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1 Introduction

The novel Coronavirus was detected in China and a few months later it spreaded in the
countries all over the world. Covid-19 contamination can be transmitted to a person
from a contaminated person, a contaminated dry surface, through the nose or mouth. In
March 2020, the World Health Organization declared the Covid-19 a global pandemic.
For today, the novel Coronavirus caused tens of thousands of deaths and a few million
cases of infections. It can be classified as the third highly pathogenic human Coronavirus
appearing in the past two decades. Since its appearance, several scientific researchers have
been interested in studies of various problems related to this novel Coronavirus [2,7,13].
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In this paper, we study the following modified mathematical model of ODEs proposed
first in [5]: 

Ṡ = µNT − βSINT − (α+ µ)S,

Ė = βSINT − (γ + µ)E,

İ = γE − (δ + µ)I,

Q̇ = δI − (λ+ µ)Q,

Ṙ = λQ− µR,
Ċ = αS − µC

(1)

with the positive initial condition (S(0), E(0), I(0), Q(0), R(0), C(0)) ∈ R6
+ , where S is

the susceptible population, E is the exposed population, I is the infected population,
Q is the population under quarantine (reported infected cases), R is the recovered
population and C is the confined susceptible population.

The outline of this paper is as follows. In Section 2, some properties of the system
(1) are given. Section 3 is devoted to the calculation of the basic reproduction number
R0 using the next generation matrix method to assess the transmissibility of the novel
Coronavirus Covid-19. The analysis of the local and global stability of equilibrium points
is presented in Sections 4 and 5, respectively. It is shown that the disease-persistence
(endemic) equilibrium is globally asymptotically stable when R0 > 1. However, when
R0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable. Finally,
Section 6 is done to present some numerical tests confirming the obtained theoretical
results.

2 Properties of the Mathematical Model

The parameters of the model (1) are the protection rate α, the infection rate β, the incu-
bation rate γ, the quarantine rate δ, the natural mortality rate µ (which is proportional
to the birth rate) and the recovery rate λ. Define P̄ = (µNT

α+µ , 0, 0, 0, 0,
αNT

α+µ ) as the disease
free equilibrium point.

Proposition 2.1

1. For every given initial condition (S(0), E(0), I(0), Q(0), R(0), C(0)) in R6
+ , system

(1) admits a bounded solution with positive components defined for all t > 0.

2. The set Ω1 = {(S,E, I,Q,R,C) ∈ R6
+ / S+E+I+Q+R+C = NT } is a positively

invariant attractor for system (1).

Proof.

1. The solution is positive due to the fact that since S = 0, one has Ṡ = µNT > 0;
if E = 0, then Ė = βSINT > 0; once I = 0, then İ = γE > 0; if Q = 0, then
Q̇ = δI > 0; if R = 0, then Ṙ = λQ > 0; and if C = 0, then Ċ = αS > 0.

The boundedness of solutions of system (1) can be proved by adding all equations
of system (1), and then one obtains, for T = S + E + I + Q + R + C − NT , the
following equation for the totality of individuals:

Ṫ = Ṡ + Ė + İ + Q̇+ Ṙ+ Ċ = µNT − µS − µE − µI − µQ− µR− µC = −µT.
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Then

S(t) + E(t) + I(t) +Q(t) +R(t) + C(t)
= NT + (S(0) + E(0) + I(0) +Q(0) +R(0) + C(0)−NT )e−µt.

(2)

Then the boundedness of the solution of system (1) holds since all compartments
of T are positive.

2. One can easily deduce from (2) that the set Ω1 is a positively invariant attractor
for system (1).

3 Computation of the Basic Reproduction Number by the Next Generation
Matrix Method

For determining the reproduction number of (1), we use the next generation matrix
method proposed by Diekmann, et al. [3] and elaborated by van den Driessche and
Watmough [6] for an ODE compartmental model.

In (1), the disease free-equilibrium is P̄ = (µNT

α+µ , 0, 0, 0, 0,
αNT

α+µ ) and the compartments

containing infected individuals are X = (X1, X2, X3) = (E, I,Q). Using the generation
matrix method [3, 6], consider these equations written in the form Ẋi = Fi(X)− Vi(X)
for i = 1, 2, 3.

Now define F = [
∂Fi(P̄ )

Xj
] and V = [

∂Vi(P̄ )

Xj
] for 1 ≤ i, j ≤ 3. Thus the reproduction

number R0 is the spectral radius of the matrix FV −1 and we have

R0 = ρ(FV −1).

As in [6], we have the following theorem.

Theorem 3.1 If P̄ is a DFE of the system Ẋi = Fi(X) − Vi(X), then P̄ is locally
asymptotically stable if R0 = ρ(FV −1) < 1, but unstable if R0 > 1.

Now, we have the following theorem for the reproduction number R0.

Theorem 3.2 The reproduction number of (1) is given by

R0 = NT

√
γβµ

(α+ µ)(γ + µ)(δ + µ)
. (3)

Proof. According to the next generation matrix method, we have

F =

 0 βµ
α+µN

2
T 0

γ 0 0
0 δ 0

 and V =

 γ + µ 0 0
0 δ + µ 0
0 0 λ+ µ

 .

Then

FV −1 =

 0
βµN2

T

(α+µ)(δ+µ) 0
γ

α+µ 0 0

0 δ
δ+µ 0

 .
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The basic reproduction number for model (1) is given by the spectral radius of the matrix
FV −1 and so

R0 = NT

√
γβµ

(α+ µ)(γ + µ)(δ + µ)
.

4 Local Stability

Theorem 4.1 (1) If R0 < 1, then the disease free equilibrium P̄ is locally asymp-
totically stable.

(2) If R0 ≥ 1, then the disease free equilibrium P̄ is unstable.

Proof. The Jacobian matrix J evaluated at P̄ = (µNT

α+µ , 0, 0, 0, 0,
αNT

α+µ ) is given by

J̄ =



−α− µ 0 − β
α+µµN

2
T 0 0 0

0 −γ − µ β
α+µµN

2
T 0 0 0

0 γ −δ − µ 0 0 0
0 0 δ −λ− µ 0 0
0 0 0 λ −µ 0
α 0 0 0 0 −µ

 .

The characteristic equation is

P̄ (X) = (X + α+ µ)(X + λ+ µ)(X + µ)2
∣∣∣∣ −γ − µ−X β

α+µµN
2
T

γ −δ − µ−X

∣∣∣∣
= (X + α+ µ)(X + λ+ µ)(X + µ)2

(
(γ + µ+X)(δ + µ+X)− γβ

α+ µ
µN2

T

)
= (X + α+ µ)(X + λ+ µ)(X + µ)2

×
(
X2 + (γ + 2µ+ δ)X + (γ + µ)(δ + µ)− γβ

α+ µ
µN2

T

)
= (X + α+ µ)(X + λ+ µ)(X + µ)2

×
(
X2 + (γ + 2µ+ δ)X + (γ + µ)(δ + µ)(1−R0)(1 +R0)

)
= (X + α+ µ)(X + λ+ µ)(X + µ)2

×
(
X2 + a1X + a0

)
,

where a1 = (γ + 2µ + δ) > 0 and a0 = (γ + µ)(δ + µ)(1 − R0)(1 +R0) > 0 if R0 < 1.
By the Routh-Hurwitz criterion, we deduce that all eigenvalues have negative real parts
and then P̄ is locally asymptotically stable if R0 < 1. If R0 ≥ 1, then a0 ≤ 0 and there
exists at least one non negative eigenvalue λ of J?, therefore P̄ is unstable.

Theorem 4.2 If R0 > 1, then the disease-persistence equilibrium P ∗ is locally
asymptotically stable.



330 A. ZAGHDANI

Proof. Denote P ∗ = (S∗, E∗, I∗, Q∗, R∗, C∗), then we have

E∗ =
µNT − (α+ µ)S∗

γ + µ
=

µNT
γ + µ

− (α+ µ)

γ + µ
S∗,

I∗ =
γ

δ + µ
E∗ =

γµNT
(δ + µ)(γ + µ)

− γ(α+ µ)

(δ + µ)(γ + µ)
S∗,

Q∗ =
δ

λ+ µ
I∗ =

δγµNT
(λ+ µ)(δ + µ)(γ + µ)

− δγ(α+ µ)

(λ+ µ)(δ + µ)(γ + µ)
S∗,

R∗ =
λ

µ
Q∗ =

λδγµNT
µ(λ+ µ)(δ + µ)(γ + µ)

− λδγ(α+ µ)

µ(λ+ µ)(δ + µ)(γ + µ)
S∗,

C∗ =
α

µ
S∗.

From the third equation in (1), we obtain

E∗ =
δ + µ

γ
I∗.

Replacing this in the second equation of (1), we get

−(γ + µ)
δ + µ

γ
I∗ + βS∗I∗NT = 0 =⇒ (−(γ + µ)

δ + µ

γ
+ βS∗NT )I∗ = 0

=⇒ −(γ + µ)
δ + µ

γ
+ βS∗NT = 0

=⇒ S∗ =
(γ + µ)(δ + µ)

γβNT
.

From the system given previously, and the value of R0, we can write

I∗ =
γµNT

(δ + µ)(γ + µ)
− γ(α+ µ)

(δ + µ)(γ + µ)
S∗

=
γµNT

(δ + µ)(γ + µ)
− α+ µ

βNT

=
α+ µ

βNT
(R2

0 − 1).

Now, we compute the characteristic equation of the Jacobian matrix evaluated at P ∗.
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We have

P ∗(X) = −(X+µ)2(X+λ+µ)

∣∣∣∣∣∣
−α− µ− βI∗NT −X 0 −βS∗NT

βI∗NT −γ − µ−X βS∗NT
0 γ −δ − µ−X

∣∣∣∣∣∣
= −(X+µ)2(X+λ+µ)

∣∣∣∣∣∣
−α− µ− βI∗NT −X 0 −βS∗NT

−α− µ−X −γ − µ−X 0
0 γ −δ − µ−X

∣∣∣∣∣∣
= −(X + µ)2(X + λ+ µ)

×
(
(−α− µ− βI∗NT −X)(γ+µ+X)(δ+µ+X) + βS∗NT (α+ µ+X)γ

)
= −(X + µ)2(X + λ+ µ)

×
([
− α− µ− βI∗NT −X

][
X2 + (δ + γ + 2µ)X + (δ + µ)(γ + µ)

]
+βS∗NT (α+ µ+X)γ

)
= (X + µ)2(X + λ+ µ)

(
X3 + a1X

2 + a2X + a3
)

with

a1 = α+ µ+ βI∗NT + δ + γ + 2µ

= α+ µ+ (α+ µ)(R2
0 − 1) + δ + γ + 2µ = (α+ µ)R2

0 + δ + γ + 2µ,

a2 = (α+ µ+ βI∗NT )(δ + γ + 2µ) + (δ + µ)(γ + µ)− βγS∗NT ,

a3 = (α+ µ+ βI∗NT )(δ + µ)(γ + µ)− βγ(α+ µ)S∗NT .

Then

a2 = (α+ µ+ (α+ µ)(R2
0 − 1))(δ + γ + 2µ) + (δ + µ)(γ + µ)− (γ + µ)(δ + µ)

= [α+ µ+ (α+ µ)(R2
0 − 1)][δ + γ + 2µ]

= (α+ µ)[δ + γ + 2µ]R2
0 > 0,

a3 = (α+ µ+ (α+ µ)(R2
0 − 1))(δ + µ)(γ + µ)− (α+ µ)(γ + µ)(δ + µ)

= (α+ µ)(δ + µ)(γ + µ)R2
0 − (α+ µ)(γ + µ)(δ + µ)

= (α+ µ)(δ + µ)(γ + µ)(R2
0 − 1).

Thus a3 > 0 if R0 > 1.
Now, we demonstrate that a1a2 > a3 if R0 > 1.

a1a2 − a3 =

[
(α+ µ)R2

0 + δ + γ + 2µ

][
(α+ µ)[δ + γ + 2µ]R2

0

]
−(α+ µ)(δ + µ)(γ + µ)(R2

0 − 1)

= (α+ µ)

[ [
(α+ µ)R2

0 + δ + γ + 2µ
]

(δ + γ + 2µ)R2
0

]

−(α+ µ)(δ + µ)(γ + µ)(R2
0 − 1)

≥ (α+ µ)

[(
δ + γ + 2µ

)2

R2
0 − (δ + µ)(γ + µ)R2

0 + (δ + µ)(γ + µ)

]
≥ (α+ µ)

[(
(δ + γ + 2µ)2 − (δ + µ)(γ + µ)

)
R2

0 + (δ + µ)(γ + µ)

]
.
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Since (δ + γ + 2µ)2 − (δ + µ)(γ + µ) > 0 for every positive parameters δ, γ and µ, we
conclude that a1a2 − a3 > 0 and the Routh-Hurwitz criterion permits to conclude.

5 Global Stability

Lemma 5.1 Ω2 = {(S,E, I,Q,R,C) ∈ Ω1; S ≤ µNT
α+ µ

} is a positively invariant

attractor for system (1).

Proof. It is proved in Proposition 2.1 that the bounded set Ω1 is a positive invariant

attractor set of all solutions of system (1). Now, since Ṡ(t) < 0 for S(t) >
µNT
α+ µ

, one

has lim inf S(t) ≤ µNT
α+ µ

. This completes the proof.

Theorem 5.1 If R0 ≤ 1, then the disease-free equilibrium P̄ is globally asymptoti-
cally stable.

Proof. Consider the following Lyapunov function:  L1 = γE + (γ + µ)I. Therefore,

 ̇L1 = γĖ + (γ + µ)İ

= γ
(
βSINT − (γ + µ)E

)
+ (γ + µ)

(
γE − (δ + µ)I

)
= γβSINT − (γ + µ)(δ + µ)I

≤ γβµ

α+ µ
IN2

T − (γ + µ)(δ + µ)I since S ≤ µNT
α+ µ

=
( γβµ

α+ µ
N2
T − (γ + µ)(δ + µ)

)
I

= (γ + µ)(δ + µ)
( γβµ

(α+ µ)(γ + µ)(δ + µ)
N2
T − 1

)
I

= (γ + µ)(δ + µ)
(
R2

0 − 1
)
I, ∀(S,E, I,Q,R,C) ∈ Ω2.

It follows that  ̇L1 ≤ 0 ifR0 ≤ 1 with  ̇L1 = 0 only if I = 0. Therefore,  L1 is a Lyapunov
function on Ω2. Moreover, Lemma 5.1 implies that Ω2 is a compact, absorbing subset
of R6

+, and the largest compact invariant set in {(S,E, I,Q,R,C) ∈ Ω2 :  ̇L1 = 0} is
{P̄}. Therefore, by the Lasalle invariance principle (see, for example, [11, Theorem 3.1]
and [1,4,8–10,14,15] for other applications), we deduce that every solution of system (1)
with the initial conditions in R6

+ converges to P̄ as t→ +∞.
Now, we give a result of global stability for the disease-persistence equilibrium P ∗.

Theorem 5.2 The disease-persistence equilibrium P ∗ is globally asymptotically sta-
ble if R0 > 1.

Proof. Consider the Lyapunov function

 L2 =
(
S − S∗ ln(

S

S∗ )
)

+
(
E − E∗ ln(

E

E∗ )
)

+
(γ + µ)

γ

(
I − I∗ ln(

I

I∗
)
)
.

P ∗ is the global minimum of  L2. Indeed, P ∗ is the unique internal stationary point of

system (1) and the function  L2 has its minimum value  L2min = S∗ + E∗ +
(γ + µ)

γ
I∗
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when S = S∗, E = E∗, I = I∗, Q = Q∗, R = R∗, C = C∗, and  L2(t) → +∞ at the
boundary of the positive quadrant.

Now, we compute the derivative of  L2(t) along the solutions of system (1):

 ̇L2 =
(

1− S∗

S

)
Ṡ +

(
1− E∗

E

)
Ė +

(γ + µ)

γ

(
1− I∗

I

)
İ

=
(

1− S∗

S

)(
µNT − βSINT − (α+ µ)S

)
+
(

1− E∗

E

)(
βSINT − (γ + µ)E

)
+

(γ + µ)

γ

(
1− I∗

I

)(
γE − (δ + µ)I

)
.

Since µNT = βS∗I∗NT + (α+ µ)S∗ and (γ + µ)E∗ =
(δ + µ)(γ + µ)

γ
I∗ = βS∗I∗NT ,

we can write

 ̇L2 =
(

1− S∗

S

)(
βS∗I∗NT + (α+ µ)S∗ − βSINT − (α+ µ)S

)
+βSINT − (γ + µ)E − βSINT

E∗

E
+ (γ + µ)E∗

+(γ + µ)E − (δ + µ)(γ + µ)

γ
I − (γ + µ)E

I∗

I
+

(δ + µ)(γ + µ)

γ
I∗

= βS∗I∗NT + (α+ µ)S∗ − βSINT − (α+ µ)S − βS∗I∗NT
S∗

S
− (α+ µ)S∗S

∗

S

+βS∗INT + (α+ µ)S∗ + βSINT − βSINT
E∗

E
+ βS∗I∗NT − βS∗I∗NT

I

I∗

−βS∗I∗NT
EI∗

E∗I
+ βS∗I∗NT

= (α+ µ)S∗
(

2− S

S∗ −
S∗

S

)
+ βS∗I∗NT

(
3− S∗

S
− EI∗

E∗I
− SIE∗

S∗I∗E

)
.

Using the fact that

S

S∗
S∗

S
= 1, and

S∗

S

EI∗

E∗I

SIE∗

S∗I∗E
= 1

and the following inequality:

i=n∑
i=1

xi ≥ n

[
i=n∏
i=1

xi

] 1
n

, x1, x2, x3, · · · , xn ≥ 0, (4)

we obtain the following inequalities:

2− S∗

S
− S

S∗ ≤ 0, and 3− S∗

S
− EI∗

E∗I
− SIE∗

S∗I∗E
≤ 0.

Therefore,  ̇L2 ≤ 0. With the help of the Lyapunov stability theorem, we deduce that
P ∗ = (S∗, E∗, I∗, Q∗, R∗, C∗) is stable.

It remains to show that P ∗ = (S∗, E∗, I∗, Q∗, R∗, C∗) is asymptotically stable using
the Lasalle invariance principle [11]. Denote

A1 := 2− S∗

S
− S

S∗ and A2 := 3− S∗

S
− EI∗

E∗I
− SIE∗

S∗I∗E
.

Then one has  ̇L2(S,E, I,Q,R,C) = 0⇔ A1 = A2 = 0.
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With the above equations, we obtain the following implications:

A1 = 0 ⇒ S = S∗,
(S = S∗, A2 = 0) ⇒ IE∗ = I∗E.

Finally, we get

 ̇L2(S,E, I,Q,R,C) = 0⇔ S = S∗, IE∗ = I∗E. (5)

Let e =
E

E∗ =
I

I∗
, then E = eE∗ and I = eI∗. Replacing S, I in the first equation

of (1) at equilibrium yields

µNT = eβS∗I∗NT + (α+ µ)S∗ = βS∗I∗NT + (α+ µ)S∗.

Therefore, we get e = 1 and then I = I∗ and E = E∗. Finally,

 ̇L2(S,E, I,Q,R,C) = 0⇔ (S = S∗, E = E∗, I = I∗, Q = Q∗, R = R∗, C = C∗).

Thus, the largest invariant set contained in {(S,E, I,Q,R,C)
∣∣∣  ̇L2 = 0} is

{(S∗, E∗, I∗, Q∗, R∗, C∗)}. Then the global stability of the disease-persistence equilib-
rium P ∗ = (S∗, E∗, I∗, Q∗, R∗, C∗) follows according to the Lasalle invariance princi-
ple [12].

6 Numerical Simulations

We validate numerical simulations for system (1). We consider four cases; two of them
(Figure 1) confirming the global stability of the disease-free equilibrium P̄ when R0 ≤ 1.
The other two tests (Figure 2) confirm the global stability of the disease-persistence
equilibrium P ∗ when R0 > 1.
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Figure 1: (S(t), E(t), I(t), Q(t), R(t), C(t)) behaviours for (left) NT = 20, µ = 0.1, β =
0.1, α = 3, γ = 3, δ = 5, λ = 5, R0 = 0.49 ≤ 1 and for (right) NT = 30, µ = 0.1, β =
0.1, α = 3, γ = 3, δ = 5, λ = 5, R0 = 0.74 ≤ 1.

We remark that the solution of (1) converges asymptotically to P̄ . Only susceptible
and confined susceptible compartments persist, the other compartments vanish.

In this case, the solution of (1) converges asymptotically to P ∗ and all compartments
persist.
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Figure 2: (S(t), E(t), I(t), Q(t), R(t), C(t)) behaviours for (left) NT = 70, µ = 0.1, β =
0.1, α = 3, γ = 3, δ = 5, λ = 5, R0 = 1.73 > 1 and for (right) NT = 50, µ = 0.1, β =
0.1, α = 3, γ = 3, δ = 5, λ = 5, R0 = 1.24 > 1.

7 Concluding Remarks

There is a dearth of epidemiological information on the rise of the coronavirus, which
would be of critical importance to the structure and execution of auspicious, specially
designated, sustainable general welfare intercessions, isolation and travel limitations.
Infectious disease modelling is a tool that can be used to study the mechanisms by which
diseases spread, predict the future course of the disease outbreaks and evaluate epidemic
control strategies. A mathematical 6D dynamical system modelling an SEIQRC model
of transmissibility of the novel Covid-19 is studied. A profound study is given. The
analysis of the local and global stability of equilibrium points is presented. It is shown
that the disease-persistence equilibrium is globally asymptotically stable when R0 > 1.
However, the disease-free equilibrium is globally asymptotically stable when R0 ≤ 1.
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