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Abstract: In the present paper the effect of a non-linearly permeable stretching
sheet on the solution profile in the presence of thermal radiation and aligned mag-
netic field has been investigated. A drive has been undertaken to thus highlight the
effects of heat and mass transfer of a non-Newtonian power-law fluid over a stretching
sheet when the equations are transformed into ordinary differential equations using
similarity variables. The transformed equations have been solved numerically using
the Runge-Kutta method coupled with the shooting technique. These results are pre-
sented graphically for various values of power-law index and for different parameters,
viz the stretching parameter, suction parameter, Prandtl number radiation parameter
etc.
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1 Introduction

The study of the heat and mass transfer of a fluid over a stretching sheet has attracted
many researchers these days due to its various applications in industry, for example, man-
ufacturing of rubber sheet and plastic sheet. Fluids are used in making polymers, blowing
of glass, petroleum productions, polymer extrusion, crystal growing fiber spinning and
many more. Schowalter[17] was the first one who applied the boundary layer theory to
the power-law pseudo-plastic fluid. After that, Schowalter and Collins [9] studied the
behaviour of non-Newtonian fluid in the entry region of pipe. Crane [8] was the first to
study the fluid flow past a stretching plate. Crane and Carragher [12] have studied the
heat transfer on a stretching sheet instead of a plate.

After that, various researchers studied the effect of a fluid flow on a stretching sheet.
Gupta and Gupta [1] studied the heat and mass transfer on a stretching sheet with suction
or blowing. Vajravelu and Hadjinicolaou [7] analysed the heat transfer on a stretching
sheet in the presence of dissipation and heat generation. Dandapat and Gupta [4] studied
the flow and heat transfer in a viscoelastic fluid over a stretching sheet. Mahapatra and
Gupta [16] have contributed on the heat transfer in the stagnation point flow towards a
stretching sheet. Many researcher applied MHD flow and heat transfer over a stretching
sheet due to its applications in the industries. Andersson [5] first of all studied the
effect of MHD flow of a viscoelastic fluid. Andersson, Bech and Dandapat [5] studied a
magneto-hydrodynamic flow of a power-law fluid over a stretching sheet. Siddheshwar
and Mahabaleswar [13] studied the effects of radiation and heat source on the MHD flow
of a viscoelastic liquid and heat transfer over a stretching sheet. Cortell [14] researched
on a viscous flow and heat transfer over a nonlinearly stretching sheet. Fang et al. [15]
found out about a slip MHD viscous flow over a stretching sheet.

Researchers discussed several models to analyse the non-Newtonian behaviour of flu-
ids. Among these models the power-law model gained much popularity due to its suc-
cessful applications of boundary layer assumptions. Till date, the power-law fluid model
is the most widely used model to describe non-Newtonian fluids behaviour. Andersson
[5] was the first to study the MHD flow on the power-law fluid model.

Various researchers have discussed the power-law fluid model to study various effects
on a continuously stretching sheet under different circumstances. However, all of them
discussed the presence of magnetic field in transverse direction. But to the best of the
authors’ knowledge no one has studied the effect of aligned magnetic field on the power-
law model. Zhong et. al. discussed explicit solutions of a class of linear partial difference
equations with constant coefficients. Aleksandrov and Platonov [2] studied the conditions
of ultimate boundedness of solutions for a class of nonlinear systems.

Based on the review of the above studies, the main objective of this paper is to
analyze the effects of variable thermal conductivity on the power-law fluid flow and heat
transfer over a non-linearly stretching sheet in the presence of aligned magnetic field and
considering suction and radiation.

2 Formulation of the Problem

The model being considered here consists of a steady two-dimensional flow of an incom-
pressible non-Newtonian fluid following the power law over a permeable stretching sheet.
The origin is located at the slit, through which the sheet is drawn through the fluid
medium. The velocity of the model is denoted by uw.
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Equations related to the power-law model for the non-Newtonian fluid, with allowance
for the viscous dissipation and aligned magnetic field, are given by
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Here u and v are the components of fluid velocity in x and y directions, respectively.
ρ, k and K represent the density of fluid, thermal conductivity and consistency coefficient,
n is the power law index, B0 is the magnetic parameter, T is the temperature of the fluid,
Cp is the specific heat at constant pressure, σ is electrical conductivity, σs is the Stefan-
Boltzmann constant and qr is the radiative heat flux approximated by the Rosseland
approximation as

qr =
−4σs∂T

4

∂y
. (4)

Boundary conditions for the model are

u = uw(x) = cxm + usl, T = Tw, when y = 0,
u −→ U = bxm, T −→ T∞, when y −→∞. (5)

Applying the boundary conditions in (5) to the model equation (2), we get
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For further analysis we introduce similarity variable η with dimensionless variables f and
θ as
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With all the above similarity variables, the equations (7) and (3) reduce to

(f ′′)
n−1

f ′′′ +

[
m(2n− 1) + 1

n+ 1

]
ff ′′ −m (f ′)

2 −H (sinα)
2

(f ′ − λ) +mλ2 = 0, (9)

(
3 + 4R

3

)
θ′′

PR
+

[
1 +m(2n− 1)

n+ 1

]
fθ′ − rf ′θ + EC (f ′′)

n+1
= 0. (10)

The transformed boundary conditions are

f(0) = s, f ′(0) = 1,+af ′′(0), θ(0) = 1 when η = 0, (11)
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f ′(∞)→ λ, θ(∞)→ 1 when η →∞, (12)

where PR =
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k
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) 1
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is the non-Newtonian Prandtl number and

EC = c2x2m

AxrCp
is the Eckert number and H = σ

B2
0

ρcx1−m , s is the suction parameter, a is the

constant and λ is the ratio of free stream velocity parameter and stretching parameter.

3 Solution of the Problem

To analyze the above flow model for the equations (9) and (10) along with boundary
conditions (11) and (12), the fourth-order Runge-Kutta method with the shooting tech-
nique is used. With the help of the Newton-Raphson shooting method estimates for
f ′′(0)and θ(0) have been done so that the equations can be integrated with the help of
the fourth-order Runge-Kutta method. The process of these iterations does not stop
until the boundary conditions at infinity become zero. This iteration process has been
performed for each value.

4 Results and Discussion

In this section the fourth-order Runge-Kutta method with the help of shooting
method has been used to solve equations (9) and (10) for the various values of
Pr, n,m, r,R, λ, a, s, α and H. Values of f”(0) and θ(0) have been evaluated correctly
up to 8 decimal places so that stability and accuracy of the study can be shown. It
is observed from Table 1 that the numerical values of f ′′(0) in the present paper for
different values of power-law index n, when λ = 0, a = 0, s = 0, s = 0,m = 1, are in
good agreement with the results obtained by Andersson and Kumaran [6], Mahmoud
and Megahed [11] and Megahed [10].

By considering the numerical solutions for the various values of power-law index in the
range 0.5 ≤ n ≤ 1.5, the effects of various parameters on the velocity and the temperature
distributions are studied.
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n Andersson
and

Kumaran[24]

Mahmoud
and

Megahed[32]

Megahed[35] Present Paper

0.5 1.1605 1.1604 1.1604 1.16065620
0.6 1.0951 1.0951 1.0951 1.9512419
0.7 1.545 1.544 1.544 1.054660
0.8 1.0284 1.0284 1.0284 1.02841233
0.9 1.0113 1.0112 1.0112 1.01133117
1.0 1.0000 1.000 1.00000 1.000000
1.1 0.9924 0.9922 0.9922 0.992426994
1.2 0.9874 0.9874 0.9874 0.98737207
1.3 0.9840 0.9841 0.9841 0.9840342
1.4 0.9819 0.9819 0.9819 0.9818837043
1.5 0.9806 0.9806 0.9806 0.98056261
1.6 0.9798 0.9799 0.9799 0.979825441
1.7 0.979501 0.979503 0.979503 0.975007899
1.8 0.979468 0.979467 0.979467 0.971189942
1.9 0.9796 0.9796 0.9796 0.971189943
2.0 0.9800 0.97995 0.97995 0.97912466089

Table 1: Comparison of the values of f ′′(0) for the various values of n with the
parameters’ values λ = 0, a = 0, s = 0, s = 0,m = 1.

(a) (b)

(c)

Figure 1: Figure (a), (b), (c) show the effects of α = π/8, π/4 and π/2 on the velocity
profile for different values of power-law index (η), respectively.
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n

Value of f
′

and θ
′

for different values of α with Pr = 0.71, Ec = 0.1,
H = 1, R = 1, s = 0.2 = 0.2, r = 1,m = 0.5, λ = 0.5

f ′′ θ′

α = π/8 α = π/4 α = π/2 α = π/8 α = π/4 α = π/2
n = 0.5 -0.439502 -0.506112 -0.584217 -0.565743 -0.556586 -0.546898
n = 0.8 -0.445340 -0.499400 -0.563085 -0.569565 -0.562002 -0.553820
n = 1 -0.461656 -0.510364 -0.567860 -0.568936 -0.562320 -0.555068
n = 1.2 -0.480821 -0.525376 -0.578055 -0.567408 -0.561607 -0.555187
n = 1.5 -0.510534 -0.550243 -0.597283 -0.564679 -0.559882 -0.554400

Table 2: Values of f ′′(0) and θ′(0) for different types of fluid and different angle of
magnetic field.

n

Value of f
′

and θ
′

for different values of λ with Pr = 0.71, Ec = 0.1,
H = 1, R = 1, s = 0.2, r = 1,m = 0.5, λ = 0.5 and α = π/3

f ′′ θ′

λ = 0.8 λ = 1.5 λ = 2 λ = 0.8 λ = 1.5 λ = 2
n = 0.5 -0.1857688 0.6706540 1.685632 -0.6306510 -0.7615877 -0.854726
n = 0.8 -0.2913153 0.6308961 1.440967 -0.6360154 -0.7734705 -0.856978
n = 1.0 -0.2289438 0.6367480 1.352774 -0.676532 -0.7807228 -0.859495
n = 1.2 -0.2495882 0.6429972 1.292932 -0.6385992 -0.7871893 -0.862109
n = 1.5 -0.2803766 0.6575240 1.232879 -0.6394543 -0.7954666 -0.865779

Table 3: Values of f ′ and θ′ for various values of λ.

The effects of magnetic field angle α on the velocity profiles by changing the values
of power law index between the range 0.5 ≤ n ≤ 1.5 are shown in Figures 1(a)-1(c). It
is seen that as the angle of magnetic field increases, velocity decreases for both values of
the power-law index, i.e, n < 1 and n ≥ 1. But it can hardly make any difference for the
temperature distribution profile which is shown in Table 2.

The effects of parameter λ, which is basically the ratio of free stream velocity to the
stretching parameter, on the solution profile are shown in Figures 2(a)-2(c). It is seen
that with the increase in the values of λ, the velocity increases tremendously for the
power-law index between 0.5 ≤ n ≤ 1.5. The downfall of the temperature profile with
the increase in λ is shown in Table 3.
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(a) (b)

(c)

Figure 2: Figure (a), (b), (c) show the effects of λ = 0.8, 1.5 and 2 on the velocity
profile for different values of power-law index (η), respectively.

Figures 3(a)–3(c) represent the velocity profile for the values of suction parameter
s = 0, 1, 2, respectively.

The effects of the Hartmann number H on the velocity profile and temperature pro-
file are shown in Figures 4(a)-4(b). It is seen from the figures that the velocity and
temperature decrease with the increase of H.

The effect of the Prandlt number Pr on the dimensionless temperature profile is
illustrated in Figure 5(a). It is seen that the increase in the Prandlt number Pr decreases
the temperature distribution. Figure 5(b) shows the effect of change in the radiation
parameter R on the temperature profile. It is seen from the figure that the temperature
increases with the increase in radiation parameter for n = 0.5.
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(a) (b)

(c)

Figure 3: Figure (a), (b), (c) show the effects of s = 0, 1 and 2 on the velocity profile
for different values of power-law index (η), respectively.

(a) (b)

Figure 4: Figure (a), (b), (c) show the effects of different values of H on velocity profile
and temperature profile, respectively.
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(a) (b)

Figure 5: Figure (a), (b), (c) show the effects of different values of Pr and R on the
temperature profile, respectively.

5 Conclusion

The first aim of the paper is the solution of the problem on a two dimensional flow of an
incompressible non-Newtonian fluid following the power law over a permeable stretching
sheet in the presence of thermal radiation. The second one is the transformation of
the governing equations into a system of non-linear ordinary differential equations by
using similarity transformations, which have been solved numerically using the fourth-
order Runge-Kutta method coupled with the shooting technique. During the study the
following observations have been achieved:

• Increase in the angle of magnetic field decreases the velocity of the fluid.

• Increase in the stretching parameter increases the velocity distribution but de-
creases the temperature distribution.

• As suction increases in the sheet, both velocity and temperature decrease.

• Temperature decreases with the increase in the Prandlt number.

• As the effect of magnetic field increases, the velocity decreases.

• The radiation parameter increases with the increase of temperature.
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Nomenclature Greek symbols

B0= magnetic field intensity η= similarity variable
c= stretching sheet parameter Ψ stream function
Cp= specific heat at constant pressure σ = electrical conductivity
K= consistency coefficient ν=kinematic viscosity
k′= permeability of the medium µ =coefficient of viscosity
k= thermal conductivity σs=Stefan-Boltzmann constant

H= Hartmann number
σB2

0

cρ Λ = ratio of free stream velocity

Pr= Prandtl number parameter to stretching sheet
pr= radiative heat flux parameter.
qr= rate of heat transfer
R= radiation parameter(= (4σsT

3
∞)/Kk)

s=heat source/sink parameter
T= fluid temperature
T∞= free stream temperature
Tw= temperature of stretching sheet
u, v= velocity components along x and y
axes, respectively
uw(x)=velocity of stretching sheet
U(x)=free stream velocity(= bxm)
x, y= Cartesian coordinates along x and y
axes, respectively.
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