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Abstract: In this paper, we are interested in studying the existence of a first inte-
gral and the curves which are formed by the trajectories of the autonomous planar
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1 Introduction

By definition, an autonomous planar Kolmogorov system is a system of the form
x′ =

dx

dt
= xF (x, y) ,

y′ =
dy

dt
= yG (x, y) ,

(1)

these equations are equivalent to the differential equation

dy

dx
=

yQ (x, y)

xP (x, y)
,

where F , G are two functions in the variables x and y and the derivatives are taken
with respect to the time variable. The theory of differential equations is one of the
basic tools of mathematical science [1–3,20]. System (1) is frequently used to model the
iteration of two species occupying the same ecological niche [14, 16]. There are many
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natural phenomena which can be modeled by the Kolmogorov systems, for example, in
mathematical ecology and population dynamics [11,15,17,18], chemical reactions, plasma
physics [13], hydrodynamics [7], etc. We remind that in the phase plane, a limit cycle
of system (1) is an isolated periodic orbit in the set of all its periodic orbits. In the
qualitative theory of planar dynamical systems [9, 19], one of the most important topics
is related to the second part of the unsolved Hilbert 16th problem [12]. There is a huge
literature about limit cycles, most of it deal essentially with their detection, their number
and their stability and rare are papers concerned with giving them explicitly [4, 5].

System (1) is integrable on an open set Ω of R2 if there exists a non constant C1

function H : Ω → R, called a first integral of the system on Ω, which is constant on the
trajectories of the system (1) contained in Ω, i.e., if

dH (x, y)

dt
=

∂H (x, y)

∂x
xF (x, y) +

∂H (x, y)

∂y
yG (x, y) ≡ 0 in the points of Ω.

Moreover, H = h is the general solution of this equation, where h is an arbitrary
constant. It is well known that for differential systems defined on the plane R2, the
existence of a first integral determines their phase portrait [8], and one of the classical
tools in the classification of all trajectories of a dynamical system is to find first integrals,
for more details about the first integral, see for instance [6, 10].

In this paper, we are interested in studying the existence of a first integral and
the curves which are formed by the trajectories of the autonomous planar Kolmogorov
systems of the form

x′ = x
(
B1 (x, y) sin

(
A3(x,y)
A4(x,y)

)
+B3 (x, y) sin

(
A1(x,y)
A2(x,y)

))
,

y′ = y
(
B2 (x, y) sin

(
A5(x,y)
A6(x,y)

)
+B3 (x, y) sin

(
A1(x,y)
A2(x,y)

))
,

(2)

where A1 (x, y) , A2 (x, y) , A3 (x, y) , A4 (x, y) , A5 (x, y) , A6 (x, y) , B1 (x, y) , B2 (x, y)
and B3 (x, y) are homogeneous polynomials of degree a, a, b, b, c, c, n, n, m, respectively.

We define the trigonometric functions

f1 (θ) = B1 (cos θ, sin θ)
(
cos2 θ

)
sin
(

A3(cos θ,sin θ)
A4(cos θ,sin θ)

)
+

B2 (cos θ, sin θ)
(
sin2 θ

)
sin
(

A5(cos θ,sin θ)
A6(cos θ,sin θ)

)
,

f2 (θ) = B3 (cos θ, sin θ) sin
(

A1(cos θ,sin θ)
A2(cos θ,sin θ)

)
,

f3 (θ) = (cos θ sin θ)B2 (cos θ, sin θ) sin
(

A5(cos θ,sin θ)
A6(cos θ,sin θ)

)
−

(cos θ sin θ)B1 (cos θ, sin θ) sin
(

A3(cos θ,sin θ)
A4(cos θ,sin θ)

)
.

2 Main Result

Our main result on the integrability and the periodic orbits of the Kolmogorov system
(2) is as follows.

Theorem 2.1 Consider the Komogorov system (2), then the following statements
hold.
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(1) If f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 2, 4, 6 and n ̸= m, then system (2) has
the first integral

H (x, y) =
(
x2 + y2

)n−m
2 exp

(
(m− n)

∫ arctan y
x

0

M (s) ds

)
− (n−m)F

(
arctan y

x

)
,

where M (θ) = f1(θ)
f3(θ)

, N (θ) = f2(θ)
f3(θ)

and F (θ) =
∫ θ

0
exp

(
(m− n)

∫ w

0
M (s) ds

)
N (w) dw.

The curves which are formed by the trajectories of the differential system (2), in
Cartesian coordinates are written as

x2 + y2 =

[(
h+ (n−m)F

(
arctan

y

x

))
exp

(
(n−m)

∫ arctan y
x

0

M (s) ds

)] 2
n−m

,

where h ∈ R. Moreover, the system (2) has no periodic orbits.
(2) If f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 2, 4, 6 and n = m, then system (2) has

the first integral

H (x, y) =
(
x2 + y2

) 1
2 exp

(
−
∫ arctan y

x

0

(M (s) +N (s)) ds

)
,

and the curves which are formed by the trajectories of the differential system (2), in
Cartesian coordinates are written as

(
x2 + y2

) 1
2 − h exp

(∫ arctan y
x

0

(M (s) +N (s)) ds

)
= 0,

where h ∈ R. Moreover, the system (2) has no periodic orbits.
(3) If f3 (θ) = 0 for all θ ∈ R, then system (2) has the first integral H = y

x , and the
curves which are formed by the trajectories of the differential system (2), in Cartesian
coordinates are written as y − hx = 0, where h ∈ R. Moreover, the system (2) has no
periodic orbits.

Proof. In order to prove our results, we write the differential system (2) in polar
coordinates (r, θ) , defined by x = r cos θ and y = r sin θ, then system (2) becomes{

r′ = f1 (θ) r
n+1 + f2 (θ) r

m+1,
θ′ = f3 (θ) r

n,
(3)

where the trigonometric functions f1 (θ) , f2 (θ) , f3 (θ) are given in the Introduction,
r′ = dr

dt and θ′ = dθ
dt .

If f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 2, 4, 6 and n ̸= m, we take as a new indepen-
dent variable the coordinate θ, then the differential system (3) becomes the differential
equation

dr

dθ
= M (θ) r +N (θ) r1+m−n, (4)

where M (θ) = f1(θ)
f3(θ)

and N (θ) = f2(θ)
f3(θ)

, which is a Bernoulli equation. By introducing

the standard change of variables ρ = rn−m, we obtain the linear equation

dρ

dθ
= (n−m) (M (θ) ρ+N (θ)) . (5)
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The general solution of linear equation (5) is

ρ (θ) = exp

(
(n−m)

∫ θ

0

M (s) ds

)
(µ+ (n−m)F (θ)) ,

where µ ∈ R.
From the expression of the constant µ, we deduce the first integral of system (2) as

H (x, y) =
(
x2 + y2

)n−m
2 exp

(
(m− n)

∫ arctan y
x

0

M (s) ds

)
+ (m− n)F

(
arctan y

x

)
.

Let Γ be a periodic orbit surrounding an equilibrium located in one of the open
quadrants, and let hΓ = H (Γ) .

The curves H = h with h ∈ R, which are formed by the trajectories of the differential
system (2), in Cartesian coordinates are written as

x2 + y2 =

[(
h+ (n−m)F

(
arctan

y

x

))
exp

(
(n−m)

∫ arctan y
x

0

M (s) ds

)] 2
n−m

,

where h ∈ R.
Therefore the periodic orbit Γ is contained in the curve

x2 + y2 =

[(
hΓ + (n−m)F

(
arctan

y

x

))
exp

(
(n−m)

∫ arctan y
x

0

M (s) ds

)] 2
n−m

.

But this curve cannot contain the periodic orbit Γ in the realistic quadrant (x >
0, y > 0), because this curve in the realistic quadrant has at most a unique point on
every straight line y = ηx for all η ∈ ]0,+∞[ .

To be convinced by this fact, one has to compute the abscissa points of the intersection
of this curve with the straight line y = ηx for all η ∈ ]0,+∞[ , the abscissa is given by

x =
1√

1 + η2

[
(hΓ + (n−m)F (arctan η)) exp

(
(n−m)

∫ arctan η

0

M (s) ds

)] 1
n−m

= f (η) .

Since f is a function (of η), there exists at most one value of x on the half-line OX+.
Consequently, at most one point in the realistic quadrant (x > 0, y > 0) exists. So, this
curve cannot contain the periodic orbit.

Hence statement (1) of Theorem 1 is proved.
Suppose now that f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 2, 4, 6 and n = m.
Taking as the independent variable the coordinate θ, this differential system (3) is

written as
dr

dθ
= (M (θ) +N (θ)) r. (6)

The general solution of equation (6) is

r (θ) = µ exp

(∫ θ

0

(M (s) +N (s)) ds

)
,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (1) (2022) 13–20 17

where µ ∈ R.
From the expression of the constant µ, we deduce the first integral of system (2) as

H (x, y) =
(
x2 + y2

) 1
2 exp

(
−
∫ arctan y

x

0

(M (s) +N (s)) ds

)
.

Let Γ be a periodic orbit surrounding an equilibrium located in one of the realistic
quadrants (x > 0, y > 0), and let hΓ = H (Γ) .

The curves H = h with h ∈ R, which are formed by the trajectories of the differential
system (2), in Cartesian coordinates are written as

(
x2 + y2

) 1
2 − h exp

(∫ arctan y
x

0

(M (s) +N (s)) ds

)
= 0,

where h ∈ R.
Therefore the periodic orbit Γ is contained in the curve

(
x2 + y2

) 1
2 = hΓ exp

(∫ arctan y
x

0

(M (s) +N (s)) ds

)
.

Again, this curve cannot contain the periodic orbit Γ in the realistic quadrant (x >
0, y > 0), for the same reason as in the previous case.

To be convinced by this fact, one has to compute the abscissa points of the intersection
of this curve with the straight line y = ηx for all η ∈ ]0,+∞[ , the abscissa is given by

x =
hΓ√

(1 + η2)
exp

(∫ arctan η

0

(M (s) +N (s)) ds

)
= f (η) .

Since f is a function (of η), there exists at most one value of x on the half-line OX+.
Consequently, at most one point in the realistic quadrant (x > 0, y > 0) exists. So, this
curve cannot contain the periodic orbit.

Hence statement (2) of Theorem 1 is proved.

Assume now that f3 (θ) = 0 for all θ ∈ R. Then from system (3) it follows that θ′ = 0.
So, the straight lines through the origin of coordinates of the differential system (2) are
invariant by the flow of this system. Hence, y

x is a first integral of the system, then
curves which are formed by the trajectories of the differential system (2), in Cartesian
coordinates are written as y − hx = 0, where h ∈ R, since all straight lines through the
origin are formed by the trajectories, clearly, the system has no periodic orbits.

This completes the proof of statement (3) of Theorem 1.

2.1 Examples

The following examples are given to illustrate our result.

Example 1 If we take A1 (x, y) = 5x2 + 4y2, A2 (x, y) = x2 + y2, A3 (x, y) =
π
2A4 (x, y) , A5 (x, y) =

π
2A6 (x, y) , B1 (x, y) = x4 + x3y + 2x2y2 + xy3 + y4, B2 (x, y) =

x4 + 2x3y + 2x2y2 + 2xy3 + y4 and B3 (x, y) = 3x2 − xy + 3y2, then system (2) reads
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
x′ = x

((
x4 + x3y + 2x2y2 + xy3 + y4

)
+
(
3x2 − xy + 3y2

)
sin
(

5x2+4y2

x2+y2

))
,

y′ = y
((

x4 + 2x3y + 2x2y2 + 2xy3 + y4
)
+
(
3x2 − xy + 3y2

)
sin
(

5x2+4y2

x2+y2

))
.

(7)

The Kolmogorov system (7) in polar coordinates (r, θ) becomes
r′ =

(
1 + 3

4 sin 2θ −
1
8 sin 4θ

)
r5 + (3− cos θ sin θ) sin

(
9
2 + 1

2 cos 2θ
)
r3,

θ′ =
(
cos2 θ sin2 θ

)
r4,

here f1 (θ) = 1+ 3
4 sin 2θ−

1
8 sin 4θ, f2 (θ) = (3− cos θ sin θ) sin

(
9
2 + 1

2 cos 2θ
)
and f3 (θ) =

cos2 θ sin2 θ. In the realistic quadrant (x > 0, y > 0) it is the case (1) of Theorem 1, then
the Kolmogorov system (7) has the first integral

H (x, y) =
(
x2 + y2

)
exp

(
−2
∫ arctan y

x

0
M (s) ds

)
−

2
∫ arctan y

x

0
exp

(
−2
∫ w

0
M (s) ds

)
B (w) dw,

where M (s) =
1 + 3

4 sin 2s−
1
8 sin 4s

cos2 s sin2 s
, N (w) =

(3− cosw sinw) sin
(
9
2 + 1

2 cos 2w
)

cos2 w sin2 w
.

The curves H = h with h ∈ R, which are formed by the trajectories of the differential
system (7), in Cartesian coordinates are written as

x2+y2 =

(
h+ 2

∫ arctan y
x

0

exp

(
−2

∫ w

0

N (s) ds

)
N (w) dw

)
exp

(
2

∫ arctan y
x

0

M (s) ds

)
,

where h ∈ R. Moreover, the system (7) has no periodic orbits.

Example 2 If we take A1 (x, y) = πx2 + πy2, A2 (x, y) = 2x2 + 2y2, A3 (x, y) =
A5 (x, y) = y, A4 (x, y) = A6 (x, y) = x, B1 (x, y) = −x2+xy−y2, B2 (x, y) = x2+xy+y2

and B3 (x, y) = x2 + y2, then system (2) reads
x′ = x

((
−x2 + xy − y2

)
sin
(
y
x

)
+
(
x2 + y2

)
sin
(

πx2+πy2

2x2+2y2

))
,

y′ = y
((

x2 + xy + y2
)
sin
(
y
x

)
+
(
x2 + y2

)
sin
(

πx2+πy2

2x2+2y2

))
.

(8)

The Kolmogorov system (8) in polar coordinates (r, θ) becomes r′ =
(
1 +

(
1
2 sin 2θ − cos 2θ

)
sin (tan θ)

)
r3,

θ′ = (sin 2θ) sin (tan θ) r2.

In the realistic quadrant (x > 0, y > 0) it is the case (2) of Theorem 1, then the
Kolmogorov system (8) has the first integral

H (x, y) =
(
x2 + y2

) 1
2 exp

(
−
∫ arctan y

x

0

(
1 +

(
1
2 sin 2s− cos 2s

)
sin (tan s)

(sin 2s) sin (tan s)

)
ds

)
.
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The curves H = h with h ∈ R, which are formed by the trajectories of the differential
system (8), in Cartesian coordinates are written as

(
x2 + y2

) 1
2 − h exp

(∫ arctan y
x

0

(
1 +

(
1
2 sin 2s− cos 2s

)
sin (tan s)

(sin 2s) sin (tan s)

)
ds

)
= 0,

where h ∈ R. Moreover, the system (8) has no periodic orbits.

3 Conclusion

The elementary method used in this paper seems to be fruitful to investigate more general
planar differential systems of ODEs in order to obtain an explicit expression for a first
integral which characterizes its trajectories. This is one of the classical tools in the
classification of all trajectories of dynamical systems.
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