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1 Introduction

Many problems arise in biology, chemistry, applied science and engineering in the form
of periodic reaction-diffusion models. This has been observed in recent scientific studies.
Different models can be found in Murray [12,13]. As for the mathematical methods used,
some of them are found in the works of Alaa and Mesbahi et al. [2,3,10,11,17], and also
in Pao [16].

In recent years, special attention has been paid to degenerate reaction-diffusion sys-
tems with specific diffusion coefficients and reaction functions, either in the elliptical or
parabolic case, as it is in our work. This is due to their wide applications in various sci-
ences. Our work will be in this context; we will prove the existence of periodic maximal
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and minimal solutions for a class of degenerate quasilinear parabolic reaction-diffusion
systems, including the uniqueness of the positive solution.

Degenerate reaction-diffusion systems appear naturally in the mathematical modeling
of a wide variety of diffusion phenomena, not only in the natural sciences but also in
engineering, chemistry and economics, as, for example, the dynamics of gas, population
dynamics, dynamic systems, fusion process, certain biological models, valuation of assets
in economy, composite media. We find many models and applications in Abuweden [1],
Alaa et al. [3], Anderson [4], Bouzelmate and Gmira [5], Carrillo [6], Holden et al. [8],
Saffidine and Mesbahi [17], and Zhang and Lin [18], where we also find well-known
techniques and methods which are frequently used to study such a problem.

These systems are of great importance from the point of view of applications and also
from the point of view of analysis, as they require the design of new technologies and the
development of known techniques to study them. Therefore, this topic is of great and
growing importance in science and engineering.

The introduction of degenerate diffusion leads to difficulties in the mathematical
analysis of the model. For this, we will use a successful technique described by Pao based
on the method of upper and lower solutions and its associated monotone iterations. The
basic idea of this method is that when using an upper solution or a lower solution as
the initial iteration in a suitable iterative process, the resulting sequence of iterations is
monotone and converges to a solution of the problem. For more details on this technique,
see Pao’s works [14–16]. We will therefore pay special attention to a model that has
several applications which all have in common that they are modeled by the following
nonlinear degenerate parabolic reaction-diffusion system:

(uj)t − djdiv (Dj (uj)∇uj) = fj (t, x,u) in Γ,

Dj (uj)
∂uj

∂η
= βj (t, x)uj + φj (t, x,u) on Σ,

uj (0, x) = uj (T, x) in Ω,

for all 1 ≤ j ≤ m,

(1)

where u = u (t, x) = (u1 (t, x) , . . . , um (t, x)), Ω is a bounded domain subset of Rn (n ≥ 1)
with the smooth boundary ∂Ω, Γ = R+ × Ω, Γ̄ = R+ × Ω̄, Σ = R+ × ∂Ω, η denotes the

unit normal vector to the boundary ∂Ω,
∂

∂η
denotes the outward normal derivative on

∂Ω. For each 1 ≤ j ≤ m, dj > 0 and Dj , fj , φj , βj are prescribed functions satisfying
the conditions in hypothesis (H), which we will mention in the next section.

The rest of this paper is organized as follows. In the next section, we present the
assumptions under which we will study our problem. Next, we give some results regarding
the approximate problem. In the fourth section, we state our main result and also present
its proof in detail. The penultimate section is devoted to an application of the obtained
result. Finally, we conclude with some remarks and perspectives.

2 Assumptions and Notations

In all that follows, we denote ũ ≡ (ũ1, . . . ũm), û ≡ (û1, . . . ûm). The inequality û ≤ ũ
means that ûj ≤ ũj for all 1 ≤ j ≤ m. Below, we will denote E to one of the sets Γ, Γ̄,
Σ or Ω, Cℓ (E) to the space of all continuous functions whose partial derivatives up to
the m-th order are continuous in E , Cℓ+α (E) to the space of functions in Cℓ (E) that
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are Hölder continuous in E with exponent α ∈ (0, 1). Let, also, Cℓ,m (E) be the space of
functions whose ℓ -times derivatives in t and m -times derivatives in x are continuous in
E. In particular, the space C1,2 (E) consists of all functions that are once continuously
differentiable in t and twice continuously differentiable in x for (t, x) ∈ E. When ℓ = 0,
we denote by C (E) the set of continuous functions in E.

Now, we have to clarify in which sense we want to solve our problem.

Definition 2.1 A pair of vector functions ũ ≡ (ũ1, . . . ũm), û ≡ (û1, . . . ûm) in
C

(
Γ̄
)
∩ C1,2 (Γ) are called ordered upper and lower solutions of (1) if û ≤ ũ and if

û satisfies the relations
(ûj)t − djdiv (Di (ûj)∇ûj) ≤ fj (t, x, û) in Γ,

Dj (ûj)
∂ûj

∂η
≤ βj (t, x) ûj + φj (t, x, û) on Σ,

ûj (0, x) ≤ ûj (T, x) in Ω,

(2)

for all 1 ≤ j ≤ m, and ũ satisfies (2) with inequalities reversed.

Now, we make the following assumption:

(H) For each 1 ≤ j ≤ m, the following conditions hold:

(i) fj (t, x, ·) ∈ C
α
2 ,α

(
Γ̄
)
, 0 ≤ βj ∈ C1 (Σ), φj (t, x, ·) ∈ C1+α

2 ,2+α (Σ), and they are all
T -periodic in t.

(ii) Dj (uj) ∈ C1+α (Qj), Dj (uj) > 0 for uj > 0 and Dj (0) ≥ 0.

(iii) fj (·,u) , φj (·,u) ∈ C1 (Q) such that

∂fj
∂ui

(·,u) ≥ 0,
∂φj

∂uj
(·,u) = 0,

∂φj

∂ui
(·,u) ≥ 0 for all j ̸= i, u ∈ Q.

In the above hypothesis, the subsets Qj and Q are given by the sectors between a
pair of upper and lower solutions.

Remark 2.1 In the above hypothesis, we allow Dj (uj) > 0 for uj > 0 and Dj (0) ≥
0. This is why we say that system (1) is degenerate, this is our main point of research.
For more information on degenerate parabolic problems, see DiBenedetto [7].

3 Approximating Scheme

To simplify our study, we perform the following change of variables:

wj = Ij (uj) =

∫ uj

0

Dj (s) ds for uj ≥ 0, 1 ≤ j ≤ m.

Note that this is a continuous change, where I ′j (uj) = Dj (uj), and therefore its
inverse uj = qj (wj) exists and is an increasing function of wj > 0 for all 1 ≤ j ≤ m. We
have

(wj)t = Dj (uj) (uj)t , ∇wj = Dj (uj)∇uj ,
∂wj

∂η
= Dj (uj)

∂uj

∂η
,
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then system (1) is equivalent to the following:

(Dj (uj))
−1

(wj)t − dj∆wj = fj (t, x,u) in Γ,

∂wj

∂η
= βj (t, x) .qj (wj) + φj (t, x,u) on Σ,

wj (0, x) = wj (T, x) in Ω,

uj = qj (wj) in Γ̄,

for all 1 ≤ j ≤ m.

(3)

Let w̃j = Ij (ũj), ŵj = Ij (ûj), w̃ = (w̃1, . . . , w̃m) and ŵ = (ŵ1, . . . , ŵm). It is easy
to verify that (ũ, w̃) and (û, ŵ) are ordered upper and lower solutions of (3). We set

Qj =
{
uj ∈ C

(
Γ̄
)
: ûj ≤ uj ≤ ũj

}
, 1 ≤ j ≤ m,

Q =
{
u ∈ C

(
Ω̄
)
: û ≤ u ≤ ũ

}
,

Qj×Q =
{
(u,w) ∈ C

(
Ω̄
)
×C

(
Ω̄
)
: (û, ŵ) ≤ (u,w) ≤ (ũ, w̃)

}
.

Now, we define the modified functions D̄j (uj), 1 ≤ j ≤ m, by

D̄j (uj) =

 Dj (uj) + (uj − ũj) , if uj > ũj ,
Dj (uj) , if ûj ≤ uj ≤ ũj ,
Dj (uj) + (ûj − uj) , if uj < ûj .

It is clear that D̄j (0) > 0 if either Dj (0) > 0 and ûj ≥ 0 or Dj (0) = 0 and

ûj ≥ δj > 0. This implies the existence of nonnegative functions λ
(1)
j , λ

(2)
j ∈ Cα

(
Γ̄
)

such that

λ
(1)
j D̄j (uj) +

∂fj
∂uj

(·,u) ≥ 0 , λ
(2)
j D̄j (uj) + βj ≥ 0 for u ∈ Q. (4)

System (3) directly implies

(Dj (uj))
−1

(wj)t −
(
dj∆wj − λ

(1)
j wj

)
= fj (t, x,u) + λ

(1)
j wj in Γ,

∂wj

∂η
+ λ

(2)
j wj = βj (t, x) qj (wj) + φj (t, x,u) + λ

(2)
j wj on Σ,

wj (0, x) = wj (T, x) in Ω,

uj = qj (wj) in Γ̄,
for all 1 ≤ j ≤ m.

For all 1 ≤ j ≤ m, we denote

Fj (t, x,u) = fj (t, x,u) + λ
(1)
j wj = fj (t, x,u) + λ

(1)
j Īj (uj) ,

Ψj (t, x,u) = βj (t, x)uj + φj (t, x,u) + λ
(2)
j Īj (uj) ,

Ljwj = dj∆wj − λ
(1)
j wj ,

Bjwj =
∂wj

∂η
+ λ

(2)
j wj ,
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where

Īj (uj) =

∫ uj

0

D̄j (s) ds, for uj ≥ 0, 1 ≤ j ≤ m.

According to (4), Fj (·,u) and Gj (·,u) are nondecreasing, i.e.,

Fj (·,v) ≤ Fj (·,u) , Ψj (·,v) ≤ Ψj (·,u) , where û ≤ v ≤ u ≤ ũ. (5)

Consequently, system (3) can be reformulated as follows:

(Dj (uj))
−1

(wj)t − Ljwj = Fj (t, x,u) in Γ,

Bjwj = Ψj (t, x,u) on Σ,

wj (0, x) = wj (T, x) in Ω,

uj = qj (wj) in Γ̄,
for all 1 ≤ j ≤ m.

(6)

It is clear that systems (1) and (6) are equivalent, therefore the existence of a periodic
solution to the equivalent system(6) leads to the existence of that to system (1).

We recall the following important lemma, which will be used to construct monotone
convergent sequences. In Pao and Ruan [14], we find a detailed proof of this lemma.

Lemma 3.1 Let σ (t, x) > 0 in Γ, C(2) (t, x) ≥ 0 on Σ, and let either (i) C(1) (t, x) >

0 in Γ or (ii)

(
−C(1)

σ

)
be bounded on Γ̄. If z ∈ C2,1

(
Γ̄
)
∩ C

(
Γ̄
)
and satisfies the

following inequalities:
σ (t, x) zt − div (a∇z) + b.∇z + C(1)z ≥ 0 in Γ,

∂z

∂η
+ C(2)z ≥ 0 on Σ,

z (0, x) ≥ 0 in Ω,

then z ≥ 0 in Γ̄.

Assume that a pair of ordered upper and lower solutions ũ, v̂ exist and hypothesis
(H) holds, using either u(0) = ũ or u(0) = û as the initial iteration, we can construct a
sequence

{
u(k),w(k)

}
from the linear iteration process

(
D̄j

(
u
(k)
j

))−1 (
w

(k)
j

)
t
− Ljw

(k)
j = Fj

(
t, x,u(k−1)

)
in Γ,

Bjw
(k)
j = Ψj

(
t, x,u(k−1)

)
on Σ,

w
(k)
j (0, x) = w

(k−1)
j (T, x) in Ω,

u
(k)
j = qj

(
w

(k−1)
j

)
in Γ̄

for all 1 ≤ j ≤ m,

(7)

where u(k) =
(
u
(k)
1 , . . . , u

(k)
m

)
and w(k) =

(
w

(k)
1 , . . . , w

(k)
m

)
. It is clear that this sequence

is well defined, see Ladyženskaja et al. [9]. Denote the sequence by
{
ū(k), w̄(k)

}
if u(0) =

ũ, and by
{
u(k),w(k)

}
if u(0) = û, and refer to them as the maximal and minimal

sequences, respectively.
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Lemma 3.2 The maximal and minimal sequences
{
ū(k), w̄(k)

}
,
{
u(k),w(k)

}
possess

the monotone property, i.e., for k ≥ 1,

(û, ŵ) ≤
(
u(k),w(k)

)
≤

(
u(k+1),w(k+1)

)
≤

(
ū(k+1), w̄(k+1)

)
≤

(
ū(k), w̄(k)

)
≤ (ũ, w̃) .

Proof. Let z
(1)
j = w

(1)
j −w

(0)
j = w

(1)
j − ŵj , 1 ≤ j ≤ m. Then by (7) and the property

of a lower solution stipulated in the previous Definition 2.1, we obtain

(
D̄j

(
u
(1)
j

))−1 (
z
(1)
j

)
t
− Ljz

(1)
j + γ

(0)
j z

(1)
j ≥ 0 in Γ,

Bjz
(1)
j = Ψj

(
·,u(0)

)
−Bjŵj ≥ 0 on Σ,

z
(1)
j (0, x) = w

(0)
j (T, x)− w

(0)
j (0, x) = ŵj (T, x)− ŵj (0, x) in Ω,

where γ
(0)
j is a bounded function on Γ̄ given in the form

γ
(0)
j = −

D̄′
j

(
ξ
(0)
j

)
(
D̄j

(
ξ
(0)
j

))3

(
w

(0)
j

)
t

with u
(0)
j ≤ ξ

(0)
j ≡ ξ

(0)
j (t, x) ≤ u

(1)
j .

By the hypothesis D̄j (0) > 0 or Dj (0) = 0 and ûj ≥ δj > 0, the function(
D̄j

(
u
(1)
j

))−1

is also bounded in Γ̄. By Lemma 3.1, we find z
(1)
j ≥ 0. This proves

w
(1)
j ≥ w

(0)
j and u

(1)
j ≥ u

(0)
j . In the same way, but with the upper solution, we

find w
(1)
j ≤ w

(0)
j and u

(1)
j ≤ u

(0)
j . In the following, we prove that u

(1)
j ≥ u

(1)
j . Let

z
(1)
j = w

(1)
j − w

(1)
j , then by (5) and (7), we have

(
D̄j

(
u
(1)
j

))−1 (
z
(1)
j

)
t
− Ljz

(1)
j + γ

(0)
j z

(1)
j = Fj

(
·, ū(0)

)
− Fj

(
·,u(0)

)
in Γ,

Bjz
(1)
j = Ψj

(
·, ū(0)

)
−Ψj

(
·,u(0)

)
≥ 0 on Σ,

z
(1)
j (0, x) = w

(1)
j (0, x)− w

(1)
j (0, x) = w

(0)
j (T, x)− w

(0)
j (T, x) ≥ 0 in Ω.

By Lemma 3.1, we have z
(1)
j ≥ 0. This is what gives

u(0) ≤ u(1) ≤ ū(1) ≤ ū(0).

By induction, we can easily have the monotone property.
According to Lemma 3.2, the pointwise limits

lim
k→∞

(
ū(k), w̄(k)

)
= (ū, w̄) , lim

k→∞

(
u(k),w(k)

)
= (u,w) (8)

exist and verify the relation (ū, w̄) ≥ (u,w) in Γ̄. It results from (8) and u(k) (0, x) =
u(k) (T, x) that ū (0, x) = ū (T, x) and u (0, x) = u (T, x) on Ω̄.

We will show that ū and u are, respectively, the maximal and minimal periodic
solutions of (1). In other words, we will prove that if u is another periodic solution of
(1) in (û, ũ), then u ≤ u ≤ ū.
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4 The Main Result

Now, we can state the main result of this paper, it is the following theorem.

Theorem 4.1 Let ũ, û be a pair of ordered upper and lower solutions of (1), and let
hypothesis (H) hold with Dj (0) > 0 or Dj (0) = 0 and ûj ≥ δ > 0. Then the sequences{
ū(k), w̄(k)

}
,
{
u(k),w(k)

}
obtained from (7) converge monotonically from above to a

maximal periodic solution (ū, w̄) and from below to a minimal periodic solution (u,w)
in Q× Q̄, respectively, and satisfy the following inequalities for k ≥ 1 :

(û, ŵ) ≤
(
u(k),w(k)

)
≤

(
u(k+1),w(k+1)

)
≤ (u,w)

≤ (ū, w̄) ≤
(
ū(k+1), w̄(k+1)

)
≤

(
ū(k), w̄(k)

)
≤ (ũ, w̃) .

Moreover, ū and u are the maximal and minimal periodic solutions of (1), respectively.
If, in addition, ū (0, x) = u (0, x), then ū (t, x) = u (t, x) (≡ u∗ (t, x)) and u∗ (t, x) is the
unique solution of (1).

Proof. As in Theorem 2.1 in Pao and Ruan [14], using the standard regularity
argument for the equivalent quasilinear parabolic equations and Schauder estimates, we
can conclude that the limits (ū, w̄) and (u,w) are the solutions of (6), and therefore ū,
u are the solutions of (1). We next show the periodic property of solutions (ū, w̄) and
(u,w). We let zj (t, x) = wj (t, x) − wj (t+ T, x), where wj stands for either wj or wj

for 1 ≤ j ≤ m. By hypothesis (H) and the mean-value theorem, we have

(Dj (uj))
−1

(zj)t − Lj (t) zj

= [(Dj (uj (t, x)))
−1

(wj)t (t, x)

−Lj (t)wj (t, x)]− [(Dj (uj (t, x)))
−1

(wj)t (t+ T, x)

−Lj (t+ T )wj (t+ T, x)]

= Fj (t, x,u (t, x))− Fj (t, x,u (t+ T, x))

+ (Dj (uj (t+ T, x)))
−1

(wj)t (t+ T, x)

− (Dj (uj (t, x)))
−1

(wj)t (t+ T, x)

=

m∑
k=1

∂Fj

∂uk
(t, x, ξ) zj (t, x) +

D′
j (ηj)

(Dj (ηj))
3 (wj)t (t+ T, x) zj (t, x) ,

which gives us

(Dj (uj))
−1

(zj)t − Lj (t) zj + γjzj =

m∑
k=1

∂Fj

∂uk
(t, x, ξ) zj (t, x) in Γ̄, (9)

where γj =
D′

j(ηj)

(Dj(ηj))
3 (wj)t (t+ T, x) is bounded in Γ̄, ξ ≡ ξ (t, x) is the different interme-

diate value in Q. We can also get

Bjzj = Bj (t)wj (t, x)−Bj (t+ T )wj (t+ T, x)

= Ψj (t, x,u (t, x))−Ψj (t, x,u (t+ T, x))

=
m∑

k=1

∂Ψj

∂uk
(t, x, ζ) zj (t, x) on Σ,

(10)
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and
zj (0, x) = wj (0, x)− wj (T, x) in Ω, (11)

where ζ = ζ (t, x) is the different intermediate value in Q. Using relation (5) and Lemma
10.9.1 in Pao [16], we obtain zj (t, x) ≥ 0 in Γ̄ for 1 ≤ j ≤ m. Replacing zj by −zj
in (9)-(11) leads to zj (t, x) ≤ 0 in Γ̄, this yields zj (t, x) = 0, which proves wj (t, x) =
wj (t+ T, x) for 1 ≤ j ≤ m; hence the periodicity of wj . Therefore w (t, x) = w (t+ T, x)
and then u (t, x) = u (t+ T, x).

By (5), we observe that every solution u of (1) in (û, ũ) is an upper solution as well
as a lower solution. The argument in the proof of Lemma 3.2 yields u ≥ u(k) ≥ û for
every k. Letting k → ∞ gives u ≥ u. A similar argument using u and û as ordered
upper and lower solutions leads to u ≤ ū. The same work, taking u and û as ordered
upper and lower solutions, leads to u ≤ ū.

Finally, if ū (0, x) = u (0, x) (≡ u0 (x)), we have w̄ (0, x) = w (0, x), then
when considering problem (6) with the initial condition (u (0, x) ,w (0, x)) =
(u0 (x) ,w0 (x)), the well-known existence-uniqueness result for parabolic systems im-
plies that (ū (t, x) ,w (t, x)) = (u (t, x) ,w (t, x)), and ū (t, x) = u (t, x) on Γ̄. With this
we end the proof of Theorem 4.1.

5 Application

As an application of the obtained result, we give the following growth Lotka-Volterra
competition model with two competing species, where the reaction rates of the competi-
tion follow the hypothesis of the Holling-Tanner interaction mechanism

(u1)t − div (D1 (u1)∇u1) = u1

(
a1 − b1u1 − c1

u2

1 + σ1u1

)
in Γ,

(u2)t − div (D2 (u2)∇u2) = u2

(
a2 − b2

u1

1 + σ2u1
− c2u2

)
in Γ,

D1 (u1)
∂u1

∂η
= β1 (x)u1 , D2 (u2)

∂u2

∂η
= β2 (x)u2 on Σ,

u1 (0, x) = u1 (T, x) , u2 (0, x) = u2 (T, x) in Ω,

(12)

where for each j ∈ {1, 2} , aj , bj , cj are positive constants and β1 (x) ≥ 0 on ∂Ω, σj

is nonnegative function. This system is discussed in Pao [15, 16], where there are also
several other applications. One of the main concerns for problem (12) is whether, and
when the two competing species can coexist. The coexistence problem is ensured if the
system has a positive periodic solution.

6 Concluding Remarks and Perspectives

The fruit of this work is a result of existence and positivity of periodic solutions for
a class of degenerate parabolic reaction-diffusion models. Despite some difficulties, we
succeeded in obtaining several important results. It is clear from Theorem 4.1 that under
hypothesis (H), system (1) admits at least one periodic solution if there exists a pair of
ordered upper and lower solutions.

The results of this research paper will motivate the development of the implemented
methods to different open problems in several scientific fields, such as the anisotropic
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system, which consists in adding diffusion coefficients to the studied system depending
on (t, x) or, more generally, depending on (t, x, u,∇u). Moreover, we can study our
problem numerically using one of the well known methods.
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