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Abstract: A competition with mutual inhibition is a form of direct competition
between the populations of two species where each actively inhibits the other. In this
paper, we consider a mathematical system of ordinary di�erential equations describing
two species, with mutual inhibition, competing for a limiting substrate in the presence
of two viruses. A detailed local qualitative analysis of the restriction of the system
to the attractor set is carried out. We prove that for general nonlinear response
functions, the Competitive Exclusion Principle is still ful�lled so that at most one
species can survive. Initial species concentrations are important in determining which
is the winning species. The results obtained were validated by numerical simulations
using Matlab software.

Keywords: chemostat; competition; reversible inhibition; virus; local analysis; com-
petitive exclusion principle.

Mathematics Subject Classi�cation (2010): 34D20, 37C75, 65L07, 65L20,
92B05, 92B10, 93B18, 93D20.

1 Introduction

A chemostat is a laboratory device (bioreactor) in which organisms grow on the available nutrient
in a controlled manner. In many applications, it is simply a vessel used as a wastewater treatment
process [18]. In ecology, it refers to an arti�cial lake for the continuous culture of bacteria which
allows us to analyse inter-speci�c interactions between bacteria. A large number of mathematical
studies have been published [18]. The most used mathematical system modelling the bacterial
competition for a single obligate limiting substrate predicts competitive exclusion [12], that is, at
least one competitor bacteria loses the competition [18]. Hsu et al. [15] in 1977, were among the �rst
to study the problem of competition in a chemostat. They consideredn populations in competition
for the same nutrient and showed that competitive exclusion was veri�ed, namely, the competitor
which is better at using the substrate in small quantities survives and the others are extinguished.
In the case of nonmonotonic growth functions, Butler and Wolkowicz [2] in 1985, also veri�ed
the competitive exclusion principle. In 1992, Wolkowicz and Lu [19] used Lyapunov functions to
also verify the competitive exclusion principle in the case of general shape-growth functions, but
with di�erent mortality rates. For each species, the competitive exclusion principle was further
checked (the resulting equilibrium being globally stable). Li [16] recently extended this result to
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an even wider class of growth functions. In 1994, Smith and Waltman [17] veri�ed this principle
for the Droop model. Wolkowicz and Xia [20] and Wolkowicz et al. [21] studied competition in a
chemostat with the recycling of dead organisms for di�erent types of delays (discrete, distributed).
This theoretical result (Competitive Exclusion Principle) was con�rmed experimentally by Hansen
and Hubbell [11].

In many cases, the competing bacteria can produce a plethora of secondary metabolites to
increase their competitiveness against other bacteria. For example, the production ofNisin by a
number of strains of Lactococcus lactis, which exert a high antibacterial activity against Gram-
positive bacteria, has been widely studied [13,14]. This inter-speci�c interaction is classi�ed as an
inhibition relationship. Viruses are the most abundant and diverse form of life on the Earth. They
can infect all types of organisms (Vertebrates, Invertebrates, Plants, Fungi, Bacteria, Archaea).
Viruses that infect bacteria are calledbacteriophagesor phages.

In this work, we extend the chemostat model [18] to general growth rates taking into account the
reversible inhibition between species as in [3,4,6], but in the presence of two viruses. As our study is
qualitative, we assume that the two species are feeding on a nonreproducing limiting substrate that
is essential for both species. We also assume that the chemostat is well-mixed so that environmental
conditions are homogeneous. We neglect the natural mortality of the species and the viruses,
compared to the removal rate D . We prove that with general nonlinear response functions, the
mutual inhibitory relationship between two competing species con�rms the competitive exclusion
principle (CEP). We have shown that at least one of the species becomes extinct and that initial
species concentrations are important in determining which is the winning species.

The rest of the paper is structured as follows. In Section 2, we propose a mathematical model
for this association and we recall some useful results of the chemostat theory. In Section 3, we
restrict the model to four dimensions since the conservation of the total biomass is ful�lled. In
Sections 4, 5 and 6, three cases are considered, where the main results of the local stability are
presented. Finally, in Section 7, some numerical examples are presented to illustrate the obtained
results con�rming the competitive exclusion principle.

2 Mathematical Model and Properties

The proposed normalised mathematical model is given by
8
>>>><

>>>>:

_s = Ds in � f 1(s; x2) x1 � f 2(s; x1) x2 � Ds;
_x1 = f 1(s; x2)x1 � � 1 x1v1 � Dx 1;
_x2 = f 2(s; x1)x2 � � 2 x2v2 � Dx 2 ;
_v1 = � 1 x1v1 � Dv1;
_v2 = � 2 x2v2 � Dv2;

(1)

wheresin > 0 is the input concentration of substrate into the chemostat,D > 0 is the dilution rate.
� i > 0 is the rate of infection, s(t) is the concentration of substrate in the chemostat at time t.
x i (t) is the i th species concentration in the chemostat at timet, vi (t) is the i th virus concentration
in the chemostat at time t, f i (s; xj ) is the species growth rate depending on substrate and the
concentration of the other species. The functionsf i : R2

+ ! R+ ; i = 1 ; 2, are of classC1; and
satisfy

A1 f 1(0; x2) = f 2(0; x1) = 0 ; 8 x1; x2 2 R+ .

A2
@f1
@s

(s; x2) > 0; 8 (s; x2) 2 R2
+

@f2
@s

(s; x1) > 0; 8 (s; x1) 2 R2
+ .

A3
@f1
@x2

(s; x2) < � � 1 < 0; 8 (s; x2) 2 R2
+ ;

@f2
@x1

(s; x1) < � � 2 < 0; 8 (s; x1) 2 R2
+ .

Hypothesis A1 states that the substrate is essential for the bacteria growth; hypothesisA2 states
that the growth rate increases with substrate. HypothesisA3 states that species inhibit each other
and that each species is more sensitive to the other species than to the virus.

The system (1) plus A1 -A3 is not a realistic model for the biological system under consid-
eration. To be more realistic, we should introduce two other variables describing intermediate
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proteins. Each protein produced by speciesx i inhibits the growth of species j , where i; j = 1 ; 2
and i 6= j . In this case, the model will be huge (R7) and then di�cult to study.

El Hajji [3] considered two species feeding on limiting substrate in a chemostat assuming a
mutual inhibitory relationship between both species. The proposed model is the same as the one
we have proposed here, but with� 1 = � 2 = 0 (no viruses associated with both species). The author
proved that at most one species can survive, which con�rms the competitive exclusion principle.
The author also proved that, in the case where there are two locally stable equilibrium points, the
initial concentrations of species are of great importance in determining which species is the winner.

s; x1; x2 v1; v2

sin s; x1; x2; v1; v2

Figure 1 : A simple chemostat shematic [3]: a continuous stirring mechanism at equal in
ow and out
ow
rates (D ), where two species (x1 ; x2) are competing for a limiting substrate ( s) in the presence of two
viruses (v1 ; v2), with an input concentration of substrate ( sin ) and an output concentration of substrate
(s), species concentrations (x1 ; x2) and virus concentrations ( v1 ; v2).

Proposition 2.1 1. Let the initial condition
�

s(0); x1(0); x2(0); v1(0); v2(0)
�

2 R5
+ , the so-

lution of model (1) admit positive bounded components and then be de�nite for allt � 0.

2. 
 =
n

(s; x1; x2; v1; v2) 2 R5
+ =s+ x1 + x2 + v1 + v2 = sin

o
is an invariant attractor set of

all solutions of model (1).

Proof. The solutions’ positivity can be proved as follows. Ifs = 0, then _s = Ds in > 0, and if
x i = 0, then _x i = 0 for i = 1 ; 2. If vi = 0, then _vi = 0 for i = 1 ; 2.

Next we prove the boundedness of solutions of model (1). LetB (t) = s(t) + x1(t) + x2(t) +
v1(t) + v2(t) � sin , then one obtains a single equation given by

_B (t) = _s(t) + _x1(t) + _x2(t) + _v1(t) + _v2(t)= D
�

sin � s(t) � x1(t) � x2(t) � v1(t) � v2(t)
�

= � DB (t);

then B (t) = B (0)e� Dt , which means that

s(t) + x1(t) + x2(t) + v1(t) + v2(t) = sin + ( s(0) + x1(0) + x2(0) + v1(0) + v2(0) � sin )e� Dt : (2)

Sinces; x1; x2; v1 and v2 are positive, the solution of model (1) is bounded.
The invariance of the attractor 
 is a consequence of equation (2).

3 Restriction of System (1) to the Invariant Attractor Set 


The solutions of model (1) converge exponentially into 
. Since we are studying the asymptotic
behavior of (1), it is su�cient to restrict the study of model (1) to 
. The projection of the
restriction of model (1) to 
 on the plane ( x1; x2; v1; v2) is given as follows:

8
>><

>>:

_x1 = f 1
�
sin � (x1 + x2 + v1 + v2); x2

�
x1 � � 1 x1v1 � Dx 1;

_x2 = f 2
�
sin � (x1 + x2 + v1 + v2); x1

�
x2 � � 2 x2v2 � Dx 2;

_v1 = � 1 x1v1 � Dv1;
_v2 = � 2 x2v2 � Dv2;

(3)
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where the state vector (x1; x2; v1; v2) inside the sub-set is de�ned by

S =
�

(x1; x2; v1; v2) 2 R4
+ : x1 + x2 + v1 + v2 � sin 	

:

In this section, the equilibria of system (3) are determined and their local stability properties
are established. De�ne the parameters �x1, �x2, �v1, �v2, ��x1, ��x2, ���x1, ���x2, ���v1, ���v2, as follows:

� �x1 is the solution of the equation f 1(sin � �x1; 0) = D .

� �x2 is the solution of the equation f 2(sin � �x2; 0) = D .

� �v1 is the solution of the equation f 1(sin �
D
� 1

� �v1; 0) = D + � 1 �v1.

� �v2 is the solution of the equation f 2(sin �
D
� 2

� �v2; 0) = D + � 2 �v2.

� ( ��x1; ��x2) is the solution of the equations f 1(sin � ��x1 � ��x2; ��x2) = f 2(sin � ��x1 � ��x2; ��x1) = D .

� ( ���x1; ���v2) is the solution of the equations f 1(sin � ���x1 �
D
� 2

� ���v2;
D
� 2

) = D and f 2(sin � ���x1 �

D
� 2

� ���v2; ���x1) � � 2 ���v2 = D .

� ( ���x2; ���v1) is the solution of the equations f 1(sin �
D
� 1

� ���x2 � ���v1; ���x2) � � 1 ���v1 = D and f 2(sin �

D
� 1

� ���x2 � ���v1;
D
� 1

) = D .

Then the system (3) admits F0 = (0 ; 0; 0; 0); F1 = (�x1; 0; 0; 0), F2 = (0 ; �x2; 0; 0); F3 =

(
D
� 1

; 0; �v1; 0), F4 = (0 ;
D
� 2

; 0; �v2), F5 = ( ��x1; ��x2; 0; 0); F6 = ( ���x1;
D
� 2

; 0; ���v2) and F7 = (
D
� 1

; ���x2; ���v1; 0) as

equilibrium points.

Let D1 = f 1(sin ; 0); D2 = f 2(sin ; 0); D3 = f 1(sin �
D
� 1

; 0); D4 = f 2(sin �
D
� 2

; 0); D5 = f 1(sin �

D
� 2

� �v2;
D
� 2

); D6 = f 2(sin �
D
� 1

� �v1;
D
� 1

); D7 = f 1(sin � �x2; �x2); D8 = f 2(sin � �x1; �x1), D9 =

f 1(sin � �v1 �
D
� 1

; �v1) and D10 = f 2(sin � �v2 �
D
� 2

; �v2). Note that D9 < D 3 < D 1; D5 < D 1; D7 < D 1,

D10 < D 4 < D 2, D6 < D 2 and D8 < D 2.

In the rest of the paper, for simplicity and without any loss of generality, we will assume that

� 1 > � 2, then
D
� 1

<
D
� 2

and we will consider only three situations, wheresin <
D
� 1

,
D
� 1

< s in <
D
� 2

and
D
� 2

< s in <
D
� 1

+
D
� 2

.

4 First Case : sin <
D
� 1

The system (3) admits F0; F1; F2 and F5 as equilibria with �x1; �x2; ��x1; ��x2 <
D
� 1

<
D
� 2

.

The conditions of existence of the equilibria are given in the lemmas hereafter.

Lemma 4.1 The trivial equilibrium point F0 exists always. IfD < max(D1; D2), then F0 is a
saddle point, however, ifD > max(D1; D2), then F0 is a stable node.

Proof. The Jacobian matrix J0 of system (3) onF0 is then given by

J0 =

2

664

D1 � D 0 0 0
0 D2 � D 0 0
0 0 � D 0
0 0 0 � D

3

775 :

Its eigenvalues are given by� 1 = � 2 = � D < 0; � 3 = D1 � D and � 4 = D2 � D . Therefore, if
D < max(D1; D2), then F0 is a saddle point, and if D > max(D1; D2), then F0 is a stable node.
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Lemma 4.2 The equilibrium point F1 exists if and only if D < D 1. If D > D 8, then F1 is a
stable node, however, ifD < D 8, then F1 is a saddle point.

Proof. An equilibrium F1 exists if and only if �x1 2 ]0; sin [ is a solution of

f 1(sin � �x1; 0) = D: (4)

Let  1(x1) = f 1(sin � x1; 0) � D . Since  0
1(x1) = �

@f1
@s

(sin � x1; 0) < 0,  1(0) = D1 � D and

 1(sin ) = � D < 0, equation (4) admits a unique positive solution �x1 2 ]0; sin [ if and only if
D < D 1.

Assume that F1 exists (D < D 1). The Jacobian matrix J1 of model (3) at F1 is given by

J1 =

2

6664

� �x1
@f1
@s

�x1
@f1
@x2

� �x1
@f1
@s

� � 1 �x1 � �x1
@f1
@s

� �x1
@f1
@s

0 D8 � D 0 0
0 0 � 1 �x1 � D 0
0 0 0 � D

3

7775
:

J1 admits four eigenvalues given by� 1 = � �x1
@f1
@s

(sin � �x1; 0) < 0; � 2 = � (D � D8); � 3 = � 1(�x1 �
D
� 1

) < 0 and � 4 = � D < 0. It follows that if D > D 8, then F1 is a stable node, and ifD < D 8,

then F1 is a saddle point.

Lemma 4.3 The equilibrium point F2 exists if and only if D < D 2. If D > D 7, then F2 is a
stable node, and ifD < D 7, then F2 is a saddle point.

Proof. An equilibrium F2 exists if and only if �x2 2 ]0; sin [ is a solution of

f 2(sin � �x2; 0) = D: (5)

Let  2(x2) = f 2(sin � x2; 0) � D . Since  0
2(x2) = �

@f2
@s

(sin � �x2; 0) < 0,  2(0) = D2 � D and

 2(sin ) = � D < 0, equation (5) admits a unique positive solution �x2 2 ]0; sin [ if and only if
D < D 2.

Assume that F2 exists (D < D 2). The Jacobian matrix J2 of system (3) at F2 is given by

J2 =

2

6664

D7 � D 0 0 0

x2
@f2
@x1

� x2
@f2
@s

� �x2
@f2
@s

� �x2
@f2
@s

� � 2 �x2 � �x2
@f2
@s

0 0 � D 0
0 0 0 � 2 �x2 � D

3

7775
:

J2 admits four eigenvalues given by� 1 = � �x2
@f2
@s

(sin � �x2; 0) < 0; � 2 = � (D � D7); � 3 = � 2(�x2 �
D
� 2

) < 0 and � 4 = � D < 0. It follows that if D > D 7, then F2 is a stable node, however, if

D < D 7, then F2 is a saddle point.

Lemma 4.4 The situation D < min(D7; D8) is impossible.

Proof. Assume that 0 < D < min(D7; D8). From Lemmas 4.2 and 4.3,F1 and F2 exist.

1. If �x1 � �x2, then D = f 2(sin � �x2; 0) � f 2(sin � �x1; 0) > f 2(sin � �x1; �x1) = D8 > D , which is
impossible.

2. If �x1 � �x2, then D = f 1(sin � �x1; 0) � f 1(sin � �x2; 0) > f 1(sin � �x2; �x2) = D7 > D , which is
impossible.

Lemma 4.5 An equilibrium F5 exists if and only if max(D7; D8) < D < min(D1; D2). If it
exists, thenF1 and F2 exist and satisfy ��x1 < �x1 and ��x2 < �x2. F5 is always a saddle point.
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Proof. Since the functions x2 ! f 1(sin � x1 � x2; x2) and x2 ! f 2(sin � x1 � x2; x1) are
noncreasing, one deduces that the isoclines are the graphs of two functionsx2 = ’ 1(x1) and
x2 = ’ 2(x1) and then 0 = ’ 1(�x1) and �x2 = ’ 2(0). ��x1 is a solution of  5( ��x1) = 0, where

 5(x1) = ’ 2(x1) � ’ 1(x1). The derivatives of ’ 1 and ’ 2 are given by ’ 0
2(x1) = � 1 +

@f2
@x1

=
@f2
@s

<

� 1 < ’ 0
1(x1) = � 1 +

@f1
@x2

=(
@f1
@x2

�
@f1
@s

) < 0. One deduces that 0
5(x1) = ’ 0

2(x1) � ’ 0
1(x1) < 0 .

 5(0) = ’ 2(0) � ’ 1(0) = �x2 � ’ 1(0) and  5(�x1) = ’ 2(�x1), then ��x1 exists and is unique if and
only if �x2 > ’ 1(0) and ’ 2(�x1) < 0, and these are satis�ed only if D = f 1(sin � ’ 1(0); ’ 1(0)) >
f 1(sin � �x2; �x2) = D7 and D = f 2(sin � �x1 � ’ 2(�x1); �x1) > f 2(sin � �x1; �x1) = D8. The existence
and the uniqueness of��x2 = ’ 1( ��x1) = ’ 2( ��x1) are easily deduced since the two functions’ 1(:) and
’ 2(:) are decreasing.

Assume that F5 exists. One has

 3( ��x1) = 0 = f 1(sin � ��x1; 0) � D > f 1(sin � ��x1 � ��x2; ��x2) � D = 0 =  3(�x1);

then  3( ��x1) >  3(�x1) since the function  3(:) is decreasing, �x1 > ��x1.

 4( ��x2) = f 2(sin � ��x2; 0) � D > f 2(sin � ��x1 � ��x2; ��x1) � D = 0 =  4(�x2);

then  4(�x2) <  4( ��x2) since the function  4(:) is decreasing, �x2 > ��x2.
Assume that F5 exists. The Jacobian matrix J5 of system (3) at F5 = ( ��x1; ��x2; 0; 0) is given by

J5 =

2

666664

� ��x1
@f1
@s

��x1
@f1
@x2

� ��x1
@f1
@s

� � 1 ��x1 � ��x1
@f1
@s

� ��x1
@f1
@s

��x2
@f2
@x1

� ��x2
@f2
@s

� ��x2
@f2
@s

� ��x2
@f2
@s

� � 2 ��x2 � ��x2
@f2
@s

0 0 � 1 ��x1 � D 0
0 0 0 � 2 ��x2 � D

3

777775
:

J5 admits four eigenvalues given by� 1 = � 1( ��x1 �
D
� 1

) < 0, � 2 = � 2( ��x2 �
D
� 2

) < 0 and two other

eigenvalues of the solutions of
� 2 + a� + b = 0 ;

where

a = ��x1
@f1
@s

+ ��x2
@f2
@s

> 0

and

b = ��x1 ��x2

h
�

@f1
@x2

@f2
@x1

+
@f1
@x2

@f2
@s

+
@f1
@s

@f2
@x1

i
< 0:

It follows that F5 is a saddle point.
The number and the nature of equilibria of system (3) are summarized in the theorem below.

Theorem 4.1

A) If min(D7; D8) < D < max(D7; D8), then

(i) if D8 < D 7 and D8 < D < min(D2; D7), then system (3) admits three equilibriaF0; F1
and F2. F1 is a stable node, however,F0 and F2 are two saddle points.

(ii) if D8 < D 7 and D2 < D < D 7, then system (3) admits two equilibriaF0 and F1. F1 is
a stable node andF0 is a saddle point.

(iii) if D7 < D 8 and D7 < D < min(D8; D1), then system (3) admits three equilibriaF0; F1
and F2. F2 is a stable node, however,F0 and F1 are two saddle points.

(iv) if D7 < D 8 and D1 < D < D 8, then system (3) admits two equilibriaF0 and F2. F2 is
a stable node, however,F0 is a saddle point.
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B) If max(D7; D8) < D < min(D1; D2), then system (3) admits four equilibria F0; F1; F2 and
F5. F1 and F2 are two stable nodes, however,F0 and F5 are two saddle points.

C) If min(D1; D2) < D < max(D1; D2), then

(i) if D1 < D 2, then system (3) admits two equilibria F0 and F2. F2 is a stable node,
however,F0 is a saddle point.

(ii) if D2 < D 1, then system (3) admits two equilibria F0 and F1. F1 is a stable node,
however,F0 is a saddle point.

D) If max(D1; D2) < D , then system (3) admits one stationary pointF0. F0 is a stable node.

5 Second Case :
D
� 1

< s in <
D
� 2

The system (3) admits F0; F1; F2; F3; F5 and F7 as equilibrium points with �x1; �x2; ��x1; ��x2; �v1 <
D
� 2

.

The conditions of existence of the equilibria are stated in the lemmas hereafter.

Lemma 5.1 F0 exists always. If D < max(D1; D2), then F0 is a saddle point. If D >
max(D1; D2), then F0 is a stable node.

Proof. See the proof of Lemma 4.1.

Lemma 5.2 The equilibrium point F2 exists if and only if D < D 2. If D > D 7, then F2 is a
stable node, however, ifD < D 7, then F2 is a saddle point.

Proof. See the proof of Lemma 4.3.

Lemma 5.3 The situation D < min(D7; D8) is impossible.

Proof. See the proof of Lemma 4.4.

Lemma 5.4 An equilibrium F5 exists if and only if max(D7; D8) < D < min(D1; D2). If it
exists, thenF1 and F2 exist and satisfy ��x1 < �x1 and ��x2 < �x2. F5 is always a saddle point.

Proof. See the proof of Lemma 4.5.

Lemma 5.5 F1 exists if and only if D < D 1. If D > max(D3; D8), then F1 is a stable node,
however, if D < D 3 or D3 < D < D 8, then F1 is a saddle point.

Proof. The proof of existence and uniqueness ofF1 is given in the proof of Lemma 4.2.
Assume that F1 exists (D < D 1). One has

� If D < D 3, then f 1(sin � �x1; 0) = D < D 3 = f 1(sin �
D
� 1

; 0) and then �x1 >
D
� 1

.

� If D > D 3, then f 1(sin � �x1; 0) = D > D 3 = f 1(sin �
D
� 1

; 0) and then �x1 <
D
� 1

.

The Jacobian matrix J1 of system (3) at F1 is given by

J1 =

2

666664

� �x1
@f1
@s

�x1
@f1
@x2

� �x1
@f1
@s

� � 1 �x1 � �x1
@f1
@s

� �x1
@f1
@s

0 D8 � D 0 0
0 0 � 1 �x1 � D 0
0 0 0 � D

3

777775
:

J1 admits four eigenvalues given by� 1 = � �x1
@f1
@s

(sin � �x1; 0) < 0; � 2 = � (D � D8); � 3 = � 1(�x1 �
D
� 1

) and � 4 = � D < 0. It follows that
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� F1 is a saddle point if D < D 3.

� F1 is a stable node ifD > D 3 and D > D 8.

� F1 is a saddle point if D > D 3 and D < D 8.

Lemma 5.6 F3 exists if and only if D < D 3. If D6 < D < D 3, then F3 is locally asymptotically
stable. If D < min(D3; D6), then F3 is unstable.

Proof. An equilibrium F3 exists if and only if �v1 2 ]0; sin �
D
� 1

[ is a solution of

f 1(sin �
D
� 1

� �v1; 0) = D + � 1 �v1: (6)

Let  3(v1) = f 1(sin �
D
� 1

� v1; 0) � D � � 1v1. Since  0
3(v1) = �

@f1
@s

(sin �
D
� 1

� v1; 0) � � 1 < 0,

 3(0) = D3 � D and  3(sin �
D
� 1

) = � D � � 1(sin �
D
� 1

) < 0, equation (6) admits a unique positive

solution �v1 2 ]0; sin �
D
� 1

[ if and only if D < D 3.

If F3 exists, the Jacobian matrix J1 of model (3) at F3 is stated as follows:

J3 =

2

6664

�
D
� 1

@f1
@s

D
� 1

@f1
@x2

�
D
� 1

@f1
@s

� D �
D
� 1

@f1
@s

�
D
� 1

@f1
@s

0 D6 � D 0 0
� 1 �v1 0 0 0

0 0 0 � D

3

7775
:

J3 admits four eigenvalues given by� 1 = � D < 0 and � 2 = � (D � D6) and two other eigenvalues
of the solution of the equation

� 2 + a� + b = 0 ;

where a =
D
� 1

@f1
@s

(sin �
D
� 1

� �v1; 0) > 0 and b = � 1 �v1

�
D +

D
� 1

@f1
@s

(sin �
D
� 1

� �v1; 0)
�

> 0. It

follows that

� If D6 < D < D 3, then � 1 < 0; � 2 < 0; � 3 < 0; � 4 < 0 and F3 is then locally asymptotically
stable.

� If D < min(D3; D6), then F3 is a saddle point.

Lemma 5.7 An equilibrium F7 exists if and only if max(D6; D9) < D < D 3. If F7 exists, it
follows that ���v1 < �v1 and F7 is always unstable.

Proof. Since the functionsx2 ! f 1(sin � x2 �
D
� 1

� v1; x2) � � 1v1 and x2 ! f 2(sin � x2 �
D
� 1

�

v1;
D
� 1

) are decreasing, one deduces that the isoclines are the graphs of two functionsx2 = ’ 5(v1)

and x2 = ’ 6(v1). ���v1 is a solution of  7( ���v1) = 0, where  7(v1) = ’ 6(v1) � ’ 5(v1). The derivatives

of ’ 5 and ’ 6 are given by ’ 0
6(v1) = � 1 < ’ 0

5(v1) = � 1 +
�

@f1
@x2

+ � 1

�
=

�
@f1
@x2

�
@f1
@s

�
< 0. One

deduces that  0
7(v1) = ’ 0

6(v1) � ’ 0
5(v1) < 0 .  7(0) = ’ 6(0) � ’ 5(0) and  7(�v1) = ’ 6(�v1) � ’ 5(�v1),

then ���v1 exists and is unique if and only if ’ 5(0) < ’ 6(0) and ’ 6(�v1) < ’ 5(�v1). Note that ’ 5(�v1) = 0

and ’ 6(0) < �v1. Then the existence is satis�ed only if D = f 1(sin � ’ 5(0) �
D
� 1

; ’ 5(0)) >

f 1(sin � �v1 �
D
� 1

; �v1) = D9 and D = f 2(sin � ’ 6(�v1) � �v1 �
D
� 1

;
D
� 1

) > f 2(sin � �v1 �
D
� 1

;
D
� 1

) = D6.

Assume that F7 exists. One has

 4( ���x2) = f 2(sin � ���x2; 0) � D � f 2(sin � ���x2 �
D
� 1

� ���v1;
D
� 1

) � D = 0 =  4(�x2);
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then  4(�x2) <  4( ���x2) since the function  4(:) is decreasing, �x2 > ���x2. The Jacobian matrix J7 of

system (3) at F7 = (
D
� 1

; ���x2; ���v1; 0) is given by

J7 =

2

666664

�
D
� 1

@f1
@s

D
� 1

@f1
@x2

�
D
� 1

@f1
@s

� D �
D
� 1

@f1
@s

�
D
� 1

@f1
@s

���x2
@f2
@x1

� ���x2
@f2
@s

� ���x2
@f2
@s

� ���x2
@f2
@s

� � 2 ���x2 � ���x2
@f2
@s

� 1 ���v1 0 0 0
0 0 0 � 2 ���x2 � D

3

777775
:

J7 admits four eigenvalues given by� 1 = � 2 ���x2 � D and three other eigenvalues of the roots of the
following characteristic polynomial:

P7(X ) =

���������

� X �
D
� 1

@f1
@s

D
� 1

@f1
@x2

�
D
� 1

@f1
@s

� D �
D
� 1

@f1
@s

���x2
@f2
@x1

� ���x2
@f2
@s

� X � ���x2
@f2
@s

� ���x2
@f2
@s

� 1 ���v1 0 � X

���������

;

P7(X ) = � X

�������

� X �
D
� 1

@f1
@s

D
� 1

@f1
@x2

�
D
� 1

@f1
@s

���x2
@f2
@x1

� ���x2
@f2
@s

� X � ���x2
@f2
@s

�������
+ � 1 ���v1

�������

D
� 1

@f1
@x2

�
D
� 1

@f1
@s

� D �
D
� 1

@f1
@s

� X � ���x2
@f2
@s

� ���x2
@f2
@s

�������
;

P7(X ) = � X
���� (X +

D
� 1

@f1
@s

)(X + ���x2
@f2
@s

) � (
D
� 1

@f1
@x2

�
D
� 1

@f1
@s

)( ���x2
@f2
@x1

� ���x2
@f2
@s

)
����

+ � 1 ���v1

���� � ���x2
@f2
@s

(
D
� 1

@f1
@x2

�
D
� 1

@f1
@s

) � (D +
D
� 1

@f1
@s

)(X + ���x2
@f2
@s

)
���� ;

P7(X ) = � X
���� X 2 + X (

D
� 1

@f1
@s

+ ���x2
@f2
@s

) �
D
� 1

���x2
@f1
@x2

@f2
@x1

+
D
� 1

���x2
@f1
@x2

@f2
@s

+
D
� 1

���x2
@f1
@s

@f2
@x1

����

� � 1 ���v1

����
D
� 1

���x2
@f2
@s

@f1
@x2

+ ( D +
D
� 1

@f1
@s

)X + D ���x2
@f2
@s

���� ;

P7(X ) = � X 3 � X 2
� D

� 1

@f1
@s

+ ���x2
@f2
@s

�

� X
�

�
D
� 1

���x2
@f1
@x2

@f2
@x1

+
D
� 1

���x2
@f1
@x2

@f2
@s

+
D
� 1

���x2
@f1
@s

@f2
@x1

+ � 1 ���v1(D +
D
� 1

@f1
@s

)
�

� � 1 ���v1

�
D
� 1

���x2
@f2
@s

@f1
@x2

+ D ���x2
@f2
@s

�
:

Then

P7(X ) = � (X 3 + b1X 2 + b2X + b3)

with

b1 =
� D

� 1

@f1
@s

+ ���x2
@f2
@s

�
> 0;

b2 =
�

�
D
� 1

���x2
@f1
@x2

@f2
@x1

+
D
� 1

���x2
@f1
@x2

@f2
@s

+
D
� 1

���x2
@f1
@s

@f2
@x1

+ � 1 ���v1(D +
D
� 1

@f1
@s

)
�

;

b3 = � 1 ���v1

�
D
� 1

���x2
@f2
@s

@f1
@x2

+ D ���x2
@f2
@s

�
= D ���v1 ���x2

@f2
@s

�
@f1
@x2

+ � 1

�
< 0:

So, the conditions for the stability of F7 are not satis�ed, then F7 is unstable.
The number and the nature of equilibria of model (3) are given in the theorem hereafter.



346 S. ALSAHAFI AND S. WOODCOCK

Theorem 5.1 A) If min(D7; D8) < D < max(D7; D8), then

(i) if D8 < D 7, then
1. if max(D2; D3) < D < D 7, then system (3) admits two equilibriaF0 and F1. F1 is

a stable node, however,F0 is a saddle point.
2. if max(D2; D9) < D < min(D3; D7), then system (3) admits four equilibria

F0; F1; F3 and F7. F0; F1 and F7 are three saddle points, however,F3 is a sta-
ble node.

3. if D2 < D < min(D9; D7), then system (3) admits three equilibriaF0; F1 and F3.
F0 and F1 are two saddle points, however,F3 is a stable node.

4. if max(D3; D6; D8) < D < min(D2; D7), then system (3) admits three equilibria
F0; F1 and F2. F0 and F2 are two saddle points, however,F1 is a stable node.

5. if max(D6; D8; D9) < D < min(D2; D3; D7), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F7. F0; F1; F2 and F7 are four saddle points, however,F3 is a
stable node.

6. if max(D6; D8) < D < min(D2; D9; D7), then system (3) admits four equilibria
F0; F1; F2 and F3. F0; F1 and F2 are three saddle points, however,F3 is a stable
node.

7. if max(D3; D8) < D < min(D6; D7), then system (3) admits three equilibriaF0; F1
and F2. F0 and F2 are two saddle points, however,F1 is a stable node.

8. if D8 < D < min(D3; D6; D7), then system (3) admits four equilibriaF0; F1; F2 and
F3, all of them are saddle points.

(ii) if D7 < D 8, then
1. if D7 < D < min(D9; D6; D8), then system (3) admits four equilibriaF0; F1; F2 and

F3. F0; F1 and F3 are three saddle points, however,F2 is a stable node.
2. if max(D9; D7) < D < min(D3; D6; D8), then system (3) admits four equilibria

F0; F1; F2 and F3. F0; F1 and F3 are three saddle points, however,F2 is a stable
node.

3. if max(D3; D7) < D < min(D1; D6; D8), then system (3) admits three equilibria
F0; F1 and F2. F0 and F1 are two saddle points, however,F2 is a stable node.

4. if D1 < D < min(D6; D8), then system (3) admits two equilibriaF0 and F2. F0 is
a saddle point, however,F2 is a stable node.

5. if max(D6; D7) < D < min(D8; D9), then system (3) admits four equilibria
F0; F1; F2 and F3. F0 and F1 are two saddle points, however,F2 and F3 are two
stable nodes.

6. if max(D6; D7; D9) < D < min(D3; D8), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F7. F0; F1 and F7 are three saddle points, however,F2 and F3
are two stable nodes.

7. if max(D6; D7; D3) < D < min(D1; D8), then system (3) admits three equilibria
F0; F1 and F2. F0 and F1 are two saddle points, however,F2 is a stable node.

8. if max(D6; D1) < D < D 8, then system (3) admits two equilibriaF0 and F2. F0 is
a saddle point, however,F2 is a stable node.

B) If max(D7; D8) < D < min(D1; D2), then

(i) If max(D3; D6; D7; D8) < D < min(D1; D2), then system (3) admits four equilibria
F0; F1; F2 and F5. F0 and F5 are saddle points,F1 and F2 are stable nodes.

(ii) If max(D6; D7; D8; D9) < D < min(D2; D3), then system (3) admits six equilibria
F0; F1; F2; F3; F5 and F7. F0; F1; F5 and F7 are saddle points, F2 and F3 are stable
nodes.

(iii) If max(D3; D7; D8) < D < min(D1; D6), then system (3) admits four equilibria
F0; F1; F2 and F5. F0 and F5 are saddle points,F1 and F2 are stable nodes.

(iv) If max(D7; D8; D9) < D < min(D3; D6), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F5. F0; F1; F3 and F5 are saddle points,F2 is a stable node.
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(v) If max(D7; D8) < D < min(D6; D9), then system (3) admits �ve equilibria F0; F1; F2; F3
and F5. F0; F1; F3 and F5 are saddle points,F2 is a stable node.

(vi) If max(D6; D7; D8) < D < min(D2; D9), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F5. F0; F1 and F5 are saddle points,F2 and F3 are stable nodes.

C) If min(D1; D2) < D < max(D1; D2), then

(i) If D1 < D < D 2, then system (3) admits two equilibriaF0 and F2. F0 is a saddle point,
however,F2 is a stable node.

(ii) If D2 < D < D 1, then

1. if D2 < D < D 9, then system (3) admits three equilibriaF0; F1 and F3. F0 and F1
are two saddle points, however,F3 is a stable node.

2. if max(D2; D9) < D < D 3, then system (3) admits four equilibria F0; F1; F3 and
F7. F0; F1 and F7 are three saddle points, however,F3 is a stable node.

3. if max(D2; D3) < D < D 1, then system (3) admits two equilibriaF0 and F1. F0 is
a saddle point, however,F1 is a stable node.

D) If max(D1; D2) < D , then model (3) admits only F0 as an equilibrium point. F0 is a stable
node.

6 Third Case :
D
� 2

< s in <
D
� 1

+
D
� 2

The system (3) admits F0; F1; F2; F3; F4; F5; F6 and F7 as equilibrium points with

�v1 < min(sin �
D
� 1

;
D
� 2

) and �v2 < min(sin �
D
� 2

;
D
� 1

):

The conditions of existence of the equilibria are stated in the lemmas hereafter.

Lemma 6.1 F0 exists always. If D < max(D1; D2), then F0 is a saddle point, however, if
D > max(D1; D2), then F0 is a stable node.

Proof. See the proof of Lemma 4.1.

Lemma 6.2 The equilibrium point F1 exists if and only if D < D 1. If D > max(D3; D8), then
F1 is a stable node, however, ifD < D 3 or D3 < D < D 8, then F1 is a saddle point.

Proof. See the proof of Lemma 5.5.

Lemma 6.3 The equilibrium point F3 exists if and only if D < D 3. If D6 < D < D 3, then F3
is locally asymptotically stable. IfD < min(D3; D6), then F3 is unstable.

Proof. See the proof of Lemma 5.6.

Lemma 6.4 The situation D < min(D7; D8) is impossible.

Proof. See the proof of Lemma 4.4.

Lemma 6.5 An equilibrium F5 exists if and only if max(D7; D8) < D < min(D1; D2). If it
exists, thenF1 and F2 exist and satisfy ��x1 < �x1 and ��x2 < �x2. F5 is always a saddle point.

Proof. See the proof of Lemma 4.5.

Lemma 6.6 An equilibrium F7 exists if and only if max(D6; D9) < D < D 3. Therefore,
���v1 < �v1 and F7 is always unstable.

Proof. See the proof of Lemma 5.7.

Lemma 6.7 The equilibrium point F2 exists if and only if D < D 2. If D > max(D4; D7), then
F2 is a stable node, however, ifD < D 4 or D4 < D < D 7, then F2 is a saddle point.
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Proof. Existence and uniqueness ofF2 are given in the proof of Lemma 4.3.
Assume that F2 exists (D < D 2). One has

� If D < D 4, then f 2(sin � �x2; 0) = D < D 4 = f 2(sin �
D
� 2

; 0) and then �x2 >
D
� 2

.

� If D > D 4, then f 2(sin � �x2; 0) = D > D 4 = f 2(sin �
D
� 2

; 0) and then �x2 <
D
� 2

.

The Jacobian matrix J2 of model (3) at F2 is given as follows:

J2 =

2

6664

D7 � D 0 0 0

x2
@f2
@x1

� x2
@f2
@s

� �x2
@f2
@s

� �x2
@f2
@s

� � 2 �x2 � �x2
@f2
@s

0 0 � D 0
0 0 0 � 2 �x2 � D

3

7775
:

J2 admits four eigenvalues given by� 1 = � �x2
@f2
@s

(sin � �x2; 0) < 0; � 2 = � (D � D7); � 3 = � 2(�x2 �
D
� 2

) and � 4 = � D < 0. It follows that

� If D < D 4, then F2 is a saddle point.

� If D > D 4 and D > D 7, then F2 is a stable node.

� If D > D 4 and D < D 7, then F2 is a saddle point.

Lemma 6.8 F4 exists if and only if D < D 4. If D5 < D < D 4, then F4 is locally asymptotically
stable. If D < min(D4; D5), then F4 is unstable (saddle point).

Proof. An equilibrium F4 exists if and only if �v2 2 ]0; sin �
D
� 2

[ is a solution of

f 2(sin �
D
� 2

� �v2; 0) = D + � 2 �v2: (7)

Let  4(v2) = f 2(sin �
D
� 2

� v2; 0) � D � � 2v2. Since 0
4(v2) = �

@f2
@s

(sin �
D
� 2

� v2; 0) � � 2 < 0,

 4(0) = D4 � D ,  4(sin �
D
� 2

) = � D � � 2(sin �
D
� 2

) < 0, equation (7) admits a unique positive

solution �v2 2 ]0; sin �
D
� 2

[ if and only if D < D 4.

If F4 exists, the Jacobian matrix J4 of system (3) at F4 is given by

J4 =

2

6664

D5 � D 0 0 0
D
� 2

@f2
@x1

�
D
� 2

@f2
@s

�
D
� 2

@f2
@s

�
D
� 2

@f2
@s

� D �
D
� 2

@f2
@s

0 0 � D 0
0 � 2 �v2 0 0

3

7775
:

J4 admits four eigenvalues given by� 1 = � D < 0 and � 2 = � (D � D5) and two other eigenvalues
of the solution of the equation

� 2 + a� + b = 0 ;

where a =
D
� 2

@f2
@s

(sin �
D
� 2

� �v2; 0) > 0 and b = � 2 �v2

�
D +

D
� 2

@f2
@s

(sin �
D
� 2

� �v2; 0)
�

> 0. It

follows that

� If D5 < D < D 4, then � 1 < 0; � 2 < 0; � 3 < 0; � 4 < 0 and F4 is then locally asymptotically
stable.

� If D < min(D4; D5), then F4 is a saddle point.
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Lemma 6.9 An equilibrium F6 exists if and only if max(D5; D10) < D < D 4. Therefore,
���v2 < �v2 and F6 is always unstable.

Proof. Since the functionsx1 ! f 1(sin � x1 �
D
� 2

� v2;
D
� 2

) and x1 ! f 2(sin � x1 �
D
� 2

� v2; x1) �

� 2v2 are nonincreasing, one deduces that the isoclines are the graphs of two functionsx1 = ’ 3(v2)
and x1 = ’ 4(v2). ���v2 is the solution of  6( ���v2) = 0, where  6(v2) = ’ 4(v2) � ’ 3(v2) . The derivatives

of ’ 3 and ’ 4 are given by ’ 0
3(v2) = � 1 < ’ 0

4(v2) = � 1 +
�

@f2
@x1

+ � 2

�
=

�
@f2
@x1

�
@f2
@s

�
< 0. One

deduces that  0
6(v2) = ’ 0

4(v2) � ’ 0
3(v2) > 0 .  6(0) = ’ 4(0) � ’ 3(0) and  6(�v2) = ’ 4(�v2) � ’ 3(�v2),

then ���v2 exists and is unique if and only if ’ 4(0) < ’ 3(0) and ’ 3(�v2) < ’ 4(�v2). Note that ’ 4(�v2) = 0
and ’ 3(0) < �v2. The existence is satis�ed only if

D = f 2(sin � ’ 4(0) �
D
� 2

; ’ 4(0)) > f 2(sin � �v2 �
D
� 2

; �v2) = D10

and
D = f 1(sin � ’ 3(�v2) � �v2 �

D
� 2

;
D
� 2

) > f 1(sin � �v2 �
D
� 2

;
D
� 2

) = D5:

Assume that F6 exists. One has

 3( ���x1) = f 1(sin � ���x1; 0) � D � f 1(sin � ���x1 �
D
� 2

� ���v2;
D
� 2

) � D = 0 =  3(�x1);

then  3(�x1) <  3( ���x1) since the function  3(:) is decreasing, �x1 > ���x1. The Jacobian matrix J6 of

system (3) at F6 = ( ���x1;
D
� 2

; 0; ���v2) is given by

J6 =

2

666664

� ���x1
@f1
@s

���x1
@f1
@x2

� ���x1
@f1
@s

� � 1 ���x1 � ���x1
@f1
@s

� ���x1
@f1
@s

D
� 2

@f2
@x1

�
D
� 2

@f2
@s

�
D
� 2

@f2
@s

�
D
� 2

@f2
@s

� D �
D
� 2

@f2
@s

0 0 � 1 ���x1 � D 0
0 � 2 ���v2 0 0

3

777775
:

J6 admits four eigenvalues given by� 1 = � 1 ���x1 � D and three other eigenvalues of the roots of the
following characteristic polynomial:

P6(X ) =

���������

� X � ���x1
@f1
@s

���x1
@f1
@x2

� ���x1
@f1
@s

� ���x1
@f1
@s

D
� 2

@f2
@x1

�
D
� 2

@f2
@s

� X �
D
� 2

@f2
@s

� D �
D
� 2

@f2
@s

0 � 2 ���v2 � X

���������

;

P6(X ) = � X

�������

� X � ���x1
@f1
@s

���x1
@f1
@x2

� ���x1
@f1
@s

D
� 2

@f2
@x1

�
D
� 2

@f2
@s

� X �
D
� 2

@f2
@s

�������
� � 2 ���v2

�������

� X � ���x1
@f1
@s

� ���x1
@f1
@s

D
� 2

@f2
@x1

�
D
� 2

@f2
@s

� D �
D
� 2

@f2
@s

�������
;

P6(X ) = � X
� �

X + ���x1
@f1
@s

��
X +

D
� 2

@f2
@s

�
�

�
���x1

@f1
@x2

� ���x1
@f1
@s

�� D
� 2

@f2
@x1

�
D
� 2

@f2
@s

� �

� � 2 ���v2

� �
X + ���x1

@f1
@s

��
D +

D
� 2

@f2
@s

�
+ ���x1

@f1
@s

� D
� 2

@f2
@x1

�
D
� 2

@f2
@s

� �

= � X
�
X 2 + X

�
���x1

@f1
@s

+
D
� 2

@f2
@s

�
� ���x1

D
� 2

@f1
@x2

@f2
@x1

+ ���x1
D
� 2

@f1
@x2

@f2
@s

+ ���x1
D
� 2

@f1
@s

@f2
@x1

�

� � 2 ���v2

�
X

�
D +

D
� 2

@f2
@s

�
+ D ���x1

@f1
@s

+ ���x1
D
� 2

@f1
@s

@f2
@x1

�

= � X 3 � X 2
�

���x1
@f1
@s

+
D
� 2

@f2
@s

�

� X
�

� ���x1
D
� 2

@f1
@x2

@f2
@x1

+ ���x1
D
� 2

@f1
@x2

@f2
@s

+ ���x1
D
� 2

@f1
@s

@f2
@x1

+ � 2 ���v2

�
D +

D
� 2

@f2
@s

��

� D ���v2 ���x1
@f1
@s

�
� 2 +

@f2
@x1

�
:
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Then P6(X ) = � (X 3 + b1X 2 + b2X + b3) with

b1 =
�

���x1
@f1
@s

+
D
� 2

@f2
@s

�
> 0;

b2 =
�

� ���x1
D
� 2

@f1
@x2

@f2
@x1

+ ���x1
D
� 2

@f1
@x2

@f2
@s

+ ���x1
D
� 2

@f1
@s

@f2
@x1

+ � 2 ���v2

�
D +

D
� 2

@f2
@s

��
;

b3 = D ���v2 ���x1
@f1
@s

�
� 2 +

@f2
@x1

�
< 0:

So, the conditions for the stability of F6 are not satis�ed, then F6 is unstable.
The number and the nature of equilibrium points of model (3) are stated in the following

theorem.

Theorem 6.1 A) If min(D7; D8) < D < max(D7; D8), then

(i) if D8 < D 7, then

1. if max(D2; D3) < D < D 7, then system (3) admits two equilibriaF0 and F1. F0 is
a saddle point, however,F1 is a stable node.

2. if max(D2; D9) < D < min(D3; D7), then system (3) admits four equilibria
F0; F1; F3 and F7. F0; F1 and F7 are three saddle points, however,F3 is a sta-
ble node.

3. if D2 < D < min(D7; D9), then system (3) admits three equilibriaF0; F1 and F3.
F0 and F1 are two saddle points, however,F3 is a stable node.

4. if max(D3; D4; D6; D8) < D < min(D2; D7), then system (3) admits three equilibria
F0; F1 and F2. F0 and F2 are two saddle points, however,F1 is a stable node.

5. if max(D3; D5; D6; D8; D10) < D < min(D4; D7), then system (3) admits �ve equi-
libria F0; F1; F2; F4 and F6. F0; F2 and F6 are three saddle points, however,F1 and
F4 are two stable nodes.

6. if max(D3; D5; D6; D8) < D < min(D7; D10), then system (3) admits four equilibria
F0; F1; F2 and F4. F0 and F2 are saddle points, however,F1 and F4 are two stable
nodes.

7. if max(D3; D6; D8) < D < min(D4; D5; D7), then system (3) admits four equilibria
F0; F1; F2 and F4. F0; F2 and F4 are three saddle points, however,F1 is a stable
node.

8. if max(D4; D6; D8; D9) < D < min(D2; D3; D7), then system (3) admits �ve equi-
libria F0; F1; F2; F3 and F7. F0; F1; F2 and F7 are four saddle points, however,F3
is a stable node.

9. if max(D5; D6; D8; D9; D10) < D < min(D3; D4; D7), then system (3) admits seven
equilibria F0; F1; F2; F3; F4; F6 and F7. F0; F1; F2; F6 and F7 are �ve saddle points,
however,F3 and F4 are two stable nodes.

10. if max(D5; D6; D8; D9) < D < min(D3; D7; D10), then system (3) admits six equi-
libria F0; F1; F2; F3; F4 and F7. F0; F1; F2 and F7 are four saddle points, however,
F3 and F4 are two stable nodes.

11. if max(D6; D8; D9) < D < min(D3; D4; D5; D7), then system (3) admits six equilib-
ria F0; F1; F2; F3; F4 and F7. F0; F1; F2; F4 and F7 are �ve saddle points, however,
F3 is a stable node.

12. if max(D4; D6; D8) < D < min(D2; D7; D9), then system (3) admits four equilibria
F0; F1; F2 and F3. F0; F1 and F2 are three saddle points, however,F3 is a stable
node.

13. if max(D5; D6; D8; D10) < D < min(D4; D7; D9), then system (3) admits six equi-
libria F0; F1; F2; F3; F4 and F6. F0; F1; F2 and F6 are four saddle points, however,
F3 and F4 are stable nodes.

14. if max(D5; D6; D8) < D < min(D7; D9; D10), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F4. F0; F1 and F2 are three saddle points, however,F3 and F4
are stable nodes.
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15. if max(D6; D8) < D < min(D4; D5; D7; D9), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F4. F0; F1; F2 and F4 are four saddle points, however,F3 is a
stable node.

16. if max(D3; D4; D8) < D < min(D6; D7), then system (3) admits three equilibria
F0; F1 and F2. F0 and F2 are two saddle points, however,F1 is a stable node.

17. if max(D3; D5; D8; D10) < D < min(D4; D6; D7), then system (3) admits �ve equi-
libria F0; F1; F2; F4 and F6. F0; F1; F2 and F6 are three saddle points, however,F1
and F4 are stable nodes.

18. if max(D3; D5; D8) < D < min(D6; D7; D10), then system (3) admits four equilibria
F0; F1; F2 and F4. F0 and F2 are two saddle points, however,F1 and F4 are stable
nodes.

19. if max(D3; D8) < D < min(D4; D5; D6; D7), then system (3) admits four equilibria
F0; F1; F2 and F4. F0; F2 and F4 are three saddle points, however,F1 is a stable
node.

20. if max(D4; D8; D9) < D < min(D3; D6; D7), then system (3) admits four equilibria
F0; F1; F2 and F3, all of them are saddle points.

21. if max(D5; D8; D9; D10) < D < min(D3; D4; D6; D7), then system (3) admits six
equilibria F0; F1; F2; F3; F4 and F6. F0; F1; F2; F3 and F6 are �ve saddle points,
however,F4 is a stable node.

22. if max(D5; D8; D9) < D < min(D3; D6; D7; D10), then system (3) admits �ve equi-
libria F0; F1; F2; F3 and F4. F0; F1; F2 and F3 are four saddle points, however,F4
is a stable node.

23. if max(D8; D9) < D < min(D3; D4; D5; D6; D7), then system (3) admits �ve equi-
libria F0; F1; F2; F3 and F4, all of them are saddle points.

24. if max(D4; D8) < D < min(D6; D7; D9), then system (3) admits four equilibria
F0; F1; F2 and F3, all of them are saddle points.

25. if max(D5; D8; D10) < D < min(D4; D6; D7; D9), then system (3) admits six equi-
libria F0; F1; F2; F3; F4 and F6. F0; F1; F2; F3 and F6 are �ve saddle points, however,
F4 is a stable node.

26. if max(D5; D8) < D < min(D6; D7; D9; D10), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F4. F0; F1; F2 and F3 are four saddle points, however,F4 is a
stable node.

27. if D8 < D < min(D4; D5; D6; D7; D9), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F4, all of them are saddle points.

(ii) if D7 < D 8, then

1. if max(D4; D7) < D < min(D6; D8; D9), then system (3) admits four equilibria
F0; F1; F2 and F3. F0; F1 and F3 are three saddle points, however,F2 is a stable
node.

2. if max; D5; D7; D10) < D < min(D4; D6; D8; D9), then system (3) admits six equi-
libria F0; F1; F2; F3; F4 and F6. F0; F1; F2; F3 and F6 are �ve saddle points, however,
F4 is a stable node.

3. if max(D5; D7) < D < min(D6; D8; D9; D10), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F4. F0; F1; F2 and F3 are four saddle points, however,F4 is a
stable node.

4. if D7 < D < min(D4; D5; D6; D8; D9), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F4, all of them are saddle points.

5. if max(D4; D7; D9) < D < min(D3; D6; D8), then system (3) admits four equilibria
F0; F1; F2 and F3. F0; F1 and F3 are three saddle points, however,F2 is a stable
node.

6. if max(D5; D7; D9; D10) < D < min(D3; D4; D6; D8), then system (3) admits six
equilibria F0; F1; F2; F3; F4 and F6. F0; F1; F2; F3 and F6 are �ve saddle points,
however,F4 is a stable node.
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7. if max(D5; D7; D9) < D < min(D3; D6; D8; D10), then system (3) admits �ve equi-
libria F0; F1; F2; F3 and F4. F0; F1; F2 and F3 are four saddle points, however,F4
is a stable node.

8. if max(D7; D9) < D < min(D3; D4; D5; D6; D8), then system (3) admits �ve equi-
libria F0; F1; F2; F3 and F4, all of them are saddle points.

9. if max(D3; D4; D7) < D < min(D1; D6; D8), then system (3) admits three equilibria
F0; F1 and F2. F0 and F1 are two saddle points, however,F2 is a stable node.

10. if max(D3; D5; D7; D10) < D < min(D1; D4; D6; D8), then system (3) admits �ve
equilibria F0; F1; F2; F4 and F6. F0; F1; F2 and F6 are four saddle points, however,
F4 is a stable node.

11. if max(D3; D5; D7) < D < min(D1; D6; D8; D10), then system (3) admits four equi-
libria F0; F1; F2 and F4. F0; F1 and F2 are three saddle points, however,F4 is a
stable node.

12. if max(D3; D7) < D < min(D4; D5; D6; D8), then system (3) admits four equilibria
F0; F1; F2 and F4, all of them are saddle points.

13. if max(D4; D1) < D < min(D6; D8), then system (3) admits two equilibriaF0 and
F2. F0 is a saddle point, however,F2 is a stable node.

14. if max(D10; D1) < D < min(D4; D6; D8), then system (3) admits four equilibria
F0; F2; F4 and F6. F0; F2 and F6 are three saddle points, however,F4 is a stable
node.

15. if D1 < D < min(D6; D8; D10), then system (3) admits three equilibriaF0; F2 and
F4. F0 and F2 are two saddle points, however,F4 is a stable node.

16. if max(D4; D6; D7) < D < min(D8; D9), then system (3) admits four equilibria
F0; F1; F2 and F3. F0 and F1 are two saddle points, however,F2 and F3 are two
stable nodes.

17. if max(D5; D6; D7; D10) < D < min(D4; D8; D9), then system (3) admits six equi-
libria F0; F1; F2; F3; F4 and F6. F0; F1; F2 and F6 are four saddle points, however,
F3 and F4 are two stable nodes.

18. if max(D5; D6; D7) < D < min(D8; D9; D10), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F4. F0; F1 and F2 are three saddle points, however,F3 and F4
are stable nodes.

19. if max(D6; D7) < D < min(D4; D5; D8; D9), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F4. F0; F1; F2 and F4 are four saddle points, however,F3 is a
stable node.

20. if max(D4; D6; D7; D9) < D < min(D3; D8), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F7. F0; F1 and F7 are three saddle points, however,F2 and F3
are two stable nodes.

21. if max(D5; D6; D7; D9; D10) < D < min(D3; D4; D8) , then system (3) admits seven
equilibria F0; F1; F2; F3; F4; F6 and F7. F0; F1; F2; F6 and F7 are �ve saddle points,
however,F3 and F4 are two stable nodes.

22. if max(D5; D6; D7; D9) < D < min(D3; D8; D10), then system (3) admits six equi-
libria F0; F1; F2; F3; F4 and F7. F0; F1; F2 and F7 are four saddle points, however,
F3 and F4 are two stable nodes.

23. if max(D6; D7; D9) < D < min(D3; D4; D5; D8), then system (3) admits six equilib-
ria F0; F1; F2; F3; F4 and F7. F0; F1; F2; F4 and F7 are �ve saddle points, however,
F3 is a stable node.

24. if max(D3; D4; D6; D7) < D < min(D1; D8), then system (3) admits three equilibria
F0; F1 and F2. F0 and F1 are two saddle points, however,F2 is a stable node.

25. if max(D3; D5; D6; D7; D10) < D < min(D1; D4; D8), then system (3) admits �ve
equilibria F0; F1; F2; F4 and F6. F0; F1; F2 and F6 are four saddle points, however,
F4 is a stable node.

26. if max(D3; D5; D6; D7) < D < min(D1; D8; D10), then system (3) admits four equi-
libria F0; F1; F2 and F4. F0; F1 and F2 are three saddle points, however,F4 is a
stable node.
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27. if max(D3; D6; D7) < D < min(D4; D5; D8), then system (3) admits four equilibria
F0; F1; F2 and F4, all of them are saddle points.

28. if max(D6; D4; D1) < D < D 8, then system (3) admits two equilibriaF0 and F2.
F0 is a saddle point, however,F2 is a stable node.

29. if max(D10; D6; D1) < D < min(D4; D8), then system (3) admits four equilibria
F0; F2; F4 and F6. F0; F2 and F6 are three saddle points, however,F4 is a stable
node.

30. if max(D6; D1) < D < min(D10; D8), then system (3) admits three equilibriaF0; F2
and F4. F0 and F2 are two saddle points, however,F4 is a stable node.

B) If max(D7; D8) < D < min(D1; D2), then

1. If max(D3; D6; D7; D8; D4) < D < min(D1; D2), then system (3) admits four equilibria
F0; F1; F2 and F5. F0 and F5 are saddle points,F1 and F2 are stable nodes.

2. If max(D3; D5; D6; D7; D8; D10) < D < min(D1; D4), then system (3) admits six equi-
libria F0; F1; F2; F4; F5 and F6. F0; F2; F5 and F6 are saddle points,F1 and F4 are stable
nodes.

3. If max(D3; D5; D6; D7; D8) < D < min(D1; D10), then system (3) admits �ve equilibria
F0; F1; F2; F4 and F5. F0; F2 and F5 are saddle points,F1 and F4 are stable nodes.

4. If max(D3; D6; D7; D8) < D < min(D4; D5), then system (3) admits �ve equilibria
F0; F1; F2; F4 and F5. F0; F2; F4 and F5 are saddle points,F1 is a stable node.

5. If max(D4; D6; D7; D8; D9) < D < min(D2; D3), then system (3) admits six equilibria
F0; F1; F2; F3; F5 and F7. F0; F1; F5 and F7 are saddle points, F2 and F3 are stable
nodes.

6. If max(D5; D6; D7; D8; D9; D10) < D < min(D3; D4), then system (3) admits eight
equilibria F0; F1; F2; F3; F4; F5; F6 and F7. F0; F1; F2; F5; F6 and F7 are saddle points,
F3 and F4 are stable nodes.

7. If max(D5; D6; D7; D8; D9) < D < min(D3; D10), then system (3) admits seven equilib-
ria F0; F1; F2; F3; F4; F5 and F7. F0; F1; F2; F5 and F7 are saddle points,F3 and F4 are
stable nodes.

8. If max(D6; D7; D8; D9) < D < min(D3; D4; D5), then system (3) admits seven equilibria
F0; F1; F2; F3; F4; F5 and F7. F0; F1; F2; F4; F5 and F7 are saddle points,F3 is a stable
node.

9. If max(D3; D4; D7; D8) < D < min(D1; D6), then system (3) admits four equilibria
F0; F1; F2 and F5. F0 and F5 are saddle points,F1 and F2 are stable nodes.

10. If max(D3; D5; D7; D8; D10) < D < min(D1; D4; D6), then system (3) admits six equi-
libria F0; F1; F2; F4; F5 and F6. F0; F2; F5 and F6 are saddle points,F1 and F4 are stable
nodes.

11. If max(D3; D5; D7; D8) < D < min(D1; D6; D10), then system (3) admits �ve equilibria
F0; F1; F2; F4 and F5. F0; F2 and F5 are saddle points,F1 and F4 are stable nodes.

12. If max(D3; D7; D8) < D < min(D4; D5; D6), then system (3) admits �ve equilibria
F0; F1; F2; F4 and F5. F0; F2; F4 and F5 are saddle points,F1 is a stable node.

13. If max(D4; D7; D8; D9) < D < min(D3; D6), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F5. F0; F1; F3 and F5 are saddle points,F2 is a stable node.

14. If max(D5; D7; D8; D9; D10) < D < min(D3; D4; D6), then system (3) admits seven
equilibria F0; F1; F2; F3; F4; F5 and F6. F0; F1; F2; F3; F5 and F6 are saddle points,F4
is a stable node.

15. If max(D5; D7; D8; D9) < D < min(D3; D6; D10), then system (3) admits six equilibria
F0; F1; F2; F3; F4 and F5. F0; F1; F2; F3 and F5 are saddle points,F4 is a stable node.

16. If max(D7; D8; D9) < D < min(D3; D4; D5; D6), then system (3) admits six equilibria
F0; F1; F2; F3; F4 and F5, all of them are saddle points.
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17. If max(D4; D7; D8) < D < min(D6; D9), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F5. F0; F1; F3 and F5 are saddle points,F2 is a stable node.

18. If max(D5; D7; D8; D10) < D < min(D4; D6; D9), then system (3) admits seven equi-
libria F0; F1; F2; F3; F4; F5 and F6. F0; F1; F2; F3; F5 and F6 are saddle points,F4 is a
stable node.

19. If max(D5; D7; D8) < D < min(D6; D9; D10), then system (3) admits six equilibria
F0; F1; F2; F3; F4 and F5. F0; F1; F2; F3 and F5 are saddle points,F4 is a stable node.

20. If max(D7; D8) < D < min(D4; D5; D6; D9), then system (3) admits six equilibria
F0; F1; F2; F3; F4 and F5, all of them are saddle points.

21. If max(D4; D6; D7; D8) < D < min(D2; D9), then system (3) admits �ve equilibria
F0; F1; F2; F3 and F5. F0; F1 and F5 are saddle points,F2 and F3 are stable nodes.

22. If max(D5; D6; D7; D8; D10) < D < min(D4; D9), then system (3) admits seven equilib-
ria F0; F1; F2; F3; F4; F5 and F6. F0; F1; F2; F5 and F6 are saddle points,F3 and F4 are
stable nodes.

23. If max(D5; D6; D7; D8) < D < min(D9; D10), then system (3) admits six equilibria
F0; F1; F2; F3; F4 and F5. F0; F1; F2 and F5 are saddle points, F3 and F4 are stable
nodes.

24. If max(D6; D7; D8) < D < min(D4; D5; D9), then system (3) admits six equilibria
F0; F1; F2; F3; F4 and F5. F0; F1; F2; F4 and F5 are saddle points,F3 is a stable node.

C) If min(D1; D2) < D < max(D1; D2), then

(i) If D1 < D < D 2, then
1. if D1 < D < D 10, then system (3) admits three equilibriaF0; F2 and F4. F0 and

F2 are two saddle points, however,F4 is a stable node.
2. if max(D1; D10) < D < D 4, then system (3) admits four equilibria F0; F2; F4 and

F6. F0; F2 and F6 are three saddle points, however,F4 is a stable node.
3. if max(D1; D4) < D < D 2, then system (3) admits two equilibriaF0 and F2. F0 is

a saddle point, however,F2 is a stable node.
(ii) If D2 < D < D 1, then

1. if D2 < D < D 9, then system (3) admits three equilibriaF0; F1 and F3. F0 and F1
are two saddle points, however,F3 is a stable node.

2. if max(D2; D9) < D < D 3, then system (3) admits four equilibria F0; F1; F3 and
F7. F0; F1 and F7 are three saddle points, however,F3 is a stable node.

3. if max(D2; D3) < D < D 1, then system (3) admits two equilibriaF0 and F1. F0 is
a saddle point, however,F1 is a stable node.

D) If max(D1; D2) < D , then model (3) admits only F0 as an equilibrium point. F0 is a stable
node.

7 Numerical Simulations

We validated the obtained results by some numerical simulations on a system that uses Monod
growth rates and takes into account the reversible inhibition between species:

8
>>>>>>>>><

>>>>>>>>>:

_s = D (sin � s) �
4 s x1

(1 + s)(1 + x2)
�

4 s x2

(2 + s)(1:5 + x1)
;

_x1 =
�

4 s
(1 + s)(1 + x2)

� D � 0:2v1

�
x1;

_x2 =
�

4 s
(2 + s)(1:5 + x1)

� D � 0:1v2

�
x2;

_v1 = (0 :2x1 � D )v1;
_v2 = (0 :1x2 � D )v2:

(8)

One can readily check that the functional responses satisfy AssumptionsA1 to A3 .
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7.1 First case

In Fig. 2, if the dilution rate D = 4 satisfying D2 = 2 :42 < D 1 = 3 :8 < D = 4, each solution
with the initial condition inside the whole domain converges to the equilibrium F0, from where the
extinction of the two species. However, in Fig. 3, forD = 2 :5 satisfying D2 = 2 :3 < D < D 1 = 3 :7,
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Figure 2 : x1 � x2 behaviour for D = 4 ; sin = 19 :8.

each solution with the initial condition inside the whole domain is converging to the equilibrium
F1, from where only species 1 can survive.
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Figure 3 : x1 � x2 behaviour for D = 2 :5; sin = 12 :38.

In Fig. 4, for D = 1 :2 satisfying then D = 1 :2 < D 2 = 2 < D 1 = 3 :42, each solution with the
initial condition inside the red domain converges to the equilibrium F2 and each solution with the
initial condition inside the blue domain converges to the equilibrium F1. The competitive exclusion
principle is ful�lled here since at least one species goes extinct. As seen in Fig. 4, initial species
concentrations are important in determining which is the winning species.
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Figure 4 : x1 � x2 behaviour for D = 1 :2; sin = 5 :94.
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7.2 Second case

In Fig. 5, if D = 4, which satis�es D2 = 2 :5 < D 1 = 3 :87 < D = 4, each solution with the initial
condition inside the whole domain is converging to the equilibriumF0, from where the extinction
of the two species.

However, in Fig. 6, if D = 2 :5, which satis�es D9 = 0 :16 < D 7 = 0 :36 < D 2 = 2 :41 < D <
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Figure 5 : x1 � x2 behaviour for D = 4 ; sin = 30.

D1 = 3 :8, each solution with the initial condition inside the whole domain is converging to the
equilibrium F1, from where only species 1 can survive.
In Fig. 7, if D = 2, which satis�es D8 = 0 :09 < D 9 = 0 :2 < D 7 = 0 :34 < D = 2 < D 3 = 3 :33 <
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Figure 6 : x1 � x2 behaviour for D = 2 :5; sin = 18 :75.

D2 = 2 :35 < D 1 = 3 :75, each solution with the initial condition inside the red domain converges to
the equilibrium F2 and each solution with the initial condition inside the blue domain converges to
the equilibrium F3. The competitive exclusion principle is ful�lled here since at least one species
goes extinct.

7.3 Third case

In Fig. 8, if D = 4, which satis�es D2 = 2 :55 < D 1 = 3 :91 < D = 4, each solution with the initial
condition inside the whole domain is converging to the equilibriumF0, from where the extinction
of the two species.
However, in Fig. 9, if D = 2 :5, which satis�es D2 = 2 :49 < D < D 1 = 3 :86, each solution with

the initial condition inside the whole domain is converging to the equilibrium F3, from where only
species 1 can survive.
In Fig. 10, if D = 1 :2, which satis�es D6 = 0 :23 < D = 1 :2 < D 2 = 2 :32 < D 3 = 3 :53 < D 1 =

3:72, each solution with the initial condition inside the red domain converges to the equilibriumF2
and each solution with the initial condition inside the blue domain converges to the equilibrium
F3. The competitive exclusion principle is ful�lled here since at least one species goes extinct.
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Figure 7 : x1 � x2 behaviour for D = 2 ; sin = 15.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10
0

10

20

30

40

50

Figure 8 : x1 � x2 behaviour for D = 4 ; sin = 45.

Figure 9 : x1 � x2 behaviour for D = 2 :5; sin = 31 :25.

In the case where we have two equilibrium points which are locally stable (Figures 4,7 and 10),
the initial concentrations of species are important in determining which species is the winner. If
the initial concentration is inside the attraction domain of the equilibrium point corresponding to
the persistence of species 1, then species 2 becomes extinct, and if the initial concentration is inside
the attraction domain of the equilibrium point corresponding to the persistence of species 2, then
species 1 becomes extinct.

8 Conclusion

The CEP has been widely studied in the scienti�c literature. In 1932, Gause conducted experi-
ments on the growth of yeasts and paramecia [10]. He deduced that the most competitive species
consistently wins the competition. In 1960, this principle became quite popular in ecology. In fact,
the CEP is still valid for many kinds of ecosystems [12]. Hsu et al. [15] in 1977, were among the
�rst to study the problem of competition in a chemostat. They considered n populations in com-
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