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1 Introduction

For the second-order linear differential equation
' +qt)u=0, te(ab) (1)

with ¢ € C([a,b],R), it is known that if (1)) has a nontrivial solution u with u(a) = u(b) =
0, then

b
[ lawlar> )

This result is known as the Lyapunov inequality, see |1}22].

It was first noticed by Wintner [28] and later by several other authors that inequality
can be improved by replacing |¢(¢)| by ¢+ (t) := max{q(t),0}, the nonnegative part
of q(t).
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The Lyapunov inequality was extended by Hartman [19, Chapter XI] to the more
general equation
(r(t)u') +q(t)u =0, (3)

where ¢, € C([a,b],R), when it was shown that if has a nontrivial solution u
satisfying u(a) = u(b) = 0 and u(¢t) # 0 for ¢ € (a,b), then

b . 4
t)dt > ——.
/a o+ (B)di > Jor=1(t) dt

These Lyapunov inequalities have been used as an important tool in oscillation, dis-
conjugacy, control theory, eigenvalue problems, and many other areas of differential equa-
tions. Due to their importance in applications, they have been extended in various di-
rections by many authors. For more on Lyapunov-type inequalities, we refer the reader
to [6H15] and the references cited therein.

Recently, fractional differential equations have gained a considerable attention for
their applications in the mathematical modeling of systems and processes in the fields
of physics, mechanics, chemistry, aerodynamics, nonlinear dynamics, and system theory
[2-5]. Due to useful applications in the boundary value problems (BVPs), a subsequent
search for the Lyapunov-type inequalities has also begun in the direction of fractional
calculus. Ferreira first obtained Lyapunov-type inequalities for fractional differential
equations with pointwise boundary conditions (BCs). In [17], he considered the Riemann-
Liouville fractional differential equation

D¥u+qt)lu=0, 1l<a<2, (4)

where ¢ € C([a,b],R), and showed that if has a nontrivial solution u satisfying
u(a) = u(b) = 0, then

[ o> T ) o)

In |10, Theorem 2.3], Dhar and Kong improved (5)) by replacing |¢(t)| by ¢ (¢). Moreover,
they obtained the Lyapunov-type inequalities for a fractional BVP consisting of Eq.
and the integral BCs

I*7u(a®) = I27%u(b) = 0, (6)

where Ifjo‘u is the Riemann-Liouville fractional integral of u(t) of order 2 — a.

When « = 2, the results in [17] and [10] lead to the classical Lyapunov inequality. For
more Lyapunov-type inequalities involving the Riemann-Liouville and Caputo fractional
derivatives, we refer the reader to |16}20,26] and the references cited therein.

In this paper, we consider a Riemann-Liouville fractional BVP consisting of the equa-
tion

D& u—+q(t)u =0,

together with the boundary conditions (BCs)
u(a) =0, Dfﬂ&(b) =0,
where o € (1,2], f € [0, — 1], D34, Df + are Riemann-Liouville derivatives of order «

and S, respectively, and ¢ € C([a,b],R). We obtain Lyapunov-type inequalities and use
them to study the nonexistence of a nontrivial solution of certain BVPs. Furthermore,
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by using the contraction mapping theorem, we also establish a criterion for the existence
of a nontrivial solution for a nonlinear fractional BVP.

This paper is organized as follows. After this introduction, we recall some basic defi-
nitions of fractional calculus in Section 2. Section 3 contains the main results regarding
the Lyapunov-type inequalities. Finally, in Section 4, we obtain a criterion for the nonex-
istence of nontrivial solutions of a linear BVP and the existence of a unique solution of
a nonlinear fractional BVP.

2 Background Materials and Preliminaries

For the convenience of the reader, here we present the necessary definitions and lemmas
from fractional calculus theory in the sense of Riemann-Liouville. These results can be
found in the books [21}[23,25}27].

Definition 2.1 Let v > 0. The Riemann-Liouville fractional integral of the function
u : [a,b] — R of order v, denoted I”, u, is defined as

pu(t) = ﬁ / (t — 5)"Lu(s)ds,

where T'(v) = [;7t""'e~'dt is the gamma function, provided the right-hand side is
pointwise defined on RY.

Definition 2.2 Let n denote a positive integer and assume n — 1 < o < n. The
Riemann-Liouville fractional derivative of order « of the function u : [a,b] — R, denoted
D2, u, is defined as

1 dar

Daeut) = T(n—a)dt®

¢
/ (t—s)" " tu(s)ds = DI %u(t),

provided the right-hand side is pointwise defined on R¥.

In the following, unless otherwise mentioned, we use D§, u(t) to denote the fractional
derivative of u(t) with order a and D’u(t) to denote the classical derivative of order j
of u(t) with j being a nonnegative integer. We recall a few well-known properties of
the Riemann-Liouville fractional derivatives and integrals to construct and analyze the
family of Green’s functions. Let u € Li[a, b]. Then

LT u(t) = 172 u(t) = 1A T u(t),  vi,ve > 0; (7)

D IR u(t) = 137" u(t), i 0 <y <y (8)
Dy I u(t) = u(t);
and

I8, DS ult) = u(t) + Y ci(t — a)* 0D, (9)

=1

where ¢; € R for 1 < ¢ < n. The property is referred to as the semigroup property
for the fractional integral.
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It follows from Definition 2.1] and that
F(Vl + 1)

I2t—a) = ———
a+( ) F(I/Q +l/1 —+ 1)

(t—a)>™, v >-11n>0

and

F(Vl —|— 1)
F(l/l +1-— 1/2)
where it is assumed that v5 — 17 is not a positive integer. If v — 1 is a positive integer,
then the right-hand side of vanishes. To see this, appeal to the convention that

1 _ . o . oy .
Toitizm) — 0 if 5 — 17 is a positive integer.

D7 (t—a) = (t—a)"", 11> -1, >0, (10)

3 Main Results

We now consider the fractional boundary value problem consisting of the differential
equation
D¢ u+qt)u=0, t € [a,b], (11)

together with the boundary conditions
u(a) =0, D u(b) =0, (12)

where o € (1,2], f € [0, — 1], D%, Df + are Riemann-Liouville derivatives of order «
and 3, respectively, and ¢ € C([a,b], R). First, we present Green’s function corresponding

to the BVP (1), (12).

Lemma 3.1 Let h € C([a,b],R), a € (1,2], and 8 € [0, — 1]. Then the unique
solution of the BVP consisting of the equation

“u+h(t)=0, te]a,b], (13)
and the BCs (12)) is
b
u(t) :/ G(t,s)h(s)ds, t¢€ la,b],

where

A Y

)= o (14)
@) | a2
(b—a)e—1-8 ’

Proof. We use @D to reduce to an equivalent integral equation
u(t) = —I2 h(t) +c1(t —a)* 2 + ot —a)* .
The BC u(a) = 0 implies ¢; = 0, and hence
u(t) = —I h(t) + co(t —a)* .
Note that 0 < 8 < a. Applying Df+ on both sides and using and , we have
DY u(t) = —DP, (IS h(t) + ea(t — a)Y)

F(a) (t _ a)aflfﬁ'

—I(?_:Bh(t) + sz
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Since Df+u(b) =0, it is easy to see that

b
= a0 s

Therefore, the unique solution of problem 7 is

Cyg =

-1 t—a)*!

¢ b
u(t) = @/{1 (t =) h(s)ds + F(ag(b “a)o-18 /a (b— )" h(s)ds
1 Pt —a)* 1 (b—s)*! o
=ty | A ey e s

1 b(t— a)* (b —s)*!
Ol A = el

_ / ' Gt s)h(s)ds.

The proof is complete.
Lemma 3.2 Green’s function G(t,s) given in satisfies the following properties.
1. G(t,s) > 0 for (t,s) € [a,b] X [a,]].
2. maxye(q,p G(t,5) < G(s,s) for s € [a,b].

(a=1)b+(a—1-p)
2 2

3. G(s,s) has a unique mazimum at s* = < given by

G, 5) = F(la) <(b2;ci)(2a__5l)>al <20;—_12—_56>a1ﬁ. (15)

Proof. Define

(t—a)*1(b— s)o‘*l’ﬁ

g1(t,s) = (b= a)—1-5 —(t—s)>7 1,

fora <s<t<band
B (t _ a)o‘fl(b _ s)aflfﬁ
92(t,5) = (b—a)o—1-5 ’

for a <t < s <b. First, we point out that

b—s t—s (b—s)(t—a)—(t—s)b—a) (b-—1t)(s—a)

_ — — >
b—a f-a (D b—a)t—a) ="
or
b—s t—s
> b
b—a " t—a

fora<s<t<hb.
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Now,

t—a)*1(b—g)r"1-8
gl(t78) = ( ()b _ a()al),@

=(t—a)* " l(Z_Z)a_l_B B (i_z)a_ll .

h—
Since()gb—SSl,Ogt—sgl,andaflfﬁgafl,onehas
a a

b—s\2 1P b—s\ ! t—s\* !
> > .
b—a “\b—a “\t—a

So g1(t,s) > 0fora<s<t<b.

Now
9 _ (t—a)*?(b—s)*"'"F a—2
Gn(ts) = (0= )2 (@ - 1))
b—s\* 7 t—s\* 2
— _ _ a—2 _ _ _ a—2
=(a—1)(t—a) (b—a) (a—1)(t—a) (t—a)
b—s\* 17 t—s\* 2
_ _ _ a—2 o
=(a—1)(t—a) l(b—a) (t—a> 1 .
. b—s t—s
Since 0 < — <1,0< — <l,a—1—-p>a-—2,and a — 2 <0, we have

b s a—1-p bh—s a—2 I —s a—2
< < .
(b—a> _<b—a> _<t—a>
So %gl (t,s) <0fora<s<t<b Thus ¢1(t,s) is a decreasing function with respect to
t, implying g1 (¢, s) < gi1(s, s) for all ¢ € [s,b].
It is easy to see that ga(t,s) > 0. Moreover,

—a a—2(p s a—1-p
992@7 S) = (a - 1) (t ()b — lf)bal)ﬁ >0,

ot

for a <t < s <b. So gs(t,s) is increasing with respect to ¢ implying g>(¢,s) < ga(s, s)
for all ¢ € [a, s]. Thus (1) and (2) hold.
To prove (3), we define

(s —a)* 1(b—s)>"178 .

g(s) :=G(s,s) = - a1 (a) (16)

Then g(a) = g(b) = 0 and g(s) > 0 on (a,b). By Rolle’s theorem, there exists s* € (a,b)
such that g(s*) = max,c,,4) 9(5), i.e., ¢'(s*) = 0. Note that
g la=D(s—a)*2(b—s)*""F —(a—1-B)(s —a)* 1 (b—s)**
9(s) = (b—a)>1-PT(a)
(5~ )20~ )"~ [(a = 1)(b ) ~ (0~ 1= B)(s  a)]
(b— @) 1-PT(a) '
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Hence ¢'(s*) = 0 when
. (a=1)b+(a—1-P)a
N 20 —2—pf ’

Notice ) )
oo la=Data—1-pa_

20 —2—f3

and
o < (a—l)b+(a—1—ﬁ)a< (a—Db+(a—1-p)b

20 —2-p 2 —2—-p
so s* is well-defined. Replacing s* in we see that holds.
We remark here that if 8 € (o — 1,1], then properties (1) and (2) from Lemma
still hold. However, the function g(s) defined in the proof has a singularity at b when
B > a— 1. Hence G(s, s) does not have a maximum value, which is not surprising, since
in this case, G(s, s) is only defined for s € [a,b).

:b’

Lemma 3.3 Let G(t,s) be given by . Then

/b G(t,s)ds < (o — 1)~ (b—a)”. (17)
o " (a=p)T(a+1)

Proof. When using the expression of G(t,s) in (14), it follows that

b —a a—1 b t
/ Gt s)ds = F(la) [(b(t_ a>3_1_5/ (b*S)“’“BdS*/ (ts)alds]

- 1){ (t —a)*! (b—a)aﬁ_(t_a)a}

INa) |[(b—a)*1-8 a-p o
(t—a)? e! A —(f—a
S TCESY Lé_ﬁ(b ) — (t )]. (18)
We denote (t - ay=
f) = Tla+1) [a_ﬂ(b—a)—(t—a)], t € la,b). (19)

Let ¢ := a+3%5(b—a). Clearly, f(a) = f(c) =0, and f(t) > 0 on (a,c). Sincea—f < a,
we have b < ¢ with the equality holding only when 5 = 0. By Rolle’s theorem, there
exists t* € (a,c) such that f(t*) = max,c[q,q f(1), i.e., f'(t*) = 0. Note that

pon . (t—a)* 2 [a—1
r == |50 - - a). (20)
It is easy to see that f/(t) =0 only at t = t* = a+ z—:é(b— a). Again,a—1<a-p

implies t* < b with the equality holding only when 8 = 1. Hence f(t) has a unique
maximum at t* € [a,b] C [a, ¢] given by

max f(t) = max f(t) = f(t7) = — 2~V

b—a)®.
telac] telab] (a—B)T(a+1) (b—a)

The proof is complete.
Now we present a Lyapunov-type inequality for , .
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Theorem 3.1 Assume has a nontrivial solution u satisfying and u(t) # 0
on (a,b). Then

b a—1 a—1—-p
20 —2—-0 20 —2 -0
t)dt > T —_— _— . 21
[evasre () (5557 2y
Proof. Let u be a solution of (L1)), (12]). Then u satisfies

b
u(t):/ G(t, s)q(s)u(s)ds.

Without loss of generality, assume u(t) > 0 on (a,b). Define m = max;epq ) u(t). Using
Lemma [3.2] and the facts that 0 < u(t) < m, u(t) Z m on [a,b], and q(t) < qi(t), we
have

b b
m < m m{a;li]/ G(t, s)q+(s)ds < m/ G(s,5)q+(s)ds.
tela, a a

Canceling m from both sides and using Lemma [3.2] again, we see that

1< g ((bzzui)(za—_ﬁl))a_l (M)B / -+ ()

which gives the desired result.

Remark 3.1 Notice when 8 = 0, we obtain the improved form which was the
result presented by Ferreira in |17] and later was noted by Dhar and Kong in [10]. Also,
by setting a = 2 and 3 = 0, we obtain the classical Lyapunov inequality.

4 Application to Boundary Value Problems

In the last section, we apply the obtained results in Section 3 to study the nonexistence,
uniqueness, and existence-uniqueness of solutions of related fractional-order BVPs. First,
we provide a sufficient condition for the nonexistence of a nontrivial solution of the BVP

7 '

Theorem 4.1 Assume

b a—1 a—1-p
20 —2—-0 20 —2 -0
t)ydt <T —_— _ . 22
[ ewasra(F5=5) (555) 22
Then (11), (12) has no nontrivial solutions.

Proof. Assume the contrary, i.e., BVP , has a nontrivial solution . Then
by Theorem holds. This contradicts assumption ([22)).
Now we consider a nonlinear fractional BVP consisting of the equation

D% u+ f(t,u) =0, (23)

together with the BCs (12)), where o € (1,2], 8 € [0,a — 1]. Here we present a criterion
for the existence of a unique solution for BVP , .
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Theorem 4.2 Assume f : [a,b] x R — R is continuous and satisfies a uniform
Lipschitz condition with respect to the second variable on [a, b] x R with Lipschitz constant
K; that is

() = [t uz)] < Klus - ual, (24)

for all (t,u1), (t,u2) € [a,b] x R. If

Q=

(@ —pB)*T(a+1)
K(a— 1)1 ’

then BVP , has a unique solution on |a,b].

b—a<

(25)

Proof. Let B be the Banach space of continuous functions defined on [a, b] with the
norm

= t)|.
full = mas fu(t)

Now u(t) is a solution of BVP (23) if and only if u(t) satisfies the integral equation

u(t):/ G(t, 5)f(s,u(s))ds.

Define the operator T': B — B by

b
Tu(t):/ G(t,s)f(s,u(s))ds.

Then T is completely continuous. We claim that 7" has a unique fixed point in B. In
fact, for any ui,us € B, we have

b
Tur () — Tua(t)] S/ Gt s)1f (s, u1(s) = f (s, ua(s)))|ds.

Since G(t,s) >0 on [a,b] x [a,b] and f satisfies (24), we have

b
Tur(t) — Tus(t)] < K / Gt 5)|ua () — us(s)|ds

IN

b
K| Jus —u2|\/ G(t, 5)ds. (26)

From Lemma [3.3] it follows that

(Oé _ 1)04—1
(a—B)T(a+1)

[Tur () = Tup(t)| < K (b —a)*[Jur — usg|| < [lur —ugll,
where we have used . Hence T is a contraction mapping on B. By the contraction
mapping theorem, we obtain the desired result.

Remark 4.1 It is easy to see that the results in Theorem [4.2] can be extended to a
nonlinear fractional BVP consisting of the equation and the following nonhomoge-
neous BC:

u(a) =0, Dngu(b) =k,

where k € R. We leave the details to the interested reader.
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5 Conclusion

In this paper, we obtained a Lyapunov-type inequality for a fractional differential equa-
tion with a fractional boundary condition. The inequality obtained is an improvement
and a generalization of inequalities that have been obtained in the past. The inequality
was applied to show the existence and nonexistence of solutions to a nonlinear fractional
boundary value problem.
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