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Abstract: The dynamics of a nonlinearly damped Duffing-Van der Pol (DVP) os-
cillator driven by a frequency modulated (FM) signal is numerically investigated as
a function of the amplitude (g) and frequency (Ω) of the high-frequency signal and
damping exponent (P ). FM signals are basically classified into two types, namely,
Narrow-Band FM (NBFM) and Wide-Band FM (WBFM). We considered both sig-
nals to study the dynamics of the system. As the amplitude g and frequency Ω of
the high-frequency signal are varied, with other parameters at a constant value, a va-
riety of features such as different routes to chaos, periodic windows, period-doubling
and reverse period-doubling bifurcations, periodic bubbles, hysteresis and vibrational
resonance are found to occur due to the signals. Our results show many striking
departures from the behaviour of a linearly damped system with the FM signal. A
bifurcation diagram, phase portrait, Poincaré map, resonance plot are also plotted to
show the manifestation of periodic and chaotic orbits and resonance phenomenon.

Keywords: DVP oscillator; nonlinear damping; FM signal; hysteresis; chaos; vi-

brational resonance.

Mathematics Subject Classification (2010): 34C55, 34C25, 37D45, 37G35,
70K30.

∗ Corresponding author: mailto:veerchinnathambi@gmail.com

c© 2021 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua471

mailto: veerchinnathambi@gmail.com
http://e-ndst.kiev.ua


472 B. BHUVANESHWARI, S. VALLI PRIYATHARSINI, V. CHINNATHAMBI AND S. RAJASEKAR

1 Introduction

There have been enormous contributions to the study of the dynamical behaviours in
linearly damped and driven dynamical systems, including various routes to chaos, crises
and resonance phenomenon [1–4]. However, there is a need for research on various
dynamical behaviours in nonlinearly damped driven dynamical systems. Exploring the
features of various dynamics in systems with different types of setup of the external
force is of great importance. Recently, Cheib et al. [5] studied the dynamics of a two-
degree-of-freedom nonlinear mechanical system under the action of harmonic excitation.
Khachnaoni [6] investigated the existence of homoclinic orbits for damped vibration
system with small forcing terms and Kyziol and Okninski [7] found the periodic steady-
state solutions of the periodically driven Duffing-Van der Pol oscillator using the Krylov-
Bogoliubov-Mitropolsky approach. It is of considerable interest to study the system
under the influence of FM signal. The study of such signal will be helpful in creating
and controlling nonlinear dynamical behaviours [8–10]. The nonlinear damping term is
taken to be proportional to the power of the velocity in the form γẋ | ẋ |P−1. A similar
nonlinear damping term was used previously by researchers [3, 11–13].

The FM signal is basically classified into two types, namely, Narrow Band FM
(NBFM) and Wide Band FM (WBFM) or Broad band FM. An NBFM signal is the
FM signal with a smaller bandwidth. The modulation index (Mf ) of the NBFM signal
is small as compared to one radian. Hence the spectrum of the NBFM signal consists
of the carrier and upper and lower side-bands. The NBFM signal can be expressed
mathematically as

S1(t) = f(cosωt− g sinΩt sinωt), Ω >> ω, (1a)

where the amplitude f of the low-frequency (ω) periodic signal is modulated by the
high-frequency (Ω) periodic signal with amplitude g. With the use of the formula
sinΩt sinωt = 1

2
[cos(Ω− ω)− cos(Ω + ω)], it takes the form

S1(t) = f cosωt+
fg

2
[cos(Ω + ω)t− cos(Ω− ω)t] , Ω >> ω. (1b)

When Ω >> ω, the frequency modulated signal can also be treated as consisting of a
low-frequency signal f cosωt and two high-frequency signals with frequencies (Ω + ω)
and (Ω − ω). This signal is used in FM mobile communications such as police wireless,
ambulances, taxicabs, etc. For large value of the modulation index, the FM signal ideally
contains the carrier and an infinite number of side bands located symmetrically around
the carrier. Such an FM signal has infinite bandwidths and is called the Wide Band
FM (WBFM) signal. The modulation index of the WBFM is higher than 1. This signal
is used in the entertainment broadcasting applications such as FM radio, TV etc. The
expression for the WBFM signal is complex since it is sine of sine function. The only
way to solve this equation is by using the Bessels function. The mathematical expression
for the WBFM signal is

S2(t) = f sin(ωt+ g sinΩt), Ω >> ω. (2)

The equation of motion of a nonlinearly damped DVP oscillator with the NBFM signal
is given by

ẍ+ γẋ(1− x2) | ẋ |P−1 −α2x+ βx3 = S1(t) (3)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (5) (2021) 471–480 473

and with the WBFM signal is given by

ẍ+ γẋ(1− x2) | ẋ |P−1 −α2x+ βx3 = S2(t), (4)

where α is the natural frequency, β is the constant parameter which plays the role
of a nonlinear parameter, γ > 0 is the damping parameter of the system, P is the
damping exponent, S1(t) and S2(t) are the NBFM and WBFM signals. Recently, many
researchers used these signals to analyze the dynamical behaviours of various dynamical
systems [8–10]. In the present study, we wish to numerically analyze the dynamical
behaviours in a nonlinearly damped DVP oscillator driven by the NBFM and WBFM
signals.

The paper is structured as follows. Section 2 gives the dynamical behaviours of
a nonlinearly damped DVP oscillator subjected to the NBFM signal. We show the
occurrence of various dynamical behaviours such as bifurcations and chaos, hysteresis
and vibrational resonance phenomena due to the presence of the NBFM signal. We take
up the system with the WBFM signal in Section 3. Finally, the conclusion of the research
work is given in Section 4.

2 Dynamical Behaviours of the System with NBFM Signal

2.1 Bifurcations and chaos

The aim of this section is to seek numerically the dynamical behaviours of the system
(Eq.(3)) when the control parameter g evolves for different values of the damping ex-
ponent P . When the control parameter g is varied and a bifurcation takes place, a
qualitative change of the system happens.

Eq.(3) and Eq.(4) are solved by the fourth-order Runge-Kutta method with the time
step size ∆t = (2π/ω)/1000. The initial conditions in the numerical calculations are fixed
at x(0) = 0.1 and ẋ(0) = 0.0. Numerical solutions corresponding to first 500 drive cycles
are left as transient. We analysed the behaviour of the systems (Eq.(3) and Eq.(4)) by
varying the amplitude g of the signals with the fixed values of f, ω and Ω. The numerical
results are demonstrated through the bifurcation diagram, phase portrait, Poincaré map
and response amplitude. For our numerical computation, we fix the parameters at α=1.0,
β=5.0, γ=0.4, ω=0.1,Ω=5.0, P=1.0,1.5 and 2.0 and the signal amplitudes f and g are
varied from small values. From our numerical analysis, we find the following.

First, we show the effect of the control parameter g with the fixed value of f=0.2 and
P=1.0,1.5 and 2.0. Fig.1 shows the bifurcation diagram of the system (Eq.(3)) with f=0.2
and P=1.0,1.5 and 2.0. In Fig.1(a), for P=1.0 no chaotic behaviour is observed. But
for P=1.5 and 2.0 various dynamical behaviours such as a period-doubling bifurcation
leading to chaotic behaviour, periodic windows and a reverse period-doubling bifurca-
tion occur, which is clearly evident in Fig.1(b) and Fig.1(c). Magnification of a part of
the bifurcation diagram of Fig.1(c) is shown in Fig.1(d). Fig.1(d) shows the bifurcation
diagram where f is set to 0.2 and P=2.0, while g is varied. For small values of g the coex-
istence of two limit cycle orbits occurs. As the parameter g is increased, both the orbits
exhibit a transcritical bifurcation and a cascade of period-doubling bifurcation leading to
chaotic motion. A transcritical bifurcation occurs at g=2.3174. The period-1,2,4,8 and
16 orbits are found in the intervals (0-2.4055), (2.4055-2.4481), (2.4481-2.4588), (2.4588-
2.4603) and (2.4603-2.4626), respectively. The onset of chaos is found at f=2.4632. An
example of the chaotic orbit at g = 2.95 and the corresponding Poincaré map are shown
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Figure 1: (a-c) Bifurcation diagrams for few values of P with f = 0.2. (d) Magnification of
a part of the bifurcation diagram of Fig.1(c). The other parameter values are α = 1.0, β =
5.0, γ = 0.4, Ω = 5.0 and ω = 0.1.
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Figure 2: (a) Chaotic orbit for g = 2.95 and (b) the corresponding Poincaré map.

in Fig.2. A feature of the chaotic regime is the presence of windows of periodic solutions
interspersed throughout the range of their existence. The period-3 window occurs for
g ∈ (2.495, 2.498), in which there is no chaotic behaviour. It is interesting, as the control
parameter g is increased in the range g ∈ (2.44, 2.48). In Fig.1(d), we also observe that
the two bands of the chaotic attractor merge into a single band when the amplitude g
is gradually increased beyond g=2.4632. In Fig.1(d), we can see that for fixed f=0.2,
when g is increased through g=2.4750, the chaotic bands start to merge into a large
one. Another type of bifurcation which is seen in Fig.1(d) is the occurrence of sudden
widening or sudden increase in the size of the attractor at g=2.8012.

Fig.3(a) shows the bifurcation phenomenon for g ∈ [2.490, 2.500]. We see that just
above gc = 2.49462, there is a stable period-3T , while just below gc there is chaos. We
have observed that the system (Eq.(3)) also admits the intermittency route to chaos for
suitable range of parameters. For example, we have observed that for f=0.2 and P=2.0,
and g in the range g ∈ (2.49462, 2.49458), the type-I intermittency occurs through a
transition from the period-3 window to chaos via the intermittency (type-I) across the
saddle node boundary (g = 2.49462). The intermittency signature is shown in Fig.3(b)
and Fig.3(c) where the periodic oscillations are interrupted by intermittent amplitude
bursts in the range g ∈ (2.49462, 2.49458) as g is decreased, with further decrease in the
amplitude g, the system gives birth to fully developed chaos which is shown in Fig.3(d).
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Figure 3: (a) Bifurcation diagram of the system (Eq.(3)) in the intermittency region. (b-d)
x(n) versus n, illustrating the intermittency route to chaos.

2.2 Hysteresis

In this section, we numerically analyze the occurrence of another dynamical behaviour
such as the hysteresis phenomenon, that is, the possibility of jumping through the co-
existence of attractors in a way that is not reversible when we fix a parameter back to
its original value. It is present in the mechanical system, electromagnetism, chemical
kinetics, astrochemical cloud models and nonlinear optics. In particular, the hysteresis
phenomenon is observed in the generalized Ueda oscillator [14], modified Chua’s circuit
model [15], classical Morse oscillator [16] and the experimental study of Colpitt’s oscil-
lator [17]. The system (Eq.(3)) is found to show hysteresis for several ranges of values
of the parameters. We give an example, with f=0.2, P=2.0 and g=1.0,P=2.0. Fig.4(a)
shows the bifurcation behaviour for g ∈ [1.5, 3.0] where g is varied from 1.5 in the for-
ward direction. Fig.4(b) is obtained by varying g in the reverse direction from the value
3.0. Different bifurcation patterns are followed in Fig.4(a) and Fig.4(b). That is, the
system (Eq.(3)) exhibits the hysteresis behaviour when the control parameter g is varied
smoother from a small to a larger and then to a small value. In a similar manner, we
can observe the hysteresis phenomenon, when g is fixed at 1.0, P=2.0, while f is varied
from a small value. Hysteresis is realized when f is varied in the forward and reverse
directions in the interval f ∈ [0.8, 1.2], which is shown in Fig.4(c) and Fig.4(d). As shown
in Fig.4, the presence of hysteresis and the coexistence of multiple attractors allow us
to change the behaviour of the system (Eq.(3)) from chaos to regular by increasing the
amplitudes f and g from a small to larger value to a smaller value. The suppression and
enhancement of chaos are also observed which is clearly evident in Fig.4(a-d).

2.3 Vibrational resonance (VR)

In a nonlinear dynamical system driven by a biharmonic signal consisting of the low-
and high-frequencies ω and Ω with Ω >> ω, when the amplitude g or frequency Ω of the
high-frequency signal is varied, the response amplitude at the low-frequency ω exhibits
a resonance. This high-frequency induced resonance is called the Vibrational Resonance
(VR). Landa and McClintock [18] first reported the VR in a bistable system. Later
on, a theoretical treatment for analyzing the VR has been proposed by Gitterman [19].
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Figure 4: Bifurcation diagrams: (a) g is varied in the forward direction from zero with f = 0.2.
(b) g is varied in the reverse direction from 3.0 with f = 0.2. Bifurcation diagrams: (c) f is
varied in the forward direction from zero with g = 1.0. (d) f is varied in the reverse direction
from 1.2 with g = 1.0. The values of the other parameters in Eq.(3) are P = 2.0, α = 1.0, β =
5.0, ω = 0.1,Ω = 5.0 and γ = 0.4.

After these seminal works, the features of this resonance have been studied theoretically,
numerically and experimentally in a variety of systems [20, 21].

In addition to the hysteresis behaviour, the system described by Eq.(3) also exhibits
the phenomenon of VR, when the amplitude g and frequency Ω of the high-frequency
signal are varied. To quantify the occurrence of the VR, we use response amplitude
(Q) of the system (Eq.(3)) at the signal frequency ω. The system (Eq.(3)) can be
numerically integrated using the fourth-order Runge-Kutta method with the time step
size T = (2π/ω)/1000. The first 103 drive cycles are left as transient and the values of
x(t) correspond to the response amplitude (Q). From the numerical solution of x(t), the
response amplitude is computed through with T = 2π/ω being the period of the response
and n taken as 500.

Q =
√

Q2
s +Q2

c/f, (5a)

where

Qs =
2

nT

∫ nT

0

x(t) sin(ωt)dt, (5b)

Qc =
2

nT

∫ nT

0

x(t) cos(ωt)dt. (5c)

First, we show the occurrence of the VR due to the control parameter g for a few
values of the damping exponent P with f = 0.2. The variation of numerically computed
Q against the control parameter g for three fixed values of P , namely, P = 0.9, 1.0 and 1.1
is shown in Fig.5(a). The values of other parameters are fixed as α = 1.0, β = 5.0, γ = 0.4,
ω=0.1, Ω=5.0 and f = 0.2. In Fig.5(a), for P = 0.9, 1.0 and 1.1, the response amplitude
Q is found to be maximum at g = 9.5, 8.95 and 8.0, respectively. The first striking result
is that the maximum of the resonance curve increases as P increases and at the same
time, its location is shifted towards a lower value of the high-frequency amplitude g.
Fig.5(b) shows the variation of numerically computed Q against the control parameter
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Figure 5: (a) Response amplitude Q versus g with f = 0.2. (b) Response amplitude Q versus
Ω with f = 0.2 for three values of P , namely, P = 0.9, 1.0, 1.1. The other parameters values are
α = 1.0, β = 5.0, γ = 0.4, ω = 0.1 and Ω = 5.0.

Ω for three values of P = 0.9, 1.0, 1.1, respectively. For all the values of P , multiple
resonances take place in the intervals 0.5 < Ω < 2.0 and no resonance is observed in
the intervals 0 < Ω < 0.5 and 2.0 < Ω < 5.0, which is clearly evident in Fig.5(b). At
Ω = 0.975, the maximum value of the response amplitude Q occurs for all the values of
P .

3 Dynamical Behaviours of the System with WBFM Signal

3.1 Bifurcations and chaos

For our numerical simulations, we fix the same parametric values as those previously used
in the system (Eq.(3)). Fig.6 shows the bifurcation diagram for three fixed values of P ,
namely, P=1.0,1.5 and 2.0 with f=0.2. Fig.6(a) shows the bifurcation pattern where f is
fixed at f=0.2 and P=1.0, while g is varied. As g is increased from zero, a stable period-
T (= (2π/ω)) orbit occurs which persists up to g=0.76231 and then it loses its stability
giving birth to a chaotic orbit. At f=0.86275, the chaotic orbit suddenly disappears
and the long-time motion settles to a periodic orbit. Fig.6(b) corresponds to P=1.5
and f=0.2 when the control parameter g is smoothly varied, the system (Eq.(4)) starts
with a chaotic motion followed by the reverse period-doubling and periodic windows.
The periodic behaviour is observed for 0.7625 < g < 0.86275. When the parameter
g is further increased from g=0.86275 one finds that the chaotic orbits persist for a
range of g values. At g=0.96472, the chaotic motion suddenly disappears and the long-
time motion settles to a periodic behaviour. The bifurcation diagram corresponding to
P=2.0 and g ∈ [0, 2] with f=0.2 is shown in Fig.6(c). When the control parameter g is
smoothly varied, the system (Eq.(4)) starts with period-3T orbit followed by a chaotic
orbit, periodic bubble orbit and reverse period-doubling bifurcation. At g=0.96472, the
chaotic motion disappears and the long-time motion settles to a periodic behaviour.
Magnification of a part of the bifurcation diagram of Fig.6(c) is shown in Fig.6(d). This
figure clearly shows the reverse period-doubling bifurcation, periodic bubble orbit, and
chaotic orbit. For clarity, the chaotic orbit in the (x− ẋ) plane and the strange attractor
in the Poincarémap of the system driven by the WBFM signal is presented in Fig.7. It is
important to note that no hysteresis behaviour has been detected while checking all the
bifurcation diagrams (Fig.6) in the system (Eq.(4)). But these bifurcation diagrams show
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Figure 6: (a-c) Bifurcation diagrams for a few values of P with f = 0.2. (d) Magnification of
a part of the bifurcation diagram of Fig.6(c). The other parameters values are α = 1.0, β =
5.0, γ = 0.4, Ω = 5.0 and ω = 0.1.

a great number of coexisting attractors (chaotic domain) intermingled with imbricated
windows made up of periodic windows of different periodicity, period doubling of both
types, periodic bubbles, reverse period doubling and sudden chaos.
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Figure 7: (a) One band chaotic orbit at g = 0.59 and (b) the double band chaotic orbit at
g = 0.63. Ths corresponding Poincaré maps are shown in Figs.7(b) and 7(d).

3.2 Vibrational resonance

In order to analyze the occurrence of the VR in the system (Eq.(4)) we treat g and Ω as
the control parameters. The response amplitude (Q) is calculated from the Eq.(5a).

When the system is driven by the WBFM signal, the variation of numerically com-
puted Q with g and Ω is shown in Fig.8. Fig.8(a) shows the variation of numerically
computed Q against the control parameter g for f=0.1 and P=0.1, 0.5 and 1.0. For all
the values of P , as g increases from 0, the value of Q increases and reaches a maximum
value at g = gV R = 6.05 and then decreases with further increase in g. For P = 0.1, 0.5
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and 1.0, the single resonance is observed at g = 6.05 with different Qmax = 0.541, 0.495
and 0.5. Fig.8(b) illustrates the variation of numerically computed Q with Ω for a few
values of P . The maximum value of peak is detected at three places for P = 0.1 and two
places at P = 1.0 and multiple peaks are observed for P = 0.5, which are clearly evident
in Fig.8(b).
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Figure 8: (a) Response amplitude Q versus g with f = 0.1. (b) Response amplitude Q versus
Ω with f = 0.1 for three values of P , namely, P = 0.1, 0.5, 1.0. The other parameter values
are α = 1.0, β = 5.0, γ = 0.4, ω = 0.1 and Ω = 5.0.

4 Conclusions

This paper reports the dynamics of a nonlinearly damped Duffing-Van der Pol oscillator
driven by a frequency modulated signal as a function of the amplitudes of the signal and
damping exponent. We considered both signals such as NBFM and WBFM to study the
dynamics of the system numerically. We demonstrated the effect of the amplitudes f and
g on the dynamics of the system with other parameters at a constant value. With the
variation of the amplitudes of the signal, the system exhibits period-doubling and reverse
period-doubling bifurcations, periodic windows, period bubbles, hysteresis, vibrational
resonance and chaotic orbits. Our results reveal many striking departures from the
behaviour of a linearly damped system with the FM signal. It is also found that the
FM signal suppresses the critical chaotic behaviour in some parameter ranges. The basic
properties of the dynamics of the system are analyzed by the bifurcation diagram, phase
portrait, Poincaré map and resonance plot. The additional features of the system in
terms of coherence resonance, parametric resonance, Ghost vibrational resonance etc,
deserve further study.
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