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Abstract: This research is devoted to demonstrating a numerical solution that
adopts the cubic Hermite finite element method for a strongly reaction-diffusion sys-
tem. Ly and Lo error norms computed at varying time points are employed to draw
comparisons between the numerical solutions attained by virtue of the presented tech-
nique and both the exact solutions and the analogous numerical ones already available
in the literature. Evaluating the accuracy and efficacy of the technique utilized in
this study, a perfect agreement with the exact solution is concluded.
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1 Introduction

The reaction diffusion system occurs in multifarious physical, biological and chemical
problems. Numerous numerical techniques such as a cubic B-spline method [1], lin-
earized finite difference scheme based upon the order reduction method [2], exponential
cubic B-spline collocation algorithms [3|, and trigonometric quintic B-spline collocation
method [4] have been used to solve the strongly reaction-diffusion system. On the other
hand, global solutions for this system have been addressed in [5]- [9]. The finite element
method is one of the most accurate, flexible, and powerful techniques for approximat-
ing the solution to a wide range of linear and nonlinear partial differential equations.
Examples of its implementation include: the Rosenau-RLW equation by Atouani and
Omrani [10], fourth order parabolic equation by Chai et al. [11], biharmonic equation by
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Mu et al. |12], Cahn-Hilliard equation by Wang et al. [13], coupled bulk-surface prob-
lems by Burman et al. [14], fracture model in porous media by Capatina et al. [15],
Stokes-Darcy coupling by Camano et al. [16], Cahn-Hilliard-Navier-Stokes-Darcy phase
field model by Gao et al. |[17], and Navier-Stokes/Darcy coupled problem by Discacciati
and Oyarza [18], nonlinear nonstandard Volterra integral equations by Khumalo and
Dlamini [19], and higher order fractional boundary value problems by Darweesh and
Al-Khaled [20]. This paper is organized as follows: In Section 2, the application of the
finite element method to the strongly reaction-diffusion system is presented; in Section 3,
numerical results are illustrated and discussed. Finally, the paper ends with conclusions
in Section 4.

2 Finite Element Solution to the Strongly Reaction-Diffusion System

Consider the strongly reaction-diffusion system as follows:

Up = Uge + (272 — Du—27%0,0 <2< 1,0<t < T, (1)
Vg = Upp + Ve —0,0<x<,0<t<T (2)
with the following boundary and initial conditions:
uz(0,1) = 0,uz(1,8) = 0,0,(0,8) = 0,0, (1,¢) =0,0<t < T, (3)
u(z,0) = sin’mz, v(x,0) =cos’nmz, 0<z<I1, (4)

where u = u(z,t) and v = v(z,t) are two substances of interacting concentrations. The
exact solution of the system is [2]

—t 2 t 2

u(z,t) = e ‘sin“mx, wv(x,t) =e ‘cos‘mx.

Multiplying equations and by a test function, w € W(Q), where Q@ = (a,b),
a,b € R, and conducting integration over the finite element (z., z¢41) with the length h,
we obtain the following equations:

Tet1
/ (wuy — Wiy + (1 — 272 wu + 2r%wv)de = 0, (5)
Te+1
/ (WU — WUy — WL, + wo)de =0, (6)
which give
Te+1
/ (wus + wetiy + (1 — 272 wu + 2r%wv)dz = 0, (7)
Te
Tet1
/ (W + Wty + Wev, + wov)dr = 0. (8)

e

Owing to the test function w, which satisfies the essential boundary condition, the bound-
ary terms vanish when performing integration by parts. Then the acquired solution that
is an approximation to the exact solution can be written as

Ne

u(z,t) = ug(t)Hy(z),

v(x,t) = Zﬁ:vs(t)Hs(x) ,
s=1
w(z) = Hi(x), i=1,...,n.
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Here, us(t) and vs(t), s = 1,...,n., are undetermined time dependent quantities and
Hg(x) are the interpolation functions. By substituting @ into and , we obtain

Ne h
Z/ (H;Hyis + HI H ug + (1 — 202 H; Hyu, + 272 H; Hyv,)dz = 0, (10)
s=1 0

Ne h
Z/ (H;Hyos + H/Hug + H/Hv, + H;H,v,)dx =0, (11)
s=170

where - denotes the derivative with respect to time. Rewriting the equations and
in a matrix form, we get

A% + (B 4 (1 — 272) A%)u® + 212 A%° = 0, (12)
A®V® + Bu® + (B¢ + A%)v® =0. (13)
For the cubic Hermite element, the matrices A, and B, are given as follows:
13h __11n? 9h 13h2
35 0 70 120
h _ 11h2 ﬁ _13h2 K3
e _ . = 210 105 420 140
Af, = /o HiHdx = | g% 9. 5 A
70 420 5 210
13h2 7& 11h2 h®
420 140 210 105
6 _1 _6 _ 1
h 1 R 1
h T A S
e __ / ! _
B}, = / HHdr=| ¥ 1P R
0 1 1
B e R G
10 30 10 15

The global matrix equation resulted in assembling the element matrices for every included
element is formulated by

Ai+ (B + (1 —27%)A)u + 272 Av = 0, (14)

Av+Bu+ (B+A)v=0. (15)

For the cubic Hermite elements, let vox—1 = vy (Tp—1), Usk—1 = ugz(zp—1), k = 1,...,n,
vop = v(xk), ugk = u(xk), k=1,...,n — 1, vap, = v (xp), Uap = uz(xy). Afterwards, the
formula of the forward finite difference and the Crank-Nicolson scheme are employed to
discretize time derivatives 4, ¥ and the time dependent quantities u(t), v(¢) in equations

and , respectively:

YA 5 S R ES ) WL VIt 4 i
u = v = u = v = .
VAV At 2 ’

This leads to

{(1 + g - k7r2) A+ I;B} u" T kr? AT = [(1 - g +/€7T2> A—
k
2

k k n+1 k n+l __
[(1+5) s Eo] s s b - 3

where k = At, {u} = {us(z0), us (1), Uz (72), ooy U (Tn1), W(Tn_1), us(,)}T, and simi-
larity holds for {v}.

o |
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3 Numerical Results

Aiming at computing a numerical solution for a strongly reaction-diffusion system with
the initial conditions and boundary conditions , the proposed finite element solu-
tion with the cubic Hermite element is applied. Both the Ly and L., error norms defined
by

n

Ly = ||ueacact _ unum”Q — hz ‘uﬁmact _ u?um 27

=0

exact num
. — U

Lo = mjax uj ;

are used as tools to measure the accuracy of the method under consideration. In Table
1 and Table 2, Ly and L, and error norms at different time levels and different number
of partitions have been computed and compared with the errors obtained by [1]. The
absolute errors of the proposed numerical solution at some points with ¢ = 1 are evaluated
and compared with the errors obtained by [1] and |2] and are reported in Tables 3 and 4. It
can be seen from Tables 1 and 2 that the error norms obtained from the numerical results
reduce with the increasing number of partitions. This indicates that the convergence
towards the exact solution increases with the increasing number of partitions for different
time levels. It is noted that the convergence towards the exact solution is achieved when
t = 1 and with different values of x, as shown in Tables 3 and 4. From Tables 1 — 4, we
observe that our technique has yielded results that are very close to the exact solution.
Moreover, in Figs. [l and [2| the numerical solutions for w(z,t) and v(x,t) have been
plotted with the exact solutions at different times. We notice that the plots of those
solutions are indistinguishable.

4 Conclusions

A numerical scheme that involves the finite element method with the cubic Hermite ele-
ment for solving the strongly reaction-diffusion system has been described. The accuracy
and performance of the method has been measured using the Ly and L., error norms. We
have illustrated that our numerical results are of higher accuracy than those produced by
other methods [1,/2]. Furthermore, the proposed method shows perfect agreement with
the exact solution for different values of time and step size. Here, we point out that the
proposed method for dealing with this system is relatively new and more efficient than
other methods that were used recently. Therefore, we recommend using this technique
to solve different types of partial differential equations.
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Figure 1: Comparison between numerical and exact solutions for u(z, t) at different time levels.
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Figure 2: Comparison between numerical and exact solutions for v(z, t) at different time levels.
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0.01 01 0.5 1
L, 3.600E-6 2.731E-5 4114E-4 5.763E-4
L,[1] | 5.90E-05 4 24E-04 1.33E-03 1.60E-03
L, 3.900E-6 3.031E-5 7.233E-4 §.803E-4
L_[1]| 6.95E-05 5.47E-04 2.56E-03 5.06E-03
L, 4.231E-7 3.851E-6 3577E-5 9.224E-5
N=3og | La[11 | 6.36E-06 4.7T1E-05 1.48E-04 1.81E-03
L, 4.920E-7 4371E-6 5.602E-5 8.011E-5
L_[1] | 7.67E-06 6.04E-05 2.83E-04 5.61E-03
L, 8.872E-8 6.635E-7 2.143E-6 5.341E-6
N=soo | L2[11 | 2.36E-06 1.69E-05 53.34E-05 §.10E-05
L 9. 774E-8 8.971E-7 9.033E-6 7.558E-6

]

L_[1] | 2.76E-06 2.17E-05 1.01E-05 2.15E-05

N=100

Table 1: Errors at different times and different number of partition for u(z,t) at At = 0.001.

0.01 0.1 0.5 1
L, 2.177E-06 | 2.897E-05 | 3.015E-04 | 2.882E-04

N=100 | L2[11| L.O5E-05 3.25E-04 1.26E-03 1.55E-03
L, 2.683E-06 | 3.622E-05 | 5.223E-04 | 6.531E-04
L_[1]| 1.22E-03 4.14E-04 2.40E-03 4 87E-03
L 1.899E-07 | 4.411E-06 | 2.774E-05 | 2.011E-05
N=300 | L.[11| 1.16E-06 3.62E-05 1.40E-04 1.74E-04
L, 2.311E-07 | 5.102E-06 | 4.111E-05 | 5.978E-05
L_[1] | 1.36E-06 4 61E-05 2 68E-04 5.45E-04
L, 3443E-08 | 1.899E-06 | 7.012E-07 | 6.767E-07
N=s00 | L2[11 | 4.21E-07 1.30E-05 5.07E-05 6.39E-05
L 3.895E-08 | 3.773E-06 | 9.887E-07 | 8.57VE-07

]

L_[1]| 4.90E-07 1.66E-05 9.65E-05 1.96E-05

Table 2: Errors at different times and different number of partition for v(z,t) at At = 0.001.
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0123 0373 0.625 0.873
16 1.33213E-02 1.69354E-02 1.99778E-02 2.15331E-02
16[1] 3.7790E-02 3.77T91E-02 3.7791E-02 3.7790E-02
16[2] 5.5263371E-2 3.1302542E-1 3.1302542E-1 3.3263370E-2
64 6.88663E-04 T.11213E-04 7T.88920E-04 S.11802E-04
64[1] 2.7412E-03 2.7476E-03 2.7476E-03 21.7413E-03
64[2] 5.3961404E-2 3.1394376E-1 3.1394376E-1 3.3961404E-2
128 3.01234E-04 3.44301E-04 3.77006E-04 4. 11002E-04
128[1] 6.9649E-04 6.8634E-04 6.8638E-04 6.9640E-04
128[2] 5.3896378E-2 3.1398930E-1 3.1398930E-1 3.3896368E-2
256 3.11332E-03 3.76634E-03 3.99815E-03 3.11234E-05
236[1] 1.9977E-04 1.4640E-04 1.4610E-04 2.0043E-04
236[2] 3.3880114E2 3.1400093E-1 3.1400093E-1 3.3880114E-2
512 6.11839E-06 6.34321E-06 6.78802E-06 7.35001E-06
312[1] 5.1944E-05 4.3862E-03 4.6101E-03 5.2920E-03
312[2] 5.3876051E-2 3.1400379E-1 3.1400379E-1 3.3876051E-2

Table 3: The absolute errors between numerical and exact solution of u(x,t) at t =1.

0.123 0.375 0623 0.873

16 1.60011E-02 1.883535E-02 2.10044E-02 2.31110E-02
16[1] 3.6998E-02 3.6998E-02 3.6998E-02 3.6998E-02
16[2] 3.1290313E-1 3.3387639E-1 3.3387639E-12 3.1290313E-1

64 JT134E-04 6.89391E-04 7.25778E-04 T.32211E-04
64[1] 2.6762E-03 2.6762E-03 2.67T62E-03 2.6762E-03
64[2] 3.1393791E-1 3.3067251E-2 3.3867251E-2 3.1393791E-1

128 3.44899E-04 3.61122E-04 3.98877E-04 4.23321E-04
128[1] 6.7411E-04 6.7406E-04 6.7407E-04 6.7408E-04
128[2] 3.1398804E-1 3.3897831E-2 3.3807831E-2 3.1398804E-1

236 3.32211E-05 3.38%76E-03 3.77321E-05 4.01903E-05
256[1] 1.6873E-04 1.6888E-04 1.6877E-04 1.6898E-04
256[2] 3.1400057E-1 3.3880480E-2 5.3880480E-2 3.1400057E-1

512 6.73663E-06 7.10099E-06 7.45363E-06 T.87890E-06
312[1] 42123E-05 4.2271E-03 4.2184E-03 4.2334E-05
312[2] 3.1400370E-1 3.3876143E-2 3.3876143E-2 3.1400370E-1

Table 4: The absolute errors between numerical and exact solution of v(x,t) at t = 1.
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