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Abstract: This work is focused on the study of the asymptotic behavior of a coupled
problem that consists of an elastic body and the change of heat. The friction exerted
on the body is nonlinear of Coulomb type in a thin domain Ωε ⊂ R3. As a first
step, we give the variational formulation of the problem and the establishment of the
existence and uniqueness results for the weak solution. We proceed to the asymptotic
analysis. To do this, we use the scale change following the third component and new
unknowns to conduct the study on a domain Ω independent of ε. Then we prove
some estimates for the displacement and the temperature. Finally, these estimates
allow us to have the limit problem and prove the uniqueness of the solution.
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1 Introduction

In solid mechanics, thin structures are widely used in several fields of industry, for exam-
ple, in underwater industry, aerospace, civil engineering and in common constructions,
in the field of energy, industrial design, and even in the living world. We also find the
use of thin structures in the metallurgical industry, in particular in the rolling process of
thin sheets etc. More details can be seen in [1]. In mathematical literature, the problems
in thin areas and especially in the elasticity of thin films, plates and shells have already
been studied for more than a century. For example, Ciarlet in [10] and Destuynder
in [12] have studied the equilibrium states of a thin plate Ω × (−ε,+ε) under external
forces, where Ω is a smooth domain in R2 and ε is a small parameter, to justify the
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two-dimensional model of the plates. In recent years, many authors have applied asymp-
totic methods in three-dimensional or two-dimensional elasticity and viscosity problems
to derive new two-dimensional or one-dimensional reduced models. The importance of
asymptotic methods is that they can be used in place of full three-dimensional models
when the thickness is small enough. In addition, two-dimensional models are simpler
than their three-dimensional counterpart, which facilitates their study. They also allow
less costly digital simulations than the three-dimensional ones.

Our goal in this paper is to give the asymptotic behavior of a non-isothermal Hooke
operator in a thin domain with Coulomb friction on the bottom surface. One of the
objectives of this study is to obtain a two-dimensional equation that allows a reasonable
description of the phenomenon occurring in a three-dimensional domain by passing the
limit to 0 on the small thickness of the domain (3D). The scientific research in mechanics
are articulated around two main components: one devoted to the laws of behavior and
the other one to the boundary conditions imposed on the body. Here we describe real
phenomena which transform into mathematical problems with boundary conditions and
with certain types of friction, the type of problem that is presented here is very common
in application. The physical domains are defined, where the height is much smaller then
the length, as the problem of elasticity and viscoelasticity of a tire. We consider a non
isothermal elastic body with Coulomb free boundary friction conditions in the stationary
regime occupying a bounded, homogeneous domain Ωε ⊂ R3, where (0 < ε < 1) is a small
parameter that will tend to zero. The boundary of Ωε will be noted Γε = Γε1∪ΓεL∪w and
assumed to be Lipschitz, such that Γε1 is the upper surface of the equation x3 = εh(x́),
ΓεL is the lateral surface and w is a fixed bounded domain of R3 with x3 = 0, which is
a bottom of the domain Ωε. Several works have been done on the mechanical contact
with the various laws of behavior and various boundary conditions of friction close to our
problem, yet these items were based only on the existence and uniqueness of the weak
solution. Let us mention, for example, in [2], Bayada et al. are engaged in the asymptotic
and numerical analysis for the unilateral contact problem with Coulomb friction between
two general elastic bodies and a thin elastic soft layer. Paumier in [21] performs an
asymptotic modeling of a unilateral problem of a thin plate. He demonstrates that
this three-dimensional problem with friction tends towards another two-dimensional one
without friction. The justification by the asymptotic analysis for the elastic plates is
given by Gilbert in [16] and for the shells is given by Chacha in [9].

More recently, some research papers have been written dealing with the asymptotic
analysis of a boundary value problem governed by the elasticity system. For example,
the asymptotic behavior of the dynamical problem of isothermal and non-isothermal
elasticity with non linear friction of Tresca type was studied in [5,24]. Also, the authors
in [4] carried out the asymptotic analysis of a frictionless contact between two elastic
bodies in a stationary regime in a three-dimensional thin domain with friction. The
reader can also consult certain works concerning partial differential equations posed in
different thin domains, see, for example, [15, 17,18,22,23].

This paper is organized as follows. As a first step, we give the variational formulation
of the problem and demonstrate the results of existence and uniqueness for the weak
solution, then we move on to the asymptotic analysis. For this, using the change of scale
according to the third component we conduct the study on a domain Ω which does not
depend on ε. Then, by the use of different inequalities, we prove some estimates for
the displacement and the temperature, which allow us to go to the limit when ε tends
towards zero in the variational formulation. Finally, our main result is the proof of the
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existence and uniqueness of the limit of a weak solution to the problem described in the
abstract.

2 Statement of the Problem

In this section, we first define the thin domain and some sets necessary to study the
asymptotic behavior of the solutions. Next, we introduce the problem considered in
the thin domain. We finish this section giving the weak variational formulations of our
problem.

2.1 The domain

We consider a mathematical problem governed to the stationary equation for an elasticity
system in three dimensional bounded domain Ωε ⊂ R3 with boundary Γε = Γ

ε

L ∪Γ
ε

1 ∪w.
We denote by |.| the Euclidean norm on R2. Let w be a fixed, bounded domain of R3 with
x3 = 0. We suppose that w has a Lipschitz continuous boundary and is the bottom of
the domain. The upper surface Γε1 is defined by x3 = εh(x́) = εh(x1, x2). We introduce
a small parameter ε, that will tend to zero, where h is a function of class C1 defined on
w such that 0 < h∗ < h(x́) < h∗, for all (x́, 0) ∈ ω, with

Ωε =
{

(x́, z) ∈ R3: (x́, 0) ∈ ω, 0 < x3 < εh(x́)
}
.

We introduce the following functional framework:

H1(Ωε)3 =

{
v ∈ (L2(Ωε))3;

∂vi
∂xj
∈ L2(Ωε); ∀i, j = 1, 2, 3

}
.

We define the closed non-empty convex of H1(Ωε)3 :

V ε =
{
% ∈

(
H1(Ωε)

)3
; % = Gε on ΓεL , % = 0 on Γε1 and %.n = 0 on w

}
,

where Gε is defined below. We note by H1
Γε
L∪Γε

1
the vector sub-space of H1(Ωε):

H1
Γε
L∪Γε

1
(Ωε) =

{
% ∈ H1(Ωε) : % = 0 on ΓεL ∪ Γε1

}
.

The spaces Ωε, H1(Ωε)3, V ε and H1
Γε
L∪Γε

1
(Ωε) are the domain in which we study the

asymptotic behavior of elasticity, the Sobolev space, the closed convex, and the vectorial
sub-space of H1(Ωε) are endowed with their natural norms and scalar product.

2.2 The problem

We assume that the deformations of an elastic body are governed by the following equa-
tions. The law of conservation of momentum is div(σε) + fε = 0, we designate by
σε =

(
σεi,j
)

1≤i,j≤3
the stress tensor and by D = (di,j)1≤i,j≤3 the tensor of deformation:

di,j(u) = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
; 1 ≤ i, j ≤ 3 .

It is supposed that the law of behavior follows the law of Hooke

σεi,j(u) = 2µ(T ε)di,j(u
ε) + λ(T ε)dkk(uε)δij .
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uε = (uε1, u
ε
2, u

ε
3) is the displacement of the elastic body, λ and µ are the coefficients

of Lamé with λ + µ ≥ 0, T ε is the temperature, uετ , u
ε
n are the tangential and normal

components of uε on the boundary w given by uεn = uε.n, uετi = uεi− uεn.ni and σετ , σ
ε
n

are the tangential and normal components of σε given by

σεn = (σε.ni) .nj , σ
ε
τi = σεij .nj − σεn.ni.

The law of conservation of energy is given by
−∇(Kε∇T ε) = σε : D(uε) + rε(T ε),

σε : D(uε) =
3∑

i,j=1

σεi,jdi,j(u
ε),

where Kε is the thermal conductivity and rε(T ε) is the heat source.
To describe the boundary conditions, let us introduce first a vector function g =

(g1, g2, g3) in H1/2(Γε) such that
∫

Γε g.nds = 0, then according to ( [6]) there exists a
function Gε:

Gε ∈ (H1(Ωε))3 with Gε = g on Γε.

Also, we suppose that
g3 = u3 = 0 and s = g on ω.

• On Γε1, no slip condition is given. The upper surface is assumed to be fixed so that
uε = 0.
• On ΓεL, the displacement is unknown and parallel to the w−plane: uε = g with g3 = 0.
• On w, there is no flux condition across w so that uε.n = 0.
• The tangential velocity on w is unknown and satisfies the Coulomb friction law:{

|σετ | < zε |σεn| ⇒ uετ = s,
|σετ | = zε |σεn| ⇒ ∃β ≥ 0 such that uετ = s− βσετ ,

where zε ≥ 0 is the coefficient of friction.
For the temperature, we assume that{

T ε = 0 on ΓεL ∪ Γε1,
∂T ε

∂n = 0 on w.

The complete problem consists of finding the displacement field uε and the tempera-
ture T ε which satisfy the following equations and boundary conditions:

div(σε) + fε = 0 in Ωε, (2.1)

σεi,j(u
ε) = 2µε(T ε)di,j(u

ε) + λε(T ε)dkk(uε)δij , in Ωε, (2.2)

−∇(Kε∇T ε) = σε : D(uε) + rε(T ε) in Ωε, (2.3)

uε = 0 on Γε1, (2.4)

uε = g with g3 = 0 on ΓεL, (2.5){
|σετ | < zε |σεn| ⇒ uετ = s,

|σετ | = zε |σεn| ⇒ ∃β ≥ 0 such that uετ = s− βσετ
on w. (2.6)

T ε = 0 on ΓεL ∪ Γε1, (2.7)

∂T ε

∂n
= 0 on w. (2.8)
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2.3 Weak variational formulations

We finish this section by giving the equivalent weak variational formulation of problem
(2.1) − (2.8) which will be useful in the next sections. By standard calculations, the
variational formulation of the problem (2.1)− (2.8) is given as follows.

Problem (Pv) Find a displacement field uε ∈ V ε(Ωε) and a temperature T ε ∈
H1

Γε
L∪Γε

1
(Ωε) such that

a(T ε, u ε, %− uε) + jε(%)− jε(uε) ≥ (f ε, %− u ε), ∀% ∈ V ε. (2.9)

b(T ε, ψ) = c(uε, T ε, ψ), ∀ψ ∈ H1
Γε
L∪Γε

1
, (2.10)

where

a(T ε, uε, v) =

3∑
i,j=1

∫
Ωε

2µε(T ε)dij(u
ε)dij(v)dx́dx3 +

∫
Ωε

λε(T ε) div(uε) div(v)dx́dx3,

(2.11)

(fε, v) =

∫
Ωε

f εvdx́dx3 =

3∑
i=1

∫
Ωε

f ε
i vidx́dx3, (2.12)

jε(v) =

∫
w

zε |σεn| |vT − s| dx́ with S(σεn) = |σεn| , (S is given below) (2.13)

b(T ε, ψ) =

∫
Ωε

Kε ∂T
ε

∂xi

∂ψ

∂xi
dx́dx3, (2.14)

c(uε, T ε, ψ) =
∑3
i=1

∫
Ωε 2µε(T ε)d2

ij(u
ε)ψdx́dx3+∫

Ωε λ
ε(T ε) div(uε) div(uε)ψdx́dx3 +

∫
Ωε r

ε(T ε)ψdx́dx3.
(2.15)

Remark 2.1 ( [13, 14]) If we have only uε ∈ V ε and σεn is defined by duality as

an element of H−
1
2 (w) has no sense, then the integral jε(v) has no meaning. Then

from the mathematical point of view it is necessary that S(σεn) = |σεn| with S being a

regularization operator from H−
1
2 (w) into L2

+(w) defined by

S(τ)(x) =

∣∣∣∣〈τ, ϕ(x− τ)〉
H−

1
2 (w),H

1
2
00(w)

∣∣∣∣ , for all ∈ H− 1
2 (w) and S(τ) ∈ L2

+(w),

where ϕ is a given positive function of class C∞ with support in w, and H−
1
2 (w) is the

dual space to

H
1
2
00(w) =

{
ϕ|w : ϕ ∈ H1(Ωε); ϕ = 0 on Γε1 ∪ ΓεL

}
.

L2
+(w) is the subspace of L2(w) of non-negative functions.

Lemma 2.1 If uε and T ε are solutions of the problem (2.1)− (2.8), then they satisfy
the variational problem (Pv).

Proof. Multiply the equation (2.1) by (% − uε), where % ∈ V ε. By performing
an integration by parts on Ωε, using the Green formula and (2.4)-(2.8), we obtain the
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variational problem (2.9). For the proof of (2.10), multiplying the equation (2.3) by ψ,
where ψ ∈ H1

Γε
L∪Γε

1
(Ωε) and using the Green formula, we find

3∑
i=1

∫
Ωε

Kε ∂T
ε

∂xi

∂ψ

∂xi
dx́dx3 =

3∑
i,j=1

∫
Ωε

2µε(T ε)d2
ij(u

ε)ψdx́dx3 +∫
Ωε

λε(T ε) div(uε) div(uε)ψdx́dx3 +

∫
Γε

Kε ∂T
ε

∂ni
ψds+

∫
Ωε

rε(T ε)ψdx́dx3.

Now, for the boundary condition (2.8), we get b(T ε, ψ) = c(uε, T ε, ψ), ∀ψ ∈ H1
Γε
L∪Γε

1
.

Theorem 2.1 If fε ∈ (L2(Ωε))3 and the friction coefficient zε is a non-negative
function in L∞(w), then there exists uε ∈ V ε(Ωε) which is a solution to the problem
(2.9)-(2.10). Moreover, for small zε, the solution is unique.

Proof. The proof is similar to that in [2], and we shall not reproduce it in full giving
only a sketch here. Firstly, for the existence of solution uε we apply Tichonov’s fixed
point theorem (the proof can be found in [11]), then to prove the uniqueness of uε we
use the same procedure as in [2, 20].

3 Problem in Transpose Form and Variational Problem

We shall now focus our attention on the asymptotic analysis of problem (2.1) − (2.8).

For this analysis, we use the change of variable z =
x3

ε
to transform the initial problem

in Ωε into a new problem posed in the fixed domain Ω which does not depend on ε:

Ω =
{

(x́, z) ∈ R3 : (x́, 0) ∈ ω, 0 < z < h(x́)
}

and we denote by Γ = ΓL ∪ Γ1 ∪ w its boundary. In addition, we define the following
functions on Ω: {

uεi (x́, x3) = ûεi (x́, z), i = 1, 2,

ε−1uε3(x́, x3) = ûε3(x́, z), T ε(x́, x3) = T̂ ε(x́, z),
(3.1)

f̂ ε(x́, z) = ε2f ε(x́, x3), ĝ (x́, z) = g (x́, x3), (3.2)

K̂ = K ε, r̂ = ε rε, λ̂ = λε, µ̂ = µε, ẑ = ε−1zε, (3.3)

with µ̂, λ̂, f̂ , K̂, ẑ and ĝ independent of ε. So, the revaluation Gε of g is defined by{
εĜ3(x́, z) = Gε3(x́, x3),

Ĝi(x́, z) = Gεi (x́, x3), i = 1, 2.
(3.4)

We introduce the functional framework in Ω:

V =
{
% ∈

(
H1(Ω)

)3
; % = Ĝ on ΓL , % = 0 on Γε1 and %.n = 0 on w

}
,

Π(V ) =
{
% ∈ H1(Ω)2 : % = (%1, %2) , %i = g on ΓL and %i = 0 on Γ1, i = 1, 2

}
,

Vz =

{
v = (v1, v2) ∈ L2 (Ω)

2
;

∂vi
∂z
∈ L2 (Ω) , i = 1, 2; v = 0 on Γ1

}
,

H1
Γε
L∪Γε

1
(Ω) =

{
% ∈ H1(Ω) : % = 0 on ΓL ∪ Γ1

}
.
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It is clear that Vz is a Banach space with the norm

‖v‖Vz
=

(
2∑
i=1

‖v‖2L2(Ω) +

∥∥∥∥∂vi∂z
∥∥∥∥2

L2(Ω)

) 1
2

.

With the change of scale defined in (3.1)− (3.3), the problem (Pv) becomes as follows.
Find the displacement ûε ∈ V and the temperature T̂ ε ∈ H1

Γε
L∪Γε

1
(Ω) such that

a(T̂ ε, û ε, %̂− ûε) + j(%̂)− j(ûε) ≥ (f̂ ε, %̂− û ε), ∀%̂ ∈ V , (3.5)

b(T̂ ε, ψ̂) = c(ûε, T̂ ε, ψ̂), ∀ψ̂ ∈ H1
Γε
L∪Γε

1
(Ω), (3.6)

where

a(T̂ ε, ûε, %̂− ûε) = ε2
2∑

i,j=1

∫
Ω

µ̂(T̂ ε)

(
∂ûεi
∂xj

+
∂ûεj
∂xi

)
∂

∂xj
(%̂i − ûεi )dx́dz

+

2∑
i=1

∫
Ω

µ̂(T̂ ε)

(
∂ûεi
∂z

+ ε2 ∂û
ε
3

∂xi

)
∂

∂z
(%̂i − ûεi )

+

2∑
i=1

∫
Ω

µ̂(T̂ ε)

(
∂ûεi
∂z

+ ε2 ∂û
ε
3

∂xi

)
ε2 ∂

∂xi
(%̂i − ûε3) dx́dz

+ε2

∫
Ω

2µ̂(T̂ ε)
∂ûε3
∂z

∂

∂z
(%̂3 − ûε3)dx́dz

+ε2

∫
Ω

λ̂(T̂ ε) div(ûε) div(%̂− ûε)dx́dz,

(f̂ ε, %̂− ûε) =

2∑
i=1

∫
Ω

f̂ ε
i (%̂i − ûεi ) dx́dz + ε

∫
Ω

f̂ ε
3 (%̂3 − ûε3) dx́dz

b(T̂ ε, ψ̂) =

2∑
i=1

∫
Ω

K̂ε2 ∂T̂
ε

∂xi

∂ψ̂

∂xi
dx́dz +

∫
Ω

K̂
∂T̂ ε

∂z

∂ψ̂

∂z
dx́dz

j(%̂) =

∫
w

ẑS(σεn) |%̂T − s| dx́,

c(ûε, T̂ ε, ψ̂) =

2∑
i,j=1

1

2

∫
Ω

ε2µ̂(T̂ ε)

(
∂ûεi
∂xj

+
∂ûεj
∂xi

)2

ψ̂dx́dz

+

2∑
i=1

∫
Ω

µ̂(T̂ ε)

(
∂ûεi
∂z

+ ε2 ∂û
ε
3

∂xi

)2

ψ̂dx́dz +

∫
Ω

2ε2µ̂(T̂ ε)

(
∂ûε3
∂z

)2

ψ̂dx́dz

+

∫
Ω

ε2λ̂(T̂ ε) div(ûε) div(ûε)ψ̂dx́dz +

∫
Ω

r̂(T̂ ε)ψ̂dx́dz.

In the next subsection, we will do the estimates of (uε, T ε) solution of our variational
problem in fixed domain.
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3.1 A priori estimates of the displacement

It is enough to prove the following essential result.

Lemma 3.1 Assume that f ∈
(
L2 (Ω)

)3
, the coefficient of friction zε > 0 in L∞(w)

and there are strictly positive constants µ∗, µ
∗, λ∗, λ

∗ such that

0 < µ∗ ≤ µ(a) ≤ µ∗ and 0 < λ∗ ≤ λ(b) ≤ λ∗, ∀a, b ∈ R. (3.7)

Then there is a strictly positive constant C independent of ε such that

2∑
i,j=1

∥∥∥∥ε∂ûεi∂xj

∥∥∥∥2

L2(Ω)

+

∥∥∥∥ε∂ûε3∂z

∥∥∥∥2

L2(Ω)

+

2∑
i=1

(∥∥∥∥∂ûεi∂z
∥∥∥∥2

L2(Ω)

+

∥∥∥∥ε2 ∂û
ε
3

∂xi

∥∥∥∥2

L2(Ω)

)
≤ C. (3.8)

Proof. Let uε be the solution of the problem (Pv) so that

a(T ε, uε, uε) ≤ a(T ε, uε, %) + (f ε, uε) + jε(%)− (f ε, %). (3.9)

Because jε(uε) is positive and as
∑2
i,j=1 |dij(uε)|

2 ≤ |∇uε|2, | div(uε)|2 ≤ |∇uε|2, so,
according to the inequality of Korn (from [19]), there exists CK independent of ε such
that

a(T ε, uε, uε) ≥ 2µ∗CK ‖∇uε‖2L2(Ωε) . (3.10)

Applying the Hölder and Young inequalities, we find the following:

a(T ε, uε, %) ≤ 3 µ∗CK
8

‖∇uε‖2L2(Ωε) + (
4 (µ∗)

2

µ∗CK
+

2(λ∗)2

µ∗CK
) ‖∇%‖2L2(Ωε) . (3.11)

Then

(f ε, uε) ≤ (εh∗)
2

2 µ∗CK
‖∇f ε‖2L2(Ωε) +

µ∗CK
2
‖∇uε‖2L2(Ωε) . (3.12)

(f ε, %) ≤ (εh∗)
2

2 µ∗CK
‖∇f ε‖2L2(Ωε) +

µ∗CK
2
‖∇%‖2L2(Ωε) . (3.13)

By (3.10)− (3.13) and choosing % = Gε, we get the variational equation

9

8
µ∗CK ‖∇uε‖2L2(Ωε) ≤ (εh∗)

2

µ∗CK
‖∇f ε‖2L2(Ωε) +(

4 (µ∗)
2

µ∗CK
+

2(λ∗)2

µ∗CK
+
µ∗CK

2

)
‖∇Gε‖2L2(Ωε) .

As ε2 ‖∇f ε‖2L2(Ωε) = ε−1
∥∥∥∇f̂ ε

∥∥∥2

L2(Ωε)
and ε ‖∇Gε‖2L2(Ωε) =

∥∥∥∇Ĝ∥∥∥2

L2(Ωε)
, then

ε ‖∇uε‖2L2(Ωε) = ε2
∑2
i,j=1

∥∥∥∥ ∂ûεi∂xJ

∥∥∥∥2

L2(Ω)

+ ε2

∥∥∥∥∂ûε3∂z

∥∥∥∥2

L2(Ω)

+
∑2
i=1

(∥∥∥∥∂ûεi∂z
∥∥∥∥2

L2(Ω)

+ ε4

∥∥∥∥∂ûεi∂xi

∥∥∥∥2

L2(Ω)

)
≤ C

with

C =
8

9µ∗CK
c0 and c0 =

(h∗)
2

µ∗CK

∥∥∥∇f̂ ε
∥∥∥2

L2(Ωε)
+

(
4 (µ∗)

2

µ∗CK
+

2(λ∗)2

µ∗CK
+
µ∗CK

2

)∥∥∥∇Ĝ∥∥∥2

L2(Ωε)
.
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3.2 A priori estimates of the temperature

In this subsection, we look for an a priori estimate of the temperature T̂ ε, for this we need
to establish the following lemma which is a direct consequence of the Poincaré inequality.

Lemma 3.2 The temperature T̂ ε is increased by∥∥∥T̂ ε∥∥∥
L2(Ω)

≤ h∗
∥∥∥∥∥∂T̂ ε∂z

∥∥∥∥∥
L2(Ω)

. (3.14)

Lemma 3.3 Suppose that the hypotheses of Lemma 3.1 are verified. Furthermore,
suppose there are

two strictly positive constants K∗ and K∗ such that

0 ≤ K∗ ≤ K (x́, z) ≤ K∗,∀ (x́, z) ∈ Ω, (3.15)

a positive constant r̂∗ such that

r̂(a) ≤ r̂∗, (3.16)

then there exists a positive constant C independent of ε such that

ε2
2∑
i=1

∥∥∥∥∥∂T̂ ε∂xi

∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥∂T̂ ε∂z

∥∥∥∥∥
L2(Ω)

≤ C. (3.17)

Proof. In the variational equation (2.17), we choose ψ = T̂ ε, we get

3∑
i=1

Ii =

2∑
i=1

∫
Ω

ε2K̂
∂T̂ ε

∂xi

∂T̂ ε

∂xi
dx́dz +

∫
Ω

∂T̂ ε

∂z

∂T̂ ε

∂z
dx́dz

with

I1 =

2∑
i,j=1

1

2

∫
Ω

ε2µ̂(T̂ ε)

(
∂ûεi
∂xj

+
∂ûεj
∂xi

)2

T̂ εdx́dz +

2∑
i=1

∫
Ω

(
∂ûεi
∂z

+ ε2 ∂û
ε
3

∂xi

)2

T̂ εdx́dz

+

∫
Ω

2ε2µ̂(T̂ ε)

(
∂ûε3
∂z

)2

T̂ εdx́dz,

I2 =

∫
Ω

r̂(T̂ ε)T̂ εdx́dz, I3 =

∫
Ω

ε2λ̂(T̂ ε) div(ûε) div(ûε)T̂ εdx́dz.

By the Cauchy-Schwartz and the Young inequalities and Lemma 3.2, we find

|I1| ≤ 2µ̂∗C
∥∥∥T̂ ε∥∥∥2

L2(Ω)
≤ 2µ̂∗Ch∗

∥∥∥∥∥∂T̂ ε∂z

∥∥∥∥∥
L2(Ω)

. (3.18)

The analogue of I1 gives

|I2| ≤ r̂∗
∥∥∥T̂ ε∥∥∥2

L2(Ω)
≤ r̂∗h∗

∥∥∥∥∥∂T̂ ε∂z

∥∥∥∥∥
L2(Ω)

, (3.19)
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|I3| ≤ λ̂∗C
∥∥∥T̂ ε∥∥∥2

L2(Ω)
. (3.20)

On the other hand, by the use of (3.14)-(3.15), we find

b(T̂ ε, T̂ ε) =

2∑
i=1

∫
Ω

ε2K̂

∣∣∣∣∣∂T̂ ε∂xi

∣∣∣∣∣
2

dx́dz +

∫
Ω

K̂

∣∣∣∣∣∂T̂ ε∂z

∣∣∣∣∣
2

dx́dz.

This implies

K̂∗ε
2

∥∥∥∥∥∂T̂ ε∂xi

∥∥∥∥∥
2

L2(Ω)

+ K̂∗

∥∥∥∥∥∂T̂ ε∂z

∥∥∥∥∥
2

L2(Ω)

≤ b(T̂ ε, T̂ ε) ≤ C1

∥∥∥∥∥∂T̂ ε∂z

∥∥∥∥∥
2

L2(Ω)

, (3.21)

where C1 is a constant independent of ε given by C1 = 2µ̂∗h∗C + r̂∗h∗ + λ̂∗Ch∗, thus∥∥∥∥∥∂T̂ ε∂z

∥∥∥∥∥
2

L2(Ω)

≤ K̂−1
∗ C1. (3.22)

By injecting this last estimate in (3.21), we deduce (3.17).

3.3 Convergence results

In this part, we will establish the following theorem.

Theorem 3.1 Under the same assumptions as in Lemmas 3.1 and 3.3 there exist
u∗ = (u∗1, u

∗
2) in Vz and T ∗ in Vz such that for sub suites of ûε(resp T̂ ε) noted again

ûε(resp T̂ ε), we have the following convergence results:

ûεi ⇀ u∗i weakly in Vz(Ω), 1 ≤ i ≤ 2, (3.23)

ε
∂ûεi
∂xj

⇀ 0 weakly in L2(Ω), 1 ≤ i, j ≤ 2, (3.24)

ε
∂ûε3
∂z

⇀ 0 weakly in L2(Ω), (3.25)

ε2 ∂û
ε
3

∂xi
⇀ 0 weakly in L2(Ω), 1 ≤ i ≤ 2, (3.26)

εûε3 ⇀ 0 weakly in L2(Ω), (3.27)

T̂ ε ⇀ 0 weakly in Vz(Ω), (3.28)

ε
∂T̂ ε

∂xi
⇀ 0 weakly in L2(Ω), 1 ≤ i ≤ 2. (3.29)

Proof. The convergences of (3.23) to (3.27) are a direct result from the inequality

(3.8). By using the estimate (3.17), we deduce that
∥∥∥T̂ ε

∥∥∥ ≤ h∗ ∥∥∥∂T̂ ε

∂z

∥∥∥ ≤ h∗C2. So, T̂ ε is

bounded in Vz(Ω), which shows the existence of T ∗ in Vz(Ω). In addition, ε
∥∥∥∂T̂ ε

∂xi

∥∥∥ ≤ C2,

thus
(
ε ∂T̂ ε

∂xi

)
converges to ∂T ∗

∂xi
and T̂ ε converges to T ∗ in Vz(Ω), then ε ∂T̂ ε

∂xi
weakly

converges to 0 in Vz(Ω).
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4 Study of the Limit Problem

To reach the desired goal, we need in the rest of this paragraph the results of previous
convergences.

Lemma 4.1 There exists a subsequence of S(σεn(uε)) converging strongly towards
S(σ∗n(u∗)) in L2(w)

Proof. To prove this lemma, we use the same technique as in [2] (Lemma 5.1) and
in [6] (Lemma 5.2).

Theorem 4.1 uεi → u∗i strongly in Vz(Ω), i = 1, 2, and with the same assumptions
as in Theorem 3.1, the solution (u∗, T ∗) satisfies

2∑
i=1

∫
Ω

µ̂(T ∗)
∂u∗i
∂z

∂

∂z
(%̂i−u∗i )dx́dz+j(%̂)−j(u∗) ≥

2∑
i=1

(
f̂ ε
i , %̂i − u∗i

)
, ∀%̂ ∈ Π(V ), (4.1)

− ∂

∂z

(
µ̂(T ∗)

∂u∗i
∂z

)
= f̂ ε

i , for i = 1, 2 in L2 (Ω) , (4.2)

− ∂

∂z

(
K̂
∂T ∗

∂z

)
=

2∑
i=1

µ̂(T ∗)

(
∂u∗i
∂z

)2

+ r̂(T ∗) in L2 (Ω) . (4.3)

Proof. For uεi → u∗i strongly in Vz, we use the same methods as in [6] (proof of
Theorem 4.2). By applying the convergence results of Theorem 3.1 to the variational
equality (3.5) and using the fact that j is convex and lower semi-continuous, we obtain

2∑
i=1

∫
Ω

µ̂(T ∗)
∂u∗i
∂z

∂

∂z
(%̂i − u∗i )dx́dz + j(%̂)− j(u∗) ≥

2∑
i=1

(
f̂ ε
i , %̂i − u∗i

)
. (4.4)

From [7] (Lemma 5.3), we can choose in (4.4)

%̂i = u∗i ± ψi, ψi ∈ H1
0 (Ω) for i = 1, 2 and %̂3 = u∗3,

then we get
2∑
i=1

∫
Ω

µ̂(T ∗)
∂u∗i
∂z

∂ψi
∂z

dx́dz =

2∑
i=1

(
f̂ ε
i , ψi

)
.

Using Green’s formula and choosing ψ1 = 0 and ψ2 ∈ H1
0 (Ω), then ψ2 = 0 and ψ1 ∈

H1
0 (Ω), we obtain

−
∫

Ω

µ̂(T ∗)
∂

∂z

(
∂u∗i
∂z

)
dx́dz =

∫
Ω

f̂ ε
i ψidx́dz,

thus

− µ̂(T ∗)
∂

∂z

(
∂u∗i
∂z

)
= f̂ ε

i , for i = 1, 2 in H−1(Ω), (4.5)

and as f̂ ε
i ∈ L2(Ω), then (4.5) is true in L2(Ω).

On the other hand, going to the limit in (3.6) and using (3.28)-(3.29), we find∫
Ω

K̂
∂T ∗

∂z

∂ψ

∂z
dx́dz =

2∑
i=1

∫
Ω

µ̂(T ∗)

(
∂u∗i
∂z

)2

ψdx́dz +

∫
Ω

r̂(T ∗)ψdx́dz,∀ψ ∈ H1
ΓL∪Γ1

(Ω) .
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Now, by the formula of Green, we get∫
Ω

∂

∂z

(
K̂
∂T ∗

∂z

)
ψdx́dz =

2∑
i=1

∫
Ω

µ̂(T ∗)

(
∂u∗i
∂z

)2

ψdx́dz+

∫
Ω

r̂(T ∗)ψdx́dz,∀ψ ∈ H1
ΓL∪Γ1

(Ω) .

Consequently,

∂

∂z

(
K̂
∂T ∗

∂z

)
ψdx́dz =

2∑
i=1

µ̂(T ∗)

(
∂u∗i
∂z

)2

ψdx́dz + r̂(T ∗)ψdx́dz, in H1
ΓL∪Γ1

(Ω) . (4.6)

The formula (4.6) is valid in L2(Ω) since µ̂ and r̂ are two bounded functions in R and(
∂u∗i
∂z

)2

is an element of L2(Ω).

Theorem 4.2 Under the same assumptions as in the previous theorem, we have∫
w

ẑ |S(σ∗n(s∗))| (|ψ + s∗ − s| − |s∗ − s|)dx́−
∫
w

µ̂(ς∗)ξ̂.ψdx́ ≥ 0,∀ψ ∈ L2(w) (4.7)

{
µ̂(ς∗)ξ̂∗ < ẑ(S(σ∗n(s∗))⇒ s∗ = s,

µ̂(ς∗)ξ̂∗ = ẑ(S(σ∗n(s∗)⇒ ∃β ≥ 0 such that s∗ = s− βξ̂∗
on w (4.8)

with

s∗(x́) = u∗(x́, 0), ς∗ = T ∗(x́, 0) and ξ̂∗ =
∂u∗

∂z
(x́, 0).

Another u∗ and T ∗ satisfy the following weak form:∫
w

(∫ h
0
F (x́, z)dz − hs∗(x́, 0)− µ̂(ς∗)ξ̂∗

∫ h
0
A(x́, z)dz

)
∇ψdx́

+
∫
w

∫ h
0
u∗(x́, z)∇ψdzdx́ = 0,∀ψ ∈ H1(w),

(4.9)

where

A(x́, z) =

∫ z

0

dγ

µ̂ (T ∗(x́, γ))
, F (x́, z) =

∫ z

0

∫ γ

0

f̂ ε
i (x́, η)

µ̂ (T ∗(x́, γ))
dηdγ.

Proof. The proofs of (4.7)-(4.8) are similar to those given in the case of the problem
fluids, see [3]. To demonstrate (4.9) by integrating twice the equation (4.2) from 0 to z,
we find

u∗(x́, z) = s∗(x́, 0) + µ̂(ς∗)ξ̂∗A(x́, z)− F (x́, z), (4.10)

and as u∗(x́, h(x)) = 0, we have

s∗(x́, 0) + µ̂(ς∗)ξ̂∗A(x́, z) = F (x́, z). (4.11)

By integrating (4.10) from 0 to h, we obtain∫ h

0

u∗(x́, z)dz = s∗(x́, 0)h+ µ̂(ς∗)ξ̂∗
∫ h

0

A(x́, z)dz −
∫ h

0

F (x́, z)dz. (4.12)

So, ∫ h

0

u∗(x́, z)dz − s∗(x́, 0)h− µ̂(ς∗)ξ̂∗
∫ h

0

A(x́, z)dz +

∫ h

0

F (x́, z)dz = 0.
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From (4.11) and (4.12), we deduce (4.9). This ends the proof requested.
Before studying the existence and uniqueness of the solution, we need the following sets:

Wz =

{
v ∈ Vz;

∂2v

∂z2
∈ L2(Ω)

}
and Bc =

{
v ∈Wz ×Wz;

∥∥∥∥∂v∂z
∥∥∥∥
Vz

≤ c

}
.

Theorem 4.3 Under the assumptions of Theorem 3.1 and if there exists a positive
sufficiently small constant z∗ such that ‖ẑ‖L∞(ω) ≤ z∗, then the solution (u∗, T ∗) of
the limit problem (4.1)-(4.3) is unique in Bc ×Wz.

Proof. For the uniqueness of solution, we follow the same steps and results as
in [2,8]. Suppose there are solutions (u1, T 1) and (u2, T 2) to the problem limit (4.1) and
(4.3) for every ψ ∈ H1

ΓL∪Γl
(Ω), we have∫

Ω

−K̂ ∂T 1

∂z

∂ψ

∂z
dx́dz =

2∑
i=1

∫
Ω

µ̂(T 1)

(
∂u1

i

∂z

)2

ψdx́dz +

∫
Ω

r̂(T 1)ψdx́dz, (4.12)

∫
Ω

−K̂ ∂T 2

∂z

∂ψ

∂z
dx́dz =

2∑
i=1

∫
Ω

µ̂(T 2)

(
∂u2

i

∂z

)2

ψdx́dz +

∫
Ω

r̂(T 2)ψdx́dz. (4.13)

By subtracting (4.12) and (4.13), we get∫
Ω
−K̂ ∂

∂z

(
T 1 − T 2

)
∂ψ
∂z dx́dz =

∑2
i=1

∫
Ω

[
µ̂(T 1)

(
∂u1

i

∂z

)2

− µ̂(T 2)
(
∂u2

i

∂z

)2
]
ψdx́dz

+
∫

Ω

[
r̂(T 1)− r̂(T 2)

]
ψdx́dz.

(4.14)

In (4.14), we add and subtract the term µ̂(T 1)
(
∂u2

i

∂z

)2

, we find

∫
Ω

K̂
∂

∂z

(
T 1 − T 2

) ∂ψ
∂z

dx́dz =

2∑
i=1

∫
Ω

[
µ̂(T 1)

∂

∂z

(
u1
i + u2

i

) ∂
∂z

(
u1
i − u2

i

)]
ψdx́dz +

2∑
i=1

∫
Ω

[
µ̂(T 1)− µ̂(T 2)

](∂u2
i

∂z

)2

ψdx́dz +∫
Ω

[
r̂(T 1)− r̂(T 2)

]
ψdx́dz.

By choosing ψ =
(
T 1 − T 2

)
∈ H1

ΓL∪Γl
(Ω), we get∫

Ω

K̂
∂

∂z

∣∣T 1 − T 2
∣∣2 dx́dz =

3∑
i=1

Rk (4.15)

with

R1 =

2∑
i=1

Ri1 =

2∑
i=1

∫
Ω

[
µ̂(T 1)

∂

∂z

(
u1
i + u2

i

) ∂
∂z

(
u1
i − u2

i

)] (
T 1 − T 2

)
dx́dz,

R2 =

2∑
i=1

Ri2 =

2∑
i=1

∫
Ω

[
µ̂(T 1)− µ̂(T 2)

](∂u2
i

∂z

)2 (
T 1 − T 2

)
dx́dz,

R3 =

∫
Ω

[
r̂(T 1)− r̂(T 2)

] (
T 1 − T 2

)
dx́dz,



406 H.T. LAHLAH, Y. LETOUFA, H. BENSERIDI AND M. DILMI

and similarly, ∫
Ω

K̂
∂

∂z

∣∣T 1 − T 2
∣∣2 dx́dz ≥ K∗ [1 + (h∗)

2
]−1 ∥∥T 1 − T 2

∥∥
Vz
. (4.16)

Now, by the Hölder inequality we get∣∣Ri1∣∣ ≤ µ∗
∥∥∥∥ ∂∂z (u1

i + u2
i

)∥∥∥∥
L4(Ω)

∥∥∥∥ ∂∂z (u1
i − u2

i

)∥∥∥∥
L2(Ω)

∥∥T 1 − T 2
∥∥
L4(Ω)

,

as the compact injection of Vz(Ω) in L4(Ω) is continuous, then there is a constant α > 0
such that ∣∣Ri1∣∣ ≤ µ∗α2

∥∥∥∥ ∂∂z (u1
i + u2

i

)∥∥∥∥
Vz

∥∥(u1
i − u2

i

)∥∥
Vz

∥∥T 1 − T 2
∥∥
Vz

.

And since u1
i and u2

i are two elements of Bc, we get∣∣Ri1∣∣ ≤ 2µ∗α2c
∥∥(u1

i − u2
i

)∥∥
Vz

∥∥T 1 − T 2
∥∥
Vz
,

using the Young inequality (α1 + α2 ≤
√

2 (α1 + α2)
1
2 for α1, α2 ≥ 0), we have

∣∣Ri1∣∣ ≤ 2µ∗α2c
∥∥T 1−T 2

∥∥
Vz

2∑
i=1

∥∥(u1
i−u2

i

)∥∥
Vz
≤ 2
√

2µ∗α2c
∥∥T 1−T 2

∥∥
Vz

∥∥(u1
i−u2

i

)∥∥
Vz×Vz

,

then
|R1| ≤ 2

√
2µ∗α2c

∥∥T 1 − T 2
∥∥
Vz

∥∥(u1 − u2
)∥∥
Vz×Vz

. (4.17)

And ∣∣Ri2∣∣ ≤ Cµ ∫
Ω

∣∣T 1 − T 2
∣∣2 ∣∣∣∣∂u2

i

∂z

∣∣∣∣ dx́dz ≤ Cµα4c2
∥∥T 1 − T 2

∥∥2

Vz
,

thus
|R2| ≤ 2Cµα

4c2
∥∥T 1 − T 2

∥∥2

Vz
, (4.18)

as the function r̂ is Lipschitz on R, there exists a constant Cr̂ such that

|R3| ≤ Cr̂
∥∥T 1 − T 2

∥∥2

Vz
. (4.19)

By injecting (4.14)− (4.19) in (4.13) we have

K∗

[
1 + (h∗)

2
]−1 ∥∥T 1 − T 2

∥∥2

Vz
≤

(
2Cµ̂α

4c2 + Cr̂
) ∥∥T 1 − T 2

∥∥2

Vz
+

2
√

2µ∗α2c
∥∥T 1 − T 2

∥∥
Vz

∥∥(u1 − u2
)∥∥
Vz×Vz

,

we suppose that c < c0 =
[
2Cµ̂α

4
]−1

2

(
K∗

[
1 + (h∗)

2
]−1

− Cr̂
) 1

2

, provided that K∗ >[
1 + (h∗)

2
]
Cr̂, then

∥∥T 1 − T 2
∥∥2

Vz
≤ 2
√

2µ∗α−2C−1
µ̂ c(c20 − c2)−1

∥∥(u1 − u2
)∥∥
Vz×Vz

. (4.20)
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We also have the following two inequalities:∑2
i=1

∫
Ω
µ̂(T 1)

∂u1
i

∂z
∂
∂z

(
%̂1
i − u1

i

)
dx́dz +

∫
w
ẑS(σ∗n(u1

i ))
∣∣%̂1
i − s

∣∣ dx́
−
∫
w
ẑS(σ∗n(u1

i ))
∣∣u1
i − s

∣∣ dx́ ≥∑2
i=1

(
f̂ ε
i , %̂

1
i − u1

i

)
,

(4.21)

∑2
i=1

∫
Ω
µ̂(T 2)

∂u2
i

∂z
∂
∂z

(
%̂2
i − u2

i

)
dx́dz +

∫
w
ẑS(σ∗n(u2

i ))
∣∣%̂2
i − s

∣∣ dx́
−
∫
w
ẑS(σ∗n(u2

i ))
∣∣u2
i − s

∣∣ dx́ ≥∑2
i=1

(
f̂ ε
i , %̂

2
i − u2

i

)
.

(4.22)

We choose %̂1
i = u2

i in (4.21) and %̂2
i = u1

i in (4.22), and after summing up the two
inequalities, it comes to W = u2

i − u1
i

2∑
i=1

∫
Ω

[
µ̂(T 1)

∂u1
i

∂z

∂W

∂z
− µ̂(T 2)

∂u2
i

∂z

∂W

∂z

]
dx́dz +

∫
w

ẑS(σ∗n(u1
i )
(∣∣u2

i − s
∣∣− ∣∣u1

i − s
∣∣) dx́

−
∫
w

ẑS(σ∗n(u2
i )
(∣∣u2

i − s
∣∣− ∣∣u1

i − s
∣∣) dx́ ≥ 0,

so, for the next term, we have∫
w

ẑS(σ∗n(u1
i )
(∣∣u2

i − s
∣∣− ∣∣u1

i − s
∣∣) dx́− ∫

w

ẑS(σ∗n(u2
i )
(∣∣u2

i − s
∣∣− ∣∣u1

i − s
∣∣) dx́

≤
∫
w

∣∣ẑ (S(σ∗n(u1
i )− S(σ∗n(u2

i )
)∣∣ ∣∣u2

i − u1
i

∣∣ dx́.
According to the inequality of Cauchy-Schwartz we obtain∫
w

∣∣ẑ (S(σ∗n(u1
i )−S(σ∗n(u2

i )
)∣∣ ∣∣u2

i−u1
i

∣∣ dx́ ≤ ∥∥ẑ∥∥
L∞(w)

C
∥∥u2

i−u1
i

∥∥2

Vz
≤ z∗C

∥∥u2
i−u1

i

∥∥2

Vz
.

By the previous theorem the term z∗C
∥∥u2

i − u1
i

∥∥2

Vz
tends to 0, then we have

2∑
i=1

∫
Ω

[
µ̂(T 1)

∂u1
i

∂z

∂W

∂z
− µ̂(T 2)

∂u2
i

∂z

∂W

∂z

]
dx́dz ≥ 0, (4.23)

we add and subtract the term µ̂(T 1)
∂u2

i

∂z
∂W
∂z from the equation (4.23), we get

2∑
i=1

∫
Ω

[
µ̂(T 1)

∂u1
i

∂z

∂W

∂z
− µ̂(T 2)

∂u2
i

∂z

∂W

∂z

]
dx́dz +

2∑
i=1

∫
Ω

µ̂(T 1)
∂u2

i

∂z

∂W

∂z
dx́dz

−
2∑
i=1

∫
Ω

µ̂(T 1)
∂u2

i

∂z

∂W

∂z
dx́dz ≥ 0.

So,

2∑
i=1

∫
Ω

−µ̂(T 1)
∂W

∂z

∂W

∂z
dx́dz +

2∑
i=1

∫
Ω

(µ̂(T 1)− µ̂(T 2))
∂u2

i

∂z

∂W

∂z
dx́dz ≥ 0, (4.24)

and
2∑
i=1

∫
Ω

µ̂(T 1)
∂W

∂z

∂W

∂z
dx́dz ≥ µ∗

2
‖W‖2Vz

. (4.25)
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Using the Hölder inequality, and the results of [8], we find∣∣∣∣∣
2∑
i=1

∫
Ω

(µ̂(T 1)− µ̂(T 2))
∂u2

i

∂z

∂W

∂z
dx́dz

∣∣∣∣∣ ≤ √2cα2Cµ̂
∥∥T 1 − T 2

∥∥
Vz
‖W‖Vz.

(4.26)

By injecting (4.25) into (4.24), we get

µ∗
2
‖W‖Vz

≤
√

2cα2Cµ̂
∥∥T 1 − T 2

∥∥
Vz
. (4.27)

Returning to (4.20), we obtain∥∥T 1 − T 2
∥∥
Vz
≤ 2

√
2µ∗cα−2(c20 − c2)−1

∥∥u2 − u1
∥∥
Vz×Vz

≤ 8µ−1
∗ µ∗C−1

µ̂ c2(c20 − c2)−1
∥∥T 1 − T 2

∥∥
Vz
≤ 0,

provided that 0 < c < c1 = (1 + 8µ−1
∗ µ∗)−

1
2 c0. Therefore,

∥∥T 1 − T 2
∥∥
Vz

= 0.

So, there exists T 1 = T 2 almost everywhere in Vz. According to (4.27), we deduce
that u1 = u2 almost everywhere in Vz.

5 Conclusion

The purpose of this paper is to study the asymptotic behavior of a non-isothermal elas-
ticity system in a thin domain with Coulomb friction on the bottom surface. One of
the objectives of this study is to obtain a two-dimensional equation that allows a rea-
sonable description of the phenomenon occurring in the three-dimensional domain by
passing the limit to 0 on the small thickness of the domain (3D). As a first step, we gave
the variational formulation of the problem and demonstrate the results of existence and
uniqueness of the weak solution, then we moved on to the asymptotic analysis. For this,
by using the change of scale according to the third component we conduct the study on
a domain Ω which does not depend on ε. Then, by different inequalities, we proved some
estimates for the displacement and the temperature, which allow us to go to the limit
when ε tends towards zero in the variational formulation. Finally, we have reached our
main result concerning the proof of the convergence results and uniqueness of the limit
problem.
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