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Abstract: Practical implementation of synchronization schemes is important for
secure communication. With many systems available, simple systems with varying
differences will prove pertinent in user identification and inter-operability of commu-
nicating units. The implementation of Chua’s circuit with different memristors is a
potential candidate for the realization of such units. In this paper, a general con-
trol function for the synchronization of two Chua’s circuits with similar or dissimilar
memristors was developed. Three different memristor circuits were considered in this
paper. Numerical simulation of the proposed control function was carried out and
the performance of different memristors in the similar and dissimilar configuration
was considered.
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1 Introduction

The application of chaotic systems in secure communications has led to the development
of several synchronization schemes. Initially, synchronization of chaotic systems was be-
tween two identical systems [1] before it was extended from two different chaotic systems
to the increased and reduced order synchronization between two systems [2], increased
and reduced order between three or more systems [3, 4], synchronization of fractional
order systems [5], delay differential equations, discrete chaotic systems, and electronic
realization [6].
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Different types of synchronization such as complete synchronization, lag synchroniza-
tion, generalized synchronization, projective synchronization, and function projective
synchronization have been developed. There exist several synchronization techniques
including the active control, backstepping, Open-Plus-Closed-Loop (OPCL), recursive
active control. Studies have shown that the active control method has better perfor-
mance for integer order [7] and fractional order systems [5].

Implementation of synchronization is required for real time applications in secure
communication. Electronic circuit design and implementation of chaotic systems are im-
portant in the understanding of dynamic systems and practical implementation. The
discovery of chaos in electronic circuits by Chua [8] initiated a new line of research [9].
Chua’s chaotic circuit has been extensively studied with several modifications. Combina-
tion synchronization of memristive circuit was realized through the diffusive and negative
feedback coupling [6], time delayed sliding mode synchronization in a novel chaotic mem-
capacitor [10], design of low dimensional fractional order nonautonomous system based
on the Chua system [11], experimental realization of synchronization in a network using
Chua’s circuit [12].

The main goal of this paper is to investigate the behaviour of different memristors
under synchronization using an active control method. The performance of different
memristors is important in real life implementation of synchronization for secure com-
munication. Hence, the speed of synchronization and fluctuations before synchronization
are considered in this paper. In Section 2, the system and different memristors to be
considered are discovered while the synchronization of the systems is discussed in Section
3. Results are presented in Section 4 and conclusions are given in Section 5.

2 System Description

Chua’s circuit is given by the expression [13]

ẋ = α(y − f(x)),

ẏ = x− y + z,

ż = −βy,
(1)

where x, y, z are state space of the system, and the piecewise linear function f(x) is
defined as

f(x) =

 α(y − bx− (b− a), if x < −1;
α(y − ax), if −1 ≤ x ≤ 1;
α(y − bx− (a− b)), if x > 1,

a, b, c are constants.
By replacing Chua’s diode with a flux controlled memristor, Itoh and Chua [14]

transformed the canonical Chua circuit into a 4 D system of the form

ẏ1 =
1

C1R
(y2 − y1)− 1

C1
y1Wi,

ẏ2 =
1

C2R
(y1 − y2)− y3,

ẏ3 =
1

L
y2 −

r

L
y3,

ẏ4 = y1,

(2)
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where C1, C2, L are the circuit elements and Wi is the memductance. In this paper, the
synchronization of system (2) will be investigated under three different flux controlled
memristors.
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Figure 1: Phase space realization of Chua’s circuit with a memristor of the form Wi = −a+b|y4|,
where the values of a and b are taken as 0.6667× 10−3 and 1.4828, respectively.

2.1 Memristor of type I

By replacing Chua’s diode in Chua’s chaotic circuit with an active flux memristor, a new
memristor based chaotic circuit was obtained by [15] as

ẋ = α(y − x−W (w)x),

ẏ = x− y + z,

ż = −βy − γz,
ẇ = x,

(3)
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where W (w) = −a + b|w|. The system was found chaotic for a wide range of values of
|w|. The circuit form was given and implemented by [16] as

dv1
dt

=
1

C1

(
v2 − v1
R

−W (φ)v1

)
,

dv2
dt

=
1

C2

(
v1 − v2
R

− i3
)
,

di3
dt

=
1

L
(v2 − v1),

dφ

dt
= v1.

(4)

The phase space representation of this system is shown in Figure 1.

2.2 Memristor of type II

A memductance function of the form

W (φ) =
dq(φ(t)

dφ(t)
= −a+ 3bφ2(t) (5)

was introduced to extend 4D chaotic Chua’s circuit proposed in [17] to a 5D system
by [18]. The proposed systems thus became

dx1(t)

dt
=

1

C1
(x3(t)−W (x5(t))x1(t),

dx2(t)

dt
=

1

C2
(−x3(t) + x4(t)),

dx3(t)

dt
=

1

L
(x2(t)− x1(t)−Rx3(t)),

dx4(t)

dt
=
−x2(t)

L2
,

dx5(t)

dt
= x1(t).

(6)

The system was reported to exhibit chaos for certain system parameters. The phase space
and dynamics of equation (2) with memristor of the form (5) is presented in Figure 2.

2.3 Memristor of type III

A dimensionless flux controlled memristor model with fifth order flux polynomial was
proposed by [19] as

ẋ = α(y + x−W (w)x),

ẏ = βx+ γy − z,
ż = δy − z,
ẇ = x,

(7)

where the memductance W (φ) is defined as

W (φ) = aφ4 − bφ2 − c, (8)
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The phase space and dynamics of equation (2) with memristor of the form (8) is presented
in Figure 3.

3 Synchronization

Theorem 1 If the drive and response systems of the form (2) have the memristive el-
ements given by W j

i and W k
i , respectively (where i = 1, 2, 3 are the different types of

memristors being considered), complete synchronization will be achieved by the method
of active control if the control function is chosen as

u1(t) =
1

C1
y1W

j
i −

1

C1
x1W

k
i +

(
λ1 +

1

C1R

)
e1 −

1

C1R
e2,

u2(t) =
1

C2R
e1 +

(
λ2 +

1

C2R

)
e2 +

1

C2
e3,

u3(t) = − 1

L
e2 +

(
λ3 +

r

L

)
e3,

u4(t) = e1 + λ4e4,

(9)

where λi are chosen to be negative and ei = yi−xi, then the drive system (2) will achieve
multi-switching synchronization with the response system.

Proof. Take equation (2) as the drive system and the following ones as the response
system

ẋ1 =
1

C1R
(x2 − x1)− 1

C1
x1Wi + u1(t),

ẋ2 =
1

C2R
(x1 − x2)− x3 + u2(t),

ẋ3 =
1

L
x2 −

r

L
x3 + u3(t),

ẋ4 = x1 + u4(t),

(10)

where ui are the controllers to be determined. Substituting equations (2) and (10) into
the error dynamics ei = yi − xi, where i = 1, 2, 3, we obtain

ė1 =
1

C1R
(e2 − e1)− 1

C1
y1W

j
i +

1

C1
x1W

k
i + u1(t),

ė2 =
1

C2R
(e1 − e2)− e3 + u2(t),

ė3 =
1

L
e2 −

r

L
e3 + u3,

ė4 = e1 + u4,

(11)

To achieve asymptotic stability of system (11), the terms, which are nonlinear in ei, are
eliminated as follows:

u1 =
1

C1
y1W

j
i −

1

C1
x1W

k
i + v1(t),

u2 = v2(t),

u3 = v3,

u4 = v4,

(12)
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Figure 2: Phase space realization of Chua’s circuit with the memristor of the form Wi =
−a + 3by2

4 , where the values of a and b are taken as 0.6667× 10−3 and 1.4828, respectively.

substituting (12) into (11) gives

ė1 =
1

C1R
(e2 − e1) + v1(t),

ė2 =
1

C2R
(e1 − e2)− e3 + v2(t),

ė3 =
1

L
e2 −

r

L
e3 + v3,

ė4 = e1 + v4.

(13)

Using the active control method, a constant matrix D is chosen which will control the
error dynamics (13) such that the feedback matrix is Vi = Dei. There are various choices
of the feedback D which can be chosen to control the error dynamics [20]. We chose D
to be of the form

D =


(
λ1 + 1

C1R

)
− 1

C1R
0 0

1
C2R

(
λ2 + 1

C2R

)
1 0

0 − 1
L

(
λ3 + r

L

)
0

1 0 0 λ4

 . (14)

If the eigenvalues λi are chosen to be negative, a stable synchronization between the
drive and response system will be achieved.
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Figure 3: Phase space realization of Chua’s circuit with memristor of the form Wi = ay4
4 −

by2
4 − c, where the values of a b and c are taken as 1000, 1.087 and 0.33e−3, respectively.
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Figure 4: The synchronization error functions for two systems with the memristor of type I
using control functions as described in Corollary 3.1.
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Figure 5: The synchronization error functions for two systems with the memristor of type II
using control functions as described in Corollary 3.2.

Corollary 3.1 If W 1
1 = −a11+b11|y4| and W 2

1 = −a21+b21|x4|, then the control function
(14) can be written as

u1(t) =
1

C1
y1W

j
i −

1

C1
x1W

k
i +

(
λ1 +

1

C1R

)
e1 −

1

C1R
e2,

u2(t) =
1

C2R
e1 +

(
λ2 +

1

C2R

)
e2 +

1

C2
e3,

u3(t) = − 1

L
e2 +

(
λ3 +

r

L

)
e3,

u4(t) = e1 + λ4e4.

(15)

Corollary 3.2 If W 1
2 = −a12+3b12y

2
4 and W 2

2 = −a22+3b22x
2
4, then the control function

(14) can be written as

u1(t) =
1

C1
y1W

j
i −

1

C1
x1W

k
i +

(
λ1 +

1

C1R

)
e1 −

1

C1R
e2,

u2(t) =
1

C2R
e1 +

(
λ2 +

1

C2R

)
e2 +

1

C2
e3,

u3(t) = − 1

L
e2 +

(
λ3 +

r

L

)
e3,

u4(t) = e1 + λ4e4.

(16)

Corollary 3.3 If W 1
1 = a13y

4
4−b13y24−c13 and W 2

1 = a23y
4
4−b23y24−c23, then the control
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Figure 6: The synchronization error functions for two systems with the memristor of type III
using control functions as described in Corollary 3.3.
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Figure 7: Error functions of different memristors when synchronized with the memristor Wii

(where i = 1, 2, 3).
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Figure 8: Comparison of the synchronization error for Wij(i 6= j).

function (14) can be written as

u1(t) =
1

C1
y1W

j
i −

1

C1
x1W

k
i +

(
λ1 +

1

C1R

)
e1 −

1

C1R
e2,

u2(t) =
1

C2R
e1 +

(
λ2 +

1

C2R

)
e2 +

1

C2
e3,

u3(t) = − 1

L
e2 +

(
λ3 +

r

L

)
e3,

u4(t) = e1 + λ4e4.

(17)

4 Results

In order to verify the effectiveness of the proposed controllers, numerical simulations were
carried out. The system of equations with the proposed controllers was solved using the
fourth-order Runge-Kutta method with step size of 0.0001. Using the initial conditions
(y1, y2, y3, y4) = (10 × 10−3, 0.02, 0.01, 1 × 10−3) and (x1, x2, x3, x4) = (9 × 10−3, 10 ×
10−30.0011 × 10−3), the controllers described in Corollary 3.1 were implemented. The
results are shown in Figure 4. The synchronization errors between the two systems when
W1 = −a1 +b2|y4| and W2 = −a2 +b2|x4| were simulated. Similarly, the synchronization
error between system (2) and (10) when W1 = −a1 + 3b2y

2
4 and W2 = −a2 + b32x

2
4 using

the initial conditions (y1, y2, y3, y4) = (10× 10−3, 0.02, 0.01, 1× 10−3) and (x1, x2, x3, x4)
= (9× 10−3, 10× 10−30.0011× 10−3) are simulated and the results are shown in Figure
5. In the same vein, the control functions as described in Corollary 3.3 were simulated
using two memristor of type III. The result is shown in Figure 6. The performance of
each memristor, when synchronized in the form Wii, can be investigated from Figure
7. The memristor of type II showed the worst performance while the memristor of
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type III exhibited the best performance. The error fluctuation were the greatest for
the memristor of type II and the lowest for the memristor of type III. In Figure 8, the
performance of synchronization of the system under two different memristors Wij(i 6= j)
is reported using only the first error component e1. The combination of W1W3 has the
lowest fluctuations before synchronization and the fastest synchronization of the three
different combinations. The worst performance was the combination W2W3 which has
the highest fluctuations amongst the three and the slowest convergence.

5 Conclusion

In this paper, we have investigated the synchronization of different memristors in the
same circuit with identical and non-identical memristors. Suitable controllers were de-
signed using the method of active control. Numerical simulation results showed that
the controllers were effective. The performance of the three memristors was investigated
using fluctuations before synchronization and time to synchronization. In the synchro-
nization between two similar memristors, the memristor of type III was found to have
the best performance. However, the synchronization of memristors of type I and III ex-
hibited the fastest synchronization and least fluctuation, making it the best performing.
This scheme will find application in a multiuser secure communication environment. Fur-
ther investigation may be carried out on the multi-switching, time delayed and practical
implementation of this scheme.
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