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generalized uniform distribution. The maximum likelihood estimators (MLEs) for
these distributions parameters were derived under the Type-II left censoring scheme.
A comprehensive simulation study was performed using different sample sizes, param-
eter values, and censored proportions to investigate the behavior of the estimators
via bias and root mean square error (RMSE) criteria. Two lifetime data sets from
engineering were analyzed to illustrate the Type-II left censoring scheme which pre-
vailed appropriate results.
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1 Introduction

There are widespread applications of different censoring schemes in life-testing and re-
liability experiments in reliability systems, where it is impossible to follow the lifetime
of the units till the end of their lifetimes. Several statistical parametric approaches and
scenarios of censoring are considered in the literature based on the selected models and
the available information [1]. The most popular censoring schemes are the conventional
Type-I and Type-II censoring. Type-I censoring describes the situation when a test is
terminated at a particular point in time in one direction (left censoring or right censoring)
or two directions (interval censoring). However, the Type-II censoring scheme requires
fixing the number of failures to be observed. Progressive and hybrid censoring have
also been studied in the literature [2–4]. Another censoring scheme is random censoring
which is used in life testing experiments and clinical trials, where both the survival and
the censoring times are random. Different studies related to random censoring have been
conducted [5, 6].

One of the main censoring schemes is the left censoring, which is an appropriate one
when the event of interest has already occurred for the individual before the observation
time. Applications involving left censoring may include survival analysis and reliability
engineering. Coburn et al. [7] studied the patterns of health insurance coverage among
rural and urban children with the incidence of a higher proportion of rural children whose
spells were ”left censored” in the sample. Also, a job duration might be incomplete
because the beginning of the job spells is not observed, which is an incidence of left
censoring [8]. Jiang et al. [9] conducted a semiparametric analysis on survival data with
left truncation and right censoring dependent. Robert et al. [10] presented a method of
handling left-censored data in quantitative microbial risk assessment. Yoshinari et al. [11]
studied the Bayesian estimation using left-censored data via Markov Chain Monte Carlo
simulation.

Survival analysis using various parametric models under the left censoring scheme
has been considered extensively in the literature [12, 13]. Mira and Kundu [14] studied
the left censored data using the generalized exponential distribution. Sindhu et al. [15]
considered the Bayesian estimation of the left censored data using the inverse Rayleigh
distribution. Asgharzadeh et al. [16] performed estimation and reconstruction based on
the left censored data using the Pareto model. Sindhu et al. [17] applied the Gumbel
Type II distribution under the Bayesian approach to the left censored data.

The J-shaped family distributions were introduced by Toop and Lone [18]. The
applications of the J-shaped family distributions were considered by Nadarajah and
Kotz [19] who showed that the hazard rate function is bathtub shaped. An advantage
of the J-shaped family distributions, which have a bathtub shaped hazard rate function,
is attributed to the possession of only two parameters, whereas other distributions with
a bathtub shaped hazard function involve three or four parameters. Bathtub shaped
hazard rate functions have a wide range of applications in reliability engineering and
reliability analysis. The bathtub shaped hazard rate function can be applied to human
populations. For example, at the infant age, the death rate is high due to birth defects
or infant diseases, then the death rate remains constant up to the age of thirty, then it
increases again. Also, some manufactured items such as televisions, handheld calculators,
and microprocessors follow this pattern.

The power function distribution is commonly used in survival analysis. It is a flexible
distribution as it can be used to model various types of data. Different versions of the



220 MAHMOUD M. SMADI

power function distribution were reported in the literature [20]. In this work, we consider
two versions of power function distribution, namely, the regular power function distribu-
tion, and the generalized uniform distribution; both distributions have two parameters:
a scale parameter, and a shape parameter. Meniconi and Barry [21] compared the power
function distribution with the exponential, lognormal, and Weibull distributions to mea-
sure the reliability. They concluded that the power function distribution is the best one
to model such types of data. The power function distribution is characterized by the
simplicity of its mathematical form and can be handled easily by medical researchers
and reliability engineers to obtain failure rates and reliability data. The generalized
uniform distribution was used as a model of plant growth [22]. Lee [23] studied the
estimation of the generalized uniform distribution (GUD). Bhatt [22] discussed the con-
sistent characterization of the GUD through expectation. Khan and Khan [24] obtained
the characterization of the GUD based on lower record values.

This paper considers Type-II left censoring of some popular finite support family
distributions, namely, the J-family distributions, regular power function distribution,
and generalized uniform distribution. The maximum likelihood estimators (MLEs) for
the model parameters were derived. A simulation study was performed using different
sample sizes, parameter values, and censored proportions to observe the behavior of the
estimators in terms of bias and root mean square error (RMSE) criteria. Finally, two
real lifetime data sets from engineering were analyzed to illustrate the derived results.

2 Finite Family Support Distributions

2.1 J-Family distribution

The cumulative distribution function (CDF) of the J-shaped family of distributions is
given by

F (x; θ, β) =
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(xθ (2−
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θ ))
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2.2 Regular power function distribution

The cumulative distribution function (CDF) of the regular power function distribution
is given by

F (x; θ, β) =
(x
θ

)p
, 0 < x ≤ θ , p > 0, θ > 0 (3)

with the corresponding probability density function (PDF) given by

f(x; θ, β) =
p

θp
xp−1 , 0 < x ≤ θ , p > 0, θ > 0, (4)

where θ is the scale parameter and p is the shape parameter. It is denoted by X ∼
PFF (p, θ). The reliability function of the distribution can be expressed as

R(t) = P (T > t) = 1−
( t
θ

)p
and the hazard rate function is given by

h(t) =
f(t)

R(t)
=

ptp−1

θp − tp
.

2.3 Generalized uniform distribution

The cumulative distribution function (CDF) of the generalized uniform distribution is
given by Lee [23]

F (x; θ, β) =

(
x

θ

)p+1

, 0 < x ≤ θ, − 1 < p, θ > 0 (5)

with the corresponding probability density function (PDF) given by

f(x, θ, β) =

(
p+ 1

θ

)(
x

θ

)p

, 0 < x ≤ θ, − 1 < p, θ > 0, (6)

where θ is the scale parameter, and p is the shape parameter. It is denoted by X ∼
GUD(p, θ). The generalized uniform distribution is a uniform distribution over (0, θ) if
p = 0. It should be noted that the density function (6) is decreasing with x if −1 < p < 0,
and constant if p = 0, and increasing if p > 0.

The reliability function of the distribution can be expressed as

R(t) = P (T > t) = 1−
( t
θ

)p−1

and the hazard rate function is given by

h(t) =
f(t)

R(t)
=

(
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)(
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)p
1−

(
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3 Maximum Likelihood Estimation

The Type-II left censoring scheme is considered. Suppose the initial r observations are
censored or unobserved and the largest n−r lifetimes X(r+1) < X(r+2) < . . . < X(n) have
only been observed. Then the joint probability density function ofX(r+1), X(r+2), ..., X(n)

is given by

f(x(r), ...., x(n); θ, p) =
n!

r!

(
(F (x(r+1))

)r

f(x(r+1))...f(x(n)). (7)
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3.1 Maximum likelihood estimation of J-family distribution

When using equation (7), the joint probability density function ofX(r+1), ..., X(n) is given
by

f(x(r), ...., x(n); θ, β) =

n!

r!

((
x(r)
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))β
)r ∏n
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]
,

where

0 < x(r) ≤ x(r+1) ≤ ... ≤ x(n) ≤ θ, 0 < β < 1.

The likelihood function is given by

L(x(r+1), ..., x(n), θ, β) =
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where
0 < x(r) ≤ x(r+1) ≤ ... ≤ x(n) ≤ θ,

It is noticed that for fixed 0 < β < 1,

lim
θ→x(n)

L(θ, β|x(r+1), ..., x(n)) = lim
θ→∞

L(θ, β|x(r+1), ..., x(n)).

Thus, for a fixed value of β, the value of θ that maximizes the likelihood function lies
in the interval (x(n),∞). Therefore, the MLE of (θ, β) is the solution of the likelihood
equations, such that

∂L

∂β
= 0 and

∂L
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= 0

or, equivalently, ∂ logL(β,θ)
∂β = 0 and ∂ logL(β,θ)
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The log-likelihood function can be expressed as
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The derivative of the log-likelihood function for β gives the following normal equation:

r log x(r)−r log θ+r log
(
2−

x(r)

θ

)
+
(n− r)

β
+

n∑
i=r+1

log
(x(i)

θ

)
+

n∑
i=r+1

log
(
2−

x(i)

θ

)
= 0,

(8)
while the derivative of the log-likelihood function for θ results in the following normal
equation
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The maximum likelihood estimates β̂ and θ̂ of the unknown parameters β and θ can be
obtained by solving equations 8 and 9 numerically.

3.2 Maximum likelihood estimation of power function distribution

When using equation (7), the joint probability density function of x(r+1), ..., x(n) and the
likelihood function can be, respectively, expressed as

f(x(r), ..., x(n); θ, β) =
n!

r!

((
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θ

)p
)r n∏

i=r+1
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(i) ,
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pn−r

θp(n−r)

n∏
i=r+1

xp−1
(i) . (10)

The MLEs of p and θ can be derived by maximizing the function L in equation 10. Since
this likelihood function is a decreasing function of θ, the MLE of θ is

θ̂ = X(n) = max(X1, X2, ..., Xn),

while the MLE of p can be obtained by solving

d logL1(p, θ̂)

dp
.

The log-likelihood function in this case is given by

lnL(θ̂, p; (r + 1), ..., x(n)) = log
n!

r!
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lnx(i).

The derivative of the log-likelihood function for p gives the following normal equation:
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n−r
p = 0. Thus, the maximum likelihood estimator

(MLE) of p can be derived:

p̂ =
n− r

n log θ̂ − r log x(r+1) −
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i=r+1 lnx(i)

.

3.3 Maximum likelihood estimation of generalized uniform distribution

When using equation 7, the joint probability density function of X(r+1), X(r+2), ..., X(n)

and the likelihood function, respectively, can be expressed as
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The MLEs of p and θ can be derived by maximizing the function L in equation 11. Since
this likelihood function is a decreasing function of θ, the MLE of θ is

θ̂ = X(n) = max(X1, X2, ..., Xn),

while the MLE of p can be obtained by solving

d logL1(p, θ̂)

dp
= 0.

In this case, the log-likelihood function is given by

logL(θ̂, p;x(r+1), ..., x(n)) =

log
n!

r!
− n(p+ 1) ln θ̂ +r(p+ 1) lnx(r+1) + (n− r) ln p+ 1 + p

∑n
i=r+1 lnx(i).

The derivative of the log-likelihood function for p gives the following normal equation:

−n lnx(n) + r lnx(r+1) +
n− r

p+ 1
+

n∑
i=r+1

lnx(i) = 0.

Thus, the maximum likelihood estimator (MLE) of p can be derived:

p̂ =
n− r

n lnx(n) − r lnx(r+1) −
∑n

i=r+1 lnx(i)
− 1.

4 Simulation Study

A simulation study was performed to deduce the behavior of the estimators. Different
sample sizes, namely, n = 25, 50 and 100, different combinations of the parameter values
and different censored proportions were considered. The simulation results were based
on 1000 replicates. The means and root mean square errors (RMSE) of the maximum
likelihood estimators of the shape parameters were calculated. The simulation results for
the J-shaped family, power function, and generalized uniform distribution are displayed
in Tables 1-3, respectively.

The following remarks can be drawn based on the simulation results:

a. The performance of the estimators improves in terms of bias and RMSE due to the
increase in the sample size.

b. As the number of censored observations increases, the biases and RMSEs increase
and vice versa.

c. The bias and RMSE increase with increasing values of the shape parameter.

5 Applications

In this section, two applications of Type-II left censoring lifetime data sets are presented.
The first application is related to the J-shaped family distributions and the second ap-
plication is related to the power function distribution.
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Table 1: Mean and RMSE for MLE of β for different combinations of r, n, β and θ of the
J-shaped family distribution.

θ β
n = 25 n = 50 n = 100

r Mean RMSE r Mean RMSE r Mean RMSE

2

0.5
3 0.62421 0.16763 5 0.56925 0.09498 10 0.54283 0.06246
5 0.63776 0.17955 10 0.57903 0.10371 20 0.54937 0.06819

0.7
3 0.88971 0.24339 5 0.80039 0.13669 10 0.76625 0.08940
5 0.91057 0.26119 10 0.82138 0.14954 20 0.77623 0.09778

1.0
3 1.29608 0.36162 5 1.16690 0.20129 10 1.10455 0.13093
5 1.32866 0.38876 10 1.19022 0.22061 20 1.11998 0.14342

4

0.5
3 0.62421 0.16763 5 0.56925 0.09498 10 0.54283 0.06246
5 0.63776 0.17955 10 0.57903 0.10371 20 0.54937 0.06819

0.7
3 0.88971 0.24339 5 0.80039 0.13669 10 0.76625 0.08940
5 0.91057 0.26119 10 0.82138 0.14954 20 0.77622 0.09777

1.0
3 1.29608 0.36162 5 1.16690 0.20129 10 1.10455 0.09777
5 1.32866 0.38876 10 1.19022 0.22061 20 1.11998 0.14342

Table 2: Mean and RMSE for MLE of β for different combinations of r, n, β and θ of the power
function distribution.

θ β
n = 25 n = 50 n = 100

r Mean RMSE r Mean RMSE r Mean RMSE

2

0.5
3 0.55191 0.12795 5 0.53020 0.08585 10 0.51294 0.05625
5 0.55363 0.13522 10 0.52976 0.08607 20 0.51495 0.06071

0.7
3 0.77271 0.17914 5 0.74220 0.12021 10 0.71811 0.07875
5 0.77516 0.18931 10 0.74167 0.12050 20 0.72093 0.08500

1.0
3 1.10399 0.25591 5 1.06040 0.17173 10 1.02588 0.11249
5 1.10737 0.27044 10 1.05953 0.17214 20 1.02990 0.12142

4

0.5
3 0.55191 0.12795 5 0.53020 0.08586 10 0.51294 0.05625
5 0.55368 0.13522 10 0.52976 0.08607 20 0.51495 0.06071

0.7
3 0.77210 0.17914 5 0.74228 0.12021 10 0.71811 0.07875
5 0.77516 0.18931 10 0.74167 0.12050 20 0.72093 0.08500

1.0
3 1.10310 0.25591 5 1.06040 0.17173 10 1.02509 0.11249
5 1.10737 0.27044 10 1.05953 0.17214 20 1.02990 0.12142

5.1 Application (1)

This application considers the use of the Type-II left censored J-shaped fam-
ily distributions to fit a real-life data set which represents the number of cy-
cles to failure for a group of 60 electrical appliances [25]. The failure times are

14 34 61 69 80 123 165 210 381 464 479 556
574 839 917 969 991 1064 1088 1091 1174 1270 1275 1355
1397 1477 1578 1649 1702 1893 1932 2011 2161 2292 2326 2337
2628 2785 2811 2886 2993 3122 3248 3715 3790 3857 3912 4100
4106 4116 4315 4510 4584 5267 5299 5583 6065 9701.
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Table 3: Mean and RMSE for MLE of β for different combinations of r, n, β and θ of the
generalized uniform distribution.

θ β
n = 25 n = 50 n = 100

r Mean RMSE r Mean RMSE r Mean RMSE

2

0.5
3 0.65210 0.38329 5 0.57583 0.23810 10 0.53565 0.1684
5 0.67379 0.41918 10 0.58752 0.26122 20 0.54136 0.17896

0.7
3 0.87339 0.43439 5 0.78594 0.27084 10 0.74041 0.19055
5 0.89696 0.47507 10 0.79919 0.29604 20 0.74876 0.20284

1.0
3 1.20399 0.51105 5 1.10110 0.31864 10 1.04754 0.22417
5 1.23171 0.55891 10 1.11670 0.34829 20 1.05515 0.23861

4

0.5
3 0.65299 0.38329 5 0.57587 0.23900 10 0.53565 0.16814
5 0.67379 0.41918 10 0.58752 0.26122 20 0.54136 0.17896

0.7
3 0.87339 0.43439 5 0.78534 0.27084 10 0.74041 0.19055
5 0.89696 0.47507 10 0.79919 0.29604 20 0.74876 0.20281

1.0
3 1.20399 0.51105 5 1.10110 0.31864 10 1.04754 0.22418
5 1.23172 0.55891 10 1.11669 0.34829 20 1.05515 0.23861

The last observation was ignored as it is about 4 standard deviations above the mean
and thus can be considered as an outlier. Thus, the data was rescaled by dividing each
observation by 7000 [26]. The maximum likelihood estimates for θ and β were found to
be 0.8664 and 0.8425, respectively. The Kolmogorov-Smirnov (K − S) test was used for
this data set. The Kolmogorov-Smirnov test statistic value was found to be 0.11 and
the theoretical critical value at α = 0.05 was 0.17. Thus, fitting the J-shaped family
distribution is adequate for the above data set. In the reliability analysis, the first 10
observations were censored, i.e., r = 10. The maximum likelihood estimates using the
remaining data were 0.8664 for θ and 0.9086 for β. The estimated hazard function of
the J-shaped family distribution using the complete and censored samples is shown in
Figure 1. It is seen that the estimated hazard functions for the complete and censored
samples are very close.

5.2 Application (2)

This application considers the use of the Type-II left censored power function distribution
to fit a real-life data set which represents the failure times (in minutes) for a sample of
15 electronic components in an accelerated life test [25]. The failure times were analyzed
to illustrate the Type-II left censoring scheme. The failure times are

1.4 5.1 6.3 10.8 12.1 18.5 19.7 22.2 23.0
30.6 37.3 46.3 53.9 59.8 66.2.

The validity of the power function distribution was checked. Based on the maximum
likelihood estimates of θ and p, the parameters of 66.2 and 0.792, respectively, were
obtained. The Kolmogorov-Smirnov (K−S) test was used for this data set. It is observed
that the K-S distance between the fitted and the empirical distribution functions, and
the corresponding critical value at α = 0.05 are 0.167 and 0.33, respectively. Thus, the
fit of power function distribution fits the above data reasonably well.

In the analysis, the first three observations, r = 3, were censored, namely, x(1) =
1.4, x(2) = 5.1 and x(3) = 6.3. The maximum likelihood estimate of θ was 66.2 and p
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Figure 1: Hazard function of J-shaped distribution using complete and censored sample.

Figure 2: Hazard function of power function distribution using complete and censored samples.

was 0.7693. The estimated hazard functions for the complete and censored samples are
shown in Figure 2. It is seen that the estimated hazard functions for the complete and
censored samples are very close.

6 Conclusion

Type-II left censoring of three popular finite support family distributions, namely, the J-
family distributions, the regular power function distribution and the generalized uniform
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distribution have been considered. The maximum likelihood estimators (MLEs) were
derived for these distributions. A comprehensive simulation study was conducted for
different sample sizes, parameter values, and censored proportions. Two lifetime data sets
were analyzed to illustrate the Type-II left censoring scheme under the power function
distribution and J-shaped family distributions and showed appropriate results.
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