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1 Introduction

The main purpose of this paper is to study the nonlinear elliptic equation

div(|∇U |p−2∇U) + αU + βx.∇U + |U |q−1U = 0, x ∈ RN , (1)

where p > 2, q > 1, N ⩾ 1, α > 0 and β > 0. The equation (1) is derived from the
self-similar solutions of the nonlinear parabolic equation

vt −∆pv − |v|q−1v = 0, in RN × (0,+∞). (2)

These particular solutions are of the form

v(t, x) = t−αU(t−β |x|), (3)

where

α =
1

q − 1
and β =

q + 1− p

p(q − 1)
.

If p = 2, α = 0 and β = 0, the equation (1) is due to Emden-Fowler and plays an impor-
tant role in astrophysics, this motivates many researchers to be interested in the study
of this case, the examples include (but are not limited to) [3,7–10,12,17,18]. In the case
p = 2, α > 0 and β > 0, the equation (1) was studied in [6, 14–16, 19, 20, 22–24]. In the
case p > 2, α = 0 and β = 0, (1) was investigated in [2], [13] and [21]. When p > 2, α > 0

and β = 1, equation (1) was studied in [1]. When p > 2, α =
1

q − 1
and β =

q + 1− p

p(q − 1)
,

equation (1) was studied in [11]. In the case p > 2, α < 0 and β < 0, we have studied
an equation similar to (1) but with the term |U |q−1U weakened by its multiplication by
the function |x|l with l < 0 that tends to 0 at infinity. This study was carried out in [4]
and gave the existence and asymptotic behavior of unbounded solutions near infinity
using nonlinear dynamical systems theory. In this paper, we consider the case where
α > 0, β > 0 and l = 0. It is also a generalization of the study carried out in [11].
We will present a result that improves asymptotic behavior near infinity of positive

solutions, we investigate the structure of solutions of problem (P ) in the cases
α

β
≥ N

and
α

β
< N and we give an important relation between the solutions of the problem

(P ) and those of a nonlinear dynamical system obtained by using the logarithmic change.

If we put U(x) = u(|x|), it is easy to see that u satisfies the equation

(|u′|p−2u′)′ +
N − 1

r
|u′|p−2u′ + αu(r) + βru′(r) + |u|q−1u(r) = 0, r > 0. (4)

Since we are interested in radial regular solutions, we impose the condition u′(0) = 0.
Thus we consider the following Cauchy problem.

Problem (P ): Find a function u defined on [0,+∞[ such that |u′|p−2u′ ∈
C1([0,+∞[) and satisfying

(|u′|p−2u′)′ +
N − 1

r
|u′|p−2u′ + αu(r) + βru′(r) + |u|q−1u(r) = 0, r > 0 (5)
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and

u(0) = A > 0, u′(0) = 0, (6)

where p > 2, q > 1, N ⩾ 1, α > 0 and β > 0.
By reducing the problem (P ) to a fixed point for a suitable integral operator (see for

example [5]), we prove that for each A > 0, the problem (P ) has a unique global solution
u(., A, α, β).

The main results are the following.

Theorem 1.1 Problem (P ) has a unique solution u(., A). Moreover,

(|u
′
|p−2u

′
)
′
(0) =

−A
N

(
α+Aq−1

)
. (7)

Theorem 1.2 Problem (P ) has no positive solutions in the following cases:

(i)
α

β
≥ N .

(ii)
N − p

p− 1
⩽
α

β
< N .

(iii) q ⩽ p− 1 and
α

β
<
N − p

p− 1
.

(iv) q > p− 1 and
α

β
̸= p

q + 1− p
<
N − p

p− 1
.

Theorem 1.3 Assume
α

β
< N . Then the solution u(., A) of problem (P ) is strictly

positive in the following cases:

(i) 0 < A < (βN − α)
1

q−1 .

(ii)
α

β
=

p

q + 1− p
< min

(
N − p

p
,
p

2

)
.

Theorem 1.4 Assume
α

β
=

p

q + 1− p
<
N − p

p− 1
. Let u be a strictly positive solution

of problem (P ). Then

lim
r→+∞

r
α
β u(r) = Γ > 0

and

lim
r→+∞

r
α
β +1u′(r) =

−α
β

Γ,

where

Γ =

(
N − p− α

β
(p− 1)

) 1
q+1−p

(
α

β

) p−1
q+1−p

.

The rest of the paper is organized as follows. In the second section, we present basic
tools for the study of the problem (P ). The third section concerns asymptotic behavior
near infinity of solutions of problem (P ); more precisely, we give explicit equivalents of
solutions and their derivatives near infinity. The fourth section concerns the structure
of solutions of problem (P ). The last section, in the form of a conclusion, presents
the asymptotic behavior of the solution of a nonlinear dynamical system around its
equilibrium point and explains its relation with the asymptotic behavior of the solution
of the problem (P ).
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2 Preliminaries and Basic Tools

In this section, we give existence of global solutions of problem (P ) and we present the
necessary basic tools that will be useful to us in the rest of the work.

Theorem 2.1 Problem (P ) has a unique solution u(., A). Moreover,

(|u
′
|p−2u

′
)
′
(0) =

−A
N

(
α+Aq−1

)
. (8)

Proof. The proof of theorem is divided into three steps.
Step 1: Existence and uniqueness of a local solution.
Multiply equation (5) by rN−1, we obtain(

rN−1|u
′
|p−2u

′
(r) + βrNu(r)

)′

= (βN − α) rN−1u(r)− rN−1|u|q−1u(r). (9)

Integrating (9) twice from 0 to r and taking into account (6), we see that problem (P )
is equivalent to the equation

u(r) = A−
r∫

0

G(F [u](s)) ds, (10)

where

G(s) = |s|(2−p)/(p−1)s, s ∈ R, (11)

and the nonlinear mapping F is given by the formula

F [u](s) = βsu(s) + s1−N

s∫
0

σN−1u(σ)
(
(α− βN) + |u(σ)|q−1

)
dσ. (12)

Now, we consider for A > M > 0, the complete metric space

EA = {φ ∈ C ([0, R]) such that ||φ−A||0 ⩽M}. (13)

Next, we define the mapping Ψ on EA by

Ψ[φ](r) = A−
r∫

0

G(F [φ](s)) ds. (14)

Claim 1: Ψ maps EA into itself for some small M and R > 0.
Obviously, Ψ[φ] ∈ C([0, R]). From the definition of the space EA, φ(r) ∈ [A−M,A+M ],
for any r ∈ [0, R]. It is easy to prove that F [φ] has a constant sign in [0, R] for every
φ ∈ EA. Moreover, there exists a constant K > 0 such that

F [φ](s) ≥ Ks for all s ∈ [0, R], (15)

where K =
A

2N

(
α+Aq−1

)
.

Taking into account that the function r → G(r)

r
is decreasing on (0,+∞), we have

|Ψ[φ](r)−A| ≤
r∫

0

G(F [φ](s))

F [φ](s)
|F [φ](s)| ds ≤

r∫
0

G(Ks)

Ks
|F [φ](s)| ds
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for r ∈ [0, R]. On the other hand,

|F [φ](s)| ≤ Cs, where C = [β + | α
N

− β|+ (A+M)q−1](A+M).

We thus get

|Ψ[φ](r)−A| ≤ p− 1

p
CK

2−p
p−1 r

p
p−1

for every r ∈ [0, R]. Choose R small enough such that

|Ψ[φ](r)−A| ≤M, φ ∈ EA.

And thereby Ψ[φ] ∈ EA. The first claim is thus proved.
Claim 2: Ψ is a contraction in some interval [0, rA].
According to Claim 1, if rA is small enough, the space EA applies into itself. For any
φ,ψ ∈ EA, we have

|Ψ[φ](r)−Ψ[ψ](r)| ≤
r∫

0

|G(F [φ](s))−G(F [ψ](s))| ds, (16)

where F [φ] is given by (12. Next, let

Φ(s) = min(F [φ](s), F [ψ](s)).

As a consequence of estimate (15), we have

Φ(s) ≥ Ks for 0 ≤ s ≤ r < rA

and then

|G(F [φ](s))−G(F [ψ](s))| ≤ G(Φ(s))

Φ(s)
|F [φ](s)− F [ψ](s)| (17)

≤ G(Ks)

Ks
|F [φ](s)− F [ψ](s)|.

Moreover,

|F [φ](s)− F [ψ](s)| ≤ C ′||φ− ψ||0s, (18)

where C ′ = [β + | α
N

− β| + (A +M)q−1](A +M). Combining (16), (17) and (18), we

have

|Ψ[φ](s)−Ψ[ψ](s)| ≤ p− 1

p
C ′K

2−p
p−1 r

p
p−1 ||φ− ψ||0 (19)

for any r ∈ [0, rA]. When choosing rA small enough, Ψ is a contraction. This proves the
second claim.

The Banach Fixed Point Theorem then implies the existence of a unique fixed point
of Ψ in EA, which is a solution of (10) and consequently, of problem (P ). As usual, this
solution can be extended to a maximal interval [0, rmax[, 0 < rmax ≤ +∞.
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Step 2: Existence of a global solution.
Define the energy function

E(r) =
p− 1

p
|u′|p + α

2
u2(r) +

1

q + 1
|u|q+1. (20)

Then by equation (5), the energy function satisfies

E′(r) = −
(
N − 1

r
|u′|p + βru′2

)
. (21)

Then E is decreasing, hence it is bounded. Consequently, u and u′ are also bounded and
the local solution constructed above can be extented to R+.

Step 3: (|u′ |p−2u
′
)
′
(0) =

−A
N

(
α+Aq−1

)
.

Integrating (9) between 0 and r, we get

|u′ |p−2u
′

r
= −βu(r) + (βN − α)r−N

r∫
0

sN−1u(s) ds− r−N

r∫
0

sN−1|u|q−1u(s) ds.

Hence, using L’Hospital’s rule and letting r → 0, we obtain the desired result. The proof
of the theorem is complete. 2

Proposition 2.1 Let u be a solution of problem (P ) and let Su := {r > 0, u(r) > 0}.
Then u′(r) < 0 for any r ∈ Su.

Proof. We argue by contradiction. Let r0 > 0 be the first zero of u′. Since by (8)
u′(r) < 0 for r ∼ 0, we have by continuity and the definition of r0, there exists a left
neighborhood ]r0 − ε, r0[ (for some ε > 0), where u′ is strictly increasing and strictly
negative, that is, (|u′|p−2u′)′(r) > 0 for any r ∈]r0 − ε, r0[, hence, by letting r → r0,
we get (|u′|p−2u′)′(r0) ≥ 0. But by equation (5), we have (|u′|p−2u′)′(r0) = −αu(r0) −
|u|q−1u(r0) < 0 since u(r0) > 0, u′(r0) = 0 and α > 0. This is a contradiction. The
proof is complete. 2

Proposition 2.2 Assume N > 1. Let u be a solution of problem (P ). Then

lim
r→+∞

u(r) = lim
r→+∞

u
′
(r) = 0. (22)

Proof. Since E
′
(r) ⩽ 0 and E(r) ⩾ 0 for all r > 0, there exists a constant l ⩾ 0 such

that lim
r→+∞

E(r) = l. Suppose l > 0. Then there exists r1 > 0 such that

E(r) ⩾
l

2
for r ⩾ r1. (23)

Now consider the function

D(r) = E(r) +
N − 1

2r
|u′|p−2u′(r)u(r) +

β(N − 1)

4
u2(r) + β

r∫
0

su′2(s) ds.
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Then

D′(r) = −N − 1

2r

[
|u′(r)|p + N

r
|u′|p−2u′u(r) + |u(r)|q+1 + αu2(r)

]
.

Recall that u and u′ are bounded (because E is bounded), then

lim
r→+∞

|u′ |p−2u
′
u(r)

r
= 0.

Moreover, by (20) and (23), we have for r ⩾ r1,

αu2(r) + |u′(r)|p + |u(r)|q+1 ⩾
p− 1

p
|u′(r)|p + 1

q + 1
|u(r)|q+1 +

α

2
u2(r) = E(r) ⩾

l

2
.

Consequently, there exist two constants c > 0 and r2 ⩾ r1 such that

D′(r) ⩽ − c
r

for r ⩾ r2.

Integrating the last inequality between r2 and r, we get

D(r) ⩽ D(r2)− c ln(
r

r2
) for r ⩾ r2.

In particular, we obtain lim
r→+∞

D(r) = −∞. Since

E(r) +
N − 1

2r
|u′|p−2u′(r)u(r) ⩽ D(r),

we get lim
r→+∞

E(r) = −∞. This is impossible, hence the conclusion. 2

Proposition 2.3 Let u be a strictly positive solution of problem (P ), then u and u′

have the same behavior (22).

Proof. If N > 1, then by Proposition 2.2, lim
r→+∞

u(r) = lim
r→+∞

u′(r) = 0. If N = 1,

let
J(r) = |u′|p−2u′(r) + βr u(r). (24)

Then by equation (5),
J ′(r) = (β − α)u− |u|q−1u(r). (25)

Since u is strictly positive, it is strictly decreasing by Proposition 2.1. Therefore
lim

r→+∞
u(r) ∈ [0,+∞[. Since the energy function E given by (20) converges (because

it is positive and decreasing), u′ also necessarily converges and lim
r→+∞

u′(r) = 0. Sup-

pose by contradiction that lim
r→+∞

u(r) = L > 0. Therefore lim
r→+∞

J(r) = +∞.

Using L’Hospital’s rule, we have

lim
r→+∞

J ′(r) = lim
r→+∞

J(r)

r
.

That is,
(β − α)L− Lq = β L.

Therefore −αL − Lq = 0. But this contradicts the fact that L > 0 and α > 0. Hence
lim

r→+∞
u(r) = 0. 2
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Proposition 2.4 Let 0 < c ̸= α

β
. Let u be a strictly positive solution of problem (P ).

Then the function rcu(r) is strictly monotone for large r.

Proof. For any c > 0, we consider the function

gc(r) = cu(r) + ru′(r), r > 0. (26)

It is clear that
(rcu(r))′ = rc−1gc(r), r > 0. (27)

The monotonicity of the function rcu(r) can be obtained by the sign of the function
gc(r). Using (5), we have for any r > 0 such that u′(r) ̸= 0,

(p− 1)|u′(r)|p−2g′c(r) = (p− 1)(c− N − p

p− 1
)|u′|p−2u′(r)

− βr2u′(r)− αr u(r)− r|u|q−1u(r).

(28)

Consequently, if gc(r0) = 0 for some r0 > 0, we obtain by (26) and (28),

(p− 1)|u′|p−2(r0)g
′
c(r0) = r0u(r0)

[
(βc− α)− |u(r0)|q−1

+ (p− 1)cp−1

(
N − p

p− 1
− c

)
|u(r0)|p−2

rp0

]
.

(29)

Suppose that there exists a large r0 such that gc(r0) = 0. Since lim
r→+∞

u(r) = 0 and

according to (29), we have for c >
α

β
(respectively, c <

α

β
), g′c(r0) > 0 (respectively,

g′c(r0) < 0) and thereby gc(r) ̸= 0 for large r if c ̸= α

β
. Consequently, the function rcu(r)

is strictly monotone for large r if c ̸= α

β
. 2

Proposition 2.5 Let u be a strictly positive solution of problem (P ). Then for any

0 < c <
α

β
, we have gc(r) < 0 for large r and lim

r→+∞
rcu(r) = 0.

Proof. We know by Proposition 2.4 that if 0 < c <
α

β
, gc(r) ̸= 0 for large r. Suppose

that gc(r) > 0 for large r. Then, by (26) and the fact that u′(r) < 0, we get

|u′(r)| < cu(r)

r
for large r. (30)

This gives by equation (5),

(|u′|p−2u′)′(r) < u(r)

[
(βc− α) + (N − 1)cp−1u

p−2(r)

rp

]
. (31)

As 0 < c <
α

β
, u(r) > 0 and lim

r→+∞
u(r) = 0, then (|u′|p−2u′)′(r) < 0 for large r.

Combining with u′ < 0, we get lim
r→+∞

u′(r) ∈ [−∞, 0[, which is impossible. Hence,

gc(r) < 0 for large r and by (27), lim
r→+∞

rcu(r) ∈ [0,+∞[. Suppose that lim
r→+∞

rcu(r) =

L > 0. Then lim
r→+∞

rc+εu(r) = +∞ for 0 < c+ ε <
α

β
, but this contradicts the fact that

gc+ε(r) < 0 for large r. Consequently, lim
r→+∞

rcu(r) = 0. 2
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Proposition 2.6 Let u be a strictly positive solution of problem (P ). Then for any
α

β
< c ⩽ N, we have gc(r) > 0 for large r and lim

r→+∞
rcu(r) = +∞.

Proof. Let
α

c
< k < β. We introduce the following energy function:

ϕ(r) = rc−1|u′|p−2u′ + krcu(r). (32)

Using equation (5), we have

ϕ′(r) =(c−N)rc−2|u′|p−2u′ + (k − β)rcu′(r)+

(kc− α)rc−1u(r)− rc−1|u|q−1u(r). (33)

As u′ < 0, c ⩽ N and k < β, then

ϕ′(r) > rc−1u
[
kc− α− |u|q−1

]
. (34)

As kc−α > 0 and lim
r→+∞

u(r) = 0, then ϕ′(r) > 0 for large r, therefore ϕ(r) ̸= 0 for large

r. Suppose that ϕ(r) < 0 for large r, then

|u′|p−2u′ < −k r u(r) for large r. (35)

Therefore

u′u
−1
p−1 < −k

1
p−1 r

1
p−1 for large r. (36)

Integrating this last inequality on (R, r) for large R, we obtain

u
p−2
p−1 (r) < u

p−2
p−1 (R)− p− 2

p
k

1
p−1 r

p
p−1 +

p− 2

p
k

1
p−1R

p
p−1 .

Letting r → +∞, we obtain lim
r→+∞

u(r) = −∞, which is a contradiction. Consequently,

ϕ(r) > 0 for large r. Since ϕ is strictly increasing for large r, we have lim
r→+∞

ϕ(r) ∈]0,+∞],

so there exists C1 > 0 such that ϕ(r) > C1 for large r. This gives by (32) and the fact
that u′(r) < 0,

rcu(r) >
C1

k
for large r.

On the other hand, using (34) and the fact that lim
r→+∞

u(r) = 0, we obtain

rϕ′(r) >
kc− α

2
rcu(r) for large r. (37)

This implies that

rϕ′(r) > C for large r, (38)

where C =
C1(kc− α)

2k
> 0. Integrating this last inequality on (R, r) for large R, we

obtain lim
r→+∞

ϕ(r) = +∞. Consequently, by (32) and the fact that u′(r) < 0, we have

lim
r→+∞

rcu(r) = +∞. Moreover, since gc(r) ̸= 0 for large r, using (27), we have necessarily

gc(r) > 0 for large r. 2
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Proposition 2.7 Assume
α

β
< N . Let u be a strictly positive solution of problem

(P ). Then the function rα/βu(r) is not strictly monotone for large r.

Proof. Assume by contradiction that rα/βu(r) is strictly monotone for large r. Then
by (27), gα

β
(r) ̸= 0 for large r. We distinguish two cases.

Case 1: gα
β
(r) < 0 for large r.

We set

V (r) = u(r)− rp−1|u′|p−1. (39)

Then by equation (5),

V ′(r) = rp−1u
[
−α− uq−1

]
+ rpu′

[
−β + r−p + (p−N)r−2|u′|p−2

]
. (40)

Using Proposition 2.6, we have gN (r) > 0 for large r. Then

0 < r|u′(r)| < Nu(r) for large r, (41)

so lim
r→+∞

ru′(r) = 0 and therefore

lim
r→+∞

V (r) = 0.

Using again inequality 41, we have

V (r) > u(r)
(
1−Np−1up−2(r)

)
for large r. (42)

Since lim
r→+∞

u(r) = 0, one has V (r) > 0 for large r.

On the other hand, since lim
r→+∞

u(r) = 0, lim
r→+∞

u′(r) = 0 and gα
β
(r) < 0 for large r, one

has by (40),

V ′(r) ∼
+∞

−αrp−1u(r)− βrpu′(r) = −βrp−1gα
β
(r) > 0 for large r. (43)

But this contradicts the fact that V (r) > 0 for large r and lim
r→+∞

V (r) = 0.

Case 2: gα
β
(r) > 0 for large r.

Using equation (5), we obtain

(|u′|p−2u′)′(r) = −r u′(r)
[
β +

N − 1

r2
|u′|p−2

]
− u(r)

[
α+ |u|q−1

]
. (44)

Since lim
r→+∞

u(r) = 0, lim
r→+∞

u′(r) = 0 and gα
β
(r) > 0 for large r, we have

(|u′|p−2u′)′(r) ∼
+∞

−βru′(r)− αu(r) = −βgα
β
(r) < 0 for large r. (45)

But this contradicts the fact that u′(r) < 0 and lim
r→+∞

u′(r) = 0. 2
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3 Asymptotic Behavior Near Infinity

In this section, we give explicit equivalents of the strictly positive solutions of the problem
(P ) and their derivatives near infinity.

Theorem 3.1 Assume
α

β
=

p

q + 1− p
<
N − p

p− 1
. Let u be a strictly positive solution

of problem (P ). Then
lim

r→+∞
r

α
β u(r) = Γ > 0 (46)

and

lim
r→+∞

r
α
β +1u′(r) =

−α
β

Γ, (47)

where

Γ =

(
N − p− α

β
(p− 1)

) 1
q+1−p

(
α

β

) p−1
q+1−p

. (48)

Proof. We consider the following function:

h(r) = r
α
β u(r)

[
β +

|u′|p−2u′(r)

r u

]
. (49)

Using equation (5), we have

h′(r) =

(
α

β
−N

)
r

α
β −2|u′|p−2u′(r)− r

α
β −1uq(r). (50)

The proof will be done in four steps.
Step 1: h(r) ∼

+∞
βrα/βu(r).

We know by Proposition 2.6 that gN (r) > 0 for large r, then using (41), we get

0 <
|u′(r)|p−1

ru(r)
< Np−1u

p−2(r)

rp
for large r. (51)

As p > 2 and lim
r→+∞

u(r) = 0, we get lim
r→+∞

|u′(r)|p−1

ru(r)
= 0. Consequently, by (49), we

get h(r) ∼
+∞

βrα/βu(r).

Step 2: lim
r→+∞

r
α
β u(r) exists and is finite. By Proposition 2.5, we have for any σ > 0,

lim
r→+∞

r
α
β −σu(r) = 0. In particular, for

0 < σ < min

(
α

β

(q − 1)

q
,

1

p− 1

(
α

β
(p− 2) + p

))
<
α

β
, (52)

there exists a constant M > 0 such that

u(r) ⩽M rσ−
α
β for large r. (53)

We have also by (41),

|u′(r)|p−1 <
Np−1up−1(r)

rp−1
for large r. (54)
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Combining (53) and (54), we obtain

r
α
β −1uq(r) < Mqrq(σ−

α
β )+α

β −1 for large r (55)

and

r
α
β −2|u′(r)|p−1 < (MN)p−1r

α
β (2−p)+σ(p−1)−p−1 for large r. (56)

By (52), (55) and (56), we get the function r → r
α
β −1uq(r) and the function r →

r
α
β −2|u′(r)|p−1 belong to L1(r0,+∞) for any r0 > 0; therefore h′(r) ∈ L1(r0,+∞) for

any r0 > 0. Hence,

lim
r→+∞

h(r) = h(r0) +

+∞∫
r0

h′(s) ds (57)

exists and is finite. Then by Step 1, lim
r→+∞

r
α
β u(r) exists and is finite. Let lim

r→+∞
r

α
β u(r) =

Γ ≥ 0.

Step 3: lim
r→+∞

r
α
β u(r) = Γ > 0 and lim

r→+∞
r

α
β +1u′(r) =

−α
β

Γ < 0.

We argue by contradiction and assume that lim
r→+∞

r
α
β u(r) = 0. Then by the first step,

lim
r→+∞

h(r) = 0. Therefore, using L’Hospital’s rule, we obtain

lim
r→+∞

h′(r)(
r

α
β u(r)

)′ = lim
r→+∞

h(r)

r
α
β u(r)

= β. (58)

On the other hand, we have

h′(r) = r
α
β −2|u′(r)|p−1

(
N − α

β
− ruq

|u′|p−1

)
. (59)

Let 0 < c <
α

β
, then by Proposition 2.5, we have gc(r) < 0 for large r, then

|u′(r| > cu(r)

r
for large r. (60)

This leads to

0 <
r uq(r)

|u′(r)|p−1
< c1−prpuq+1−p(r). (61)

Since
α

β
=

p

q + 1− p
, then lim

r→+∞
rpuq+1−p(r) = 0, therefore by (61), lim

r→+∞

ruq

|u′(r)|p−1
=

0. Using the fact that
α

β
< N and |u′(r)| > 0, we obtain by (59), h′(r) > 0 for

large r. Therefore by (58), we have
(
r

α
β u(r)

)′
> 0 for large r, but this contradicts

Proposition 2.7. Consequently, lim
r→+∞

r
α
β u(r) = Γ > 0. Hence, using L’Hospital’s rule

(because lim
r→+∞

u(r) = 0), we get

lim
r→+∞

r
α
β +1u′(r) =

−α
β

lim
r→+∞

r
α
β u(r) =

−α
β

Γ < 0.
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Step 4: Γ =

(
N − p− α

β
(p− 1)

) 1
q+1−p

(
α

β

) p−1
q+1−p

.

By (28), we have

−βr gα/β(r) = |u′|p−2
u′(r)

[(
N − p− α

β
(p− 1)

)
+

(p− 1)
g′α/β(r)

u′(r)
+

ruq(r)

|u′|p−2
u′(r)

]
.

(62)

Since lim
r→+∞

u(r) = 0 and lim
r→+∞

ru′(r) = 0 (by Step 3), one has lim
r→+∞

gα
β
(r) = 0.

Therefore, using again Step 3 and L’Hospital’s rule, we obtain

lim
r→+∞

g′α
β
(r)

u′(r)
= lim

r→+∞

gα
β
(r)

u(r)
= lim

r→+∞

(
α

β
+
ru′(r)

u(r)

)
= 0. (63)

Moreover, since
α

β
=

p

q + 1− p
, we have

lim
r→+∞

ruq(r)

|u′|p−2u′(r)
=

−Γq+1−p(
α

β

)p−1 . (64)

Suppose by contradiction that

N − p− α

β
(p− 1)− Γq+1−p(

α

β

)p−1 ̸= 0. (65)

Then, according to (62), (63) and (64), we have

−βrgα
β
(r) ∼

+∞
|u′|p−2u′(r)

N − p− α

β
(p− 1)− Γq+1−p(

α

β

)p−1

 . (66)

This gives gα
β
(r) ̸= 0 for large r, that is, r

α
β u(r) is strictly monotone for large r, but this

contradicts Proposition 2.7. Consequently,

Γ =

(
N − p− α

β
(p− 1)

) 1
q+1−p

(
α

β

) p−1
q+1−p

.

The proof of this theorem is complete. 2

The following Figures 1 and 2 describe the strictly positive solution and its comparison
with the function r−α/β .
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Figure 1: Strictly positive solution u.
Figure 2: Comparison of solution u with
r−α/β .

4 Structure of Radial Solutions

In this section, we investigate the structure of the solutions of the problem (P ). The
study depends strongly on the sign of Nβ − α and the comparison between the three

determining values
α

β
,

p

q + 1− p
and

N − p

p− 1
.

Theorem 4.1 Assume
α

β
≥ N . Then the solution u of problem (P ) changes the

sign.

Proof. We consider the following function:

φ(r) = rN−1|u
′
|p−2u

′
(r) + βrNu(r). (67)

Therefore by (9), we get

φ′(r) = (βN − α) rN−1u(r)− rN−1|u|q−1u(r). (68)

Suppose that u(r) > 0 for all r ∈ [0,+∞). As α ⩾ βN , then φ′(r) < 0. Therefore, as
φ(0) = 0, we have φ(r) ⩽ 0 ∀r ∈ [0,+∞). Consequently, the function r → H(r) =
p

p− 2
u

p−2
p−1 (r) + β

1
p−1 r

p
p−1 is decreasing. Then for any r ∈ [0,+∞), we have

H(r) ⩽ H(0) =
p

p− 2
A

p−2
p−1 . (69)

When letting r → +∞, the term on the left-hand part of the inequality converges to
+∞, so we reach a contradiction.

Now, let r0 be the first zero of u, then φ′(r) < 0 for all r ∈ (0, r0), thus φ(r0) <
φ(0) = 0. Therefore u′(r0) < 0, consequently, u changes the sign. 2

The solution that changes the sign is illustrated by Figure 3.

Theorem 4.2 Assume
α

β
< N . Then the solution u of problem (P ) is not strictly

positive in the following cases:

(i)
N − p

p− 1
⩽
α

β
.

(ii) q ⩽ p− 1 and
α

β
<
N − p

p− 1
.
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Figure 3: Solution that changes the sign.

(iii) q > p− 1 and
α

β
̸= p

q + 1− p
<
N − p

p− 1
.

Proof. Assume by contradiction that u is strictly positive. The idea is to show that
under this assumption, we have gα/β(r) ̸= 0 for large r in these three cases, which is not
possible by Proposition 2.7.

Assume that there exists a large r0 such that gα/β(r0) = 0, we obtain by (29),

(p− 1)|u′|p−2(r0)g
′
α/β(r0) = r0u

q(r0)

[
− 1 + (p− 1)

(
α

β

)p−1

×

(
N − p

p− 1
− α

β

)
r−p
0 up−1−q(r0)

]
.

(70)

Using the fact that lim
r→+∞

u(r) = 0, we have in the cases (i) and (ii), g′α/β(r0) < 0.

For the case (iii), we have by Proposition 2.5 and Proposition 2.6 lim
r→+∞

r
p

q+1−pu(r) = 0

or lim
r→+∞

r
p

q+1−pu(r) = +∞, then we get g′α
β
(r0) ̸= 0. Therefore, in the three cases, we

have gα/β(r) ̸= 0 for large r, that is, rα/βu(r) is strictly monotone for large r. But this
contradicts Proposition 2.7. Consequently, u is not strictly positive in the three cases.2

Theorem 4.3 Assume
α

β
< N . Then for any 0 < A < (βN − α)

1
q−1 , the solution

u(., A) of problem (P ) is strictly positive.

Proof. Let r0 be the first zero of u, then u(r0) = 0 and u′(r0) ⩽ 0. Integrating (9)
on (0, r0), we obtain

rN−1
0 |u

′
|p−2u

′
(r0) =

r0∫
0

[
(βN − α)− uq−1(s)

]
sN−1u(s) ds. (71)

As u(r) > 0 and u′(r) < 0 on (0, r0), then

βN − α− uq−1(s) > βN − α−Aq−1 > 0 for any s ∈ (0, r0). (72)
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Therefore by (71), we get u′(r0) > 0, but this contradicts the fact that u′(r0) ⩽ 0. Hence
u(., A) is strictly positive. 2

Theorem 4.4 Assume
α

β
=

p

q + 1− p
< min

(
N − p

p
,
p

2

)
. Then the solution u of

problem (P ) is strictly positive.

Before giving the proof of the theorem, we need the following result.

Proposition 4.1 Let u be a solution of problem (P ). Assume that there exists R > 0,
the first zero of u. Then for λ ≥ 1 and 0 < γ < ρ, we have∫ R

0

uλ|u′|γsρ−1 ds ≤ λ+ γ

ρ− γ

∫ R

0

uλ−1|u′|γ+1sρ ds. (73)

Proof. By Holder’s inequality, we have

∫ R

0

uλ|u′|γsρ−1 ds ≤

(∫ R

0

uλ+γsρ−1−γ ds

) 1
γ+1

(∫ R

0

uλ−1|u′|γ+1sρ ds

) γ
γ+1

. (74)

On the other hand, using the fact that u(R) = 0, we obtain∫ R

0

(
uλ+γsρ−1−γ

)′
s ds = −

∫ R

0

uλ+γsρ−1−γ ds. (75)

Therefore

(λ+ γ)

∫ R

0

u′uλ+γ−1sρ−γ ds+ (ρ− 1− γ)

∫ R

0

uλ+γsρ−1−γ ds =

−
∫ R

0

uλ+γsρ−1−γ ds.

(76)

Using the fact that u′ < 0 in (0, R), we get∫ R

0

uλ+γsρ−1−γ ds =
λ+ γ

ρ− γ

∫ R

0

|u′|uλ+γ−1sϱ−γ ds. (77)

Applying Holder’s inequality again, we obtain

∫ R

0

uλ+γsρ−1−γ ds ≤ λ+ γ

ρ− γ

(∫ R

0

uλ+γsρ−1−γ ds

) γ
γ+1

(∫ R

0

uλ−1|u′|γ+1sρ ds

) 1
γ+1

. (78)

Therefore,(∫ R

0

uλ+γsρ−1−γ ds

)1− γ
γ+1

≤ λ+ γ

ρ− γ

(∫ R

0

uλ−1|u′|γ+1sρ ds

) 1
γ+1

. (79)

Combining (74) and (79), we easily obtain the estimation (73). This completes the proof
of this proposition. 2



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (3) (2022) 243–262 259

Now we turn to the proof of Theorem 4.4.
Proof. Assume that there exists r0 > 0, the first zero of u. Then u(r) > 0

∀r ∈ [0, r0[, u
′(r) < 0 ∀r ∈ (0, r0) and u′(r0) ⩽ 0.

Since
p

q + 1− p
<
N − p

p
, one has

N − p

p
>

N

q + 1
.

Let
N

q + 1
< δ <

N − p

p
and we consider the following energy function:

G(r) = rN
(
p− 1

p
|u′|p + 1

q + 1
|u|q+1

)
+ δrN−1u|u′|p−2u′. (80)

Using equation (5), we get

G′(r) =

(
δ − N − p

p

)
rN−1|u′|p +

(
N

q + 1
− δ

)
rN−1|u|q+1+

(α+ βδ)rNu|u′| − αδrN−1u2(r)− βrN+1u′2(r).

(81)

Integrating the last inequality on (0, r0), we obtain

G(r0) =

(
δ − N − p

p

)∫ r0

0

sN−1|u′|p ds+
(

N

q + 1
− δ

)∫ r0

0

sN−1|u|q+1(s) ds

+ (α+ βδ)

∫ r0

0

sNu|u′| ds− αδ

∫ r0

0

sN−1u2(s) ds− β

∫ r0

0

sN+1u′2(s) ds.

(82)

With the choice of δ and the fact that u > 0 and u′ < 0 on (0, r0), we obtain by (82),

G(r0) < (α+ βδ)

∫ r0

0

sNu|u′| ds− β

∫ r0

0

sN+1u′2(s) ds. (83)

According to Proposition 4.1, we have∫ r0

0

sNu|u′| ds ⩽ 2

N

∫ r0

0

sN+1u′2(s) ds. (84)

Then by (83) and (84), we see that

G(r0) <

(
2

N
(α+ βδ)− β

)∫ r0

0

sN+1u′2(s) ds. (85)

Since N > p and
p

q + 1− p
<
p

2
, one has

N − p

p
<
N

2
− α

β
. Again, with the choice of

δ, we have δ <
N

2
− α

β
, which implies that

(
2

N
(α+ βδ)− β

)
< 0, that is, G(r0) < 0,

but this contradicts the fact that

G(r0) =
p− 1

p
rN0 |u′(r0)|p ⩾ 0.

Consequently, u is strictly positive. This completes the proof. 2
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5 Conclusion

In this work, we studied the Cauchy problem (P ). We proved the existence of global

solutions, we presented their complete classification in the cases
α

β
≥ N and

α

β
< N , and

we gave an explicit behavior near infinity of the positive solutions. More precisely, we
have given explicit equivalents to the positive solution u of problem (P ) and its negative
derivative u′. The study of asymptotic behavior of positive solutions is carried out in

the case
α

β
=

p

q + 1− p
<
N − p

p− 1
, which recalls the form of radial self-similar solutions

of the parabolic problem (2) from which the problem (P ) is derived.
Asymptotic behavior of positive solutions is ensured by the study of a nonlinear

dynamical system that we obtained by using the logarithmic change

v(t) = rα/βu(r), r > 0 and t = Log(r). (86)

This obtained system, which we call (S), is as following:

(S)

v
′(t) = |w(t)|

2−p
p−1w(t) +

α

β
v(t),

w′(t) =−(N−p−α

β
(p−1))w(t)−αe(p+

α
β (p−2))tv(t)−βe(p+

α
β (p−2))tz(t)−|v|q−1v(t),

where
w(t) = |z|p−2z(t) (87)

and
z(t) = v′(t)− α

β
v(t) = r

α
β +1u′(r). (88)

The solution (v, w) of the system (S) satisfies v > 0 and w < 0 (because u > 0 and

u′ < 0) and tends near infinity to the equilibrium point

(
Γ, −

(
α

β
Γ

)p−1
)
, where Γ is

explicitly dependent on p, q and N . Indeed, rewriting the second equation of the system
(S) by using expression (88), we obtain

− βe(p+
α
β (p−2))tv′(t) = w

(
N − p− α

β
(p− 1) +

w′

w
+
vq

w

)
. (89)

We have by (63) and (64),

lim
t→+∞

w′

w
= lim

r→+∞
(p− 1)

g′α
β
(r)

u′(r)
= 0 (90)

and

lim
t→+∞

vq

w
= lim

r→+∞

ruq(r)

|u′|p−2u′(r)
=

−Γq+1−p(
α

β

)p−1 . (91)

Therefore

lim
t→+∞

−βe(p+
α
β (p−2))t v

′(t)

w
= N − p− α

β
(p− 1)− Γq+1−p(

α

β

)p−1 . (92)
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Recall by Proposition 2.7, that v(t) is not strictly monotone for large t, then since w is
strictly negative, necessarily we have by (92),

lim
t→+∞

−βe(p+
α
β (p−2))t v

′(t)

w
= 0.

Hence the explicit expression of Γ given by (48).
Finally, using expressions (86), (87) and (88), the convergence of the solution (v, w)

of the system (S) to the equilibrium point

(
Γ, −

(
α

β
Γ

)p−1
)

near infinity is expressed

in terms of u and u′ by

lim
r→+∞

r
α
β u(r) =

(
N − p− α

β
(p− 1)

) 1
q+1−p

(
α

β

) p−1
q+1−p

and

lim
r→+∞

r
α
β +1u′(r) =

−α
β

(
N − p− α

β
(p− 1)

) 1
q+1−p

(
α

β

) p−1
q+1−p

.
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