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Delay-Independent Stability Conditions

for a Class of Nonlinear Mechanical Systems

A.Yu. Aleksandrov ∗

Saint Petersburg State University, 7–9 Universitetskaya Nab., St.Petersburg, 199034, Russia

Received: May 17, 2021; Revised: September 10, 2021

Abstract: A mechanical system with linear gyroscopic forces and nonlinear homo-
geneous dissipative and positional forces is studied. The case is considered where
there is a time-varying delay in positional forces. With the aid of the decomposition
method and the Razumikhin approach, conditions are obtained ensuring that the
trivial equilibrium position of the system under investigation is asymptotically stable
for any nonnegative, continuous and bounded delay. Estimates for the convergence
rate of motions are derived. The developed approach is used in a problem of stabi-
lization of mechanical systems via controls with delay in a feedback law. An example
is given to demonstrate the effectiveness of the obtained results.

Keywords: mechanical system; nonlinear forces; stability; time-varying delay; de-
composition; stabilization.

Mathematics Subject Classification (2010): 34K20, 93D30.

1 Introduction

Systems of high-dimensional second-order differential equations are widely used as math-
ematical models of gyroscopic devices [1–3]. An effective approach to the analysis of
stability and other dynamic properties of such models consists of the decomposition of
the complete system into first-order precession and nutation subsystems.

The justification of the correctness of such a decomposition for linear stationary
gyroscopic systems was given in [1, 2] by the Lyapunov first method via the expansion
of the roots of the characteristic equations in series with respect to negative powers of a
large parameter. It was proved that, for sufficiently large values of the parameter, the
asymptotic stability of the isolated nutation and precession subsystems implies the same
property for the complete system.

∗ Corresponding author: mailto:a.u.aleksandrov@spbu.ru

c© 2021 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua447
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Another approach to the justification of decomposition of gyroscopic systems into
precession and nutation subsystems was proposed in [4]. This approach is based on the
Lyapunov direct method. Therefore, its application turned out to be effective not only
for linear time-invariant systems, but also for some classes of nonlinear and time-varying
systems (see [5–9]).

In particular, in [7], it was used for the stability analysis of mechanical systems with
linear gyroscopic forces and nonlinear homogeneous dissipative and positional forces. A
special form of decomposition was constructed and new conditions of the asymptotic
stability of equilibrium positions were found.

In the present paper, we will consider the same class of nonlinear mechanical systems
as in [7] under the additional assumption that there is a time-varying delay in positional
forces. Our objective is to study the impact of delay on the stability of equilibrium posi-
tions. It is well known (see, for instance, [10–12]) that an introduction of a delay might
destroy stability. With the aid of the decomposition method and a special technique for
the application of the Razumikhin theorem to nonlinear time-delay systems developed
in [13, 14], we will obtain conditions providing the asymptotic stability of equilibrium
positions for any nonnegative, continuous and bounded delay. In addition, we will derive
estimates for the convergence rate of motions. Moreover, we will show that the obtained
results can be effectively used for the stabilization of mechanical systems via controls
with delay in a feedback law.

2 Background and Problem Formulation

In this paper, R denotes the field of real numbers, Rn is the n-dimensional Euclidean
space with the associated norm ‖ · ‖ of a vector, the notation Rn×n is used for the vector
space of n× n matrices.

Definition 2.1 (see [15,16]) A function f(x) : Rn 7→ R is called homogeneous of the
order λ ∈ R if f(cx) = cλf(x) for any c > 0 and x ∈ Rn.

Remark 2.1 In the present contribution, the homogeneity with respect to the stan-
dard dilation is considered [16,17].

Let motions of a mechanical system be modeled by the equations

Aq̈(t) + (B(q̇(t)) +G)q̇(t) +Q(q(t)) = 0. (1)

Here q(t), q̇(t) ∈ Rn are the vectors of generalized coordinates and velocities, respectively,
A,G ∈ Rn×n are constant matrices, the entries of the matrix B(q̇) ∈ Rn×n are continuous
for q̇ ∈ Rn homogeneous functions of the order ν > 0, the components of the vector
Q(q) ∈ Rn are continuously differentiable for q ∈ Rn homogeneous functions of the order
µ > 1.

The system (1) has the trivial equilibrium position

q = q̇ = 0. (2)

Stability of this equilibrium position was studied in [7] with the aid of the decomposition
method. The auxiliary isolated subsystems

Gẏ(t) = −Q(y(t)), (3)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (5) (2021) 447–456 449

Aż(t) = −(B(z(t)) +G)z(t) (4)

were constructed, and the following constraints were imposed on the equations under
consideration.

Assumption 2.1 The inequality µ > ν + 1 holds.

Assumption 2.2 The matrix A is symmetric and positive definite, while the matrix
G is skew-symmetric and nonsingular.

Assumption 2.3 The function q̇>B(q̇)q̇ is positive definite.

Assumption 2.4 There exists a continuously differentiable homogeneous of the or-
der ν + 1 vector function w(z) ∈ Rn such that

∂w(z)

∂z
A−1Gz = B(z)z

for z ∈ Rn.

Assumption 2.5 The zero solution of the subsystem (3) is asymptotically stable.

Remark 2.2 Assumptions 2.2 and 2.3 imply that the system (1) is under the action
of linear gyroscopic forces −Gq̇, nonlinear homogeneous dissipative forces −B(q̇)q̇ and
nonlinear homogeneous positional forces −Q(q).

Let us note that nonlinear homogeneous forces are widely used in mathematical mod-
els of mechanical systems (see, e.g., [18–23]). Such forces can be related to both physical
configurations and purely nonlinear material properties. Moreover, nonlinear homoge-
neous functions provide smooth approximations of non-smooth forces [24].

Remark 2.3 From the conditions imposed on the matrix G, it follows that n should
be an even number.

Remark 2.4 A criterion for the fulfilment of Assumption 2.4 was obtained in [7].

In [7], it was proved that, under Assumptions 2.1–2.5, the equilibrium position (2) of
the system (1) is asymptotically stable.

Remark 2.5 It is known [7] that Assumption 2.1 cannot be relaxed.

The objective of this paper is to study the impact of delay in positional forces on the
stability of the equilibrium position. We consider the system

Aq̈(t) + (B(q̇(t)) +G)q̇(t) +Q(q(t)) +D(q(t− τ(t)) = 0, (5)

where the components of the vector D(q) ∈ Rn are continuously differentiable for q ∈ Rn
homogeneous functions of the order µ, τ(t) is a nonnegative, continuous and bounded
for t ≥ 0 delay, and the remaining notation is the same as for (1).

For a given delay τ(t), denote h = supt≥0 τ(t). Let the initial functions for the
solutions of (5) belong to the space C1([−h, 0],Rn) of continuously differentiable functions
ϕ(θ) : [−h, 0] 7→ Rn with the uniform norm

‖ϕ‖h = max
θ∈[−h,0]

(‖ϕ(θ)‖+ ‖ϕ̇(θ)‖) .

We will look for conditions ensuring the delay-independent asymptotic stability of
the equilibrium position (2) of the system (5).
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3 Stability Analysis

Instead of (3), construct a new isolated subsystem in the form

Gẏ(t) = −Q(y(t))−D(y(t)). (6)

Assumption 3.1 The zero solution of the subsystem (6) is asymptotically stable.

Theorem 3.1 Let Assumptions 2.1–2.4 and 3.1 be fulfilled. Then the equilibrium
position (2) of the system (5) is asymptotically stable for any nonnegative, continuous
and bounded for t ≥ 0 delay τ(t).

Proof. Define new variables by the formulae

z(t) = q̇(t), Gy(t) + w(z(t)) = Aq̇(t) +Gq(t),

where the vector function w(z) satisfies the conditions of Assumption 2.4.
We obtain the system

Gẏ(t) =−Q(y(t))−D(y(t)) +
(
Q(y(t))−Q

(
y(t)−G−1Az(t) +G−1w(z(t))

))
+
(
D(y(t))−D

(
y(t− τ(t))−G−1Az(t− τ(t)) +G−1w(z(t− τ(t)))

))
+
∂w(z(t))

∂z
A−1

(
B(z(t))z(t) +Q

(
y(t)−G−1Az(t) +G−1w(z(t))

))
+
∂w(z(t))

∂z
A−1D

(
y(t− τ(t))−G−1Az(t− τ(t)) +G−1w(z(t− τ(t)))

)
,

Aż(t) =− (B(z(t)) +G)z(t)−Q
(
y(t)−G−1Az(t) +G−1w(z(t))

)
−D

(
y(t− τ(t))−G−1Az(t− τ(t)) +G−1w(z(t− τ(t)))

)
.

(7)

For a solution (y>(t), z>(t))> of (7), denote by (y>t , z
>
t )> the restriction of the solu-

tion to the segment [t − h, t], i.e., (y>t , z
>
t )> : θ 7→ (y>(t + θ), z>(t + θ))>, θ ∈ [−h, 0].

Let
‖(y>t , z>t )>‖h = max

θ∈[−h,0]
‖(y>(t+ θ), z>(t+ θ))>‖.

The system (6) is homogeneous. Therefore, from Assumption 3.1 it follows (see
[15,16]) that, for any number γ1 > µ, there exists a continuously differentiable for y ∈ Rn
homogeneous of the order γ1 − µ+ 1 Lyapunov function V1(y) such that the inequalities

a1‖y‖γ1−µ+1 ≤ V1(y) ≤ a2‖y‖γ1−µ+1, (8)∥∥∥∥∂V1(y)

∂y

∥∥∥∥ ≤ a3‖y‖γ1−µ, V̇1
∣∣
(6)
≤ −a4‖y‖γ1

are valid for y ∈ Rn. Here ai > 0, i = 1, 2, 3, 4.
Furthermore, it should be noted that the zero solution of (4) is asymptotically stable,

and a Lyapunov function for this subsystem can be chosen as follows:

V2(z) =
(
z>Az

)(γ2−ν)/2
,
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where γ2 > ν + 1.
Next, construct the function

V (y, z) = V1(y) + ηV2(z), (9)

where η is a positive parameter. The function (9) is positive definite and satisfies the
estimates

a1‖y‖γ1−µ+1 + ηa5‖z‖γ2−ν ≤ V (y, z) ≤ a2‖y‖γ1−µ+1 + ηa6‖z‖γ2−ν

for y, z ∈ Rn, where a5, a6 are positive coefficients.
Consider its derivative along the solutions of (7). We obtain that there exists a

number δ > 0 such that

V̇
∣∣
(7)
≤ −a4‖y(t)‖γ1 − ηb1‖z(t)‖γ2

+b2

(
η‖y(t)‖µ‖z(t)‖γ2−ν−1 + ‖y(t)‖γ1−1‖z(t)‖

+‖y(t)‖γ1−µ‖z(t)‖µ + ‖y(t)‖γ1−µ‖z(t)‖2ν+1
)

+b3
(
‖y(t)‖γ1−µ + η‖z(t)‖γ2−ν−1

) ∥∥∥D (
y(t)−G−1Az(t) +G−1w(z(t))

)
−D

(
y(t− τ(t))−G−1Az(t− τ(t)) +G−1w(z(t− τ(t)))

)∥∥∥
for ‖(y>t , z>t )>‖h < δ. Here b1, b2, b3 are positive constants.

With the aid of the Young inequality, it can be verified that if δ and η are sufficiently
small and

max

{
1;

µ

2ν + 1

}
<
γ1
γ2
≤ µ

ν + 1
,

then

V̇
∣∣
(7)
≤ −1

2
a4‖y(t)‖γ1 − 1

2
ηb1‖z(t)‖γ2

+b3
(
‖y(t)‖γ1−µ + η‖z(t)‖γ2−ν−1

) ∥∥∥D (
y(t)−G−1Az(t) +G−1w(z(t))

)
−D

(
y(t− τ(t))−G−1Az(t− τ(t)) +G−1w(z(t− τ(t)))

)∥∥∥
for ‖(y>t , z>t )>‖h < δ.

Assume that the following conditions are fulfilled for a solution (y>(t), z>(t))> of (7):
(i) ‖(y>t , z>t )>‖h < δ,
(ii) V (y(θ), z(θ)) ≤ 2V (y(t), z(t)) for θ ∈ [t− h, t].
Using (ii) and the estimates (8), we arrive at the inequalities

‖y(θ)‖ ≤ c1
(
‖y(t)‖+ ‖z(t)‖

γ2−ν
γ1−µ+1

)
, (10)

‖z(θ)‖ ≤ c2
(
‖y(t)‖

γ1−µ+1
γ2−ν + ‖z(t)‖

)
(11)

for θ ∈ [t− h, t], where c1 and c2 are positive constants.
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Let γ1 = γ2µ/(ν + 1). Then γ1 − µ+ 1 > γ2 − ν. With the aid of (10), (11) and the
mean value theorem, it can be shown (see [13,14]) that∥∥∥D (

y(t)−G−1Az(t) +G−1w(z(t))
)

−D
(
y(t− τ(t))−G−1Az(t− τ(t)) +G−1w(z(t− τ(t)))

)∥∥∥
≤ c̃

(
‖y(t)‖γ1−µ+1 + ‖z(t)‖γ2−ν

) µ−1
γ1−µ+1+

1
γ2−ν ,

where c̃ = const > 0.
Applying the Young inequality once again, we obtain that, for an appropriate choice

of δ, the estimate

V̇
∣∣
(7)
≤ −1

3
a4‖y(t)‖γ1 − 1

3
ηb1‖z(t)‖γ2 (12)

holds. Hence the Lyapunov function (9) satisfies the conditions of the Razumikhin the-
orem (see [10]). Therefore, the zero solution of (7) is asymptotically stable for any
nonnegative, continuous and bounded delay. From the relationship between the vari-
ables y(t), z(t) and q(t), q̇(t), it follows that the equilibrium position (2) of the system
(5) possesses the same property.

4 Estimates of Motions

In this section, we will show that, with the aid of the Lyapunov function (9) and the
differential inequalities method (see [25,26]), estimates for the convergence rate of motions
of (5) to the equilibrium position (2) can be derived.

Let Assumptions 2.1–2.4 and 3.1 be fulfilled. Consider the function (9) with γ1 =
γ2µ/(ν + 1). According to the proof of Theorem 3.1, for an appropriate choice of η and
δ, the fulfilment of (i) and (ii) implies that (12) holds.

Using inequalities (8) and (12), we obtain

V̇
∣∣
(7)
≤ −dV

γ1
γ1−µ+1 (y(t), z(t)),

where d = const > 0.
Applying the approach developed in [14], one can verify the existence of positive

numbers ∆, α1, α2 such that if the initial conditions of a solution (y>(t), z>(t))> of (7)
satisfy the inequalities t0 ≥ 0, ‖(y>t0 , z

>
t0)>‖h < ∆, then

‖y(t)‖ ≤ α1(t− t0 + 1)−
1

µ−1 ,

‖z(t)‖ ≤ α2(t− t0 + 1)−ω (13)

for t ≥ t0, where

ω =
1

(µ− 1)(ν + 1)

(
µ− µ− ν − 1

γ2 − ν

)
. (14)

It is worth noting that, to obtain more precise estimate (13) in the sense of minimiza-
tion of the exponent, one should pass to the limit in (14) as γ2 →∞.

Taking into account the relationship between the variables y(t), z(t) and q(t), q̇(t), we
arrive at the following theorem.
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Theorem 4.1 Let Assumptions 2.1–2.4 and 3.1 be fulfilled. Then, for any ρ ∈ (0, 1)
and any nonnegative, continuous and bounded for t ≥ 0 delay τ(t), there exist positive
numbers ∆̃, β1, β2 such that if for a solution q(t) of (5) the inequalities t0 ≥ 0, ‖qt0‖h < ∆̃
hold, then

‖q(t)‖ ≤ β1(t− t0 + 1)−
1

µ−1 , ‖q̇(t)‖ ≤ β2(t− t0 + 1)−
ρµ

(µ−1)(ν+1)

for t ≥ t0.

5 Control Synthesis

Let the system (1) be of the form

Aq̈(t) + (B(q̇(t)) +G)q̇(t) +
∂Π(q(t))

∂q
= 0. (15)

Here Π(q) is a twice continuously differentiable for q ∈ Rn homogeneous of the order
µ+ 1 function. Thus, the positional forces in (15) are potential.

We will suppose that the potential energy Π(q) is a negative definite function. Then,
under Assumptions 2.2, 2.3, the equilibrium position (2) of (15) is unstable (see [2, 26]).

Next, consider the corresponding control system

Aq̈(t) + (B(q̇(t)) +G)q̇(t) +
∂Π(q(t))

∂q
= U, (16)

where U is a control vector. Our objective is to design a feedback control law stabilizing
the equilibrium position under the constraint that there exists a delay in the control
scheme.

Let
U = −ε‖q(t− τ(t))‖µ−1Gq(t− τ(t)). (17)

Here ε is a positive parameter.

Theorem 5.1 If Assumptions 2.1–2.4 are fulfilled, then the equilibrium position (2)
of the system (16) closed by the control (17) is asymptotically stable for any ε > 0 and
any continuous, nonnegative and bounded for t ≥ 0 delay.

Proof. To prove the theorem, it is sufficient to show the fulfilment of Assumption
3.1.

The corresponding subsystem (6) takes the form

ẏ(t) = −G−1 ∂Π(y(t))

∂y
− ε‖y(t)‖µ−1y(t). (18)

Consider the Lyapunov function

V1(y) = −Π(y). (19)

This function is positive definite. Differentiating (19) along the solutions of (18), we
obtain

V̇1
∣∣
(18)

= ε(µ+ 1)‖y(t)‖µ−1Π(y(t)) ≤ −ãε‖y(t)‖2µ,

where ã is a positive constant. Thus, the zero solution of (18) is asymptotically stable.
The application of Theorem 3.1 completes the proof.
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Remark 5.1 Theorem 5.1 guarantees the asymptotic stability of the equilibrium
position for any value of parameter ε. Hence, the control forces (17) may be arbitrary
small compared with the destabilizing potential forces.

6 Example

Consider the control system

q̈(t) + b‖q̇(t)‖ν q̇(t) +Gq̇(t)− ‖q(t)‖2q(t) = U, (20)

where n = 2, q(t) = (q1(t), q2(t))>,

G =

(
0 g
−g 0

)
,

b, g and ν are positive parameters, U = (u1, u2)> is a control vector.

It should be noted that from the results of [7] it follows that Assumption 2.4 is fulfilled
for the system (20), and the vector function w(z) can be defined by the formula

w(z) = b‖z‖νG−1z.

Applying Theorem 5.1, we obtain that, under the condition ν < 2, the control law

U = −ε‖q(t− τ(t))‖2Gq(t− τ(t))

stabilizes the equilibrium position q = q̇ = 0 of (20) for any positive values of b, g, ε and
any continuous, nonnegative and bounded for t ≥ 0 delay τ(t).

7 Conclusion

In the present paper, an approach to the decomposition of stability problem for a class
of nonlinear mechanical systems is developed. Instead of the stability analysis for the
original time-delay second order system (5), it is proposed to study stability for simpler
delay-free first order isolated subsystems (4) and (6). It is worth noting that, unlike
the classical decomposition conditions for linear gyroscopic systems [1, 2], to justify the
decomposition of (5), Theorem 3.1 does not require the presence of a large parameter
in the equations under study. It is shown that with the aid of the Lyapunov function
constructed in the proof of the theorem, estimates of convergence rate of motions can be
derived. An application of the developed approach to the control design for a mechanical
system is presented. An interesting direction for further research is an extension of the
obtained results to nonlinear mechanical systems with delay and switched force fields.
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1 Introduction

The use of classical control techniques (proportional, integral and/or derivative actions
control) requires knowing the system parameters in order to set the appropriate control
parameters which permit reaching the desired goal. Thus, errors and inaccuracies might
well happen during the process. Moreover, the control is hard due to the existing coupling
between the variables of the system (interaction between the variables to be controlled).
Yet nevertheless, using the so-called robust control methods including adaptive control
can help solve the problem. Recent contributions in adaptive control, both theoretical
and practical, have allowed to better understand adaptive systems [1–4]. The main
purpose of adaptive control is the synthesis of adaptation laws to automatically adjust
regulators of the control loops in order to achieve or maintain a given level of performance,
when the parameters of the process to be controlled are unknown or little known [5–9].
Indeed, a large research effort is invested in understanding the structural and functional
aspects of biological systems and in particular the processes of the human brain. This
led to try new ways which integrate the non-linearities and uncertainties inherent in the
real system. The fuzzy systems approach seems to be practical, and studies have shown
that certain classes have the quality of being universal function approximators [10–16].
This important property has opened a new way to use fuzzy systems in the field of
control [1–4]. Hence, several works are oriented towards combining fuzzy systems with
control techniques such as adaptive control. In these control schemes, fuzzy systems
are used to approximate non-linear functions. In this paper, an adaptive control based
on fuzzy systems is developed. Fuzzy systems are used to approximate the model of
the system to be controlled, and in order to compensate the effects of reconstruction
errors, we introduce a sliding mode term in the control law. The approximation theory
and the Lyapunov theory are used to establish a parametric adaptation law ensuring the
boundedness of all the signals of the system and the error of the fuzzy system parameters.

2 Description of The Sugeno Type Fuzzy System

The fuzzy system in its design consists of four main modules [17–20]: 1) the fuzzy rule
base, or knowledge base, contains the fuzzy rules describing the behavior of the system;
2) the fuzzy inference engine transforms, with the help of fuzzy reasoning techniques,
the fuzzy part resulting from the fuzzification into a new fuzzy part; 3) the fuzzification
transforms the physical input quantity into a fuzzy quantity; 4) the defuzzification trans-
forms the fuzzy quantity resulting from the inference into a physical quantity. There is a
great number of possibilities of realization of fuzzy systems with a multitude of choices
for each, and each combination of choices generates a class of fuzzy systems. In our
work, we are interested in the Sugeno type fuzzy system, initially developed by Sugeno
and Takagi for modeling of systems from numerical data [21]. In this case the conse-
quences of the rules are numerical functions, which depend on the current values of the
input variables. In this way, the defuzzification step required by other fuzzy systems is
skipped. As our goal is to develop a law of adaptation of the parameters of the fuzzy
system, it is therefore essential to give the analytical expression of the output of Sugeno’s
fuzzy system, to approximate any nonlinear function from numerical data.

Let us denote by xsf1 , . . . , xsfn the inputs of Sugeno’s fuzzy system, and by ysf its

output. For each variable xsfi is associated mi fuzzy sets F ji in universe of discourse Ui
such that for any xsfi in Ui, there exists at least one degree of membership. µF ji

(xsfi) 6= 0,
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where i = 1, 2, ..., n and j = 1, 2, ...,mi. The rule base of the fuzzy system includes
M =

∏n
i=1mi rules such as

Rl : if xsf1 isF
l1
1 and...and xsfi is F

li
i and...and xsfn isF

ln
n then ysf1(x) = al0+...+alnxfn .

(1)
Each fuzzy rule Rl corresponds to a combination of (F l11 , ..., F

li
i , ..., F

ln
n ) fuzzy sets.

In fact, the knowledge base contains all possible combinations of the fuzzy sets of the
input variables. In this case, the consequences of the rules are numerical functions,
which depend on the current values of the observation variables (xsf )i=1,...n. From
the previous set of rules, the expression for the final output is given by the following
relationship [16,18,22]:

ysf =

∑M
l=1 µlysfl∑M
l=1 µl

(2)

with

µ
l

=

n∏
i=1

µF lii xi , 1 ≤ li ≤ mi. (3)

This represents the degree of confidence or activation of the rule Rl. Since each rule has
a numerical conclusion, the total output of the fuzzy system is obtained by calculating a
weighted average, and in this way, the time consumed by the defuzzification procedure
is avoided. The membership functions characterizing the fuzzy sets F ji are chosen based
on Gaussian functions defined by the following relation:

µF ji
(xsfi) = exp(−0.5(vji (xsfi − c

j
i ))), (4)

where c is the mean, v is the inverse of the variance. In the case where the parameters
of the premises are a priori fixed, the only adjustable parameters will be those of the
conclusion. Thus, the final output can be written in the following form:

ysf = W (xsf )A, (5)

where A is a vector of parameters aji , and W (xsf ) is a vector of fuzzy basis functions,
l = 1, ...,M ; i = 1, ..., n; and 1 ≤ li ≤ mi.

3 Adaptive Control Based on Fuzzy Systems

3.1 Formulation of the problem

Let us define a nonlinear system by the collection of m differential equations of order n
such as

ui = Fi(X)x
(n)
i +Gi(X), (6)

yi = xi; i = 1, ...,m, X = [x(n−1), ..., x]T , x = [x1, ..., xm]T , u = [u1, ..., um]T ,
and y = [y1, ..., ym]T are, respectively, the state vector, the input vector and the output
vector. Moreover, we assume that the time derivative of Fi(X) verifies the following
condition:

|Fi(X)| ≤ Fi0‖X‖, (7)

where Fi0 is a known positive constant. To help establishing the control law, we introduce
the following definitions:
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– The tracking error vector ei = [ei ėi ... e
(n−1)
i ]T ∈ Rm with ei = xid − xi.

– The filtered tracking error

si = (
∂

∂t
+ λ)(n−1)ei (8)

can be written as si = Ci ei0, where Ci = [λ(n−1) (n− 1)λn−2 ... 1].
– The reference signal

y
(n)
ir = x

(n)
id + Cir ei (9)

with Cir = [0 λ(n−1) (n− 1)λ(n−2) ...(n− 1)λ] and x
(n)
id being the nth derivative of

the reference xid.
To synthesize the control law, the functions Fi(X) and Gi(X) are replaced by two

Sugeno fuzzy systems of the form W (X)θ such as

Fi(X) = Wfi(X)θfi + εfi (10)

Gi(X) = Wgi(X)θgi + εgi, (11)

where εfi and εgi are the reconstruction errors of functions Fi(X) and Gi(X) such that [4]

|εfi | ≤ ε̄fi (12)

|εgi | ≤ ε̄gi . (13)

We denote the estimate of the function Fi(X) by F̂i(X) and Gi(X) by Ĝi(X) such
that

F̂i(X) = Wfi(X)θ̂fi (14)

Ĝi(X) = Wgi(X)θ̂gi . (15)

The adaptive fuzzy control problem is posed as follows. For the nonlinear system defined
by equation (6), determine the adjustment laws of the parameters of the two fuzzy
systems that allow to estimate, online, the functions Fi(X) and Gi(X) as well as the
adequate control ui such that the tracking error converges asymptotically to zero.

3.2 Synthesis of the control law

Our goal is to design a control such that the tracking error converges asymptotically to
zero. Thus, this control is given by

ui = kidsi +
1

2
Fi0 ‖X‖ si +Wfi(X)θ̂fiy

(n)
ir +Wgi(X)θ̂gi +Kisign(si), (16)

where Ki is the sliding mode term, it is given by

Ki = ε̄fi |y
(n)
ir |+ ε̄gi . (17)

The parameters of the fuzzy systems are adjusted by the following adaptation laws:

˙̂
θfi = ηfiW

T
fi(X)siy

(n)
ir , (18)

˙̂
θgi = ηfiW

T
gi(X)si. (19)

The schematic diagram of adaptive control based on fuzzy systems is shown in Figure
1.
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Figure 1: Structure of adaptive control based on fuzzy systems.

4 Study of the Stability

Using the control law (16) and the dynamic model of the nonlinear system (6), and

knowing that y
(n)
ir = y

(n)
i + ṡi, the dynamics of the error is given by

Fiṡi = −kidsi−
1

2
Fi0 ‖X‖ si−Wfi(X)θ̃f

i
y

(n)
ir −Wgi(X)θ̃gi−kisign(si)+εfiy

(n)
ir +εgi , (20)

where θ̃fi and θ̃gi are the parametric errors, they are given by θ̃fi = θ̂fi − θ̄fi and θ̃gi =

θ̂gi − θ̄gi with θ̄fi and θ̃gi being the parameter vectors for the reconstruction errors to
be zero.

Let the following Lyapunov function:

V =
1

2
s2
iFi +

1

2
(θ̃Tf

i
η−1
fi
θ̃f
i
) +

1

2
(θ̃Tg

i
η−1
gi θ̃gi ). (21)

By deriving (21) with respect to time, we obtain

V̇ =
1

2
s2
iFi + siFiṡi + θ̃Tf

i
η−1
fi

˙̂
θfi + θ̃Tg

i
η−1
gi

˙̂
θgi . (22)

Replacing (20) in (22), we have

V̇ =
1

2
s2
i Ḟ i − s2

i kid −
1

2
s2
iFi0 ‖X‖ − siWfi(X)θ̃f

i
y

(n)
ir − siWgi(X)θ̃g

i

+ θ̃Tf
i
η−1
fi

˙̂
θfi + θ̃Tg

i
η−1
g
i

˙̂
θg
i

+ siεf
i
y

(n)
ir + siεgi − siKisign(si). (23)

To facilitate the demonstration, we make the following decomposition:
V̇1 = −s2

i kid,
V̇2 = 1

2s
2
i Ḟi − 1

2s
2
iFi0 ‖X‖,

V̇3 = siWfi(X)θ̃f
i
y

(n)
ir + θ̃Tf

i
η−1
f
i

˙̂
θf
i
− siWgi(X)θ̃g

i
+ θ̃Tg

i
η−1
g
i

˙̂
θg
i
.

Thus, the expression of V̇ is put in the following form:

V̇4 = siεf
i
y

(n)
ir + siεgi − siKisign(si),

V̇ = V̇1 + V̇2 + V̇3 + V̇4.
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Knowing that kd is a positive constant, we get V̇1 ≤ 0. Using condition (7), we have
V̇2 ≤ 0.

Following the adaptation laws in (18), and (19), we obtain V̇3 ≤ 0. According to the
expression of the slip mode term (16), it comes V̇4 ≤ 0. Hence, the time derivative of the
Lyapunov function verifies

V̇ ≤ 0. (24)

The inequality (24) implies that s converges asymptotically to zero and that all signals
in the system are bounded.

4.1 Application to the permanent magnet synchronous machine

The machine model is established by considering the commonly accepted simplifying
assumptions that the machine is of symmetric, unsaturated construction and that the
iron losses and space harmonics of the magnetic field are negligible. The dynamics of the
machine is represented by its rotor-related PARK model [23–25] so that the electrical
quantities appear in a continuous form, easy to process by the control algorithm. Thus,
this model is given by

vd = Rsid + Ld
did
dt − pLqΩiq,

vq = Rsiq + Lq
diq
dt + pLdΩid + pΩΦ

f
,

j dΩ
dt = Tem − Tr − FcΩ,

Tem = 3
2p(Φf

iq + (Ld − Lq)idiq),

(25)

where Φ
f

is the total permanent magnet flux, (Ld, Lq) are the forward and quadrature
inductances, (id, iq) are the stator current components, (vd, vq) are the stator voltage
components, Rs is the stator resistance, Ω is the rotational speed, Fc is the strongly
viscous coefficient, j is the moment of inertia, Tr is the resistive torque and p is the
number of pole pairs.

4.2 Speed control

In the case of a permanent magnet synchronous machine without salience (Ld = Lq)
and without dampers, the electromagnetic torque depends only on the q-axis current
component. The power input is optimized for a given torque if the disturbance current
id = 0, [26]. The control must maintain zero and adjust the torque with. Physically,
this strategy amounts to maintaining the armature reaction flux in quadrature with the
rotor flux produced by the system. The overall structure of this command is shown in
Figure 2. A coordinate transformation (dq-abc) is used to calculate the reference stator
currents. These currents are compared to the actual measured currents to set the control
of each inverter arm. Using the equilibrium equation between the driving torque and the
torque opposed by the mechanical part of the system, we can write

iq = F (Ω)
dΩ

dt
+G(Ω). (26)

The implementation of this command requires the approximation of the functions F (Ω)
and G(Ω) by the fuzzy systems, thus, this approximation is given by

F (Ω) = Wf (Ω)θf + εfΩ
, (27)

G(Ω) = Wg(Ω)θg + εgΩ
(28)
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Figure 2: Speed/position control structure by the adaptive control method based on fuzzy
systems.

with εfΩ
and εgΩ

being the reconstruction errors of functions Fi(Ω) and Gi(Ω) such that
|εfΩ| ≤ ε̄fΩ, |εgΩ| ≤ ε̄gΩ.

In this approximation, we choose two Sugeno fuzzy systems of order one having the
input. Three membership functions are associated to this input. Thus, we have three
rules for each fuzzy system.

The estimated functions generated by the fuzzy systems are given by

F̂ (Ω) = Wf (Ω)θ̂f , (29)

Ĝ(Ω) = Wg(Ω)θ̂g, (30)

where θ̂f and θ̂g are the internal parameters of the fuzzy systems, they are adjusted by
the following adaptation law:

˙̂
θf = ηfΩ

WT
f (Ω)sẏr, (31)

˙̂
θg = ηgΩW

T
g (Ω)s, (32)

where ηfΩ
and ηgΩ

are positive constants, s and ẏr are, respectively, the error and the

reference signal, their expressions are given by s = Ωref − Ω, ẏr = Ω̇ref .

From the estimated fuzzy functions, the law control has the following form:

iqref = kdΩs+
1

2
F0Ω ‖Ω‖ s+Wf (Ω)θ̂f ẏr +Wg(Ω)θ̂g + kΩsign(s), (33)

where kΩ is the gain of the slip mode term, its expression is given by kΩ = ε̄fΩ
|ẏr|+ ε̄gΩ

.
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4.3 Position control

The schematic diagram of this control is shown in Figure 2. Through fuzzy systems, the
functions F (θ̇) and G(θ̇) in equation (26) are approximated as follows:

F (θ̇) = Wf (θ̇)θf + εfθ , (34)

G(θ̇) = Wg(θ̇)θg + εgθ , (35)

with εfθ and εgθ being the reconstruction errors of functions F (θ̇) and G(θ̇) such that
|εfθ| ≤ ε̄fθ, |εgθ| ≤ ε̄gθ.

In our application, two Sugeno fuzzy systems of order one with three fuzzy rules
are used to approximate the functions F (θ̇) and G(θ̇). The fuzzy systems generate the
estimated functions F̂ (θ̇) and Ĝ(θ̇) such that

F̂ (Ω̇) = Wf (Ω̇)θ̂f , (36)

Ĝ(Ω̇) = Wg(Ω̇)θ̂g, (37)

where θ̂f and θ̂g are the internal parameters of the fuzzy systems, they are adjusted by
the following adaptation law:

˙̂θf = ηfθW
T
f (θ)sÿr, (38)

˙̂θg = ηgθW
T
g (θ)s, (39)

where s and ÿr are, respectively, the filtered error and the reference signal, they are given
by s = θ̇ref − θ̇ + λ(θref − θ), ÿr = θ̈ref + λ(θ̇ref − θ̇), whereas ηfθ and ηgθ are positive
constants. Based on the estimated fuzzy functions, the adaptive controller provides the
command iqref , which is given by

iqref = kdθs+
1

2
F0θ

∥∥∥θ̇∥∥∥ s+Wf (θ̇)θ̂f ÿr +Wg(θ̇)θ̂g + kθsign(s), (40)

where Kθ is the gain of the slip mode term, it is given by Kθ = ε̄fθ |ÿr|+ ε̄gθ .

5 Numerical Simulation

In this section, we present the results obtained from the simulation of the adaptive control
technique based on fuzzy systems applied to the permanent magnet synchronous machine.
The values of the tuning coefficients, imposing the desired dynamics, are gathered in
Tables 1 and 2.

ηfΩ ηgΩ kdΩ F0Ω ε̄fΩ ε̄gΩ
0.05 0.05 1 0.05 0.01 0.01

Table 1: Speed adjustment coefficients.
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ηfθ ηgθ kdθ F0θ ε̄fθ ε̄gθ λ
50.1 50.1 10 10 0.1 0.1 70.8

Table 2: Position adjustment coefficients.

Figure 3: Dynamic behavior of the MSAP during a start-up with load variation at time t =
0.7 s.
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Figure 4: Dynamic behavior of the MSAP during positioning with load variation at time t =
0.7 s.
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Figure 5: Dynamic behavior of the MSAP during a start-up with parametric variations at time
t = 0.8 s.
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Figure 6: Dynamic behavior of the MSAP during positioning with parametric variations at
time t = 0.8 s.

Figure 3 shows the responses obtained during a start-up for a speed setpoint of
300 rd/s with load variation. Figure 4 gives the responses obtained during positioning.
We note very interesting dynamic and static performances, the disturbance rejection is
effective, the decoupling of the d-q axes is not affected by the severe regime applied to the
machine. The speed and position drops are of the order of 0.076 and 0.03, respectively.
The times required to compensate for these are equal to 0.002s and 0.016s, respectively.
To evaluate the performance of this control scheme with respect to parametric variations,
we have tested the influence of parametric variations on the performance of the speed
and position control. We consider variations on the stator resistance, on the inductances
as well as on the magnet flux. The stator resistance is varied by 100, the inductances
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are varied by –50, and the magnet flux by –10. The obtained responses are shown in
Figures 5 and 6. From these results, we notice that the adaptive control based on fuzzy
systems presents a strong robustness towards parametric variations, which proves the
effectiveness of this control technique.

6 Conclusion

In this paper, we have presented and applied a new approach of adaptive control based on
fuzzy systems, in order to control the speed and position of the permanent magnet syn-
chronous machine. The fuzzy systems are used to approximate the non-linear functions,
which are determined by a self-learning or self-tuning according to a law that ensures
the global stability of the system. In the light of the recorded responses, the proposed
adaptive control based on fuzzy systems presents good performances. Indeed, the tests
carried out on the model of the synchronous machine with permanent magnets, allowed
us to judge positively the stability and the effectiveness of this algorithm.
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Abstract: The dynamics of a nonlinearly damped Duffing-Van der Pol (DVP) os-
cillator driven by a frequency modulated (FM) signal is numerically investigated as
a function of the amplitude (g) and frequency (Ω) of the high-frequency signal and
damping exponent (P ). FM signals are basically classified into two types, namely,
Narrow-Band FM (NBFM) and Wide-Band FM (WBFM). We considered both sig-
nals to study the dynamics of the system. As the amplitude g and frequency Ω of
the high-frequency signal are varied, with other parameters at a constant value, a va-
riety of features such as different routes to chaos, periodic windows, period-doubling
and reverse period-doubling bifurcations, periodic bubbles, hysteresis and vibrational
resonance are found to occur due to the signals. Our results show many striking
departures from the behaviour of a linearly damped system with the FM signal. A
bifurcation diagram, phase portrait, Poincaré map, resonance plot are also plotted to
show the manifestation of periodic and chaotic orbits and resonance phenomenon.

Keywords: DVP oscillator; nonlinear damping; FM signal; hysteresis; chaos; vi-

brational resonance.

Mathematics Subject Classification (2010): 34C55, 34C25, 37D45, 37G35,
70K30.

∗ Corresponding author: mailto:veerchinnathambi@gmail.com

c© 2021 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua471

mailto: veerchinnathambi@gmail.com
http://e-ndst.kiev.ua


472 B. BHUVANESHWARI, S. VALLI PRIYATHARSINI, V. CHINNATHAMBI AND S. RAJASEKAR

1 Introduction

There have been enormous contributions to the study of the dynamical behaviours in
linearly damped and driven dynamical systems, including various routes to chaos, crises
and resonance phenomenon [1–4]. However, there is a need for research on various
dynamical behaviours in nonlinearly damped driven dynamical systems. Exploring the
features of various dynamics in systems with different types of setup of the external
force is of great importance. Recently, Cheib et al. [5] studied the dynamics of a two-
degree-of-freedom nonlinear mechanical system under the action of harmonic excitation.
Khachnaoni [6] investigated the existence of homoclinic orbits for damped vibration
system with small forcing terms and Kyziol and Okninski [7] found the periodic steady-
state solutions of the periodically driven Duffing-Van der Pol oscillator using the Krylov-
Bogoliubov-Mitropolsky approach. It is of considerable interest to study the system
under the influence of FM signal. The study of such signal will be helpful in creating
and controlling nonlinear dynamical behaviours [8–10]. The nonlinear damping term is
taken to be proportional to the power of the velocity in the form γẋ | ẋ |P−1. A similar
nonlinear damping term was used previously by researchers [3, 11–13].

The FM signal is basically classified into two types, namely, Narrow Band FM
(NBFM) and Wide Band FM (WBFM) or Broad band FM. An NBFM signal is the
FM signal with a smaller bandwidth. The modulation index (Mf ) of the NBFM signal
is small as compared to one radian. Hence the spectrum of the NBFM signal consists
of the carrier and upper and lower side-bands. The NBFM signal can be expressed
mathematically as

S1(t) = f(cosωt− g sinΩt sinωt), Ω >> ω, (1a)

where the amplitude f of the low-frequency (ω) periodic signal is modulated by the
high-frequency (Ω) periodic signal with amplitude g. With the use of the formula
sinΩt sinωt = 1

2
[cos(Ω− ω)− cos(Ω + ω)], it takes the form

S1(t) = f cosωt+
fg

2
[cos(Ω + ω)t− cos(Ω− ω)t] , Ω >> ω. (1b)

When Ω >> ω, the frequency modulated signal can also be treated as consisting of a
low-frequency signal f cosωt and two high-frequency signals with frequencies (Ω + ω)
and (Ω − ω). This signal is used in FM mobile communications such as police wireless,
ambulances, taxicabs, etc. For large value of the modulation index, the FM signal ideally
contains the carrier and an infinite number of side bands located symmetrically around
the carrier. Such an FM signal has infinite bandwidths and is called the Wide Band
FM (WBFM) signal. The modulation index of the WBFM is higher than 1. This signal
is used in the entertainment broadcasting applications such as FM radio, TV etc. The
expression for the WBFM signal is complex since it is sine of sine function. The only
way to solve this equation is by using the Bessels function. The mathematical expression
for the WBFM signal is

S2(t) = f sin(ωt+ g sinΩt), Ω >> ω. (2)

The equation of motion of a nonlinearly damped DVP oscillator with the NBFM signal
is given by

ẍ+ γẋ(1− x2) | ẋ |P−1 −α2x+ βx3 = S1(t) (3)
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and with the WBFM signal is given by

ẍ+ γẋ(1− x2) | ẋ |P−1 −α2x+ βx3 = S2(t), (4)

where α is the natural frequency, β is the constant parameter which plays the role
of a nonlinear parameter, γ > 0 is the damping parameter of the system, P is the
damping exponent, S1(t) and S2(t) are the NBFM and WBFM signals. Recently, many
researchers used these signals to analyze the dynamical behaviours of various dynamical
systems [8–10]. In the present study, we wish to numerically analyze the dynamical
behaviours in a nonlinearly damped DVP oscillator driven by the NBFM and WBFM
signals.

The paper is structured as follows. Section 2 gives the dynamical behaviours of
a nonlinearly damped DVP oscillator subjected to the NBFM signal. We show the
occurrence of various dynamical behaviours such as bifurcations and chaos, hysteresis
and vibrational resonance phenomena due to the presence of the NBFM signal. We take
up the system with the WBFM signal in Section 3. Finally, the conclusion of the research
work is given in Section 4.

2 Dynamical Behaviours of the System with NBFM Signal

2.1 Bifurcations and chaos

The aim of this section is to seek numerically the dynamical behaviours of the system
(Eq.(3)) when the control parameter g evolves for different values of the damping ex-
ponent P . When the control parameter g is varied and a bifurcation takes place, a
qualitative change of the system happens.

Eq.(3) and Eq.(4) are solved by the fourth-order Runge-Kutta method with the time
step size ∆t = (2π/ω)/1000. The initial conditions in the numerical calculations are fixed
at x(0) = 0.1 and ẋ(0) = 0.0. Numerical solutions corresponding to first 500 drive cycles
are left as transient. We analysed the behaviour of the systems (Eq.(3) and Eq.(4)) by
varying the amplitude g of the signals with the fixed values of f, ω and Ω. The numerical
results are demonstrated through the bifurcation diagram, phase portrait, Poincaré map
and response amplitude. For our numerical computation, we fix the parameters at α=1.0,
β=5.0, γ=0.4, ω=0.1,Ω=5.0, P=1.0,1.5 and 2.0 and the signal amplitudes f and g are
varied from small values. From our numerical analysis, we find the following.

First, we show the effect of the control parameter g with the fixed value of f=0.2 and
P=1.0,1.5 and 2.0. Fig.1 shows the bifurcation diagram of the system (Eq.(3)) with f=0.2
and P=1.0,1.5 and 2.0. In Fig.1(a), for P=1.0 no chaotic behaviour is observed. But
for P=1.5 and 2.0 various dynamical behaviours such as a period-doubling bifurcation
leading to chaotic behaviour, periodic windows and a reverse period-doubling bifurca-
tion occur, which is clearly evident in Fig.1(b) and Fig.1(c). Magnification of a part of
the bifurcation diagram of Fig.1(c) is shown in Fig.1(d). Fig.1(d) shows the bifurcation
diagram where f is set to 0.2 and P=2.0, while g is varied. For small values of g the coex-
istence of two limit cycle orbits occurs. As the parameter g is increased, both the orbits
exhibit a transcritical bifurcation and a cascade of period-doubling bifurcation leading to
chaotic motion. A transcritical bifurcation occurs at g=2.3174. The period-1,2,4,8 and
16 orbits are found in the intervals (0-2.4055), (2.4055-2.4481), (2.4481-2.4588), (2.4588-
2.4603) and (2.4603-2.4626), respectively. The onset of chaos is found at f=2.4632. An
example of the chaotic orbit at g = 2.95 and the corresponding Poincaré map are shown
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Figure 1: (a-c) Bifurcation diagrams for few values of P with f = 0.2. (d) Magnification of
a part of the bifurcation diagram of Fig.1(c). The other parameter values are α = 1.0, β =
5.0, γ = 0.4, Ω = 5.0 and ω = 0.1.
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Figure 2: (a) Chaotic orbit for g = 2.95 and (b) the corresponding Poincaré map.

in Fig.2. A feature of the chaotic regime is the presence of windows of periodic solutions
interspersed throughout the range of their existence. The period-3 window occurs for
g ∈ (2.495, 2.498), in which there is no chaotic behaviour. It is interesting, as the control
parameter g is increased in the range g ∈ (2.44, 2.48). In Fig.1(d), we also observe that
the two bands of the chaotic attractor merge into a single band when the amplitude g
is gradually increased beyond g=2.4632. In Fig.1(d), we can see that for fixed f=0.2,
when g is increased through g=2.4750, the chaotic bands start to merge into a large
one. Another type of bifurcation which is seen in Fig.1(d) is the occurrence of sudden
widening or sudden increase in the size of the attractor at g=2.8012.

Fig.3(a) shows the bifurcation phenomenon for g ∈ [2.490, 2.500]. We see that just
above gc = 2.49462, there is a stable period-3T , while just below gc there is chaos. We
have observed that the system (Eq.(3)) also admits the intermittency route to chaos for
suitable range of parameters. For example, we have observed that for f=0.2 and P=2.0,
and g in the range g ∈ (2.49462, 2.49458), the type-I intermittency occurs through a
transition from the period-3 window to chaos via the intermittency (type-I) across the
saddle node boundary (g = 2.49462). The intermittency signature is shown in Fig.3(b)
and Fig.3(c) where the periodic oscillations are interrupted by intermittent amplitude
bursts in the range g ∈ (2.49462, 2.49458) as g is decreased, with further decrease in the
amplitude g, the system gives birth to fully developed chaos which is shown in Fig.3(d).
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Figure 3: (a) Bifurcation diagram of the system (Eq.(3)) in the intermittency region. (b-d)
x(n) versus n, illustrating the intermittency route to chaos.

2.2 Hysteresis

In this section, we numerically analyze the occurrence of another dynamical behaviour
such as the hysteresis phenomenon, that is, the possibility of jumping through the co-
existence of attractors in a way that is not reversible when we fix a parameter back to
its original value. It is present in the mechanical system, electromagnetism, chemical
kinetics, astrochemical cloud models and nonlinear optics. In particular, the hysteresis
phenomenon is observed in the generalized Ueda oscillator [14], modified Chua’s circuit
model [15], classical Morse oscillator [16] and the experimental study of Colpitt’s oscil-
lator [17]. The system (Eq.(3)) is found to show hysteresis for several ranges of values
of the parameters. We give an example, with f=0.2, P=2.0 and g=1.0,P=2.0. Fig.4(a)
shows the bifurcation behaviour for g ∈ [1.5, 3.0] where g is varied from 1.5 in the for-
ward direction. Fig.4(b) is obtained by varying g in the reverse direction from the value
3.0. Different bifurcation patterns are followed in Fig.4(a) and Fig.4(b). That is, the
system (Eq.(3)) exhibits the hysteresis behaviour when the control parameter g is varied
smoother from a small to a larger and then to a small value. In a similar manner, we
can observe the hysteresis phenomenon, when g is fixed at 1.0, P=2.0, while f is varied
from a small value. Hysteresis is realized when f is varied in the forward and reverse
directions in the interval f ∈ [0.8, 1.2], which is shown in Fig.4(c) and Fig.4(d). As shown
in Fig.4, the presence of hysteresis and the coexistence of multiple attractors allow us
to change the behaviour of the system (Eq.(3)) from chaos to regular by increasing the
amplitudes f and g from a small to larger value to a smaller value. The suppression and
enhancement of chaos are also observed which is clearly evident in Fig.4(a-d).

2.3 Vibrational resonance (VR)

In a nonlinear dynamical system driven by a biharmonic signal consisting of the low-
and high-frequencies ω and Ω with Ω >> ω, when the amplitude g or frequency Ω of the
high-frequency signal is varied, the response amplitude at the low-frequency ω exhibits
a resonance. This high-frequency induced resonance is called the Vibrational Resonance
(VR). Landa and McClintock [18] first reported the VR in a bistable system. Later
on, a theoretical treatment for analyzing the VR has been proposed by Gitterman [19].
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Figure 4: Bifurcation diagrams: (a) g is varied in the forward direction from zero with f = 0.2.
(b) g is varied in the reverse direction from 3.0 with f = 0.2. Bifurcation diagrams: (c) f is
varied in the forward direction from zero with g = 1.0. (d) f is varied in the reverse direction
from 1.2 with g = 1.0. The values of the other parameters in Eq.(3) are P = 2.0, α = 1.0, β =
5.0, ω = 0.1,Ω = 5.0 and γ = 0.4.

After these seminal works, the features of this resonance have been studied theoretically,
numerically and experimentally in a variety of systems [20, 21].

In addition to the hysteresis behaviour, the system described by Eq.(3) also exhibits
the phenomenon of VR, when the amplitude g and frequency Ω of the high-frequency
signal are varied. To quantify the occurrence of the VR, we use response amplitude
(Q) of the system (Eq.(3)) at the signal frequency ω. The system (Eq.(3)) can be
numerically integrated using the fourth-order Runge-Kutta method with the time step
size T = (2π/ω)/1000. The first 103 drive cycles are left as transient and the values of
x(t) correspond to the response amplitude (Q). From the numerical solution of x(t), the
response amplitude is computed through with T = 2π/ω being the period of the response
and n taken as 500.

Q =
√

Q2
s +Q2

c/f, (5a)

where

Qs =
2

nT

∫ nT

0

x(t) sin(ωt)dt, (5b)

Qc =
2

nT

∫ nT

0

x(t) cos(ωt)dt. (5c)

First, we show the occurrence of the VR due to the control parameter g for a few
values of the damping exponent P with f = 0.2. The variation of numerically computed
Q against the control parameter g for three fixed values of P , namely, P = 0.9, 1.0 and 1.1
is shown in Fig.5(a). The values of other parameters are fixed as α = 1.0, β = 5.0, γ = 0.4,
ω=0.1, Ω=5.0 and f = 0.2. In Fig.5(a), for P = 0.9, 1.0 and 1.1, the response amplitude
Q is found to be maximum at g = 9.5, 8.95 and 8.0, respectively. The first striking result
is that the maximum of the resonance curve increases as P increases and at the same
time, its location is shifted towards a lower value of the high-frequency amplitude g.
Fig.5(b) shows the variation of numerically computed Q against the control parameter
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Figure 5: (a) Response amplitude Q versus g with f = 0.2. (b) Response amplitude Q versus
Ω with f = 0.2 for three values of P , namely, P = 0.9, 1.0, 1.1. The other parameters values are
α = 1.0, β = 5.0, γ = 0.4, ω = 0.1 and Ω = 5.0.

Ω for three values of P = 0.9, 1.0, 1.1, respectively. For all the values of P , multiple
resonances take place in the intervals 0.5 < Ω < 2.0 and no resonance is observed in
the intervals 0 < Ω < 0.5 and 2.0 < Ω < 5.0, which is clearly evident in Fig.5(b). At
Ω = 0.975, the maximum value of the response amplitude Q occurs for all the values of
P .

3 Dynamical Behaviours of the System with WBFM Signal

3.1 Bifurcations and chaos

For our numerical simulations, we fix the same parametric values as those previously used
in the system (Eq.(3)). Fig.6 shows the bifurcation diagram for three fixed values of P ,
namely, P=1.0,1.5 and 2.0 with f=0.2. Fig.6(a) shows the bifurcation pattern where f is
fixed at f=0.2 and P=1.0, while g is varied. As g is increased from zero, a stable period-
T (= (2π/ω)) orbit occurs which persists up to g=0.76231 and then it loses its stability
giving birth to a chaotic orbit. At f=0.86275, the chaotic orbit suddenly disappears
and the long-time motion settles to a periodic orbit. Fig.6(b) corresponds to P=1.5
and f=0.2 when the control parameter g is smoothly varied, the system (Eq.(4)) starts
with a chaotic motion followed by the reverse period-doubling and periodic windows.
The periodic behaviour is observed for 0.7625 < g < 0.86275. When the parameter
g is further increased from g=0.86275 one finds that the chaotic orbits persist for a
range of g values. At g=0.96472, the chaotic motion suddenly disappears and the long-
time motion settles to a periodic behaviour. The bifurcation diagram corresponding to
P=2.0 and g ∈ [0, 2] with f=0.2 is shown in Fig.6(c). When the control parameter g is
smoothly varied, the system (Eq.(4)) starts with period-3T orbit followed by a chaotic
orbit, periodic bubble orbit and reverse period-doubling bifurcation. At g=0.96472, the
chaotic motion disappears and the long-time motion settles to a periodic behaviour.
Magnification of a part of the bifurcation diagram of Fig.6(c) is shown in Fig.6(d). This
figure clearly shows the reverse period-doubling bifurcation, periodic bubble orbit, and
chaotic orbit. For clarity, the chaotic orbit in the (x− ẋ) plane and the strange attractor
in the Poincarémap of the system driven by the WBFM signal is presented in Fig.7. It is
important to note that no hysteresis behaviour has been detected while checking all the
bifurcation diagrams (Fig.6) in the system (Eq.(4)). But these bifurcation diagrams show
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Figure 6: (a-c) Bifurcation diagrams for a few values of P with f = 0.2. (d) Magnification of
a part of the bifurcation diagram of Fig.6(c). The other parameters values are α = 1.0, β =
5.0, γ = 0.4, Ω = 5.0 and ω = 0.1.

a great number of coexisting attractors (chaotic domain) intermingled with imbricated
windows made up of periodic windows of different periodicity, period doubling of both
types, periodic bubbles, reverse period doubling and sudden chaos.
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Figure 7: (a) One band chaotic orbit at g = 0.59 and (b) the double band chaotic orbit at
g = 0.63. Ths corresponding Poincaré maps are shown in Figs.7(b) and 7(d).

3.2 Vibrational resonance

In order to analyze the occurrence of the VR in the system (Eq.(4)) we treat g and Ω as
the control parameters. The response amplitude (Q) is calculated from the Eq.(5a).

When the system is driven by the WBFM signal, the variation of numerically com-
puted Q with g and Ω is shown in Fig.8. Fig.8(a) shows the variation of numerically
computed Q against the control parameter g for f=0.1 and P=0.1, 0.5 and 1.0. For all
the values of P , as g increases from 0, the value of Q increases and reaches a maximum
value at g = gV R = 6.05 and then decreases with further increase in g. For P = 0.1, 0.5
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and 1.0, the single resonance is observed at g = 6.05 with different Qmax = 0.541, 0.495
and 0.5. Fig.8(b) illustrates the variation of numerically computed Q with Ω for a few
values of P . The maximum value of peak is detected at three places for P = 0.1 and two
places at P = 1.0 and multiple peaks are observed for P = 0.5, which are clearly evident
in Fig.8(b).
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Figure 8: (a) Response amplitude Q versus g with f = 0.1. (b) Response amplitude Q versus
Ω with f = 0.1 for three values of P , namely, P = 0.1, 0.5, 1.0. The other parameter values
are α = 1.0, β = 5.0, γ = 0.4, ω = 0.1 and Ω = 5.0.

4 Conclusions

This paper reports the dynamics of a nonlinearly damped Duffing-Van der Pol oscillator
driven by a frequency modulated signal as a function of the amplitudes of the signal and
damping exponent. We considered both signals such as NBFM and WBFM to study the
dynamics of the system numerically. We demonstrated the effect of the amplitudes f and
g on the dynamics of the system with other parameters at a constant value. With the
variation of the amplitudes of the signal, the system exhibits period-doubling and reverse
period-doubling bifurcations, periodic windows, period bubbles, hysteresis, vibrational
resonance and chaotic orbits. Our results reveal many striking departures from the
behaviour of a linearly damped system with the FM signal. It is also found that the
FM signal suppresses the critical chaotic behaviour in some parameter ranges. The basic
properties of the dynamics of the system are analyzed by the bifurcation diagram, phase
portrait, Poincaré map and resonance plot. The additional features of the system in
terms of coherence resonance, parametric resonance, Ghost vibrational resonance etc,
deserve further study.
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Abstract: This paper is concerned with Cauchy problems for first-order systems of
impulsive linear ordinary differential equations with unknown right-hand sides, initial
conditions, and jumps of solutions at impulse points entering into the statement of
these problems which are assumed to be subjected to some quadratic restrictions.
From indirect noisy observations of their solutions on a finite system of intervals,
optimal, in a certain sense, estimates of images of unknown data under linear contin-
uous operators are obtained. It is shown how to apply the obtained results for finding
the guaranteed estimates of unknown coefficients of the nonlinear Gompers equation
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1 Introduction

In this paper, for Cauchy problems for systems of linear impulsive ordinary differential
equations, we propose a novel technique of finding optimal estimates of images of their
data under linear continuous operators. We assume that the right-hand sides of equations,
initial conditions, and jumps of solutions at impulse points entering into the statement
of these problems are unknown and belong to certain ellipsoids in the corresponding
function spaces.
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For solving such estimation problems, we need supplementary data (observations of
solutions of the above Cauchy problems). By observations of unknown solutions we mean
functions that are linear transformations of the same solutions distorted by additive
random noises. Such a kind of observations is motivated by the fact that unknown
solutions often cannot be observed directly. Here we use indirect noisy observations of
solutions on a finite system of intervals.

Under the condition that unknown correlation functions of noises in observations
belong to some special sets, it is established that such estimates and estimation errors are
expressed explicitly via solutions of special uniquely solvable systems of linear impulsive
ordinary differential equations.

For this, we first solve the problem of guaranteed (minimax) estimation of values of
linear functionals from the above-mentioned right-hand sides and obtain the boundary
value problems, not depending on the specific form of linear functionals, that generate
the guaranteed estimates. Further, we apply these results for obtaining the optimal
estimates.

Notice that this work is a continuation of our earlier studies set forth in [3] and [4],
where we elaborate the guaranteed (minimax) estimation method for the case of the
problem of estimation of linear functionals from unknown solutions and right-hand sides
of first order linear periodic systems of ordinary differential equations.

2 Preliminaries and Auxiliary Results

Let C denote the field of complex numbers, Λ∗ denote the matrix complex conjugate and
transpose of a matrix Λ. Let [t0, T ] be a closed interval of R, and {ti} be a given strictly
increasing sequence of impulse points in (t0, T ) such that t0 < t1 < · · · < tq < tq+1 := T.

A Cauchy problem for a system of first order linear impulsive differential equations
on [t0, T ] is a problem of the form

dx(t)

dt
= A(t)x(t) +B(t)f(t) for a.e. t ∈ (t0, T ], (1)

∆x |t=ti = Bix(ti) + Cigi, i = 1, . . . , q, x(t0) = Cx0, (2)

where A(t) = [aij(t)] is an n × n-matrix with aij(·) ∈ L2(t0, T ), B(t) = [bij(t)] is an
n × r-matrix with bij(·) being piecewise continuous on [0, T ], f(t) is a vector-function
such that f(t) ∈ Cr and f ∈ (L2(t0, T ))r, Bi, Ci, gi, C and x0 are n × n, n × k, k × 1,
n×m, and m×1 constant matrices, respectively, ∆x(t) |t=ti = x(t+i )−x(ti) denotes the

jumps of x(t) at the points of impulses ti, with x(t+i ) = limt→ti+ x(t).
By a solution of this problem, we mean a function x(t) ∈ A that is left continuous,

satisfies the equation (1) almost everywhere (a.e.) on (t0, T ], and the conditions (2),
where by A we denote a class of left continuous functions y(t) ∈ Cn defined on [t0, T ]
such that y(·) |(ti−1,ti)

∈ (W 1
2 (ti−1, ti))

n, i = 1, . . . , q + 1. Here W 1
2 (a, b) = {u(t) ∈

L2(a, b) such that du(t)
dt ∈ L

2(a, b)}.
Further we will assume that the following conditions are valid:

det(E +Bi) 6= 0, i = 1, . . . , q. (3)

Under the conditions (3), the problem (1), (2) as well as the problem

−dz(t;u)

dt
= A∗(t)z(t;u) + g(t) for a.e. t ∈ [t0, T ),
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∆z(t) |t=ti = −(E +B∗i )−1B∗i z(ti) + g′i, i = 1, . . . , q, z(T ) = z0,

that is adjoint of nonhomogeneous problem (1), (2), are uniquely solvable for any vector-
functions f(t) ∈ Cr, g(t) ∈ Cn such that f ∈ (L2(t0, T ))r, g ∈ (L2(t0, T ))n and for any
vectors gi ∈ Ck, g′i ∈ Cn x0 ∈ Cm, z0 ∈ Cn.

These assertions follow from the results contained in [6], [2], [5].

3 Statement of the Problem of Guaranteed Estimation of Linear Functionals
Defined on Unknown Cauchy Data

Let us give the definition of guaranteed estimates of linear functionals defined on solutions
to the problem (1), (2) from observations of these solutions on a finite system of intervals.

Let Ωij , j = 1, . . . ,Mi, be a given system of subintervals of (ti−1, ti), F :=

(f, g1, . . . , gq, x0) ∈ H := (L2(t0, T ))r × Ckq × Cm.
The problem is to estimate the expression

l(F ) =

∫ T

t0

(f(t), l0(t))rdt+

q∑
i=1

(gi, ai)k + (x0, a)m (4)

from observations of the form

yij(t) = Hi
j(t)x(t) + ξij(t), t ∈ Ωij , j = 1, . . . ,Mi, i = 1, . . . , q + 1, (5)

in the class of estimates

l̂(F ) =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), u
i
j(t))ldt+ c, (6)

linear with respect to observations (5); here x(t) is the state of a system described by
problem (1), (2), l0 ∈ (L2(t0, T )r, ai ∈ Ck, a ∈ Cm, Hi

j(t) are l × n matrices with the

entries that are piecewise continuous complex-valued functions on Ω̄ij , u
i
j(t) are vector-

functions belonging to (L2(Ωij))
l, c ∈ C, and by (·, ·)d we denote the inner product in

Cd.
We suppose that the vector-function f and vectors g1, . . . , gq, x0 are unknown and

the element F = (f, g1, . . . , gq, x0) belongs to the set G1, where

G1 =
{
F ∈ H : f ∈ (L2(t0, T ))r, gi ∈ Ck, x0 ∈ Cm,

q∑
i=1

(Qi(gi − g0
i ), gi − g0

i )k + (Q0(x0 − x0
0), x0 − x0

0)m

+

∫ T

t0

(Q(t)(f(t)− f0(t)), f(t)− f0(t))r dt ≤ 1
}
,

ξ := (ξ1
1(·), . . . , ξ1

M1
(·), . . . , ξq+1

1 (·), . . . , ξq+1
Mq+1

(·)) ∈ G2, where ξij(·) are observation errors

in (5), that are realizations of random vector-functions ξij(t) = ξij(ω, t) ∈ Cl, and G2

denotes the set of random elements ξ, whose components have zero means, Eξij(·) =
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0, with Lebesgue square integrable second moments on Ωij , and unknown correlation

matrices Rij(t, s) = Eξij(t)(ξij)∗(s) satisfying the condition

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

Tr [Di
j(t)R

i
j(t, t)]dt ≤ 1, (7)

where f0 ∈ (L2(t0, T ))r is a prescribed vector-function, g0
1 , . . . , g

0
q ∈ Ck and x0

0 ∈ Cm
are prescribed vectors, Di

j(t) and Q(t) are known Hermitian positive definite l × l and

r × r-matrices with entries which are complex-valued continuous functions on Ω̄ij and
[t0, T ], correspondingly, Qi, i = 0, 1, . . . , q, are Hermitian positive definite matrices with
constant elements for which there exist their inverse matrices (Di

j)
−1(t), Q−1(t), and

Q−1
i , TrD :=

∑l
i=1 dii denotes the trace of the matrix D = {dij}li,j=1.

Set u := (u1
1(·), . . . , u1

M1
(·), . . . , uq+1

1 (·), . . . , uq+1
Mq+1

(·)) ∈ H, where H := (L2(Ω1
1))l ×

· · ·×(L2(Ω1
M1

))l×. . . ,×(L2(Ωq+1
1 ))l×· · ·×(L2(Ωq+1

Mq+1
))l. The norm in space H is defined

by

‖u‖H =
{q+1∑
i=1

Mi∑
j=1

‖uij(·)‖(L2(Ωi
j))l

}1/2

.

Definition 3.1 The estimate

̂̂
l(F ) =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), û
i
j(t))ldt+ ĉ,

in which vector-functions ûij(·), and a number ĉ are determined from the condition

inf
u∈H,c∈C

σ(u, c) = σ(û, ĉ),

where
σ(u, c) = sup

F∈G1, ξ∈G2

E|l(F )− l̂(F )|2,

will be called the guaranteed (minimax) estimate of expression (4). The quantity

σ := {σ(û, ĉ)}1/2

will be called the error of the guaranteed estimation of l(F ).

Thus, a guaranteed estimate is an estimate minimizing the maximal mean-square
estimation error calculated for the worst-case realization of the perturbations.

4 Representations for Guaranteed Estimates and Estimation Errors of l(F )

In this section we deduce equations that generate the minimax estimates.
For any fixed u ∈ H, introduce the vector-function z(t;u) as a unique solution to the

problem

− dz(t;u)

dt
= A∗(t)z(t;u)−

q+1∑
i=1

Mi∑
j=1

χΩi
j
(t)(Hi

j)
∗(t)uij(t) for a.e. t ∈ [t0, T ), (8)
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∆z(t;u) |t=ti = −(E +B∗i )−1B∗i z(ti;u), i = 1, . . . , q, z(T ;u) = 0, (9)

where

χΩ(t) =

{
1 if t ∈ Ω,
0 if t /∈ Ω

is a characteristic function of the set Ω.
The unique solvability of this problem follows from condition (3).

Lemma 4.1 Finding the minimax estimate of functional l(F ) is equivalent to the
problem of optimal control of the system (8), (9) with the cost function

I(u) =

∫ T

t0

(Q−1(t)(B∗(t)z(t;u) + l0(t)), B∗(t)z(t;u) + l0(t))rdt

+

q∑
i=1

(Q−1
i (C∗i (E +B∗i )−1z(ti;u) + ai), C

∗
i (E +B∗i )−1z(ti;u) + ai)k

+ (Q−1
0 (a+ C∗z(t0;u)), a+ C∗z(t0;u))m

+

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

((Di
j)
−1(t)uij(t), u

i
j(t))ldt→ inf

u∈H
. (10)

Proof. Let x be a solution to problem (1), (2). From (4)−(6), we obtain

l̂(F ) =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), u
i
j(t))ldt+ c

=

q+1∑
i=1

∫ ti

ti−1

(x(t),

Mi∑
j=1

χΩi
j
(t)(Hi

j)
∗(t)uij(t))ndt+

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(ξij(t), uj(t))ldt+ c.

Transform the first term in the right-hand side of this equality. Applying the integration
by parts formula, we have

q+1∑
i=1

∫ ti

ti−1

(x(t),

Mi∑
j=1

χΩi
j
(t)(Hi

j)
∗(t)uij(t))ndt = −

q+1∑
i=1

∫ ti

ti−1

(
x(t),−dz(t;u)

dt
−A∗(t)z(t;u)

)
n
dt

= −
q+1∑
i=1

(
(x(t+i−1), z(t+i−1;u))n−(x(ti), z(ti;u))n

)
−
N+1∑
i=1

∫ ti

ti−1

(dx(t)

dt
−A(t)x(t), z(t;u)

)
n
dt

= −(x(t0), z(t0;u))n

−
q∑
i=1

(Cigi, (E +B∗i )−1z(ti))n −
q+1∑
i=1

∫ ti

ti−1

(
B(t)f(t), z(t;u)

)
n
dt.

Here we have used the fact that

q+1∑
i=1

(
(x(t+i−1), z(t+i−1;u))n − (x(ti), z(ti;u))n

)
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= (x(t0), z(t0;u))n +

q∑
i=1

(
(x(t+i ), z(t+i ;u))n − (x(ti), z(ti;u))n

)
and

q∑
i=1

(
(x(t+i ), z(t+i ;u))n − (x(ti), z(ti;u))n

)

=

q∑
i=1

(
((E +Bi)x(ti) + Cigi, (E − (E +B∗i )−1B∗i )z(ti;u))n − (x(ti), z(ti;u))n

)

=

q∑
i=1

(
((E +Bi)x(ti), (E − (E +B∗i )−1B∗i )z(ti;u))n − (x(ti), z(ti;u))n

)

+

q∑
i=1

(Cigi, (E − (E +B∗i )−1B∗i )z(ti;u))n

=

q∑
i=1

(
((E +Bi)x(ti), (E +B∗i )−1z(ti;u))n − (x(ti), z(ti;u))n

)

+

q∑
i=1

(Cigi, (E +B∗i )−1z(ti;u))n =

q∑
i=1

(gi, C
∗
i (E +B∗i )−1z(ti;u))k.

Since

l(F ) =

∫ T

t0

(f(t), l0(t))rdt+

q∑
i=1

(gi, ai)k + (x0, a)m,

we get

l(F )− l̂(F ) =

∫ T

t0

(f(t), l0(t) +B∗(t)z(t;u))rdt+

q∑
i=1

(gi, ai + C∗i (E +B∗i )−1z(ti;u))k

+(x0, a+ C∗z(t0;u))m −
q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(ξij(t), uj(t))ldt− c.

The latter equality yields

E[l(F )− l̂(F )] =

∫ T

t0

(f(t), l0(t) +B∗(t)z(t;u))rdt

+

q∑
i=1

(gi, ai + C∗i (E +B∗i )−1z(ti;u))k + (x0, a+ C∗z(t0;u))m − c.

From here on, we apply the same reasoning as in the proof of Lemma in [4] to obtain

inf
c∈C

sup
F∈G1,ξ∈G2

E|l(F )− l̂(F )|2 = I(u),
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where I(u) is determined by formula (10) and the infimum over c is attained at

c =

∫ T

t0

(
f0(t), l0(t) +B∗(t)z(t;u))rdt

)
r
dt

+

q∑
i=1

(g0
i , ai + C∗i (E +B∗i )−1z(ti;u))k + (x0

0, a+ C∗z(t0;u))m. (11)

The proof is complete.
Further in the proof of Theorem 4.1 stated below, it will be shown that solving the

optimal control problem (8)−(10) is reduced to solving some system of impulsive periodic
differential equations.

Theorem 4.1 The minimax estimate
̂̂
l(F ) of the expression l(F ) has the form

̂̂
l(F ) =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), û
i
j(t))ldt+ ĉ = l(

ˆ̂
F ),

where

ûij(t) = Di
j(t)H

i
j(t)p(t), i = 1, . . . , q + 1, j = 1, . . . ,Mi, (12)

ĉ =

∫ T

t0

(
f0(t), l0(t) +B∗(t)ẑ(t))rdt

)
r
dt

+

q∑
i=1

(g0
i , ai + C∗i (E +B∗i )−1ẑ(ti))k + (x0

0, a+ C∗ẑ(t0))m,

ˆ̂
F := (f̂ , ĝ1, . . . , ĝq, x̂0) with

f̂(t) = f0(t) +Q−1(t)B∗(t)p̂(t), ĝi = g0
i +Q−1

i C∗i (E +B∗i )−1p̂(ti), i = 1 . . . , q,

x̂0 = x0
0 +Q−1

0 (t)C∗p̂(t0), (13)

p(t), ẑ(t), and p̂(t) are determined from the solution of the systems of equations

− dẑ(t)
dt

= A∗(t)ẑ(t)−
q+1∑
i=1

Mi∑
j=1

χΩi
j
(t)(Hi

j)
∗(t)Di

j(t)H
i
j(t)p(t) for a.e. t ∈ [t0, T ), (14)

∆ẑ(t) |t=ti = −(E +B∗i )−1B∗i ẑ(ti), i = 1, . . . , q, ẑ(T ) = 0, (15)

dp(t)

dt
= A(t)p(t) +B(t)Q−1(t)(B∗ẑ(t) + l0(t)) for a.e. t ∈ (t0, T ], (16)

∆p(t) |t=ti = Bip(ti) + CiQ
−1
i (C∗i (E +B∗i )−1ẑ(ti) + ai),

i = 1, . . . , q, p(t0) = CQ−1
0 (C∗ẑ(t0) + a) (17)
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and

− dp̂(t)
dt

= A∗(t)p̂(t)−
q+1∑
i=1

Mi∑
j=1

χΩi
j
(t)(Hi

j)
∗(t)Di

j(t)[H
i
j(t)x̂(t)−yij(t)] for a.e. t ∈ [t0, T ),

(18)
∆p̂(t) |t=ti = −(E +B∗i )−1B∗i p̂(ti), i = 1, . . . , q, p̂(T ) = 0, (19)

dx̂(t)

dt
= A(t)x̂(t) +B(t)(Q−1(t)B∗(t)p̂(t) + f0(t)) for a.e. t ∈ (t0, T ], (20)

∆x̂(t) |t=ti = Bix̂(ti) + CiQ
−1
i (C∗i (E +B∗i )−1p̂(ti) + gi),

i = 1, . . . , q, x̂(t0) = CQ−1
0 (C∗p̂(t0) + x0

0), (21)

respectively. Problems (14) – (17) and (18) – (21) are uniquely solvable. Equations (18)
– (21) are fulfilled with probability 1.

The minimax estimation error σ is determined by the formula

σ = [l(P̂ )]1/2, (22)

where

P̂ =
(
Q−1(·)(l0(·) +B∗(·)ẑ(·)), Q−1

1 (C∗1 (E +B∗1)−1ẑ(t1) + a1),

. . . , Q−1
q (C∗q (E +B∗q )−1ẑ(tq) + aq), Q

−1
0 (C∗ẑ(t0) + x0

0)
)
.

Proof. It is not difficult to verify, using the representation (1.21) from [2], that I(u)
is a weakly lower semicontinuous strictly convex functional on H. Therefore, since

I(u) ≥
q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

((Di
j)
−1(t)uij(t), u

i
j(t))ldt ≥ c‖u‖2H ∀u ∈ H, c=const,

by Theorems 13.2 and 13.4 (see [1]), there exists one and only one element û ∈ H
such that I(û) = infu∈H I(u). Hence, for any fixed v ∈ H and τ ∈ R, the functions
s1(τ) := I(û+ τv) and s2(τ) := I(û+ iτv) reach their minimums at a unique point τ = 0
so that

1

2

d

dτ
I(û+ τv)

∣∣∣
τ=0

= 0 and
1

2

d

dτ
I(û+ iτv)

∣∣∣
τ=0

= 0, (23)

where i =
√
−1. Since z(t; û+τv) = z(t; û)+τz(t; v) and z(t; û+iτv) = z(t; û)+iτz(t; v),

from (10) and (23), we obtain

0 =

∫ T

t0

(
Q−1(t)(B∗(t)z(t; û)+l0(t)), B∗(t)z(t; v)

)
r
dt+(Q−1

0 (C∗z(t0; û)+a), C∗z(t0; v))m

+

q∑
i=1

(Q−1
i (C∗i (E +B∗i )−1z(ti; û) + ai), C

∗
i (E +B∗i )−1z(ti; v))k

+

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

((Di
j)
−1(t)ûij(t), v

i
j(t))ldt. (24)
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Let p(t) be a solution of the problem

dp(t)

dt
= A(t)p(t) +B(t)Q−1(t)(B∗z(t; û) + l0(t)) for a.e. t ∈ (t0, T ],

∆p(t) |t=ti = Bip(ti) + CiQ
−1
i (C∗i (E +B∗i )−1ẑ(ti; û) + ai),

i = 1, . . . , q, p(t0) = CQ−1
0 (C∗ẑ(t0) + a).

Taking this into account, transform the first summand in the right-hand side of (24).
We have∫ T

t0

(
Q−1(t)(B∗(t)z(t; û)+l0(t)), B∗(t)z(t; v)

)
r
dt =

q+1∑
i=1

∫ ti

ti−1

(dp(t)
dt
−A(t)p(t), z(t; v)

)
n
dt

=

q+1∑
i=1

(
(p(ti), z(ti; v))n−(p(t+i−1), z(t+i−1; v))n

)
−
q+1∑
i=1

∫ ti

ti−1

(
p(t),

dz(t; v)

dt
+A∗(t)z(t; v)

)
n
dt

= −
q∑
i=1

(Q−1
i (C∗i (E +B∗i )−1z(ti; û) + ai), C

∗
i (E +B∗i )−1z(ti; v))k,

− (Q−1
0 (C∗z(t0; û) + a), C∗z(t0; v))m −

∫ T

t0

(
p(t),

q+1∑
i=1

Mi∑
j=1

χΩi
j
(t)(Hi

j)
∗(t)vij(t)

)
n
dt. (25)

From (24) and (25), we find

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

((Di
j)
−1(t)ûij(t), v

i
j(t))ldt =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(p(t), (Hi
j)
∗(t)vij(t))ndt

for any v := (v1
1(·), . . . , v1

M1
(·), . . . , vq+1

1 (·), . . . , vq+1
Mq+1

(·)) ∈ H, whence ûij(t), i =

1, . . . , q + 1, j = 1, . . . ,Mi, are defined by (12). Setting u = û in (11), (8) and (9)
and denoting ẑ(t) = z(t; û), we see that ẑ(t) and p(t) satisfy system (14) – (17); the
unique solvability of this system follows from the fact that the functional I(u) has one
minimum point û.

Now let us establish that σ = [l(P̂ )]1/2. Substituting expression (12) into (10), we
obtain

σ2 =

∫ T

t0

(Q−1(t)(B∗(t)ẑ(t)+l0(t)), B∗(t)ẑ(t)+l0(t))rdt+(Q−1
0 (a+C∗ẑ(t0)), a+C∗ẑ(t0))m

+

q∑
i=1

(Q−1
i (C∗i (E +B∗i )−1ẑ(ti) + ai), C

∗
i (E +B∗i )−1ẑ(ti) + ai)k

+

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(Hi
j(t)p(t), D

i
j(t)H

i
j(t)p(t))ldt. (26)

However,∫ T

t0

(Q−1(t)(B∗(t)ẑ(t) + l0(t)), B∗(t)ẑ(t))rdt =

q+1∑
i=1

∫ ti

ti−1

(dp(t)
dt
−A(t)p(t), ẑ(t)

)
n
dt
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=

q+1∑
i=1

(
(p(ti), ẑ(ti))n − (p(t+i−1), ẑ(t+i−1))n

)
−
q+1∑
i=1

∫ ti

ti−1

(
p(t),

dẑ(t)

dt
+A∗(t)ẑ(t)

)
n
dt

= −
q∑
i=1

Q−1
i (C∗i (E +B∗i )−1ẑ(ti) + ai), C

∗
i (E +B∗i )−1ẑ(ti))k

−(Q−1
0 (C∗z(t0; û) + a), C∗z(t0; v))m −

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(Hi
j(t)p(t), D

i
j(t)H

i
j(t)p(t))ldt.

From here and from (26) it follows (22).

The representation
̂̂
l(F ) = l(

ˆ̂
F ) can be proved in much the same way as the repre-

sentation ̂̂
l(F ) =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), û
i
j(t))ldt+ ĉ.

This completes the proof.

Remark 4.1 In the representation
̂̂
l(F ) = l(

ˆ̂
F ) of the guaranteed mean square esti-

mate of l(F ), where F := (f, g1, . . . , gq, x0),
ˆ̂
F := (f̂ , ĝ1, . . . , ĝq, x̂0) with f̂(t) = f0(t) +

Q−1(t)B∗(t)p̂(t), ĝi = g0
i +Q−1

i C∗i (E+B∗i )−1p̂(ti), i = 1 . . . , q, x̂0 = x0
0 +Q−1

0 (t)C∗p̂(t0),

the vector-function f̂(t) and vectors ĝi, and x̂0 do not depend on a specific form of the
functional l.

5 Optimal Estimation Problem of Unknown Cauchy Data

Now consider the problem of finding the optimal estimate of the vector g = LF among
the estimates of the form

ĝ =

q+1∑
i=1

Mi∑
j=1

U ijy
i
j(·) + C; (27)

here yij(·) are observations (5), L is a linear continuous operator acting from the space
H into a separable complex Hilbert space V with the inner product (·, ·) and the norm
‖ · ‖, U ij are linear continuous operators acting from (L2(Ωij))

l to V , C ∈ V.
Let {e1, e2, . . . } be an orthonormal basis of V. Denote by σ1(U,C) and σ2(U,C) the

quantities defined by
σ1(U,C) = sup

G1,G2

E‖g − ĝ‖2

and

σ2(U,C) =

∞∑
k=1

sup
G1,G2

E|(g − ĝ, ek)|2,

respectively, where U := (U1
1 , . . . , U

1
M1
, . . . , Uq+1

1 , . . . , Uq+1
Mq+1

), G1 and G2 are defined on
page 483.

Definition 5.1 The estimates ˆ̂g1 and ˆ̂g2, which are determined from the condition

ˆ̂gi ∈ Argminĝ∈Lσi(U,C),

are called the guaranteed and optimal estimate of g, respectively, where by L we denote
the set of all estimates of the form (27).
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Parseval’s formula implies that the following inequality holds:

σ1(U,C) ≤ σ2(U,C).

Lemma 5.1 Suppose that, for an arbitrary vector e ∈ V, there holds the equality

inf
(̂g,e)

sup
G1,G2

E|(g, e)− (̂g, e)|2 = sup
G1,G2

E|(g, e)− ̂̂
(g, e)|2,

where
̂̂
(g, e) = (ˆ̂g, e), ˆ̂g does not depend on the vector e, and (̂g, e) is a linear estimate of

the inner product (g, e). Then the vector ˆ̂g is the optimal estimate of the vector g.

Proof. Notice that

inf
ĝ∈L

σ2(U,C) = inf
ĝ∈L

∞∑
k=1

sup
G1,G2

E|(g − ĝ, ek)|2 ≥
∞∑
k=1

inf
(̂g,ek)

sup
G1,G2

E|(g, ek)− (̂g, ek)|2

= sup
G1,G2

E|(g, ek)− ̂̂
(g, ek)|2 =

∞∑
k=1

sup
G1,G2

E|(g − ˆ̂g, ek)|2

and the lower bound is attained at ĝ = ˆ̂g. This completes the proof.
Next we obtain the optimal estimate of the element g = LF using this lemma. Note

first that for any e ∈ V , we have

(g, e)− (ĝ, e) = (LF, e)− (

q+1∑
i=1

Mi∑
j=1

U ijy
i
j(·) + C, e)

= (F,L∗e)H −
q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), (U
i
j)
∗e(t))ndt− (C, e)

= l(F )− l̂(F ),

where L∗ and (U ij)
∗ denote the adjoint operators of L and U ij , respectively,

l(F ) := (F,L∗e)H =

∫ T

t0

(f(t), l0(t))rdt+

q∑
i=1

(gi, ai)k + (x0, a)m,

with some l0 ∈ (L2(t0, T )r, ai ∈ Ck, and a ∈ Cm,

l̂(F ) := ̂(F,L∗e)H =

q+1∑
i=1

Mi∑
j=1

∫
Ωi

j

(yij(t), u
i
j(t))ndt+ c,

where uij(t) = (U ij)
∗e(t) are vector-functions belonging to (L2(Ωij))

l, c = (C, e) ∈ C.
By Theorem 4.1,

inf
̂(F,L∗e)H

sup
G1,G2

E|(F,L∗e)H − ̂(F,L∗e)H|2 = sup
G1,G2

E|(F,L∗e)H −
̂̂

(F,L∗e)H|2,

where
̂̂

(F,L∗e)H = (
ˆ̂
F,L∗e)H with

ˆ̂
F := (f̂ , ĝ1, . . . , ĝq, x̂0) and f̂(·), ĝ1, . . . , ĝq, x̂0 being

determined by (13). From the latter relationship and from the fact that
ˆ̂
F does not

depend on L∗e (see Remark 1) it follows that the vector ĝ = LF̂ satisfies the assumptions
of Lemma 5.1. This proves the validity of the following assertion.
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Theorem 5.1 The optimal estimates
ˆ̂
F and ˆ̂g of F and g = LF are determined by

ˆ̂
F = (f̂(·), ĝ1, . . . , ĝq, , x̂0) and L

ˆ̂
F, respectively, where f̂(·), ĝ1, . . . , ĝq, x̂0 are defined by

(13).

Remark 5.1 All the results of the paper remain valid if we assume that the com-
ponents ξij(·) of the random elements ξ := (ξ1

1(·), . . . , ξ1
M1

(·), . . . , ξq+1
1 (·), . . . , ξq+1

Mq+1
(·))

entering into the set G2 are pairwise uncorrelated and satisfy the condition∫
Ωi

j

Tr [Di
j(t)R

i
j(t, t)]dt ≤ 1, i = 1, . . . q + 1, j = 1, . . . ,Mi.

Let us present an example of applying the obtained results to the guaranteed estima-
tion problem for the impulsive nonlinear differential equation.

In the population dynamics, for modeling of the processes of rapid change of the
number of individuals of a population, the Gompers equation of the form

dx(t)

dt
=
(
a(t) + b(t) lnx(t)

)
x(t) (28)

is applied. For the use of such models, it is required to know the parameters a(t) and
b(t).

Let us show how to apply the above results, for example, for obtaining the guaranteed
estimates for the function a(t) by assuming that the function b(t) is known and that a(t)
satisfies the following condition∫ T

0

(da(t)

dt

)2

dt ≤ γ2
T (γT = const), a(0) = 0.

Let the function
v(t) = ξ(t)x(t) (29)

be observed on the set (0, T )\(∪qi=1{ti}), where ξ(t) is a realization of a stochastic process
ξ(t, ω) > 0, x(t) satisfies equation (28) and the conditions

x(0) = 1,
x(tk + 0)

x(tk − 0)
= ck, (30)

where tk, k = 1, . . . , q, are given impulse points such that 0 < t1 < · · · < tq < T, ck are
prescribed numbers.

We will find the guaranteed estimate of the functional

L(a) =

∫ T

0

l(t)a(t)dt

in the class of estimates

L̂(a) =

∫ T

0

u(t) ln v(t)dt,

where l ∈ L2(0, T ) is a given function, u ∈ L2(0, T ).
If we introduce the notation ϕ1(t) = lnx(t), ϕ2(t) = a(t), y(t) = ln v(t), η(t) =

ln ξ(t), then the guaranteed estimation problem of the functional L(a) is reduced to the
guaranteed estimation problem of the functional L(ϕ2) from the observations of the form

y(t) = ϕ1(t) + η(t),
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where ϕ1(t) and ϕ2(t) are found from solving the following system of linear impulsive
differential equations:

dϕ1(t)

dt
= ϕ2(t) + b(t)ϕ1(t) for a.e. t ∈ (0, T ], ϕ1(0) = 0,

dϕ2(t)

dt
= f(t) for a.e. t ∈ (0, T ], ϕ2(0) = 0,

ϕ1(tk + 0) = ϕ1(tk − 0) + ln ck, k = 1, . . . , q,

ϕ2(tk + 0) = ϕ2(tk − 0), k = 1, . . . , q,

where f(t) = da(t)
dt .

Under certain restrictions on the correlation function of the process η(t), we can apply
the results of the present paper for obtaining the guaranteed estimates of the parameter
a(t).

6 Conclusion

The method proposed in the present paper enables one to obtain the optimal estimates
of unknown data of Cauchy problems for first-order linear impulsive systems of ordinary
differential equations from noisy observations of their solutions.

We deduce the boundary value problems for linear impulsive ordinary differential
equations of the special kind that generate the optimal estimates.

The results presented above are aimed at elaborating mathematically justified esti-
mation techniques for various forward and inverse problems with uncertainties describing
evolution processes characterized by the combination of a continuous and abrupt change
of their state.
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1 Introduction

The pandemic of the novel coronavirus or COVID-19 started in Wuhan, China, where the
first case was reported on January 22nd, 2020, and the pandemic has spread worldwide
in more than 200 countries. As China has passed through its first pandemic peak, some
other countries such as the US, India, and Indonesia are still struggling to control the
spread of the virus. The spread of COVID-19 in Indonesia was reported for the first time
on March 2nd, 2020, in Jakarta, and currently, it reaches almost all provinces of Indonesia
in less than two months. Statistical data of the outbreak in Indonesia is officially collected
from https://covid19.go.id/.

The spread of the pandemic of novel coronavirus COVID-19 can be described math-
ematically in the so-called mathematics of epidemiology. There are some common mod-
els, a SIR model (Susceptible, Infected, Recovered) or a SIRD (Susceptible, Infected,
Recovered, Dead), which are used by some researchers to describe the spread pattern of
COVID-19. A modification of the SIR model, which includes the death variable of obser-
vation, is called a SIRD model. Some researchers have done studies about the spread of
the pandemic of COVID-19 based on the SIRD model. Fanelli et al. [1] used the SIRD
model to predict the spread of COVID-19 in China, Italy, and Iran. Parameters are
estimated using stochastic differential evolution. However, inadequate accuracy is shown
in the study [1] when the peak prediction is compared to the latest data. As an im-
provement, Susanto [2] suggested that a careful fitting of reported data to the SIR model
should be done due to its sensitivity to the time-series information. Salgotra et al. [3]
used a genetic-based algorithm for estimating the parameters. They have shown that
the algorithm is highly reliable for predicting COVID-19 cases. Abdul Rahman [4] dis-
cussed machine learning to simulate the spread of COVID-19 based on the SIRD model.
An error analysis and detail flow charts of the process are presented in his paper. The
previous studies pointed out that the epidemic model is improved by machine learning
in the parameters estimation process. Shortly, we may call the combination of the SIRD
model and machine learning, a hybrid epidemic model.

In machine learning, regression models can offer promising forecasting by learning
the given data set. Parbat et al. [5] applied a support vector regression to predict current
and future COVID-19 cases in India without comparison to other regression models. Still
with the cases in India, Sujath et al. [6] investigated a linear regression (LR), a vector
autoregression (VA) and a multilayer perceptron (MLP) prediction. As to the results,
the MLP showed better ones than the VA and LR. In addition, Tuli et al. [7] developed
a real-time framework for the COVID-19 infected number prediction over the world by
integrating cloud computing and machine learning. They adjusted iterative weighting on
the generalized inverse Weibull distribution to have higher accuracy in the data-driven
environment responding to the epidemic actively. Both the hybrid and the machine
learning methods exhibit a relatively satisfying performance in predicting the spread of
the COVID-19 outbreak. The use of the GA in estimating parameters of mathematical
models give better performance than conventional methods [8].

Therefore, we attempt to propose new hybrid methods by integrating a genetic algo-
rithm and a SIRD model (GA-SIRD), an extended Kalman filter (GA-EKF-SIRD) which
provide a one-step updating process for predicting the spread of the outbreak in Indone-
sia. Furthermore, we proposed an ensemble-SVR method to forecast the COVID-19 cases
without considering the SIRD model. The ensemble-SVR is a method that combines two
different models under the SVR approach to tackle a limitation data on the decreasing

https://covid19.go.id/
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number of infected cases for the first time. In this study, we combine different COVID-19
case models of two countries that share similar distributions. More specifically, we focus
on the COVID-19 cases in Indonesia by combining them with similar COVID-19 cases
from another country, which has been through the first wave. Lastly, a comparison of
the three methods is presented in this paper.

This paper is organized as follows. Section 2 and Section 3 discuss the hybrid of a
genetic algorithm and a SIRD model, and accordingly, a genetic algorithm is incorporated
into a hybrid of the extended Kalman filter and the SIRD model. We propose the use
of the ensemble-SVR model in Section 4, respectively. Simulation and discussion are
presented in Section 5 and conclusion is given in Section 6.

2 A Modified Extended Kalman Filter-SIRD Model

A SIRD model describes the evolution of an individual into classes: susceptible, infected,
recovered, and dead. It is assumed that individuals in the same class have the same
characteristics and the movement of individuals in the same class can be described. The
infected individuals can recover without the possibility of being reinfected. A referenced
total population is assumed to be constant, which means that the population’s birth rate
and death rate are the same.

A differential equation of the SIRD model, which describes the movement of individ-
uals from one class to another class, is written as

Ṡ(t) = −rS(t)I(t),

İ(t) = rS(t)I(t)− (a+ d)I(t),

Ṙ(t) = aI(t),

Ḋ(t) = dI(t),

(1)

where S(t) describes the individuals who are at a high risk of infection, I(t) describes
the number of infected individuals, R(t) describes the recovered individuals after being
infected, and D(t) describes the number of dead individuals. Then r, a, d are the rate
of infection, recovery, and death, respectively. The SIRD model is used in this study
due to data availability in the resource website such as https://www.worldometers.

info/coronavirus/#countries. The dynamic of the SIRD model is estimated using an
extended Kalman filter method in a discrete scheme.

An extended Kalman filter (EKF) method is a method for estimating a weakly non-
linear stochastic dynamic system [9] such as the epidemic SIRD model. The EKF method
has three main stages: an initialization of system and measurement model including
the initialization of state variables values, time updates (prediction), and measurement
updates (correction). In the non-linear system, the updates equations are intractable, so
that an approximation to time update and measurement update equations are required
to provide a computationally viable algorithm to apply to the filter.

The EKF method provides a one-step prediction based on the SIRD model, so that
it is necessary to modify the method to get a longer prediction range based on limited
measurement data. The modification is to generate new measurement data, expand
the limited data, and add noise to get a longer prediction. This modification can be
considered as our contribution. Briefly, the basic algorithm of a modified EKF can be
seen in Algorithm 2.1.

https://www.worldometers.info/coronavirus/#countries
https://www.worldometers.info/coronavirus/#countries
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Algorithm 2.1 Modified Ensemble Kalman Filter

1: System model : ẋ = f(x, u, t) +G(t)w
2: Measurement model : zn = h [x(tn), n] + vn, with x(0) ∼ (x̄, P0), w(t) ∼ (0, Q), vn ∼

(0, R)

3: Initialization : x(0) = x̄0, P̂ (0) = P0, z
−
n = zk

Time Update

4: Estimate : ẋ = f(x, u, t)
5: Error covariance : Ṗ = A(x̂, t)P + PAT (x̂, t) +GQGT

6: Jacobian : A(x, t) = ∂f(x,u,t)
∂x

Measurement Update

7: Kalman gain : Kn = P−(tn)HT (x̂−n )
[
H(x̂−n )P−(tn)HT (x̂−n ) +R

]−1
8: Error covariance : P (tn) = [I −KnH(x̂−n )]P−(tn)
9: Generate measurement : zn = z−n + vn

10: Estimate : x̂n = x̂−n +Kn [zn − h(x̂−n , n)]

11: Jacobian : H(x) = ∂h(x,n)
∂x

The number of infected, recovered, and dead individuals are predicted using the
modified EKF, which is applied to the SIRD model. The Jacobian matrix, which is
considered as the value of the coefficient matrix of state variable A, and is based on the
SIRD model, is obtained in (1) with the equilibrium point (S, I,R,D) = (a+d

r , 0, 0, 0).

A =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 −(a+ d) 0 0
0 0 0 0 1 0 0
0 0 0 0 a 0 0
0 0 0 0 d 0 0


. (2)

A discretization of the non-linear model (1) results in the following:

Sk = −rS−k I
−
k dt+ S−k ,

Ik =
[
rS−k I

−
k − (a+ d) I−k

]
dt+ I−k ,

Rk = aI−k dt+R−k ,

Dk = dI−k dt+D−k .

(3)

Suppose we have a system model ˙̂x and a measurement model zk, the estimation
result x̂k can be obtained using the previous EKF algorithm in [9]. For the prediction
stage using the modified EKF, we define n = k + i, where the time step is i = 1, 2, ....
Subsequently, the initial parameter values r0, a0, d0, and S0 are estimated using the
genetic algorithm. The initial real data for I0, R0, D0, are used to give the initial values
in applying the modified EKF.
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3 A Genetic Algorithm-SIRD

3.1 A genetic algorithm

A genetic algorithm (GA) is an algorithm that mimics a natural evolutionary model by
using a genetic inheritance [10]. Chromosomes and fitness functions should be made
before applying the algorithm. The chromosomes will be a solution to the problem
addressed, and the fitness functions will be a tool to measure the value of a chromosome.

The genetic algorithm begins with creating an initial population containing several
chromosomes as the solution to the problem. Usually, these allegations are chosen ran-
domly from the points scattered within the search space. Then the genetic algorithm
uses crossover and mutation operators to process the chromosomes in the population
until it converges or finds the best results [11].

The crossover operator allows a merging of information from two or more chromo-
somes to form a new chromosome. The mutation operator is used to explore the search
space even further in hopes of obtaining better chromosomes. A new population will be
formed after the crossover and mutation have been applied to chromosomes in the initial
population. Accordingly, a generation of the new population will increase by one level.
The crossover and mutation processes continue until a certain number of iterations is
exceeded or the termination criteria are met [11].

A genetic algorithm - SIRD (GA-SIRD) uses the SIRD model on daily data classified
as the infected individual I, recovered individual R, and deceased individual D, which
is solved by the genetic algorithm. In this study, we used the Indonesia daily data from
March 2, 2020 until August 25, 2020 to obtain the initial values of S0, I0, R0, and D0,
and the parameter values of r, a, and d.

Stages of the genetic algorithm - SIRD consist of:

1. Input
The input used in the genetic algorithm is the daily data I,R, and D from In-
donesia, which starts from March 2, 2020 to August 25, 2020 (176 days). Next,
the values will be called actual Ik, Rk, Dk with k = 1, 2, . . . , n and n = 176. Fi-
nally, these values will be used in the process of calculating the fitness value of a
chromosome.

2. Chromosome
In this study, we used chromosomes in the form x = (x1, x2, . . . , x7) ∈ R7. Each
element of x represents one parameter of the SIRD model, which is x1 = S0,
x2 = I0, x3 = R0, x4 = D0, x5 = r, x6 = a, and x7 = d. In this genetic algorithm,
we use an initial population with 100 chromosomes that are made randomly over
a certain range.

3. Fitness Function
The purpose of the genetic algorithm is to find a chromosome that minimizes the
difference between the actual Ik, Rk, Dk and predicted Ik, Rk, Dk. To obtain the
predicted Ik, Rk, Dk, we use the discretization model (3) for k = 1, . . . , n− 1. For
k = 0, we use S1 = S0, I1 = I0, R1 = R0, D1 = D0. In this case, because the data
used is daily data, we use ∆t = 1. Suppose x = (x1, x2, . . . , x7) is the chromosome
for which the fitness function is calculated. Using S0 = x1, I0 = x2, R0 = x3,
D0 = x4, r = x5, a = x6, and d = x7, we can calculate the predicted Sk, Ik, Rk,
Dk for k = 1, 2, . . . , n. After we get the prediction of Ik, Rk, Dk for k = 1, 2, . . . , n,
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we calculate the difference with the actual Ik, Rk, Dk using the RMSE (Root Mean
Square Error). Suppose that the predicted Ik, Rk, Dk are symbolized by Îk, R̂k,
D̂k, then the fitness function of x is

RMSE(x) =

√∑n
k=1(Îk − Ik)2 + (R̂k −Rk)2 + (D̂k −Dk)2

3n
.

The final solution of the genetic algorithm is a chromosome in the population that
has the smallest RMSE (fitness function) value.

4. Crossover
The purpose of this kind of crossover is to take all the profits and get rid of all
the losses. With this step, it can guarantee that the new chromosome is definitely
better than or the same as the previous chromosome.

5. Mutation
A mutation is performed on chromosomes in the population with a pm chance. For
example, x = (x1, x2, . . . , x7) ∈ R7 is the chromosome to be mutated. First, we
calculate the fitness function of x. Then x1 at x is replaced with x1 + ε, where
− 1

2(u+1) < ε < 1
2(u+1) and u is the current generation of the genetic algorithm.

Then the fitness function from the new x is calculated. If the fitness function is
better, then x1 + ε is used to replace x1. If the fitness function is worse, then x1 + ε
is replaced again with x1. Next, the same operation/step is performed on x2, x3,
. . . , xn. This step can be guaranteed that the new chromosome is better than or
the same as the previous chromosome.

3.2 SIRD optimal parameters based on the genetic algorithm

The genetic algorithm has several main parameters, for example, the number of chro-
mosomes, the number of iterations, and the chance of mutations. These parameters can
vary depending on the complexity of the problem. Selection of the interval in the deter-
mination of search space (domain) also dramatically affects the final results of the genetic
algorithm. The wider the search space created, the more difficult the genetic algorithm
for converging. Conversely, a too-small search space often results in genetic algorithms
not converging to the optimum solution.

In this study, we initialize the number of chromosomes is 100, the number of iterations
is 10000, and the minimum value of each element in a chromosome is 0. Moreover, the
maximum value of each element can be seen in Table 1. Those intervals are obtained by

Table 1: The maximum value of each element in a chromosome.

Parameter Maximum Value
x1 1000000
x2 1000
x3 100
x4 1000
x5 10−5

x6 10−1

x7 10−2
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conducting several trials. In addition, we use pm = 1 since there is a guarantee that the
new chromosome obtained from the mutation is better than or the same as the previous
chromosome.

Based on the steps explained before, we have found the best parameters for the SIRD
model that fit actual data of the infected I, recovered R, and deceased D individuals.
The results obtained from the genetic algorithm are shown in Table 2. With those values,
we will get a good enough SIRD model, where RMSE is equal to 836.0047.

Table 2: The parameters found by the genetic algorithm.

Parameter Value
S0 221269.8187
I0 305.9698464
R0 0
D0 433.6840396
r 3.57028E-07
a 0.033376181
d 0.0024362

4 An Ensemble Model-SVR

Machine learning has three major learning problems such as: (1) supervised learning,
(2) unsupervised learning and (3) reinforcement learning. In supervised learning, input
data will be mapped to a particular output value. Supervised learning comprises two
tasks: classification for categorical values and regression for continuous values based on
the output domain. Following the nature of this application, we focus on regression. A
bunch of regression models in machine learning has succeeded in solving many real-world
problems, e.g., electricity consumption forecasting [12], electric load forecasting [13], a
bus passenger forecasting [14], and high-frequency stock return forecasting [15].

In general, we may have difficulty stating the best regression model, which depends on
the domain of applications. Hence, a study on model comparison is an essential step when
dealing with a new problem. For instance, particular five regression models reviewed on
electricity consumptions showing that a Linear Regression (LR) has better accuracy
[12] and selected six supervised methods compared for a residential energy consumption
prediction indicating the accurate one is a Gradient Boosting [16]. Moreover, one of the
well-known regression models is a Support Vector Regression (SVR). The method was
introduced by Harris Drucker et al. in 1996 [17]. The SVR is an extended version of a
Support Vector Machine (SVMs) 1 . Hence, the procedure in SVR is similar to the SVM,
with the main difference on the target function called the regressor.

Let X = {x1, . . . , x|X|} be an input set that consists of x = (in, rn, dn) and 1 ≤
n ≤ t and Y = {y1, . . . , y|Y|} be an output set that contains prediction results, y =
(im, rm, dm), t + 1 ≤ m ≤ T . In this study, in and im represent the number of infected
cases, rn and rm represent the number of recovered cases, and dn and dm represent the
number of death cases. We want to find three functions fi, fr and fd for each COVID-19
case. For simplification, we will map each feature of x to a certain value of y, f : X→ Y.
Considering on linear problems, we have f = w · x+ b with w and b being the weight and

1 A SVM is one of the classification models in machine learning.
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bias parameters, respectively. In the SVR, we want to obtain support vectors which are
close to f . To do so, we create two margins that are close enough to f by minimizing the
norm-value of w · wT . The problem can be formulated as a convex optimization below:

minimize
1

2
w · wT = min

1

2
‖w‖

subject to y − w · x− b ≤ ε,
w · x + b− y ≤ ε.

(4)

To deal with infeasible constraints, we add slack variables ζ and ζ ′ for each point called
the soft margin. As a result, (4) can be written as a primal formula as follows:

minimize J (w) =
1

2
w · wT + C

∑
(ζ + ζ ′);

subject to y − w · x− b ≤ ε+ ζ,

w · x + b− y ≤ ε+ ζ ′,

ζ, ζ ′ ≥ 0,

(5)

where C is a positive numeric value that assists in avoiding overfitting. Furthermore,
we use the Lagrange dual formulation to save the computational time on solving the
problem in (5). Let α and α′ be non-negative multipliers. The dual formulation of (5)
is described as follows:

minimize L(α) =
1

2

N∑
i=1

N∑
j=1

(αi − α′i)(αj − α′j)xix′j + ε

N∑
i=1

(αi + α′i) +

N∑
i=1

yi(αi − α′i);

subject to
∑

(α− α′) = 0,

0 ≤ α ≤ C,
0 ≤ α′ ≤ C.

(6)
However, this study problem is considered a nonlinear one. In this case, we replace the
dot product of x ·x′ with a kernel function K(x, x′) that transforms x to high-dimensional
space. There are several kernel functions: linear, Gaussian (or radial basis function), and
polynomial.

This part shows the COVID-19 cases predictions using several regression methods.
Based on the comparison results, we use the best method to predict COVID-19 cases in
Indonesia for the long term by explaining the scenario, and the result will be shown in
Section 4. The data set was collected starting from March 2, 2020, until August 25, 2020.
Furthermore, the data set is split into a training set D from the first day until the 141th

day and testing set T from the 142st day to the 176th day. In this study, we specified
the parameters of the SVR (C,α, ε) = (1, 0.1, 0.1). We use a radial basis function as the
kernel parameter. Furthermore, the SVR will be compared with a Decision Tree (DT),
a K-Nearest Neighbor (KNN), a Linear Regression (LR), a Gaussian Process Regression
(GPR), and a Long Short Term Memory (LSTM) with ten-time steps as the mini-batch
size. We utilized a mean absolute percentage error (MAPE) below for evaluating the
performance

MAPE =
1

|X|

|T |∑
k=1

∣∣∣∣∣xk − ykxk

∣∣∣∣∣. (7)
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Figure 1: Data distribution of COVID-19 cases in several countries: (a) Confirmed cases,
(b) Infected cases, (c) Recovered cases and (d) Death cases.

Overall, the GPR has better MAPE results than other models, as shown in Table 3.
Both the DT and the LSTM did not display as the most accurate compared to the others.
It is because the DT required a discretization step, leading to predicting the number of
cases imprecisely, and the LSTM cannot update the learning parameters properly from
insufficient information (only learn from small data). According to Table 3, a spatial
factor is essential since some models showed different results on each country toward the
cases. The GPR is dominant over others for South Korea. The SVR outperformed others
for Indonesia and India. Therefore, this study further developed the SVR to forecast the
spread of COVID-19 cases in Indonesia in Section 5.

In a näıve way, predicting long future data will take the output yk+1 at each one
step ahead as the one to be foreseen yk+2. However, it might be hard to use the SVR to
forecast the spread of COVID-19 in Indonesia. To the best of our knowledge, the infected
case number in Indonesia is still not reduced up to August 25, 2020; thus, the SVR may
provide either a sudden fall dramatically or a rise up continuously. To overcome the issue,
we have drawn long-term data (after August 25, 2020) for each data class of COVID-19
in Indonesia based on some countries data distributions that have passed the peak of the
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infected cases. More specifically, three countries, i.e., China, South Korea, and Malaysia,
are examined. The data distribution for each data class is depicted in Figure 1.

From Figure 1(a), we can state that the number of the infected cases in Indonesia
is close enough to that in South Korea and Malaysia. South Korea has no massive
restrictions (or lockdowns), yet high awareness of both government and citizens plays an
important role. As a result, South Korea has already passed the peak after a rapid spread
(hit around 10.000 infected cases). Malaysia chose to apply a massive lockdown that has
already made them pass the peak faster (less than 6000 infected cases). In addition,
China is being considered in the ensemble model where the COVID-19 was first found.
China was also the first country where the massive lockdown was applied to suppress
the infected cases, and the country has already passed the peak of infected cases. As the
population number in China is more extensive than in Indonesia, this study considers
scaling on the population number when ensemble with the China COVID-19 model. The
details are described in Section 5.

5 Simulation and Discussion

Simulation of the spread of the novel coronavirus COVID-19 in Indonesia is conducted
based on official data released by the government of Indonesia and collected from https:

//covid19.go.id/. Data presented include the number of confirmed cases N(t), number
of infected cases I(t), number of recovered cases R(t), and number of death cases D(t).
The data is collected from March 2, 2020 until August 25, 2020. The simulation employs
three methods. Firstly, an Ensemble-SVR method will be applied to the data to predict
the growth of the outbreak. Secondly, a modified EKF-SIRD method and GA-SIRD
method are used to describe the outbreak’s dynamics.

Since the methods are applied based on the SIRD model, the number of infected
cases I(t) is obtained by N(t) − R(t) − D(t). Infected cases data will be used as the
input in variable infected I(t). The initial values of the parameters I(0), R(0), D(0)
are taken from the first time step of data and, in particular, are used by the modified
EKF-SIRD method. The initial value of S(0), parameters r, a, and d for the modified
EKF-SIRD are estimated using the genetic algorithm. All parameters and the initial
values are estimated using the genetic algorithm to put in the GA-SIRD method. For
the Ensemble-SVR, the initial value is not required. The values are obtained directly
from a random generator in the method.

The first results presented in Figure 2 are based on the Ensemble-SVR and show
the prediction of COVID-19 spread for infected individuals (I(t)), recovered individuals
(R(t)), and deceased individuals (D(t)). The simulation is conducted by, first, determin-
ing an ensemble model based on China, South Korea and Malaysia 2 . The three countries
are chosen based on data characteristic analysis on the data distributions towards In-
donesia data in Figure 1.

There are some differences of the simulation results based on the three countries,
namely, China (see Figure 2(a)), South Korea (see Figure 2(b)), and Malaysia (see Fig-
ure 2(c)). The figures describe the possibilities of the dynamic of the outbreak as the
data characteristics are similar to the Indonesia data.

The data reflects its conditions in China: many people at risk of infection and a total
lockdown policy. Different policies are applied in South Korea. There is no lockdown
policy but a high level of discipline in applying social distancing, mask-wearing, a vast

2 Data is collected from https://www.worldometers.info/coronavirus/#countries.

https://covid19.go.id/
https://covid19.go.id/
https://www.worldometers.info/coronavirus/#countries
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Figure 2: Ensemble Model-SVR prediction: (a) ensemble model with China, (b) ensem-
ble model with South Korea and (c) ensemble model with Malaysia.

number of tests to its people, and readiness of its health system. As the nearest country
to Indonesia, Malaysia has a total lockdown policy. The ensemble method tries to ap-
proximate the outbreak spread based on the data distribution of referenced countries. It
implies that Indonesia is assumed to have similar conditions with the countries of refer-
ence. From Figure 2(a), Figure 2(b), and Figure 2(c), it can be seen that the accuracy
of the method is satisfying with three possible models based on the countries of reference
primarily for the next seven consecutive days.

Next, a simulation using a modified extended Kalman filter based on the SIRD model
(shortly, modified EKF-SIRD) is conducted. It should be noted that the use of the
modified EKF-SIRD method requires an estimation of the initial value S0 and parameters
r, a, and d, which are obtained using a genetic algorithm based on the Indonesia data.
The fitting of the modified EKF-SIRD to the actual data in Figure 3 and the accuracy is
relatively high for a short time prediction, approximately for the next seven consecutive
days (August 26th - September 1st, 2020). If the prediction time range is longer, the
accuracy will decrease as the data dynamic can not be captured well by the model.
Therefore, for a longer prediction time, the parameters of the modified EKF-SIRD model
should be updated to represent the dynamic of the data.
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Figure 3: The dynamic of the number of infected, recovered, and deceased individual
using a modified EKF-SIRD method in Indonesia.

The genetic algorithm is used not only for estimating the parameters of the modified
EKF-SIRD model, but it is also used to modify the SIRD model itself. Then we name
the model a GA-SIRD model. The dynamic of the SIRD model is trained by the GA
algorithm based on the parameters found. However, in Figure 4, it seems that the GA-
SIRD model is less capable of capturing the dynamic of COVID-19 data. The updated
process of a GA-SIRD model based on the data can not perfectly follow the change of the
actual data, mainly when there are extreme jumps in the actual data. This flaw results
in lower accuracy in predicting the dynamics of the outbreak than the first method, the
Ensemble-SVR.

This study also analyzed the three methods’ performances based on the MAPE in (7),
as shown in Table 4. We analyze the error trend for each class of compartments and
each method as the MAPE shows different trends for those variations. In the infected
compartment class, the modified EKF-SIRD and GA-SIRD methods show similar trends
that the longer the time step for prediction, the higher the error. On the other hand,
the MAPE of the Ensemble-SVR method does not have a trend, although the time
step increases. For the recovered compartment class, both the modified EKF-SIRD and
the GA-SIRD show trends that the longer the time step, the higher the errors. On
the other hand, the Ensemble-SVR has a different trend than the other two. In the
deceased compartment class, the modified EKF-SIRD has a more significant error when
the number of time steps increases, but the GA-SIRD and the Ensemble-SVR do not
show a trend of the errors.

In summary, the Ensemble-SVR method shows different behavior, as the prediction
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Figure 4: The dynamic of the number of infected, recovered, and deceased individual
using a modified GA-SIRD method in Indonesia.

is made based on the data distribution and the results are long-term data randomly
generated. Therefore, the method is not affected by the number of time steps. For the
modified EKF-SIRD and GA-SIRD, predictions are likely to depend on the number of
time steps as both methods have parameters used in the methods. The parameters do
not change, although the number of time steps increases. The parameter changes only
if the data set changes as the methods used herein are data-driven. Being considered
time-dependent, the modified EKF-SIRD and GA-SIRD are less accurate if the number
of time steps increases. That is, in general, the Ensemble-SVR outperforms the two other
methods.

Table 4: MAPE comparison of the proposed models on forecasting the COVID-19 cases
in Indonesia.

Time steps
INFECTED DEATH RECOVERED

EKF-SIRD GA-SIRD Ensemble SVR EKF-SIRD GA-SIRD Ensemble SVR EKF-SIRD GA-SIRD Ensemble SVR
k = 1 0.0029 0.0141 0.0143 0.0003 0.1325 0.0316 0.0118 0.1179 0.0203
k = 2 0.0062 0.0198 0.0225 0.0057 0.1265 0.0320 0.0261 0.1307 0.0186
k = 3 0.0144 0.0054 0.0222 0.0091 0.1229 0.0327 0.0328 0.1369 0.0190
k = 4 0.0526 0.0486 0.0219 0.0107 0.1213 0.0335 0.0359 0.1400 0.0189
k = 5 0.0901 0.0908 0.0210 0.0109 0.1211 0.0339 0.0349 0.1396 0.0190
k = 6 0.1147 0.1201 0.0209 0.0101 0.1221 0.0339 0.0370 0.1420 0.0210
k = 7 0.1322 0.1421 0.0231 0.0113 0.1207 0.0344 0.0415 0.1465 0.0200

Average 0.0590 0.0630 0.0196 0.0083 0.1240 0.0331 0.0314 0.1362 0.0195
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6 Conclusion

This paper proposes three new hybrid methods named a modified EKF-SIRD, a GA-
SIRD, and an Ensemble-SVR. We simulated the first two methods to present the dynamic
of the COVID-19 outbreak for short-term predictions. As a result, these two methods
exhibit their dependency on the number of time steps as the accuracy decreases when
the prediction time window is wider. On the other hand, the Ensemble-SVR shows
that prediction accuracy does not depend on the number of time steps. Therefore,
the Ensemble-SVR is the best model amongst the other machine learning methods in
terms of accuracy. The study results in the conclusion that the Ensemble-SVR method
outperforms the modified EKF-SIRD and GA-SIRD.

As an extension, we will continue the study in predicting an effective reproduction
number Rt and dispersion number K. Rt represents the growth rate of the infection
from the infected individual to the healthy individual, and K represents the ability of
the infected individual to trigger new cases in a very short time. The two measures are
essential for the policymaking process.
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1 Introduction

The theory of reliability systems plays an important role in industry, manufacturing,
safety engineering and quality. The lifetime of equipment or apparatus is a random time
from the beginning of the operation until the appearance of a complete failure. Reliability
is the ability of a system to perform its stated purpose adequately for a specified period
of time under specified operational conditions. The system defined here could be an
electronic or mechanical hardware product, a software product, a manufacturing process.
For example, in the case of a mechanical system, a failure is a breakdown of some of its
parts or an increase in vibration above the permitted level. The reliability characteristics
are usually expressed in terms of the lifetime. Modeling and analyzing lifetime data
are important issues for engineering reliability, industry, quality control, and clinical
trials, etc. Different lifetime data can be modeled by different continuous probability
distributions such as exponential, Lindley, Weibull, lognormal, and Frechet as well as
their generalizations [1, 2].

In reliability and survival analysis, it is difficult to collect lifetime data for all compo-
nents under consideration due to time and cost constraints. Various types of censoring
schemes can be used for such purpose based on the model and available information using
both parametric and nonparametric methods. Recently, progressive censoring sampling
is of special importance in reliability and survival analysis. Progressive censoring was
first introduced by Cohen [3]. Extensive studies are available in the literature related to
the progressive censoring [4–6]. Different parametric survival models have been consid-
ered in progressive censoring using binomial removals, they are the Type-II generalized
logistic distribution [7], the exponential distribution [8], the generalized exponential dis-
tribution [9], the exponentiated gamma distribution [10], the Pareto distribution [11–13],
the Rayleigh distribution [14], the Burr Type-XII distribution [15], and the Gompertz
distribution [16]. For more details about Type-I and Type-II censored samples, one
can refer to Salah [17], Lin et al. [18], Balakrishnan [19], Balakrishnan et al. [20], and
Salah [21,22].

Type-II progressively censored life test is conducted as follows. For n identical units in
a test, at the time of the first failure, R1 units from the remaining n−1 survival items are
removed. At the time of the second failure, R2 units from the remaining n−R1−1 items
are removed, and so forth. Finally, at the time of m−th failure, the reaming survival
units, would be Rm can be removed. In this case, censoring takes place progressively in
m stages. Clearly, this scheme includes, as special cases, the complete sample situation
(when m = n and R1 = ... = Rm = 0) and the conventional Type−II right censoring
situation (when R1 = ... = Rm−1 = 0 and Rm = n−m). The corresponding scheme (r1,
r2, . . . , rm) is known as the progressive Type-II right censoring scheme.

Different versions of the power function distributions are reported in the literature
[23]. These power function distributions can be easily implemented to determine the
failure rates and reliability values compared to other distributions such as lognormal,
Weibull, logistic and others. The particular parameterization of the power distribution
function to be considered in this work has the following cumulative distribution function
(CDF) form:

F (x) = 1−
(
θ − x
θ − α

)β
, α < x < θ, β > 0, (1)

where θ and α are the scale parameters and β is the shape parameter.
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The probability density function (PDF) is given by

f(x) =
β

θ − α

(
θ − x
θ − α

)β−1
, α < x < θ, β > 0. (2)

The power function distribution is a member of the Beta family of distributions.
Sarhan and Pandey [24] obtained the best linear unbiased estimates of the parameters
of the above power distribution function in terms of k−th upper record values. The
power function distribution has applications in industrial and mechanical engineering [24].
Meniconi and Barry [25] explored the performance of the power function distribution on
certain electrical components and showed that it is the most suitable distribution function
as compared to the lognormal, Weibull and exponential models. Statistical properties of
the power function distribution were reported by Johnson et al. [26].

This work considers progressive Type-II censoring for a power function distribution
with binomial removals. The maximum likelihood estimators (MLEs) of the model pa-
rameters are determined. A simulation study is performed to determine the behavior
of the MLEs via bias and the root mean square error (RMSE) using different sample
sizes, parameter values and censored proportions. An example related to lifetime data
of electronic devices will be presented to illustrate the approach developed in this work.

2 Model

Assume the lifetime random variable follows the power function distribution given in
equation (1), it is a realistic assumption to assume the location parameter (lower bound)
α = 0, the cumulative distribution function (CDF) reduces to

F (x) = 1−
(
θ − x
θ

)β
, 0 < x < θ, β > 0, (3)

where θ is the scale parameter and β is the shape parameter.
The probability density function (PDF) reduces to

f(x) =
β

θ

(
θ − x
θ

)β−1
, 0 < x < θ, β > 0. (4)

The reliability function is given by

r(x) = P (T > x) =

(
θ − x
θ

)β
, 0 < x < θ, β > 0.

The hazard rate function is given by

h(x) =
f(x)

R(x)
=

β

θ − x
, 0 < x < θ, β > 0.

Figure 1 shows a graphical representation of the probability density function (PDF)
for the values of the shape parameter β of 0.2, 0.7, 1.5, 3, 4 and θ = 1. The proba-
bility density function exhibits various behaviors depending on the values of the shape
parameter β. Figure 2 shows the graphical representation of the hazard function using
selected shape parameter values. According to Figure 2, it is seen that the power function
distribution is characterized by increasing J-shaped hazard rates.
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Figure 1: PDF plot of power function distribution.

Figure 2: Hazard rate curves of power function distribution.

3 Maximum Likelihood Estimation

We first consider estimating the parameters based on the complete observed sample
x1, ..., xn. Let x(1), ..., x(n) be the corresponding order statistics. Given the sample, the
likelihood function of the density in (4) is

L(β, θ) ≡ L(β, θ|x1, ..., xn) =

(
β

θ

)n n∏
j=1

(
1− xj

θ

)β−1
I(x(n),∞)(θ) , β > 0,

where IA(x) is the zero−one indicator function. We notice that the support of the density
depends on the scale parameter and therefore the MLE may not be calculated directly
as a solution to the likelihood equations.

For fixed β = β0, the limits of the likelihood function when approaching its boundaries
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are given by

lim
θ↓x(n)

L(β0, θ) =


∞, 0 < β0 < 1,

0, β0 > 1,(
x(n)

)−n
, β0 = 1,

and
lim
θ↑∞

L(β0, θ) = 0,∀β0 > 0.

For 0 < β0 ≤ 1, L(β0, θ) is maximized at θ = x(n). However, for β0 > 1, L(β0, θ)
attains its maximum at some θ > x(n) and not at x(n). To illustrate this, the graphs of
L(β0, θ) based on a sample of size 10 from the power function distribution with θ = 2
and β0 = 1.2, 2, and 4, respectively, are displayed in Figures 3, 4 and 5. The values of
x(n) are approximately 1.99, 1.79 and 0.56, respectively. Notice that for β0 = 1.2, the
maximum of L(θ) is approximately 1.75, which is very close to x(n)=1.71, for β0 = 2,
we have x(n)=1.22 and L(θ) is approximately maximized at θ = 1.49, and for β0 = 4,
x(n) = 0.75 and L(θ) attains its maximum at θ = 1.83, approximately. We observe that
the maximizer of L(θ) deviates from x(n) with increasing β.

Figure 3: Likelihood function based on a sample of size 10 generated from the power function
distribution with β = 1.2 and = 2.

Now we investigate the MLE of the parameter vector θ = (β, θ). Necessary conditions
for the existence and uniqueness of the MLE of a parameter vector θ = (θ1, ..., θk) are
in [27]:

1. L(θ) is a twice continuously differentiable likelihood function varying in a connected
open subset Θ ⊂ Rk.

2. L(θ) satisfies the following two conditions:

(i) lim
θ→∂Θ

L(θ) = 0,
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Figure 4: Likelihood function based on a sample of size 10 generated from the power function
distribution with β = 2 and = 2.

Figure 5: Likelihood function based on a sample of size 10 generated from the power function
distribution with β = 4 and = 2.

(ii) The Hessian matrix of second partial derivatives

H =

(
∂2L
∂θ2

∂2L
∂θ∂β

∂2L
∂β∂θ

∂2L
∂β2

)

is negative definite at every point θ ∈ Θ for which the vectorOL = (∂L/∂θi) = 0.
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These conditions also apply to the log−likelihood function with lim
θ→∂Θ

l(θ) = 0 being

replaced by lim
θ→∂Θ

L(θ) = −∞.

The domain of the likelihood function of the power function distribution based on a
sample of size n is the rectangle (0,∞)× (x(n),∞) which is an open connected set in R2.
The boundaries of Θ are the lines θ = x(n), β ∈ (0,∞) and β = 0, θ ∈ (x(n),∞). It is
clear that lim

θ→∂Θ
L(θ) = 0 when approaching each of these two lines. So, to prove the

existence and uniqueness of the MLE, it remains to show that the Hessian matrix H is
nonnegative definite at the zeros of the first partial derivatives of L(θ) or, equivalently,
of l(θ).

Given the observed sample x1, ..., xn, the log-likelihood function is

l(β, θ) ≡ logL(β, θ) = n log β − n log θ + (β − 1)

n∑
j=1

log
(

1−
x(j)

θ

)
. (5)

For β > 0, we have

∂l(β, θ)

∂β
=
n

β
+

n∑
j=1

log
(

1−
x(j)

θ

)
= 0, (6)

and for θ > x(n), we have

∂l(β, θ)

∂θ
= −n

θ
+(β − 1)

n∑
j=1

x(j)

θ
(
θ − x(j)

) = 0. (7)

Solving (6) for β, we obtain

β ≡ β(θ) = − n∑n
j=1 log

(
1− x(j)

θ

) (8)

and solving (7) for β, we have

β − 1 =
n∑n

j=1 xj (θ − xj)−1
. (9)

Since
∂2l(β, θ)

∂β2
= − n

β2
< 0,

it follows for fixed θ, l(β, θ) is maximized at

β(θ) = − n∑n
j=1 log

(
1− x(j)

θ

) ,
provided that the maximum exists. Replacing β by β(θ), the log-likelihood (5) can be
written as

l(θ) ≡ sup
β
l(β, θ) = n logβ(θ)− n logθ + (β(θ)− 1)

n∑
j=1

log
(

1−
x(j)

θ

)
= n logβ(θ)− n logθ + (β(θ)− 1)

−n
β(θ)

= n log
β(θ)

θ
+

n

β(θ)
− n.
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The second partial derivatives of l(β, θ) are

∂2l(β, θ)

∂β2
= − n

β2
, (10)

∂2l(β, θ)

∂θ2
=

n

θ2
-(β − 1)

n∑
j=1

x(j)(2θ − x(j))
θ2(θ − x(j))2

, (11)

∂2l(β, θ)

∂θ∂β
=
∂2l(β, θ)

∂β∂θ
=

n∑
j=1

x(j)

θ(θ − x(j))
. (12)

From (9) and (12), we have ∂2l(β,θ)
∂θ∂β = 1

θ

∑n
j=1

x(j)

(θ−x(j))
= 1

θ
n
β−1 . Thus, H can be

written as

H =

(
− n
β2

n
θ(β−1)

n
θ(β−1)

n
θ2 − (β − 1)

∑n
j=1

xj(2θ−xj)
θ2(θ−xj)2

)
.

The determinant of H is

D = − n

β2

 n
θ2
− (β − 1)

n∑
j=1

xj(2θ − xj)
θ2(θ − xj)2

− ( n

θ(β − 1)

)2

. (13)

Completing the square of the numerator of the term inside the sum on the right-hand
side of (13), we get

D = − n

β2

 n
θ2

+ (β − 1)

n∑
j=1

{
(θ − xj)2 − θ2

}
θ2(θ − xj)2

− ( n

θ(β − 1)

)2

= − n

β2

nβ
θ2
− (β − 1)

n∑
j=1

1

(θ − xj)2

− ( n

θ(β − 1)

)2

= − n

β2

nβ
θ2

+
nβ2

θ2(β − 1)2
− (β − 1)

n∑
j=1

1

(θ − xj)2

 .
For D to be negative definite, we need to show that the term between the square

brackets is positive. That is,

nβ

θ2

(
1 +

β

(β − 1)2

)
− (β − 1)

n∑
j=1

1

(θ − xj)2
> 0, or

nβ

θ2

(
1 +

β

(β − 1)2

)
> (β − 1)

n∑
j=1

1

(θ − xj)2
.

Then for each j = 1, . . . , n, we have θ − xj < θ, which implies that

n∑
j=1

1

(θ − xj)2
>

n∑
j=1

1

θ2
=

n

θ2
.
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So, the above inequality reduces to

nβ

θ2(β − 1)

(
1 +

β

(β − 1)2

)
>

n

θ2
.

Multiplying both sides of the above inequality by θ2/n, after some algebra, we get

β3 − β2 + 1− (β − 1)3

(β − 1)3
> 0.

We have noticed earlier that for 0 < β ≤ 1, the MLE is X(n), so we only examine
here the case β > 1. After expanding the numerator and noticing that the denominator
is positive, the last inequality reduces to 2β2− 3β+ 2 = 2(β− 1)2 + β > 0, which is true
for all β and hence for β > 1. Thus,

nβ

θ2
+

nβ2

θ2(β − 1)2
− (β − 1)

n∑
j=1

1

(θ − xj)2
> 0,∀β > 1, and

− n

β2

nβ
θ2

+
nβ2

θ2(β − 1)2
− (β − 1)

n∑
j=1

1

(θ − xj)2

 < 0,∀β > 1.

We have shown that the Hessian matrix H is negative definite at the zeros of the first
partial derivatives of the log-likelihood function. Thus, all necessary conditions for the
existence and uniqueness of the MLE are met.

Let (X1, R1) , (X2, R2) , . . . , (Xm, Rm) be a progressively censored sample, where
X1 < X2 < . . . < Xm. With a predetermined number of removals, such as R1 = r1, R2 =
r2, . . . , Rm = rm, the conditional likelihood function can be written as [3]

L(θ, β;x|R = r) = A

m∏
i=1

f(xi) (1− F (xi))
ri , (14)

where A = n(n− r − 1)...(n−
∑m−1
i=1 ri + 1).

After substituting (3) and (4) into equation (14), the likelihood function becomes

L(θ, β;x|R = r) = A

m∏
i=1

β

θ

(
θ − xi
θ

)β−1((
θ − xi
θ

)β)ri
. (15)

Suppose that an individual unit being removed from the test at the ith failure,i =
1, 2, . . . ,m − i, is independent of the others but with the same probability p. There-
fore, Ri, i = 1, 2, ..,m − 1, follows a binomial distribution with parameters n − m −∑m−1
k=1 rk and p. Thus,

P (R1 = r1) =

(
n−m
r1

)
pr1(1− p)n−m−r1 , (16)

P (Ri = ri|Ri−1 = ri−1, . . . , R1 − r1)

=

(
n−m−

∑m−1
k=1 rk

ri

)
pri(1− p)n−m−

∑i
k=1 rk , i = 1, 2, ...,m− 1, (17)
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where 0 ≤ ri ≤ n−m−
∑i−1
j=1 rj .

The full likelihood function takes the following form:

L(θ, β, p;x, r) = L(θ, β;x|R) = r(P (R = r|p)), (18)

where P (R = r|p)) is the joint conditional distribution and is given by

P (R = r|p) =

P (R1 = r1)P (R2 = r2|R1 = r1)...P (Rm−1 = rm−1|Rm−2 = rm−2, ...., R1 = r1) (19)

=
(n-m)!p

∑m−1
i=1 ri(1− p)(m−1)(n−m)

∑m−1
i=1 (m−i)ri(

n−m−
∑m−1
i=1 ri

)
!
∏m−1
i=1 ri!

.

Using equations (15), (18) and (19), we can write the full likelihood function as

L (θ, β, p;x, r) = AL1 (θ, β)L2 (p) ,

where

L1(θ, β) =

m∏
i=1

β

θ

(
θ − xi
θ

)β−1((
θ − xi
θ

)β)ri

=

(
β

θ

)m m∏
i=1

(
θ − xi
θ

)β(1+ri)−1
,

L2(p) = p
∑m−1
i=1 ri(1− p)(m−1)(n−m)

∑m−1
i=1 (m−i)ri

and

A =
c(n−m)!(

n−m−
∑m−1
i=1 ri

)
!
∏m−1
i=1 ri!

.

It is clear that A is parameter free and L2 (p) is independent of θ and β.
The MLE of β can be obtained by maximizing

L1(β, θ) =

m∏
i=1

β

θ

(
θ − xi
θ

)β(ri+1)−1

or, equivalently, the log-likelihood function

l1(β, θ) = m log(β)−m log(θ) +

m∑
i=1

[β(ri + 1)− 1] log

(
θ − xi
θ

)
. (20)

The corresponding likelihood equations are

∂l1
∂β

=
m

β
+

m∑
i=1

(ri + 1) log

(
θ − xi
θ

)
= 0, (21)

∂l1
∂θ

= −m
θ

+

m∑
i=1

[β(ri + 1)− 1] log
xi

θ (θ − xi)
= 0. (22)
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Solving (21) for β, we obtain

β ≡ β(θ) = − m∑m
i=1(ri + 1) log

(
θ−xi
θ

) . (23)

Substitute (23) into (22) to obtain

m∑
i=1

[β(θ)(ri + 1)− 1] log
xi

θ (θ − xi)
=
m

θ
. (24)

As clarified before, the MLE of θ is X(m) if 0 < β(ri + 1) ≤ 1, in this case the MLE
of β is

β̂ = − m∑m
i=1(ri + 1) log

(
x(m)−xi
x(m)

) .
For β(ri + 1) > 1, we use numerical methods to solve (24) for θ and then apply (23)

to solve for β. The MLE of p is easily derived by maximizing logL2(p):

p̂ =

∑m−1
i=1 ri∑m−1

i=1 ri + (m− 1)(n−m)−
∑m−1
i=1 (m− i)ri

.

4 Numerical Results

4.1 Simulation study

A simulation study was performed to deduce the behavior of the maximum likelihood
estimators. Different sample sizes, namely, n = 25, 50 and 100 were used. Different
combinations of the parameter values of θ and β were considered. The values of the
parameter p used in the simulation study are 0.25, 0.5 and 0.75. The simulation results
were based on 1000 replicates. The means and root mean square errors (RMSE) of the
maximum likelihood estimators for the three parameters p, θ and β are displayed in
Tables 1, 2 and 3.

The following concluding remarks can be drawn based on the results shown in Tables
1, 2, and 3:

1. For a fixed value of m, as n increases, the bias and RMSE show a decreasing trend.

2. For a fixed value of n, as m increases, the bias and RMSE decrease for the maximum
likelihood estimators for θ and β; on the other hand, the RMSE increases for the
maximum likelihood estimator for p.

3. As the shape parameter β increases, the bias and RMSE increase.

4. As the value of the probability parameter p increases, the bias and RMSE for the
estimators of p and β increase.

4.2 Study on real data

A real-life data set is considered which represents the failure times (in minutes) for a
sample of 15 electronic components in an accelerated life test [5]. The data set is 1.4,
5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23.0, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2.
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Table 1: Mean and RMSE of the MLEs and for p = 0.25 and different choices n, m, θ and β.

n m θ̂ β̂
p̂ θ̂ β̂

Mean RMSE Mean RMSE Mean RMSE

25

15
1 0.5 0.26926 0.07899 0.99366 0.01187 0.51518 0.14276

1.5 1 0.26926 0.07910 1.41241 0.08126 0.91826 0.26551
2 1.5 0.26926 0.07900 1.72610 0.17629 1.20655 0.37488

20
1 0.5 0.29167 0.12260 0.99592 0.00899 0.57428 0.13269

1.5 1 0.29166 0.12261 1.43108 0.06667 1.03523 0.24506
2 1.5 0.29166 0.12261 1.76733 0.15360 1.37200 0.35504

50

30
1 0.5 0.25922 0.05237 0.99796 0.00422 0.52328 0.10064

1.5 1 0.25922 0.05237 1.45143 0.04723 0.96558 0.18577
2 1.5 0.25922 0.05237 1.81607 0.12262 1.30226 0.26939

40
1 0.5 0.27079 0.07868 0.99892 0.00234 0.54803 0.08874

1.5 1 0.27079 0.07868 1.46462 0.03431 1.02557 0.16921
2 1.5 0.27079 0.07868 1.85091 0.09830 1.39968 0.25315

100

80
1 0.5 0.25909 0.05182 0.99969 0.00068 0.52754 0.05999

1.5 1 0.25909 0.05182 1.48124 0.01857 1.01082 0.11601
2 1.5 0.25909 0.05182 1.90260 0.06567 1.41151 0.17877

90
1 0.5 0.27079 0.07868 0.99977 0.00045 0.52939 0.05726

1.5 1 0.27079 0.07868 1.48350 0.01589 1.01832 0.11180
2 1.5 0.27079 0.07868 1.91029 0.05957 1.42767 0.17258

The failure times were analyzed in order to validate the proposed progressive Type-
II censoring scheme using the power function distribution model. The validity of the
power distribution function was checked based on the maximum likelihood estimated
parameters θ and β of 66.2 and 1.1573, respectively. The Kolmogorov-Smirnov (K−S)
test was used for this data set. It is noted that the K−S distance between the fitted and
the empirical distribution functions equals to 0.21, and the corresponding critical value
at α =0.05 equals to 0.33. Thus, the power function distribution fits the above data set
reasonably well.

Five progressively censored samples were generated from the above data for the values
of m = 14, 13, 12, 11, 10. Uniform random removal of subjects was used to generate
(r1,r2,...,rm).

Progressive censoring with m =14 (1 observation removed): (1.4, 0), (5.1,1), (6.3,0),
10.8,0), (12.1,0), (18.5,0), (19.7,0), (22.2,0), (23.0,0), (30.6,0), (37.3,0), (53.9,0), (59.8,0),
(66.2).

Progressive censoring with m =13 (2 observations removed): (1.4,1), (5.1,0), (6.3,0),
(10.8,0), (12.1,0), (18.5,0), (22.2,0), (23.0,0), (30.6,0), (37.3,1), (53.9,0), (59.8,0), (66.2,0).

Progressive censoring with m =12 (3 observations removed): (1.4,1), (6.3,0), (10.8,0),
(12.1,0), (18.5,1), (19.7,0), (22.2,0), (23.0,0), (30.6,0), (37.3,1), (59.8,0), (66.2,0).

Progressive censoring with m =11 (4 observations removed): (1.4,1), (5.1,0), (10.8,0),
(12.1,1), (18.5,0), (19.7,1), (22.2,0), (23.0,0), (30.6,0), (37.3,1), (53.9,0).

Progressive censoring with m =10 (5 observations removed): (1.4,1), (5.1,0), (6.3,1),
(10.8,1), (12.1,0), (18.5,0), (19.7,1), (22.2,0), (37.3,0), (46.3,1).

The maximum likelihood estimates for the model parameters β and θ using the five
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Table 2: Mean and RMSE of the MLEs p̂, θ̂, and β̂ for p = 0.5 and different choices of n,m, θ
and β.

n m θ̂ β̂
p̂ θ̂ β̂

Mean RMSE Mean RMSE Mean RMSE

25

15
1 0.5 0.52050 0.11961 0.99366 0.01187 0.57897 0.15603

1.5 1 0.52050 0.11961 1.41241 0.08126 1.03978 0.28820
2 1.5 0.52050 0.11961 1.72610 0.17649 1.35124 0.40669

20
1 0.5 0.55036 0.17118 0.99592 0.00899 0.59603 0.13753

1.5 1 0.55036 0.17118 1.43108 0.06666 1.07318 0.25358
2 1.5 0.55036 0.17118 1.76733 0.15360 1.42118 0.36723

50

30
1 0.5 0.51021 0.08361 0.99796 0.00422 0.55312 0.10559

1.5 1 0.51021 0.08361 1.45143 0.04723 1.01860 0.19525
2 1.5 0.51021 0.08361 1.81607 0.12262 1.37170 0.28424

40
1 0.5 0.52049 0.11961 0.92545 0.04940 1.41970 0.25714

1.5 1 0.52049 0.11961 1.46462 0.03431 1.04072 0.17182
2 1.5 0.52049 0.11961 1.85091 0.09880 1.41970 0.25719

100

80
1 0.5 0.51021 0.08361 0.99969 0.00068 0.52127 0.06048

1.5 1 0.51021 0.08361 1.48124 0.01857 1.01775 0.11693
2 1.5 0.51021 0.08361 1.90260 0.06567 1.42089 0.18018

90
1 0.5 0.52050 0.11961 0.99877 0.00045 0.53083 0.05737

1.5 1 0.52050 0.11961 1.48347 0.01589 1.02103 0.11204
2 1.5 0.52050 0.11961 1.91029 0.05957 1.43137 0.17302

progressive censoring schemes with m=14, 13, 12, 11 and 10 are (1.1880, 66.2), (1.1348,
66.2), (1.1882, 66.2), (1.0772, 53.9) and (0.7553, 46.3), respectively.

5 Conclusion

We develop some results on the power function distribution when progressive Type-
II censoring is used with binomial removals. The maximum likelihood estimators for
the model parameters were derived. The simulation results showed that as the sample
size increases, the performance of the estimators improves in terms of the bias and the
RMSE. The biases and the RMSEs for p and β decrease as m increases. The bias and
RMSE increase with the increase in the shape parameter β. The bias and RMSE for the
estimators of p and β increase with the increase in parameter p. An application of real
lifetime data was conducted, it illustrates the proposed censoring scheme.
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Table 3: Mean and RMSE of the MLEs and for p = 0.75 and different choices of n,m, θ and
β.

n m θ̂ β̂
p̂ θ̂ β̂

Mean RMSE Mean RMSE Mean RMSE

25

15
1 0.5 0.76234 0.12057 0.97366 0.01187 0.60158 0.16142

1.5 1 0.76234 0.12057 1.41241 0.08126 1.06821 0.29896
2 1.5 0.76234 0.12057 1.72261 0.17649 1.40003 0.42009

20
1 0.5 0.77827 0.16000 0.99592 0.00899 0.60243 0.13902

1.5 1 0.77827 0.16000 1.43108 0.06666 1.00416 0.25630
2 1.5 0.77827 0.16000 1.76733 0.15360 1.43519 0.37113

50

30
1 0.5 0.75463 0.08281 0.99796 0.00422 0.56249 0.10805

1.5 1 0.75463 0.08281 1.45143 0.04723 1.03510 0.19815
2 1.5 0.75463 0.08281 1.81607 0.12262 1.39312 0.28874

40
1 0.5 0.76234 0.12057 0.99892 0.00234 0.55915 0.09050

1.5 1 0.76234 0.12057 1.46462 0.03431 1.04560 0.17262
2 1.5 0.76234 0.12057 1.85091 0.09830 1.42612 0.25041

100

80
1 0.5 0.75463 0.08281 0.99969 0.00068 0.53249 0.06060

1.5 1 0.75463 0.08281 1.48124 0.01857 1.01997 0.11713
2 1.5 0.75463 0.08281 1.90260 0.06567 1.42390 0.19050

90
1 0.5 0.76234 0.12057 0.99977 0.00045 0.53132 0.05744

1.5 1 0.76234 0.12057 1.48347 0.01589 1.02195 0.11218
2 1.5 0.76234 0.12057 1.91029 0.05957 1.43261 0.17326
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1 Introduction

The self-organization process is found in many natural structures and represents the
main concept of the Systems Science field. It sometimes refers to the formation of vari-
ous patterns in some physical and biological systems. For instance, we can see it in the
rippled dune formation in a sand desert or in the cells combination that creates highly
structured and ordered tissues. In most of these systems, the order and structure are
acquired thanks to the proximate means characterizing them. It is then possible to view
the pattern formation at the global level of the structure due to interactions between
components of lower levels. The whole process is specifically governed by natural selec-
tion characterizing physical and biological systems. However, some other systems (found
in nature) can become organized due to external commands, for instance, human inter-
ventions (protocols, algorithms, simulations) that lead to the building of sophisticated
societies, structures or machines. We are exploring the later case with the specific domain
of wave-motion where the model of Harry Dym is considered [1–8].

It is important to recall that the self-organization process is closely related to the dy-
namical system theory. A number of dynamical systems have been investigated several
times in the course of science history, but the concept remains fascinating for scientists.
One of the reasons is the unpredictable trajectories that characterize the vast amount
of applications found in engineering, physics, biology, (applied) mathematics, and med-
ical sciences [4, 9–12, 14]. A simple example includes the study of chaotic systems with
complicated bifurcations that exist there. The literature comprises diverse types of dy-
namical systems [10,11,13–15], namely, the classical dynamical system and also the open
dynamical system. The later can be seen in Fig.1, where different orbits and trajectories
can be observed. It starts with the initial trajectories (Fig.1 (upper right)) of an agent
dynamical system in isolation in its suitable space Sπ. The process goes on with a de-
coupled agent dynamical system, see Fig.1 (upper left), well defined on its suitable total
space Sτ and which joints together to form the total system shown in Fig.4 (lower left).
The system is completed by the projection or paths, see Fig.1 (lower right), showing how
an agent behaves in a particular environment (Sπ). The behavior of the system in this
last space (Sπ) is the major symbolism at the core of the so-called open dynamical system
as it contrasts with the agent in isolation (Fig.1 (upper right)). Particularly, the orbits in
the open phase portrait for the embedded agent dynamical system (Fig.1 (lower right))
overlap, which is not the case for those of the agent in isolation (Fig.1 (upper right)).
This is what makes open dynamical systems generally hard to study. This statement
is supported by the types of dynamics observed in complex systems like fractals. Some
of these dynamics are depicted in Fig.2 and Fig.3. These representations show differ-
ent sorts of waves involved in fractal-type motifs. The fractal patterns are artificially
(numerically) formed due to mathematical simulations issued from modeling the type of
movements observed in nature around us. The fractal motif include sound-type fractal
waves, heat-type fractal waves, particle fractal waves, ocean chaotic fractal waves, spiral
wave fractal swirls, fluffy cloud chaotic fractal wave spirals, chaotic fractal light waves
and so on.

1.1 Approximation results for the classical Harry Dym model

Let Ω = (a, b), R 3 T > 0 R 3 b > a ∈ R and g ∈ C0 [[0, T ]× Ω] . Let α ∈ [0; 1], β ∈
(0,+∞), then consider the non-linear Dym equation in its classical form. Existence and
uniqueness of the exact solution are shown for the model under investigation that reads
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Figure 1: Basic principle of the open dynamical system. We can see the initial trajectories (upper
right) of an agent dynamical system in isolation in its suitable space Sπ . The process goes on with a
decoupled agent dynamical system (upper left), well defined on its suitable total space Sτ and which
joints together to form the total system shown (lower left). The system is completed by the projection
or paths (lower right) showing how an agent behaves in a particular environment (Sπ). The behavior of
the system in this last space (Sπ) is the major symbolism at the core of the so-called open dynamical
system as it contrasts with the agent in isolation (upper right). Particularly, the orbits in the open phase
portrait for the embedded agent dynamical system (lower right) overlap, which is not the case for those
of the agent in isolation (upper right).

Figure 2: Simulation showing different sorts of waves involved in fractal-type motifs. The fractal
patterns here are artificially (numerically) formed due to mathematical simulations issued from modeling
the type of movements observed in nature. In (a) we have sound fractal waves, in (b) heat fractal waves,
in (c) particle fractal wave and (d) ocean chaotic fractal wave.
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Figure 3: Simulation showing different sorts of waves involved in fractal-type patterns. The fractal
motifs here are artificially (numerically) formed due to mathematical simulations issued from modeling
the type of movements observed in nature. In (a) fractal wave multi color motion glowing lines, in (b)
spiral wave fractal swirl, (c) fluffy cloud chaotic fractal wave spirals, in (d) chaotic fractal light waves.

as
∂

∂t
g(t, x) = g3gxxx(t, x), (1)

subject to the initial condition

g(0, x) = g0(x) (2)

with g : Ω 7−→ R+.

The function g can be approximated in the form

g(t, x) =

∞∑
j=0

ejHj(x), (3)

here the coefficients ej are given by

ej = 2k
∫ 1

0

g(t, x)Hj(x)dx, (4)

where j = 2k + l, k ≥ 0 and 0 ≤ l < 2k. Moreover, the x-dependant function Hj(x) is
the Haar wavelet function [1, 9, 16–18]

Hj(x) =


1, if l

p ≤ x < l+1/2
p ;

−1, if l+1/2
p ≤ x < l+1

p ;

0, elsewhere

(5)

with p = 2k, k = 1, 2, · · · , L, where L denotes the chosen resolution’s level and l rep-
resents the translation parameter which can take the values 0, 1, · · · , p− 1. Because the
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series of function g(t, x) comprises an infinite number of terms, it can be obtained using
the following definite sum:

g(t, x) =

p−1∑
j=0

ejHj(x), (6)

which takes the form

g(t, x) =t epHp(x)

with tep being the transpose of

ep =


e0
e1
...

ep−1

 and Hp =


H0

H1

...
Hp−1

 .

Now, using the Haar wavelet technique to solve the model (1) and (2), we can assume
that the t-partial derivative ∂gxxx

∂t (t, x) is expandable as follows:

∂gxxx
∂t

(t, x) =

2P∑
j=0

ejHj(x), tr < t ≤ tr+1, (7)

where 2P is the number of collocation points calculated as

xi =
i− 1/2

2P
, with i = 1, 2, · · · , 2P. (8)

Integration of (7) respectively with respect to variables t and x leads to

gxxx(t, x) = gxxx(tr, x) + (t− tr)
2P∑
j=1

ejHj(x),

gxx(t, x) = gxx(t, 0)− gxx(tr, 0) + gxx(tr, x) + (t− tr)
2P∑
j=1

ejM
j
1(x)

and

gx(t, x) = gx(t, 0)− gx(tr, 0) + gx(tr, x) + x[gxx(t, 0)]− gxx(tr, 0) + (t− tr)
2P∑
j=1

ejM
j
2(x),

which finally leads to

g(t, x) = g(t, 0) + g(tr, x)− g(tr, 0) + x[gx(t, 0)− gx(tr, 0)]

+
x2

2
[gx(t, 1)− gx(t, 0) + gx(tr, 0)− gx(tr, 1)] (9)

(t− tr)
2P∑
j=1

ej

(
−x

2

2
Mj

2(1) + Mj
3(x)

)
,
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where we have considered at the point x = 1 the operational matrix M defined in its
general expression for the indexes j = l + p+ 1 by

Mj
s(x) =


1
s! (x− l/p)

s, if l
p ≤ x < l+1/2

p ;
1
s!

[
(x− l/p)s − 2(x− l+1/2

p )s
]
, if l+1/2

p ≤ x < l+1
p ;

1
s!

[
(x− l/p)s − 2(x− l+1/2

p )s + (x− l+1
p )s

]
, if l+1/2

p ≤ x < l+1
p ;

0, elsewhere.

(10)

The differentiation of (9) with respect to variable t is followed by the discretization at
the point (tr, xi)

g(tr+1, xi) = g(tr+1, 0) + g(tr, xi)− g(tr, 0) + xi[gx(tr+1, 0)− gx(tr, 0)]

+
x2i
2

[gx(tr+1, 1)− gx(tr+1, 0) + gx(tr, 0)− gx(tr, 1)]

(tr+1 − tr)
2P∑
j=1

ej

(
−x

2
i

2
Mj

2(1) + Mj
3(xi)

)
,

∂g

∂t
(tr+1, xi) =

∂g

∂t
(tr+1, 0) + xi

∂gx
∂t

(tr+1, 0) +
x2i
2

[
∂gx
∂t

(tr+1, 1)− ∂gx
∂t

(tr+1, 0)] (11)

2P∑
j=1

ej

(
−x

2
i

2
Mj

2(1) + Mj
3(xi)

)
.

Still, using the discretization at the point (tr, xi) and the substitution into (1) leads to

2P∑
j=1

ej

(
x2i
2

Mj
2(1)−Mj

3(xi) + g3(tr, xi)(tr+1 − tr)Hj(xi)

)

=
∂g

∂t
(tr+1, 0)− g3(tr, xi)gxxx(tr, xi) +xi

∂gx
∂t

(tr+1, 0) +
x2i
2

[
∂gx
∂t

(tr+1, 1) +
∂gx
∂t

(tr+1, 0)],

(12)
equivalently,

2P∑
j=1

ej

(
x2i
2

Mj
2(1)−Mj

3(xi) + g3(tr, xi)(tr+1 − tr)Hj(xi)

)

+g3(tr, xi)gxxx(tr, xi)−
1

tr+1 − tr
[g(tr+1, 0)− g(tr, 0)]− xi

[
∂g

∂t
(tr+1, 0)− ∂g

∂t
(tr, 0)

]
− x2i

2(tr+1 − tr)

[(
∂g

∂t
(tr+1, 1)− ∂g

∂t
(tr, 1)

)
−
(
∂g

∂t
(tr+1, 0)− ∂g

∂t
(tr, 0)

)]
= 0, (13)

where we have used the scheme

∂g

∂t
(tr+1, 0) =

1

tr+1 − tr
[g(tr+1, 0)− g(tr, 0)]

and
∂g

∂t
(tr+1, 1) =

1

tr+1 − tr
[g(tr+1, 1)− g(tr, 1)] .
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Figure 4: Three-dimensional representation of the solution g(t, x) to model (1) and (2) when g0(x) =
x2.

Hence, equation (13) allows the calculation of the Haar wavelet coefficients, which
are used to establish the numerical solution (9). The related numerical simulations are
depicted in Fig.1 to Fig.5 relating the usual wave dynamics with different given initial
conditions.

1.2 Recent progress in self-organization operators

To help with the advancement of sciences and try to understand and describe many
unsolved problems that were too complex to model, fractional derivatives were proposed.
Those operators have since shown their infinite importance in applied sciences modelling.
Today some authors classify them into two types: local and non-local [19–22]. Since the
moment when Riemann and Liouville proposed their integral, from which derivatives
of fractional were constructed, there has been a huge development in the domain with
various and variant definitions proposed by a number of authors. In fact, the latest
related literature comprises (but is not limited to) the following definitions.

Formerly:

• The Riemann–Liouville derivative RLDγ
t with fractional order γ reads as

RLDγ
t g(t, x) =

1

Γ (n− γ)

(
d

dt

)n ∫ t

0

(t− υ)
n−γ−1

g (υ, x) dυ, (14)

n− 1 < γ ≤ n.

• The Caputo derivative CDγ
t with fractional order γ reads as

CDγ
t g(t, x) =

1

Γ (n− γ)

∫ t

0

(t− υ)
n−γ−1

(
d

dυ

)n
g (υ, x) dυ, (15)

n− 1 < γ ≤ n.
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Figure 5: Three-dimensional representation of the solution g(t, x) to model (1) and (2) when g0(x) =
ex − 1.

Figure 6: Three-dimensional representation of the solution g(t, x) to model (1) and (2) when g0(x) =
xex.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (5) (2021) 525–543 533

More recently [14,20,23,24]:

• The Caputo-Fabrizio derivative CFDγ
t with fractional order γ reads as

CFDγ
t g(t, x) =

n(γ)

(1− γ)

∫ t

0

∂g

∂υ
(υ, x) exp

(
−γ(t− υ)(1− γ)−1

)
dυ, (16)

where n(γ) satisfies
n(0) = n(1) = 1. (17)

• The new-Riemann–Liouville derivative nRLDγ
t with fractional order γ is given by

nRLDγ
t g(t, x) =

(2− γ)n(γ)

2 (1− γ)

d

dt

∫ t

0

g (υ, x) exp
(
−γ(t− υ)(1− γ)−1

)
dυ. (18)

• The Atangana-Baleanu-Caputo derivative ABCDγ
t with fractional order γ reads as

ABCDγ
t g(t, x) =

n(γ)

(1− γ)

∫ t

0

∂g

∂υ
(υ, x) Eγ

[
−γ(t− υ)γ(1− γ)−1

]
dυ. (19)

In the definitions here above, the function g is assumed to belong to the Sobolev
space

S1(α, β) = {g : g,
∂

∂t
g ∈ L2(α, β)}. (20)

• The Caputo-sense two-parameter derivative CGDγ,θ
t with fractional order γ, when

knowing the parameter θ ∈ R, reads as

CGDγ,θ
t g(t, x) =

θñ(γ, θ)

(θ − γ)

∫ t

0

∂g

∂υ
(υ, x) (t− υ)θ−1Eγ,θ

[
−γθ(t− υ)γ(θ − γ)−1

]
dυ,

(21)
where θ ∈ R and ñ(γ, θ) verifies ñ(0, 1) = ñ(1, 1) = 1.

Introduction to fractal-fractional derivative

Initially defined to be the convolution operation between a fractal differential operator
and the usual law functions found in fractional calculus, the fractal-fractional deriva-
tive [25] was introduced in order to attract and describe a huge number of non-local
problems in real life while respecting the fractal structure that characterizes them. In
the recent literature, one can find a number of versions for the definitions of fractal-
fractional operation and this mainly depends on the kind of law function we choose to
use. Some are given as follows.

Definition 1.1 We consider Ω ∈ R3, T ∈ R, and assume that g(t, x) defined on
(0, T )× Ω is t–fractal differentiable with the order γ on the interval (0, T ), then:

1. The fractal-fractional derivative of g of order γ in the sense of Riemann-Liouville
with the power law reads as

FRpDγ
t g(t, x) =

1

Γ (1− γ)

∂

∂tγ

∫ t

0

g (ϑ, x) (t− ϑ)−γdϑ, (22)

where ∂
∂tγ g is defined as

∂

∂tγ
g(t, x0) = lim

t→t0

g(t, x)− g(t, x0)

tγ − tγ0
.
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The generalized version of (22) is defined by

FRpDγ,ς
t g(t, x) =

1

Γ (1− γ)

∂ς

∂tγ

∫ t

0

g (ϑ, x) (t− ϑ)−γdϑ, (23)

with ς > 0 and ∂ς

∂tγ g given by

∂ς

∂tγ
g(t, x0) = lim

t→t0

gς(t, x)− gς(t, x0)

tγ − tγ0
.

Similarly, the Caputo version of this definition can be given.

2. The fractal-fractional derivative of g of order γ in the sense of Caputo with the
power law reads as

FCpDγ
t g(t, x) =

1

Γ (1− γ)

∫ t

0

∂

∂ϑγ
g (ϑ, x) (t− ϑ)−γdϑ, (24)

the generalized version is

FCpDγ,ς
t g(t, x) =

1

Γ (1− γ)

∫ t

0

∂ς

∂ϑγ
g (ϑ, x) (t− ϑ)−γdϑ. (25)

The following definitions are related to the exponential law.

3. The fractal-fractional derivative of g of order γ in the sense of Riemann-Liouville
with the exponential law reads as

FReDγ
t g(t, x) =

n(γ)

(1− γ)

∂

∂tγ

∫ t

0

g (ϑ, x) exp

(
−γ(t− ϑ)

1− γ

)
dϑ, (26)

where n(0) = n(1) = 1, with

the generalized version

FReDγ,ς
t g(t, x) =

n(γ)

(1− γ)

∂ς

∂tγ

∫ t

0

g (ϑ, x) exp

(
−γ(t− ϑ)

1− γ

)
dϑ. (27)

4. The fractal-fractional derivative of g of order γ in the sense of Caputo with the
exponential law reads as

FCeDγ
t g(t, x) =

n(γ)

(1− γ)

∫ t

0

∂

∂ϑγ
g (ϑ, x) exp

(
−γ(t− ϑ)

1− γ

)
dϑ, (28)

with the generalized version

FCeDγ,ς
t g(t, x) =

n(γ)

(1− γ)

∫ t

0

∂ς

∂ϑγ
g (ϑ, x) exp

(
−γ(t− ϑ)

1− γ

)
dϑ. (29)

The following definitions are related to the Mittag-Leffler law.
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5. The fractal-fractional derivative of g of order γ in the sense of Riemann-Liouville
with the Mittag-Leffler law reads as

FRmDγ
t g(t, x) =

n(γ)

(1− γ)

∂

∂tγ

∫ t

0

g (ϑ, x)Eγ

(
−γ(t− ϑ)γ

1− γ

)
dϑ, (30)

where n(γ) is a regularization function. Here the generalized version is

FRmDγ,ς
t g(t, x) =

n(γ)

(1− γ)

∂ς

∂tγ

∫ t

0

g (ϑ, x)Eγ

(
−γ(t− ϑ)γ

1− γ

)
dϑ. (31)

6. Then the fractal-fractional derivative of g of order γ in the sense of Caputo with
the Mittag-Leffler law reads as

FCmDγ
t g(t, x) =

n(γ)

(1− γ)

∫ t

0

∂

∂ϑγ
g (ϑ, x)Eγ

(
−γ(t− ϑ)γ

1− γ

)
dϑ, (32)

where n(γ) is a regularization real function related to the definition and with

the more general version given as

FCmDγ,ς
t g(t, x) =

n(γ)

(1− γ)

∫ t

0

∂ς

∂ϑγ
g (ϑ, x)Eγ

(
−γ(t− ϑ)γ

1− γ

)
dϑ. (33)

Remark 1.1 In this analysis, we make use of the operator given by (26). To proceed,
we have to associate to it another great concept, its associated fractal-fractional operator.
Whence, we define the fractal-fractional integral of order γ, associated to (26), as follows:

FReIγt g(t, x) =
γ(1− γ)tγ−1g(t, x)

n(γ)
+

γ2

n(γ)

∫ t

0

υγ−1g(υ)dυ, t > 0. (34)

2 Self-Organization Process for Harry Dym Model

2.1 Stability of the fractal Dym model

In this section we consider the following system:

FReDγ
t g(t, x) = g3gxxx(t, x), (35)

subject to the initial condition
g(0, x) = g0(x), (36)

where we have combined the Dym model with the fractal-fractional derivative [25, 26],
recalled to be defined in (26) as

FReDγ
t g(t, x) =

n(γ)

(1− γ)

∂

∂tγ

∫ t

0

g (ϑ, x) exp

(
−γ(t− ϑ)

1− γ

)
dϑ, (37)

where n(0) = n(1) = 1. To proceed further in the analysis, the fractal-fractional operator
(37) should be associated with its anti-derivative called the fractal-fractional integral of
order γ, and given by

FF Iγt g(t, x) =
γ

Γ(γ)

∫ t

0

$−γg(x, $)(t−$)γ−1d$, t > 0. (38)
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We have solved the classical model in Subsection 1.1 using the Haar wavelet method,
which has provided a comprehensive analysis of the system and a global picture of the
dynamic in the absence of the fractal influence. We are now using the Legendre wavelets
method ( [27, 28]) to solve the fractal-fractional system (35)–(36). Hence, we can trans-
form it into a compact form with the application of the associated fractional integral on
both sides of the model to have

FFDγ
t g(t, x) = TMmΨm(t), (39)

where the matrix Ψm(t) is given with the elements defining the Legendre wavelets which
are expressed by

ψnm(t) =

{
2l/2
√

2m+ 1L∗m(2lt− n)), if t ∈ [ n
2l
, n+1

2l
];

0, elsewhere.
(40)

Recall that the shifted Legendre polynomial, given by L∗m, is defined on [0, 1] by L∗m(t) =
Lm(2t− 1), with (Lm(2t− 1))m representing the family

L0 = 1, L1 = x, Lm+1(x) =
1 + 2m

m+ 1
xLm(x)− m

1 +m
Lm−1(x), m = 1, 2, · · · , N − 1.

(41)
Recall also that we have considered N 3 J points x = x1, x2, · · · , xJ and N is a positive
integer number, n = 1, 2, · · · , 2l − 1 and l = 0, 1, 2, · · · . Mm =T [m1

m,m
2
m, · · · ,mm

m] are
coefficients to be found with TMm being the transpose of the matrices Mm, respectively.
Associating the initial conditions yields

g(t, xj) ≈ TMmQ
γ
m×mΨm(t) + g0(xj), (42)

where Qγm×m is the Legendre operational matrix of integration and the subscript m
denotes its dimension. We know that [27,28] that the Legendre wavelets can be expanded
into an m-term form as

Ψm(t) = Υm×mAm(t), (43)

where Am(t) =T [a1(t), a2(t), · · · , am(t)] are the block pulse functions so that

al(t) =

{
1, if t ∈ [ l−1m , lm ];
0, elsewhere

(44)

for each l = 1, 2, · · ·m, and Υ is the Legendre wavelet matrix

Υm×m =

[
Ψm

(
1

2m

)
Ψm

(
3

2m

)
· · ·Ψm

(
2m− 1

2m

)]
.

Now the substitution of (43) into system (42) leads to

g(t, xj) ≈ TM1
mQ

γ
m×mΥm×mAm(t) + [[g0(xj)]i]Am(t), (45)

where
[[g0(xj)]i] = [[g0(xj)]1, g0(xj)]2, · · · , g0(xj)]m].
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Now let

TM i
mQ

γ
m×mΥm×m =Mγ,i

1×m = [mγ,i
1 ,mγ,i

2 , · · · ,mγ,i
m ]. (46)

Now the use of the collocations points ti = 2i−1
2l+1N

, i = 1, 2, 3, · · · ,m, N ∈ N, to disperse
t and the substitution of (45) and (46) into the system (35) lead to

TM1
mΥm×m =

x2
i

2 M
γ,i
1×m(1)−Mγ,i

1×m(xi) + g3(tr, xi)(tr+1 − tr)Υ1×m(xi)

+
[
mγ,2

1 ,mγ,2
2 , · · · ,mγ,2

m

]T [
mγ,j

1 ,mγ,j
2 , · · · ,mγ,j

m

]
+[[g0(xj)]1, [g0(xj)]2, · · · , [g0(xj)]m].

(47)

Hence, we obtain this non-linear system of equations with 3m unknown coefficients
mγ,i
l , 1 ≤ i ≤ 3, 1 ≤ l ≤ m, which are easily found using the Newton iteration method.

Then exploiting the model (42) leads to the expected numerical solution (g(t, x).

2.2 Error analysis

Consider N 3 J points x = x1, x2, · · · , xJ . We assume here that the solution g = g(t, xi)
is a function whose second order derivative with respect to t is bounded as∣∣∣∣∂2g∂t2

∣∣∣∣ ≤ α1
0.

Making use of the Legendre wavelet schemes described here above to approximate the
solution g(t, xi) means it can be expanded as a uniformly convergent series that reads as

g(t, xi) =

∞∑
n=0

∞∑
m=0

mγ,1
nmψnm(t)

with

mγ,1
nm = 〈g(t, xi), ψnm(t)〉. (48)

We have the following convergence results.

Proposition 2.1 Let i = 1, 2, · · · , J ∈ N and α1
0 > 0. Assume that the solution

g(t, xi) is a continuous function on [0, T ] whose second order derivative with respect to t
is bounded as ∣∣∣∣∂2g∂t2

∣∣∣∣ ≤ α1
0,

then the coefficients mγ,1
nm satisfy

|mγ,1
nm| <

(12)1/2α1
0

(2m− 3)2
(√

2n
)5 .
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Proof. For i ∈ N, let us consider the function g = g(t, xi) and using the definition of
the Legendre wavelet coefficients given in (48) and taking into account (40), we have

mγ,1
nm =

∫ 1

0

g(t, xi)ψnm(t)dt

=

∫ n+1

2l

n

2l

g(t, xi)2
l/2
√

2m+ 1L∗m(2lt− n)dt

=

√
1 + 2m

2l

∫ 1

0

g

(
n+ ξ

2l
, xi

)
L∗m(ξ)dξ

(where we have changed the variable as t =
n+ ξ

2l
)

=

√
1

(2m+ 1)23l+2

∫ 1

0

∂g

∂t

(
n+ ξ

2l
, xi

)(
L∗m+1(ξ)− L∗m−1(ξ)

)
dξ

=

√
1

(2m+ 1)25l+2

∫ 1

0

∂2g

∂t2

(
n+ ξ

2l
, xi

)(
L∗m+2(ξ)− L∗m(ξ)

6 + 4m
−
L∗m(ξ)− L∗m−2(ξ)

−2 + 4m

)
dξ,

where we have used the derivative properties of the shifted Legendre polynomials [27,28].
Hence

|mγ,1
nm| ≤

∣∣∣∣∣
√

1

(2m+ 1)25l+2

∣∣∣∣∣∫ 1

0

∣∣∣∣ ∂2gd∂t2

(
n+ ξ

2l
, xi

)∣∣∣∣ ∣∣∣∣(L∗m+2(ξ)− L∗m(ξ)

6 + 4m
−
L∗m(ξ)− L∗m−2(ξ)

−2 + 4m

)∣∣∣∣ dξ.
(49)

Developing the right-hand side of the inequality and making use of the constraint property
|x′′(t)| ≤ α1

0 and the orthogonality property of the shifted Legendre polynomials finally
lead to

|mγ,1
nm| ≤

√
1√

2m+ 1
· 1

2(5/2)l+1
· α1

0 ·

√ √
3

(2m− 3)
· 1

2m− 1
<

(12)1/2α1
0

(2m− 3)2
(√

2n
)5 ,

and the proposition is concluded. This result leads to the following error estimate.

Corollary 2.1 Let i = 1, 2, · · · , J ∈ N and α1
0 > 0. Assume that the solution g(t, xi)

is a continuous function on [0, 1] whose second order derivative with respect to t is bounded
as ∣∣∣∣∂2g∂t2

∣∣∣∣ ≤ α1
0,

then the error made when gkN =
∑2l−1
n=0

∑N−1
m=0 m

γ,1
nmψnm(t) approximates g(t, xi) satisfies

∆1
kN < (12)1/2α1

0

√√√√ ∞∑
n=2l

∞∑
m=N

1

32n5(2m− 3)4
.
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Figure 7: Three-dimensional representation of the solution g(t, x) to model (35)–(36) when g0(x) =
6
10

ex and γ = 1.

2.3 Numerical applications

Now, having solved the model and shown its stability results, we perform in this section
some numerical simulations showing the behavior of the fractal-fractional system (35)–
(36). The graphs in Fig.7 to Fig.12 show such behavior in three-dimensional and two-
dimensional space. In Fig.7, we can see the three-dimensional representation of the
solution g(t, x) when γ = 1 with g0(x) = 6

10ex. The two-dimensional representation is
depicted in Fig.8. For γ = 0.85, the behavior of the solution g(t, x) changes as depicted in
Fig.9 – Fig.10 in three and two dimensions, respectively. The dynamic becomes involved
in a self-organization process. This process consists of structuring itself in such a manner
that the initial object is replicated approximately exactly to itself or to a part of itself.
The process continues with the self-organization process which expands and multiplies
in a similar way, for γ = 0.65, as shown in Fig.11 – Fig.12. Briefly, the system is shown
to create diverse pattern formation processes, in this case, very important in the wave-
motion domain. Thus, the system is capable of artificially structuring the fractals using
mathematical concepts, numerical techniques, codes and simulations.

3 Concluding Remarks

We have combined some mathematical concepts and been able to model, solve and sim-
ulate a self-organization process related to the dynamics of wave motion. The resulting
model, that includes the Harry Dym system, the fractal and fractional operators, has
been solved numerically and its stability results have been given. Numerical simula-
tions have proven a dynamic involved in a self-organization process where initial objects
are replicated and various fractal patterns are formed. Numerical simulations have also
proven that the fractal patterns vary with the fractional order derivative. Hence, this
paper improves the preceding works in the domain as it reveals a system capable of
artificially structuring the fractal patterns using mathematical concepts.
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Figure 8: Two-dimensional representation of the solution g(t, x) to model (35)–(36) when g0(x) = 6
10

ex

and γ = 1.

Figure 9: Three-dimensional representation of the solution g(t, x) to model (35)–(36) when g0(x) =
6
10

ex and γ = 0.85. Here, the dynamic is involved in a self-organization process, which consists of getting
a structure in which the initial object is replicated approximately exactly to itself or to a part of itself.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (5) (2021) 525–543 541

Figure 10: Two-dimensional representation of the solution g(t, x) to model (35)–(36) when g0(x) =
6
10

ex and γ = 0.85. Here, we can see the projection on the plan (t, g) of the self-organization dynamic.

Figure 11: Three-dimensional representation of the solution g(t, x) to model (35)–(36) when g0(x) =
6
10

ex and γ = 0.65. Here, the self-organization dynamic is maintained and continues further, as it expands
and multiplies in a similar way.



542 H.M. TENKAM, E.F. DOUNGMO GOUFO AND S. KUMAR

Figure 12: Two-dimensional representation of the solution g(t, x) to model (35)–(36) when g0(x) =
6
10

ex and γ = 0.65. Here, we can see the projection on the plan (t, g) of the self-organization dynamic
that is maintained and continues further, as it expands and multiplies.
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1 Introduction

Nonlinear oscillators are very important in many areas of applied mathematics, physics,
and engineering. Most of the physical problems are governed by the nonlinear differ-
ential equations. The exact solutions of these nonlinear equations are rarely obtained.
Therefore, many researchers focused on analytical approximation methods. Among them,
the perturbation method [1,2], homotopy analysis method [3,4], homotopy perturbation
method [5–7], variational iteration technique [8,9], harmonic balance method (HBM)[10–
13] are well known. The perturbation methods [14–20] are widely used techniques for
dealing with the nonlinear differential systems and they were originally developed for
weakly nonlinear dynamical systems. Jones [20] modified the perturbation method to
extend the accuracy of the solution when the parameter was not small. Further, a modifi-
cation of the Lindstedt-Poincare technique was presented by Cheung et al. [21] based on
the Jones technique [20. The modified Lindstedt-Poincare method has been generalized
by Alam, et al.[22] and it is applicable for a wide variety of nonlinear oscillators. The
harmonic balance method (HBM) is another powerful technique to obtain the periodic
solution of the nonlinear oscillators. According to this method, the solution is chosen as a
truncated Fourier series. Usually, a set of strongly nonlinear algebraic equations appears
among the unknown coefficients of several harmonic terms and these equations are solved
by the numerical method. Further, this method has been modified by several researchers
[23–28]. Rahman et al. [23] used a modified HBM to study the Van der Pol equation.
Rahman and Lee [26] developed a modified residue HBM to handle nonlinear vibrating
problems of beam. Wu [27] developed the harmonic balance method for the Yao-Cheng
oscillator. Wagner and Lentz [28] developed a HBM to handle the Duffing oscillator with
a forcing term with cubic nonlinearity. Younesian et al. [29] applied He’s frequency-
amplitude formulation and He’s energy balance method to handle strongly nonlinear the
generalized Duffing oscillators without forcing term. Uddin et al.[30] presented an ana-
lytical approximation technique for handling the generalized nonlinear Duffing equation
with strong nonlinearity without external forcing term. Rafieipour et al. [31] developed
an analytical approximate solution for the generalized nonlinear vibration of a micro
electro mechanical system by using He’s frequency amplitude formulation. Karahan
and Pakdemirli [32] studied free and forced vibration response of the strongly nonlinear
cubic-quintic Duffing oscillators by using the multiple time scale method. Ullah et al.
[33] developed a modified harmonic balance method to handle nonlinear oscillators with
cubic nonlinearity in the presence of external forcing term. Rahman et al. [34] presented
a modified harmonic balance method to solve the nonlinear vibration problem of a beam
resting on nonlinear foundation. Recently, Yeasmin et al. [35] have presented an ana-
lytical technique for handing the quadratic nonlinear oscillator based on the harmonic
balance method for free vibration nonlinear problems. Cheib et al. [36] presented an
analysis of the dynamics of a two-degree-of-freedom nonlinear mechanical system under
harmonic excitation. It is noticed that the approximate analytical techniques for solving
the damped forced generalized nonlinear oscillators with strong nonlinearity are almost
untouched. To fill this gap, a modified harmonic balance method has been presented for
handling strongly generalized nonlinear damped forced oscillators. The convenience of
this method is that only one nonlinear algebraic equation and a set of linear algebraic
equations are required to solve by the numerical method, which reduces the heavy com-
putational effort that is required in classical harmonic balance methods. The obtained
results are compared with the corresponding numerical results in graphs and it shows a
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good agreement with these numerical results.

2 Method

Let us assume a strongly generalized nonlinear damped forced oscillator [29–33] of the
form

ẍ+ µẋ+ ω2
0x+ ε(α3f3(x) + α5f5(x) + .....+ αnfn(x)) = E cos(ωt), (1)

where over-dots denote differentiation with respect to time t, ω0 is the natural frequency,
µ is the linear damping coefficient, fi(x) are given general nonlinear functions of x, αi

(i = 1, 3, 5, ...n) are constants, ε is a positive parameter which is not necessarily small,
E is the amplitude of the excitation force and ω is the forcing frequency. All of the
parameters are positive. We assume that µ = 0 in our idealized systems. But damped
motion is important for most of the physical and engineering vibration problems. In this
paper, we are going to assume that µ 6= 0. This is a non-autonomous system since time t
explicitly appears in the right-hand side of the given equation. In particular, periodically
forced harmonic oscillators depended explicitly on time t and exhibited quite interesting
behavior. When a damped Duffing-type oscillator is driven with a periodic forcing func-
tion, the result may be a periodic response at the same frequency as the forcing function.
Since the unforced oscillation is the dissipated energy due to the damping, we are not
surprised to find that it is absent from the steady state forced behavior. According to
the proposed method, the approximate solution of Eq.(1) is assumed [33] in the following
form:

x = a cos(ωt) + b sin(ωt) + a3 cos(3ωt) + b3 sin(3ωt) + ...., (2)

where a, b, a3,b3... are the unknown coefficients. Now, differentiating Eq.(2) twice with
respect to t and then putting into Eq.(1) and expanding fi(x) as a truncated Fourier
series expansion and taking the coefficients of equal harmonics from both sides, we obtain
the following set of algebraic equations:

a(−ω2 + ω2
0) + bµω + εC1(a, b, a3, b3, ...) = E, (3a)

a(−ω2 + ω2
0)− aµω + εS1(a, b, a3, b3, ...) = 0, (3b)

a3(−9ω2 + ω2
0) + 3b3µω + εC3(a, b, a3, b3, ...) = 0, (3c)

b3(−9ω2 + ω2
0)− 3a3µω + εS3(a, b, a3, b3, ...) = 0. (3d)

Eliminating ω2 from the Eqs.(3b)-(3d) with the help of Eq.(3a), we get

ω2 = ω2
0 + bµω/a+ εC1(a, b, a3, b3, ...)− E/a, (4a)

− b2µω/a− aµω − εbC1(a, b, a3, b3, ...) + εS1(a, b, a3, b3, ...) + bE/a = 0, (4b)

− 8ω2
0a3 + 3b3µω− 9a3bµω/a− 9εa3C1(a, b, a3, b3, ...) + εC3(a, b, a3, b3, ...) + 9a3E/a = 0,

(4c)

− 8ω2
0b3 − 3a3µω− 9b3bµω/a− 9εb3C1(a, b, a3, b3, ...) + εS3(a, b, a3, b3, ...) + 9b3E/a = 0.

(4d)
Now, using Eq.(4b), eliminating ω from the Eqs.(4c)-(4d) and taking only the linear
terms of a3, b3 and neglecting the terms of insignificant effects, we obtain two linear
equations for a3 and b3. From these equations a3 and b3 are determined. After putting
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a3 and b3 into Eq.(4b), b is expressed as a power series of small parameter λ(µ, ω,E) in
the following form:

b = m0 +m1λ+m2λ
2 +m3λ

3 + ..., (5)

where m0, m1, m2 are the functions of a. Finally, after putting a3, b3 and b into Eq.(4a)
and then solving this equation, the values of a are determined. Consequently, the desired
values of b, a3 and b3 are calculated.

3 Example

Consider a generalized nonlinear (cubic-quintic) damped forced oscillator [29-33] of the
following form:

ẍ+ µẋ+ x+ ε(α3x
3 + α5x

5) = E cos(ωt), (6)

where ω2
0=1. According to the truncated Fourier series, the solution of Eq.(6) is assumed

as [33]

x = a cos(ωt) + b sin(ωt) + a3 cos(3ωt) + b3 sin(3ωt) + .... (7)

Putting Eq.(7) with its derivatives into Eq.(6) and then equating the coefficients of
equal harmonics on both sides, we obtain

16(a+ bµω − aω2) + 12ε((a2 − b2)a3 + 2aa23 + a(a2 + b2 + 2bb3 + 2b23)

+ 5ε(6(a2 − b2)a33 + 6aa43 + 12aa23(a2 + b2 + bb3 + b23) + a3(5a4 − 6a2b2 − 3b4

+ 6(a2 − b2)b23) + 2a((a2 + b2)2 + 2(3a2b+ b3)b3 + 6(a2 + b2)b23 + 6bb33

+ 3b43))α5 = 16E,

(8a)

− 16(aµω + b(−1 + ω2)) + 12ε(b(a2 + b2)− 2aba3 + 2ba23 + (a2 − b2)b3 + 2bb23)α3

+ 5ε(2b(a2 + b2)2 − 12aba33 + 6ba43 + (3a4 + 6a2b2 − 5b4)b3 + 12b(a2 + b2)b23

+ 6(a2 − b2)b33 + 6bb43 − 4aba3(a2 + 3b2 + 3b23) + 6a23(2b(a2 + b2)

+ (a2 − b2)b3 + 2bb23))α5 = 0,

(8b)

48µωb3 + ε(30a(a2 − 3b2)a23α5 + 10a53α5 + 10a(a2 − 3b2)b23α5 + a(a2 − 3b2)(4α3+

5(a2 + b2)α5) + 4a33((3α3 + 5(3(a2 + b2) + b23)α5)) + 2a3(8− 72ω2 + 6ε(2(a2 + b2)

+ b23)α3) + 5ε(3(a2 + b2)2 + (6a2b− 2b3)b3 + 6(a2 + b2)b43)α5) = 0,

(8c)

10εa43b3α5 + ε(−30b(−3a2 + b2)b23α5 + 10b53α5 + 12b33(α3 + 5(a2 + b2)α5))

− b(−3a2 + b2)(4α3 + 5(a2 + b2)α5)) + 2b3(8− 72ω2 + 12ε(a2 + b2)α3

+ 15ε(a2 + b2)2α5)− 4a3(12µω − 5εa(a2 − 3b2)b3α5) + 2εa23(−5b(−3a2 + b2)α5

+ 10b33α5 + 6b3(α3 + 5(a2 + b2)α5)) = 0.

(8d)

Eliminating ω2 from the Eqs.(8b)-(8d) with the help of Eq.(8a), and ignoring the
terms whose responses are negligible, we obtain the following equations:

− 16(−bE + a2µω + b2µω)− 3ε(ba3(3a2 − b2)(4α3 + 5(a2 + b2)α5)

− ab3(a2 − 3b2)(4α3 + 5(a2 + b2)α5)) = 0,
(9a)
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− 4a3(4(8a− 9E + 9bµω) + εa(21(a2 + b2)α3 + 15(a2 + b2)2α5))

+ a(48µωb3 + εa(a2 − 3b2)(4α3 + 5(a2 + b2)α5)) = 0,
(9b)

− 48aµωa3 + εab(3a2 + b2)(4α3 + 5(a2 + b2)α5)− 4b3(4(8a− 9E + 9bµω)

+ εa((21(a2 + b2)α3 + 15(a2 + b2)α5)) = 0.
(9c)

Now, using Eq.(9b), eliminating ω from the Eqs.(9c) and (9d) and taking only the
linear terms of a3, b3 and omitting the terms whose response is negligible, we obtain

εa(a4 − 2a2b2 − 3b4)(4α3 + 5(a2 + b2)α5)− 4a3(4(8a2 + 8b2 − 9aE)

+ ε(21(a2 + b2)2α3 + 15(a2 + b2)3α5)) = 0,
(10a)

− εb(3a4 + 2a2b2 − b4)(4α3 + 5(a2 + b2)α5) + 4b3(4(8a2 + 8b2 − 9aE)

+ ε(21(a2 + b2)2α3 + 15(a2 + b2)3α5)) = 0.
(10b)

After solving Eqs.(10a) and (10b), a3 and b3 are determined as follows:

a3 = εa(a4 − 2a2b2 − 3b4)(4α3 + 5(a2 + b2)α5)

/4(4(8a2 + 8b2 − 9bE) + ε(21(a2 + b2)2)α3 + 15(a2 + b2)3α5),
(11a)

b3 = εb(3a4 + 2a2b2 − b4)(4α3 + 5(a2 + b2)α5)

/4(4(8a2 + 8b2 − 9bE) + ε(21(a2 + b2)2)α3 + 15(a2 + b2)3α5).
(11b)

Inserting the values of a3 and b3 into Eq.(9a), we then expand b in a power series of the
small parameter λ as follows:

b = l0 + l1λ+ l2λ
2 + l3λ

3 + ..., (12)

where λ = 2µω/E, l0 = a2µω/E, l1 = a4µ2ω2/E2, l2 = 2a6µ3ω3/E3, .... Finally,upon
inserting a3, b3 and b into Eq.(8a) and solving, the values of a are obtained. Consequently,
the values b, a3 and b3 are determined.

4 Results and Discussion

The solutions determined by the present technique are compared with the corresponding
numerical solution to justify the validity and the accuracy of the proposed technique.
Comparisons between the solution curves obtained by the proposed method and a nu-
merical method are shown graphically in Figures 1-4 in the presence of various damping
and different values of the system parameters for strongly generalized nonlinear forced
vibration problems.

From the figures, it is seen that the approximate results agree nicely with those
solutions obtained by the numerical procedure.

5 Conclusion

In this study, a modified harmonic balance method is presented for handling strongly
generalized nonlinear damped forced vibration problems. Some limitations of the classi-
cal HBM are overcome by the proposed method. The advantage of the present technique
is that only one nonlinear algebraic equation is needed for solution. As a result, the
computational effort is reduced and less effort is required than in the existing classical
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Figure 1: Comparison between the results obtained by the presented method and a numerical
technique when ω = 5, ε = 1.0, α3 = 1, α5 = 1, µ = 0.1, E = 10.

Figure 2: Comparison between the results obtained by the presented method and a numerical
technique when ω = 10, ε = 1.0, α3 = 1, α5 = 1, µ = 0.25, E = 20.

Figure 3: Comparison between the results obtained by the presented method and a numerical
technique when ω = 5, ε = 0.5, α3 = 1, α5 = 1, µ = 0.05, E = 10.

Figure 4: Comparison between the results obtained by the presented method and a numerical
technique when ω = 10, ε = 1.0, α3 = 1, α5 = 1, µ = 0.1, E = 20.
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harmonic balance method. The results obtained by the present method show a good
agreement with the numerical results. It is assumed that the proposed method is very
effective and convenient for damped forced generalized nonlinear oscillators with strong
as well as weak nonlinearities. Our results exhibit acceptable complaince with the solu-
tions computed by the fourth order Runge-Kutta method for several values of systems
parameters and significant damping.
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