-semi-dynamical system.

3.2 Orbit of α-semi-dynamical system

The term orbit generally refers to the image (in the state space) of a solution. It is
defined as

O(x) =
{
πα (t, x) , t ≥ 0

}
.

Definition 3.2 A point x ∈ X is said to be a critical point if πα (t, x) = x.

Example 3.2 We take x(α)(t) = x(t)−x2(t), x = 0 and x = 1 are two critical points.

Definition 3.3 A point x ∈ X is said to be a periodic point if there is τ > 0 such
that πα (t+ τ, x) = πα (t, x).

Remark 3.1 x ∈ X is a periodic point if and only if πα (τ, x) = x.

Proposition 3.1 Let x be a periodical point of πα, of period τ . It goes through one
and only one periodic solution, of period τ , defined on R.

Proof. The mapping defined by

u(t) =

{
πα(t, x),∀t ≥ 0,

πα(t+ nτ, x),∀t ∈ [−nτ, (−n+ 1)τ [, n ∈ N,

is a periodic extension of πα(t, x) on R. We get u(t+ s) = πα(s, u(t)), ∀t, s ∈ R.
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3.3 Omega-limit set

We will discuss some properties of the Omega-limit set related to the orbit. We will start
by the following definition.

Definition 3.4 Let x ∈ X. The Omega-limit set, denoted ω(x), is defined as

ω(x) =
{
y = lim

n→∞
πα(tn, x) : tn →∞, such that πα(tn, x)converge

}
.

Remark 3.2 We can write

ω(x) =
⋂
t>0

πα([tn,∞[, X),

where πα([tn,∞[, X) is the closure of πα([tn,∞[, X).

We will etablish several properties of the Omega-limit set.

Lemma 3.1 ω(x) is closed, and satisfies

y ∈ ω(x)⇒ πα(t, y) ∈ ω(x).

Proof. It is closed because there is an intersection of closed parts.
For all s ≥ 0, we have

πα (s, ω(x)) ⊂
⋂
πα

(
s, πα([t,∞[, X)

)
⊂

⋂
πα([t,∞[, X)

⊂ ω(x).

Lemma 3.2 If O(x) is precompact, then ω(x) 6= ∅.

Proof. The sets πα([t,∞[, X) are compacts, whose finite intersection can not be
avoided, thus ω(x) 6= ∅.

Proposition 3.2 If O(x) is precompact, then ω(x) is a compact susbset, connected.

Proof. By Proposition 3.2 then ω(x) is an intersection of compacts, thus it is a
compact. It remains to demonstrate that it is connected.

Theorem 3.1 If O(x) is precompact without double point (i.e., ∀t1 < t2, πα(t1, x) 6=
πα(t2, x)), then ω(x) \ O(x) is dense in ω(x).

Proof. We have the following alternative: O(x) ∩ ω(x) = ∅, in this case the result is
clear, or O(x) ∩ ω(x) 6= ∅, in this case we get πα([τ,∞[, X) ⊂ ω(x), for some τ > 0. On
the other hand we can write

ω(x) \ O(x) =
⋂
n

ω(x) \ πα([0, n], x),

each ω(x) \ πα([0, n], x) is open in ω(x) which is compact, then it is complete. Using the
Baire theorem we conclude that each ω(x) \ πα([0, n], x) is dense for all n ∈ N.
Since for all y ∈ ω(x), and ε > 0, there is t > maxn, τ , such that d (πα(t, x), y) ≤ ε, it
becomes that πα(t, x) ∈ ω(x) \ ′(x), which proves the density of πα([0, n], x) in ω(x).
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4 Fractional Autonomous Differential Systems

The purpose of this section is to study the following system in dimension 2, first we begin
with some notion

x(α)(t) = f (x(t)) , (2)

where f : Ω ⊂ Rn → Rn, Ω is open and f is a Lipschitzian map on Ω and differentiable
at 0.

4.1 Definitions and notations

Definition 4.1 An equilibrium point of (2) is a point x0 such that f(x0) = 0.

Remark 4.1 If x0 is an equilibrum point of (2) then t→ x0 is a solution of (2).

Definition 4.2 Let x0 be an equilibrum point of (2). We say that:

1. x0 is stable if for all ε > 0 there is η > 0 such that, if x is a solution of (2) which
for t0 satisfies |x(t0)− x0| < η, we have

• x is defined for all t ≥ t0,

• |x(t)− x0| < ε for all t ≥ t0.

2. x is not stable if x0 is stable,

3. x is asymptotically stable if

• x0 is stable,

• limt→∞ x(t) = x0.

4.2 Qualitative study of linear systems in dimension 2

In this subsection we consider the following differential system:

x(α)(t) = Ax(t), (3)

where x : R→ R2 and A is a constant matrix in M2(R).

Remark 4.2 x0 = 0 is a stable point of (3).

Before we study the above mentioned system, let us first solve the following equation:

x(α)(t) = ax(t), (4)

where a ∈ R and x : R→ R.
We put φ0(t) = e

a
α t
α

, it is clear that φ0 is a solution of (4).
Let φ be another solution, we get

( φ
φ0

)(α)
(t) =

φ(α)(t)φ0(t)− φ(t)φ
(α)
0 (t)

(φ0(t))
2 =

aφ(t)φ0(t)− aφ(t)φ0(t)

(φ0(t))
2 = 0.

Then φ
φ0

is constant, which implies that φ(t) = ce
a
α t
α

, where c ∈ R. The trajectories of
the system depend on the nature of the eigenvalues of the matrix.
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Case 1. Let v1 and v2 be two eigenvectors of A associated, respectively, with two
eigenvalues λ1 and λ2, note that (v1, v2) is a basis of R2. Let P be the transit matrix
from the canonical basis to (v1, v2) and we put x = Py, where x = (x1, x2), y = (y1, y2),

we get P−1AP =

(
λ1 0
0 λ2

)
. The system (4) is written as

y(α) = Dy,

where D =

(
λ1 0
0 λ2

)
. It becomes

{
y1(t) = y01e

λ1
α t

α

,

y1(t) = y02e
λ2
α t

α

.

Example 4.1

0.5 1 1.5 2

−0.5

0.5

0

Figure 1. λ2 < λ1 < 0. The equilibrium point is asymptotically stable.

0.5 1 1.5 2

−0.5

0.5

0

Figure 2. λ2 > λ1 > 0. The equilibrium point is not stable.
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0.5 1 1.5 2

−0.5

0.5

0

Figure 3. λ2 > 0 > λ1. Saddle point.

The trajectories described in Figures 1,2,3 are the curves given in parametric

coordinates y1(t) = y01e
λ1
α t

α

and y1(t) = y02e
λ2
α t

α

.

Case 2. Let Z = u+ iv be a complex eigenvector of A associated with the eigenvalue
λ = η − iδ. We have Au = ηu+ δv and Av = −δu+ ηv. Thus (u, v) is a basis in which

the matrix is writen as follows:

(
α −δ
δ α

)
. If we denote by P the transit matrix from

the canonical basis to (u, v), and we put x = Py, we get

{
y1(t) = Re

η
α t
α

cos
(
δ
α t
α − ϕ

)
,

y2(t) = Re
η
α t
α

sin
(
δ
α t
α − ϕ

)
.

Example 4.2 In this example we take α = 1
2 , δ = 1

2 , ϕ = 0.

0.5 1 1.5 2

−0.5

0.5

0

Figure 4: η < 0. The equilibrium point is stable.
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0.5 1 1.5 2

−0.5

0.5

0

Figure 5: η > 0. The equilibrium point is not unstable.

Remark 4.3 If η = 0, then y21 + y22 = R2.

5 Conclusion

This study is a basic idea for beginning the study of dynamical system in the conform
frame.
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