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Abstract: In this paper, the generalized problem of H∞ control with transients is
investigated for linear descriptor systems using a weighted performance measure that
describes a mixed attenuation level of exogenous and initial disturbances. Based on
a generalization of the bounded real lemma, involving special matrix variables, new
necessary and sufficient conditions for the existence of static and dynamic output-
feedback controller are proposed to ensure the admissibility of a closed-loop system
with prescribed estimate of the weighted performance measure. The corresponding
synthesis techniques are reduced to solving the linear and quadratic matrix inequal-
ities with rank constraints. A numerical example is included to demonstrate the
applicability of the present approaches.
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1 Introduction

Descriptor (differential algebraic) equations arise naturally in many significant appli-
cations, for example, in constrained mechanical systems, power generation, chemical
processing, network fluid flow, vehicle dynamics, robotics etc. (see, e. g., [5,6,11]). Prob-
lems of sensitivity reduction and exogenous disturbance attenuation in descriptor control
systems are very important and, at the same time, insufficiently studied for practical
applications. These problems are solved by the H2/H∞ control design for state-space
systems that provide internal stability and minimize the negative influence of exogenous
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disturbances on the dynamics of controlled objects (see, e.g., [4, 8, 12]). As a typical
performance measure in H∞ control design, one can use the H∞-norm of the transfer
function matrix corresponding to the maximum ratio of the L2-norms for the regulated
output and bounded disturbances of the system.

Recently, attention has been paid to the problem of H∞ control with transients for
state-space systems when the initial states are uncertain and might be non-zero. In this
regard, more general performance measures characterizing the damping level of external
and initial disturbances caused by the nonzero initial vector were used in [1, 13, 18] for
standard state-space systems. Known methods of H∞ control design are based on using
the upper bounds for applicable performance measures established via linear matrix
inequalities (LMI) and Riccati-type equations (Bounded Real Lemma type statements),
see, e.g., [2,8,25]. Necessary and sufficient conditions for H∞ control with transients for
state-space systems were proposed in terms of algebraic and differential Riccati equations
[13], and in terms of LMIs [1].

The Bounded Real Lemma and H∞ control theory have been extended for a class
of descriptor systems (e.g., [3, 7, 10, 14–16, 22, 24]). A state-feedback controller design
approach based on LMIs was proposed in [7] for solving the H∞ control with transients
problem for descriptor systems. Many important control issues including the H∞ opti-
mization problem for descriptor systems can be formulated as dissipativity with general
quadratic supply functions (e.g., [6, 15,22]).

This paper is concerned with a non-standard H∞ control problem for linear time-
invariant descriptor systems. The purpose of this paper is to extend the results obtained
in [1, 7, 20, 21] via using the weighted performance measure taking into account the in-
fluence evaluation of both exogenous and initial disturbances in control systems. The
application of weight coefficients in the generalized performance measures enables one to
establish priorities between the regulated output components and bounded disturbances.
Compared with [1,7], the control system and performance measure studied in this paper
are more general. In contrast to [20, 21], we use a special parametrization of the de-
sired solutions of linear and quadratic matrix inequalities, which simplifies the proposed
controller synthesis procedure. Furthermore, in some cases, resulting conditions for the
existence of the weighted state- and output-feedback H∞ controller contain only LMIs,
which can be solved by existing numerical tools.

This paper is organised as follows. Section 2 contains some basic definitions and
lemmas for linear descriptor systems. In Section 3, new necessary and sufficient condi-
tions are proposed for the existence of stabilizing static and dynamic output-feedback
controllers solving the weighted H∞ control problem for descriptor systems. These con-
ditions guarantee a prescribed upper bound for the weighted performance measure of a
closed-loop system and, in general, have the LMIs form with additional rank constraints,
as well as the form of the generalized algebraic Riccati inequalities (GARIs). In Sec-
tion 4, the effectiveness of the proposed methods is illustrated by means of a numerical
example. After that, a conclusion is given in Section 5. Finally, the solvability crite-
ria for some matrix inequalities are stated in Appendix. In particular, new necessary
and sufficient conditions for the solvability of quadratic matrix inequalities arising in the
proposed methods for the weighted H∞ control are presented.

Notations: In is the identity n×nmatrix; 0n×m is the n×m null matrix; X = X⊤ > 0
(≥ 0) is a positive (nonnegative) definite symmetric matrix X; σ(A) is the spectrum of
A; KerA is the kernel of A; A−1 (A+) is the inverse (pseudo-inverse) of A; WA is the
right null matrix of A ∈ Rm×n, that is, AWA = 0, WA ∈ Rn×(n−r), rankWA = n − r,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (3) (2022) 303–318 305

where r = rankA < n (WA = 0 if r = n); Co{A1, . . . , Aν} is the convex polyhedron
(polytope) with vertices A1, . . . , Aν in a matrix space; ∥x∥ is the Euclidean norm of x;
∥w∥P is the weighted L2-norm of a vector function w(t).

2 Basic Definitions and Lemmas

Consider the following continuous-time descriptor system:

Eẋ = Ax+Bw, z = Cx+Dw, x(0) = x0, (1)

where x ∈ Rn is the state, w ∈ Rs is the exogenous input (disturbances) and z ∈ Rk is
the output, E, A, B, C and D are constant matrices with compatible dimensions and
rankE = ρ ≤ n.

Definition 2.1 A matrix pair (E,A) is said to be admissible, if it is regular, impulse-
free and stable, i.e., detF (λ) ̸≡ 0, degF (λ) = ρ and σ(F ) ⊂ {λ ∈ C : Reλ < 0},
respectively, where F (λ) = A − λE is a matrix pencil. Descriptor system (1) with the
admissible pair (E,A) is admissible.

Lemma 2.1 (see [16]) System (1) is admissible if and only if there exists a matrix
X such that A⊤X +X⊤A < 0 and E⊤X = X⊤E ≥ 0.

A regular pair (E,A) can be transformed into the Weierstrass canonical form [9]

LER =

[
Ir 0
0 N

]
, LAR =

[
A1 0
0 In−r

]
,

where L and R are nonsingular matrices, σ(F ) = σ(A1), r ≤ ρ and N is a nilpotent
matrix. A pair (E,A) is impulse-free if and only if [5]

rank

[
E 0
A E

]
= n+ ρ.

In this case, N = 0 and system (1) can be transformed into the following form:

ẋ1 = A1x1 +B1w, x2 = −B2w, z = C1x1 +D1w, (2)

where

x1 ∈ Rr, x2 ∈ Rn−r, x = R

[
x1

x2

]
, LB =

[
B1

B2

]
, CR =

[
C1, C2

]
, D1 = D − C2B2.

Define the performance measure J for system (1) in the form

J = sup
(w,x0)∈W

∥z∥Q√
∥w∥2P + x⊤

0 X0x0

, ∥z∥2Q =

∫ ∞

0

z⊤Qz dt, ∥w∥2P =

∫ ∞

0

w⊤Pw dt, (3)

where W is a set of pairs (w, x0) such that 0 < ∥w∥2P +x⊤
0 X0x0 < ∞ and system (1) has

a solution, P = P⊤ > 0, Q = Q⊤ > 0 and X0 ≥ 0 are weight matrices. In the following,
we consider X0 = E⊤HE with H = H⊤ > 0.

The value J describes the weighted damping level of the external and initial distur-
bances in system (1). For example, if the weight matrices P and Q are diagonal, then
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their diagonal elements are the priority coefficients for the corresponding components of
input w and output z in system (1) with respect to J . System (1) is nonexpansive if
J ≤ 1. A pair (w, x0) is the worst for system (1) with respect to J if in (3), a supremum
is reached.

When x0 ∈ KerE, we denote J as J0. It is obvious that J0 ≤ J . If P = Is and
Q = Il, then J0 coincides with the H∞-norm of the transfer matrix function H1(λ) =
C1(λIn−A1)

−1B1+D1 of the dynamical subsystem in (2) (see, e.g., [5,8]). In this case,
we have a standard performance index J0 used in the H∞ control theory. Note that the
performance measure (3) was introduced in [13] when E = In, P = Is and Q = Il.

Lemma 2.2 (see [19]) Given a scalar γ > 0, the descriptor system (1) is admissible
and satisfies J < γ if there exists a matrix X such that

0 ≤ E⊤X = X⊤E ≤ γ2X0, rank(E⊤X − γ2X0) = ρ, (4)

Ψ(X) =

[
A⊤X +X⊤A+ C⊤QC X⊤B + C⊤QD

B⊤X +D⊤QC D⊤QD − γ2P

]
< 0. (5)

The converse is true if
rank

[
E⊤ C⊤QD

]
= ρ. (6)

Remark 2.1 Note that E⊤X = X⊤E ≥ 0 if and only if the non-strict LMI[
S0 S0 − E⊤X

S0 −X⊤E 0

]
≥ 0 (7)

is feasible in the variables X and S0, and moreover, S0 = E⊤X = X⊤E ≥ 0. It can be
established that (5) is satisfied if and only if D⊤QD < γ2P and D⊤

1 QD1 < γ2P , where
D1 = D − CA−1B. Any matrix X satisfying (5) must be nonsingular.

Remark 2.2 If the LMIs (5) and (7) are feasible in the variables X and S0, then
system (1) is admissible with J0 < γ. The converse is true under the additional condition
(6). Moreover, if (5) and (7) hold, then system (1) with a structured uncertain input
w = γ−1Θz, where Θ⊤PΘ ≤ Q, is robust stable and v(x) = x⊤S0x is a common
Lyapunov function of the system (see [18]).

Note that the conditions of Lemma 2.2 can be used in calculating the values of J0
and J as the solutions of optimization problems. In particular, we have

J = inf
{
γ : Ψ(X) < 0, 0 ≤ E⊤X = X⊤E ≤ γ2X0

}
.

Lemma 2.3 (see [20]) Let system (1) be admissible and there exist matrices X and
S0 satisfying (7) and the Riccati-type equation

A⊤
1 X +X⊤A1 +X⊤R1X +Q1 = 0,

where A1 = A + BR−1D⊤QC, R1 = BR−1B⊤, Q1 = C⊤(Q + QDR−1D⊤Q
)
C, R =

γ2P −D⊤QD > 0 and γ = J . Then the structured input vector

w = K0x, K0 = R−1(B⊤X +D⊤QC),

and any initial vector x0 ∈ Ker (S0 − J2X0) form the worst pair for system (1) with
respect to J .
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3 Main Results

Consider the following descriptor system with constant coefficient matrices:

Eẋ = Ax+B1w +B2u, x(0) = x0,

z = C1x+D11w +D12u,

y = C2x+D21w +D22u,

(8)

where x ∈ Rn is the state, u ∈ Rm is the control input, w ∈ Rs is the exogenous input,
z ∈ Rk is the regulated output and y ∈ Rl is the measured output. The rank of the
matrix E is ρ ≤ n. We are interested in static and dynamic control laws that guarantee
a desirable estimate for performance measure (3) with respect to the regulated output
z of a resulting closed-loop system. Controllers that minimize the value of J are called
J-optimal. If P = Is and Q = Ik, then the J0-optimal controller is H∞-optimal.

In studying a class of systems (8), their properties such as C-, R- and I-controllability,
as well as adjoint C-, R- and I-observability, are important (see, e.g., [5,6]). Known H∞
control methods for such systems use the stabilizability and I-controllability properties
of the triple (E,A,B2). It means that there exists a matrix K for which the pair (E,A+
B2K) is admissible. The criteria for I-controllability of the triple (E,A,B2) and I-
observability of the triple (E,A,C2) are the corresponding rank conditions [5]

rank

[
E 0 0
A E B2

]
= n+ ρ, rank

[
E⊤ 0 0
A⊤ E⊤ C⊤

2

]
= n+ ρ.

3.1 Static output-feedback controller

When we apply the static output-feedback controller

u = Ky, K ∈ Rm×l, (9)

with the condition det(Im −KD22) ̸= 0, the closed-loop system is given by

Eẋ = A∗x+B∗w, z = C∗x+D∗w, x(0) = x0, (10)

where A∗ = A + B2K∗C2, B∗ = B1 + B2K∗D21, C∗ = C1 + D12K∗C2, D∗ = D11 +
D12K∗D21, K∗ = (Im −KD22)

−1K. Let, for simplicity, D22 = 0, then K∗ = K.
Applying Lemma 2.2 for system (10), we will use the special structure of a matrix X

in (4), (5) and the skeletal decomposition E = ElE
⊤
r , where El and Er are full column

rank ρ matrices.

Lemma 3.1 Given a scalar γ > 0 and matrices X and Y satisfying XY = γ2In, the
following statements are equivalent:

(i) the conditions (4) of Lemma 2.2 hold;
(ii) there are matrices S = S⊤ and G such that

X = SE +WE⊤G, 0 < E⊤
l SEl < γ2E⊤

l HEl; (11)

(iii) there are matrices T = T⊤ and F such that

Y = TE⊤ +WEF, E⊤
r TEr > (E⊤

l HEl)
−1. (12)
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Proof. (ii) ⇒ (i) Considering (11), we have

E⊤X = E⊤SE ≥ 0, E⊤X − γ2X0 = Er

(
E⊤

l SEl − γ2E⊤
l HEl

)
E⊤

r .

Hence, (4) hold true.
(i) ⇒ (ii) Let L and R be nonsingular matrices such that

E = L−1

[
Iρ 0
0 0

]
R−1, El = L−1

[
Iρ
0

]
, Er = R−1⊤

[
Iρ
0

]
,

WE = R

[
0

In−ρ

]
, WE⊤ = L⊤

[
0

In−ρ

]
.

Then any matrix X in (4) can be expressed as

X = L⊤
[

X1 0
X2 X3

]
R−1, 0 < X1 = X⊤

1 < γ2E⊤
l HEl. (13)

Assuming S1 = X1, S2 = X2 −G1, G2 = X3, S3 = S⊤
3 , G1 ∈ R(n−ρ)×ρ and

S = L⊤
[

S1 S⊤
2

S2 S3

]
L, G =

[
G1 G2

]
R−1,

we get (11).
(iii) ⇒ (i) Note that conditions (4) hold if and only if

0 ≤ EY = Y ⊤E⊤ ≤ Y ⊤X0Y, rank
(
EY − Y ⊤X0Y

)
= ρ, (14)

where Y = γ2X−1. Considering (12), we have

EY = ETE⊤ ≥ 0, EY − Y ⊤X0Y = ElT1

(
T−1
1 − E⊤

l HEl

)
T1E

⊤
l ,

where T1 = E⊤
r TEr. Besides, T−1

1 < E⊤
l HEl if and only if T1 > (E⊤

l HEl)
−1. Hence,

(14) and (4) hold true.
(i) ⇒ (iii) Suppose that (4) hold true. Using (13), we have

Y = γ2X−1 = γ2R

[
X−1

1 0
−X−1

3 X2X
−1
1 X−1

3

]
L−1⊤.

Let T1 = γ2X−1
1 , T2 = −F1−γ2X−1

3 X2X
−1
1 , F2 = γ2X−1

3 , T3 = T⊤
3 , F1 ∈ R(n−ρ)×ρ and

T = R

[
T1 T⊤

2

T2 T3

]
R⊤, F =

[
F1 F2

]
L−1⊤.

Since T1 = E⊤
r TEr, we obtain (12) using the equivalence of the matrix inequalities

X1 < γ2E⊤
l HEl and γ2X−1

1 > (E⊤
l HEl)

−1. This completes the proof.

Theorem 3.1 Let there exist matrices X and Y such that (11) and the following
conditions hold:

W⊤
R

[
A⊤X +X⊤A+ C⊤

1 QC1 X⊤B1 + C⊤
1 QD11

B⊤
1 X +D⊤

11QC1 DT
11QD11 − γ2P

]
WR < 0, (15)
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W⊤
L

[
AY + Y ⊤A⊤+B1P

−1B⊤
1 Y ⊤C⊤

1 +B1P
−1D⊤

11

C1Y +D11P
−1B⊤

1 D11P
−1D⊤

11−γ2Q−1

]
WL < 0, (16)

rank

[
X γIn
γIn Y

]
= n, (17)

where R =
[
C2 D21

]
, L =

[
B⊤

2 D⊤
12

]
. Then there exists a static output-feedback

controller (9) such that closed-loop system (10) is admissible and its performance measure
J < γ. Conversely, if system (10) is admissible with J < γ and

rank
[
E⊤ C⊤

∗ QD∗
]
= ρ (18)

for some controller (9), then conditions (11) and (15) – (17) are feasible in X and Y .

Proof. Taking into account the Schur complement, we rewrite matrix inequality (5)
in Lemma 2.2 for a closed-loop system (10) as the LMI with respect to K∗: AT

∗ X +X⊤A∗ X⊤B∗ C⊤
∗

B⊤
∗ X −γ2P D⊤

∗
C∗ D∗ −Q−1

 = L̂⊤K∗R̂+ R̂⊤K⊤
∗ L̂+Ω < 0, (19)

where R̂ =
[
R 0l×k

]
, L̂ =

[
L 0m×s

]
X̃, and

X̃ =

 X 0 0
0 0 Ik
0 Is 0

 , Ω =

 A⊤X +X⊤A X⊤B1 C⊤
1

B⊤
1 X −γ2P D⊤

11

C1 D11 −Q−1

 .

There exists K∗ satisfying (19) if and only if (see the condition (d) in Lemma A.1)

W⊤
R̂
ΩWR̂ < 0, W⊤

L̂
ΩWL̂ < 0. (20)

Since

WR̂ =

[
WR 0
0 Ik

]
, WL̂ = X̃−1

[
WL 0
0 Is

]
,

the conditions (20) are reduced to (15) and (16) with Y = γ2X−1, respectively. The last
equality is equivalent to the rank condition (17).

Thus, if (11) and (15) – (17) hold for some matrices S = S⊤, G ∈ R(n−ρ)×n and Y,
then taking into account the equivalence of statements (i) and (ii) in Lemma 3.1, we can
construct a controller (9) provided the admissibility of system (10) with J < γ. The gain
matrix K of the controller can be defined as any solution K = K∗ of LMI (19).

Conversely, if system (10) is admissible with J < γ and (18) holds for some controller
(9), then (11) and (15) – (17) are feasible in X and Y (see Lemma 2.2).

Note that the rank constraint (18) does not depend on K if one of the following
conditions is satisfied:

D11 = 0, D21 = 0; (21)

D12 = 0, rank
[
E⊤ C⊤

1 QD11

]
= ρ. (22)

It can also be established that (18) follows from

rank
[
E⊤ C⊤

1 QD11 C⊤
1 QD12 C⊤

2

]
= ρ.
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Corollary 3.1 Assume that

C2 = In, D⊤
11QD11 < γ2P, D21 = 0, D22 = 0. (23)

Then there is a static state-feedback controller u = Kx such that a closed-loop system
(10) is admissible and its performance measure J < γ if two LMIs (12) and (16) with
nonsingular Y are feasible in the variables T = T⊤ and F . The converse statement is
true if (23) and either (21) or (22) hold.

Proof. Considering (23), we have y ≡ x, WR =
[
0s×n, Is

]T
. In this case, matrix

inequality (15) holds in Theorem 3.1 and does not depend on X. Taking into account
the equivalence of the statements (i) and (iii) in Lemma 3.1, a sufficient condition for the
existence of a static state-feedback controller in Theorem 3.1 is the solvability of (12)
and (16) with respect to T = T⊤ and F . The gain matrix K of the controller can be
defined as a solution K = K∗ of the LMI (19) with X = γ2Y −1.

Given (23), we also have C∗ = C1 +D12K and D∗ = D11. Therefore, in the converse
statement of Theorem 3.1, the rank condition (18) is true and does not depend on K if
either (21) or (22) holds.

Remark 3.1 Note that Y in (12) is nonsingular if such is FWE⊤ . In particular, we

can search for F in the form F = F̃E⊤ +CW⊤
E⊤ , where F̃ is a new required matrix and

C is nonsingular. Then Y in Corollary 3.1 is nonsingular (see the proof of Lemma 3.1).

Theorem 3.2 Assume that

R0 = D⊤
12QD12 > 0, R1 = γ2P −D⊤

11Q1D11 > 0, Q1 = Q−QD12R
−1
0 D⊤

12Q (24)

and there exist matrices S = S⊤ and G such that (11), (15) and the GARI

A⊤
2 X +X⊤A2 +X⊤R2X +Q2 < 0 (25)

hold with A2 = A−B2R
−1
0 D⊤

12QC1 +B11R
−1
1 D⊤

11Q1C1, R2 = B11R
−1
1 B⊤

11 −B2R
−1
0 B⊤

2 ,
B11 = B1 −B2R

−1
0 D⊤

12QD11, Q2 = C⊤
1 (Q1 +Q1D11R

−1
1 D⊤

11Q1)C1. Then there exists a
static output-feedback controller (9) such that closed-loop system (10) is admissible and
its performance measure J < γ.

Proof. To apply Lemmas 2.2 and 3.1, we rewrite the expression Ψ(X) < 0 for system
(10) in the form of a quadratic matrix inequality with respect to K∗:

A0 +B⊤
0 K∗C0 + C⊤

0 K⊤
∗ B0 + C⊤

0 K⊤
∗ R0 K∗C0 < 0, (26)

where

A0 =

[
A⊤X +X⊤A+ C⊤

1 QC1 X⊤B1 + C⊤
1 QD11

B⊤
1 X +D⊤

11QC1 D⊤
11QD11 − γ2P

]
,

B0 =
[
B⊤

2 X +D⊤
12QC1 D⊤

12QD11

]
, C0 =

[
C2 D21

]
.

Since R0 > 0, the solvability conditions for (26) are of the formW⊤
C0

A0WC0 < 0 and A0 <

B⊤
0 R−1

0 B0 (see the conditions (a) and (b) in Lemma A.2). The first inequality coincides
with (15), and the second inequality takes the form (25) via the Schur complement.

Note that on the basis of Lemmas 2.2 and 3.1, as well as the generalized uncertainty
lemma for inequality (26) (see [17]), we can construct an ellipsoidal set of gain matrices
K =

{
K : (K −K∗)

⊤P0(K −K∗) ≤ Q0

}
, where P0 = P⊤

0 > 0 and Q0 = Q⊤
0 > 0, for

which closed-loop system (10) is admissible and its performance measure J < γ.
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3.2 Dynamic output-feedback controller

Consider system (8) with the dynamic output-feedback controller

ξ̇ = Zξ + V y, u = Uξ +Ky, ξ(0) = 0, (27)

where ξ ∈ Rp, Z, V , U and K denote constant matrices with appropriate dimensions to
be determined. The combined system in an extended state space Rn+p is represented by

Ê ˙̂x = Âx̂+ B̂1w + B̂2û, x̂(0) = x̂0,

z = Ĉ1x̂+D11w + D̂12û,

ŷ = Ĉ2x̂+ D̂21w,

(28)

using the static output-feedback controller

û = K̂∗ŷ, K̂∗ ∈ R(m+p)×(l+p), (29)

where

x̂ =

[
x
ξ

]
, x̂0 =

[
x0

0

]
, ŷ =

[
y −D22u

ξ

]
, û =

[
u

ξ̇

]
,

Ê =

[
E 0
0 Ip

]
, Â =

[
A 0n×p

0p×n 0p×p

]
, B̂1 =

[
B1

0p×s

]
, B̂2 =

[
B2 0n×p

0p×m Ip

]
,

Ĉ1 =
[
C1 0k×p

]
, D̂12 =

[
D12 0k×p

]
, Ĉ2 =

[
C2 0l×p

0p×n Ip

]
, D̂21 =

[
D21

0p×s

]
,

K̂∗ =

[
K∗ U∗
V∗ Z∗

]
= (Im+p − K̂D̂22)

−1K̂, D̂22 =

[
D22 0l×p

0p×m 0p×p

]
,

K̂ =

[
K U
V Z

]
= (Im+p + K̂∗D̂22)

−1K̂∗. (30)

Here det(Im −KD22) ̸= 0. Let, for simplicity, D22 = 0, then K̂∗ = K̂.
The closed-loop system has the form

Ê ˙̂x = Â∗x̂+ B̂∗w, z = Ĉ∗x̂+ D̂∗w, x̂(0) = x̂0, (31)

where Â∗ = Â + B̂2K̂∗Ĉ2, B̂∗ = B̂1 + B̂2K̂∗D̂21, Ĉ∗ = Ĉ1 + D̂12K̂∗Ĉ2, D̂∗ = D11 +
D̂12K̂∗D̂21. Since ξ0 = 0, the performance measure Ĵ of the form (3) for system (31)
with the weight matrices P , Q, and

X̂0 = Ê⊤ĤÊ, Ĥ =

[
H H⊤

1

H1 H2

]
> 0,

does not depend on H1 and H2, and its value coincides with J .

Lemma 3.2 Given a scalar γ > 0 and matrices

X = SE +WE⊤G, Y = TE⊤ +WEF, (32)

where S = S⊤, T = T⊤ and G,F ∈ R(n−ρ)×n, the following statements are equivalent:
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(i) X and Y are nonsingular, ∆ = γ2In −XY ̸= 0 and

0 < E⊤
l SEl < γ2E⊤

l HEl, Γ =

[
E⊤

l SEl γIρ
γIρ E⊤

r TEr

]
≥ 0, (33)

rankΓ = ρ+ δ, δ = rank∆; (34)

(ii) there are matrices S1 ∈ Rδ×n, S2 = S⊤
2 ∈ Rδ×δ, G1 ∈ R(n−ρ)×δ, T1 ∈ Rδ×n,

T2 = T⊤
2 ∈ Rδ×δ, F1 ∈ R(n−ρ)×δ, H1 ∈ Rδ×n and H2 = H⊤

2 ∈ Rδ×δ such that

0 < Ê⊤
l ŜÊl < γ2Ê⊤

l ĤÊl, X̂Ŷ = γ2In+δ, (35)

where

X̂ =

[
X X3

X1 X2

]
= ŜÊ +WÊ⊤Ĝ, Ŝ =

[
S S⊤

1

S1 S2

]
, Ĝ =

[
G G1

]
, (36)

Ŷ =

[
Y Y3

Y1 Y2

]
= T̂ Ê⊤ +WÊF̂ , T̂ =

[
T T⊤

1

T1 T2

]
, F̂ =

[
F F1

]
, (37)

Ê =

[
E 0
0 Iδ

]
= ÊlÊ

⊤
r , WÊ =

[
WE

0

]
, WÊ⊤ =

[
WE⊤

0

]
,

Êl =

[
El 0
0 Iδ

]
, Êr =

[
Er 0
0 Iδ

]
, Ĥ =

[
H H⊤

1

H1 H2

]
> 0.

Proof. (ii) ⇒ (i) We rewrite (35) as

0 <

[
E⊤

l SEl E⊤
l S⊤

1

S1El S2

]
< γ2

[
E⊤

l HEl E⊤
l H⊤

1

H1El H2

]
, (38)

XY +X3Y1 = γ2In, XY3+X3Y2 = 0, X1Y +X2Y1 = 0, X1Y3+X2Y2 = γ2Iδ. (39)

Obviously, (38) implies 0 < E⊤
l SEl < γ2E⊤

l HEl and X2 = S2 > 0. In addition,

Y2 = T2 > 0 because Ê⊤
r T̂ Êr > (Ê⊤

l ĤÊl)
−1 (see Lemma 3.1).

From (39) it follows thatX(Y −Y3Y
−1
2 Y1) = (X−X3X

−1
2 X1)Y = γ2In. Therefore, X

and Y must be nonsingular. Besides, E⊤X = X⊤E ≥ 0, EY = Y ⊤E⊤ ≥ 0, X1 = X3E
and Y1 = Y ⊤

3 E⊤. Next, we use the following transformation of Γ:

Φ⊤ΓΦ =

[
E⊤SE 0

0 Ξ

]
≥ 0, Φ =

[
E⊤

r −γE⊤
r X−1

0 E⊤
l

]
, (40)

where E⊤SE ≥ 0 and Ξ = E(Y − γ2X−1) = Y ⊤
1 Y −1

2 Y1 ≥ 0. Since Φ is the full
row rank matrix, it yields Γ ≥ 0. Moreover, the rank conditions (34) hold because
rank (E⊤SE) = ρ, Ξ = −EX−1∆, ∆ = X3Y1, rank∆ ≤ rankY1 = rankΞ ≤ rank∆ and,
hence, rankΞ = δ and rankΓ = ρ+ δ.

(i) ⇒ (ii) Assume that (33) and (34) hold with nonsingular X and Y . Given (33) and
(40), we have the decomposition Ξ = E(Y − γ2X−1) = Λ⊤Λ ≥ 0, where Λ ∈ Rδ×n is a
certain full row rank matrix. Then there exists Υ ∈ Rn×δ such that ΥΛ = ∆. Indeed,

rankΛ ≤ rank
[
Λ⊤ ∆⊤ ]

= rank (Λ⊤Λ +∆⊤∆) = rank
[
(∆⊤− EX−1)∆

]
≤ rank∆ = rankΞ = rankΛ
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and hence rank
[
Λ⊤ ∆⊤ ]

= rankΛ. Moreover, Ξ = −EX−1ΥΛ = Λ⊤Λ implies

Λ⊤ = −EX−1Υ.
Setting in (36) and (37) S1 = Υ⊤ − G⊤

1 W
⊤
E⊤ , S2 = γ2Iδ − ΛΥ, T1 = −Υ⊤X−1⊤ −

F⊤
1 W⊤

E and T2 = Iδ, where F1 ∈ R(n−ρ)×δ and G1 ∈ R(n−ρ)×δ are arbitrary matrices,
we have X1 = Υ⊤E, X2 = γ2Iδ − ΛΥ, X3 = Υ, Y1 = Λ, Y2 = Iδ and Y3 = −X−1Υ.

Considering Λ = −Υ⊤X−1⊤E⊤ and EX−1 = X−1⊤E⊤, it is easy to verify (39). The
first matrix inequality in (38) follows from the Schur complement. Indeed, E⊤

l SEl > 0
and

S2 − S1El(E
⊤
l SEl)

−1E⊤
l S⊤

1

= γ2Iδ − ΛΥ−Υ⊤El(E
⊤
l SEl)

−1E⊤
l Υ

= γ2Iδ +Υ⊤X−1⊤[E⊤ −X⊤ElSEl(E
⊤
l SEl)

−1E⊤
l

]
Υ

= γ2Iδ +Υ⊤X−1⊤Er

[
Iρ − E⊤

l SEl(E
⊤
l SEl)

−1
]
E⊤

l Υ = γ2Iδ > 0.

Here, it is also taken into account that WE⊤ = WE⊤
l

and X = SE +WE⊤G.

The second matrix inequality in (38) holds, if, for instance, H1 = γ−2S1 and H2 >
γ−2S2. This completes the proof.

Theorem 3.3 Let the LMIs (15) and (16) with (32) as well as (33) and the rank
conditions (34) are feasible in the variables S = S⊤, T = T⊤, G and F . Then there
exists a dynamic controller (27) of the order p = δ such that closed-loop system (31) is
admissible and its performance measure J < γ. Conversely, if system (31) is admissible
with J < γ and satisfies (18) for some controller (27), then (15), (16) and (32)–(34) are
feasible.

Proof. According to Theorem 3.1, we can find a static controller (29) for extending
system (28) such that closed-loop system (31) is admissible and its performance measure

J < γ if there exist matrices Ŝ = Ŝ⊤, T̂ = T̂⊤, Ĝ and F̂ satisfying (35) – (37) and

W⊤
R̂

[
Â⊤X̂ + X̂⊤Â+ Ĉ⊤

1 QĈ1 X̂⊤B̂1 + Ĉ⊤
1 QD11

B̂⊤
1 X̂ +D⊤

11QĈ1 D⊤
11QD11 − γ2P

]
WR̂ < 0, (41)

W⊤
L̂

[
ÂŶ + Ŷ ⊤Â⊤+ B̂1P

−1B̂⊤
1 Ŷ ⊤Ĉ⊤

1 + B̂1P
−1D⊤

11

Ĉ1Ŷ +D11P
−1B̂⊤

1 D11P
−1D⊤

11−γ2Q−1

]
WL̂ < 0, (42)

where R̂ =
[
Ĉ2 D̂21

]
, L̂ =

[
B̂⊤

2 D̂⊤
12

]
. Moreover, all diagonal blocks of the

matrices X̂ and Ŷ are nonsingular. Using the block structure of coefficient matrices of
the system and the following matrix representations:

WR̂ =

 In 0
0 0
0 Is

WR, WL̂ =

 In 0
0 0
0 Ik

WL,

one can establish the equivalence of matrix inequalities (15) and (41), as well as (16)
and (42). Considering the equivalence of statements (i) and (ii) in Lemma 3.2, there
exists a dynamic controller (27) such that closed-loop system (31) is admissible and its
performance measure J < γ if (15), (16) and (32) – (34) hold for some S = S⊤, T = T⊤,
G and F . An additional constraint in the converse statement of Lemma 2.2 for system

(31) has the form rank
[
Ê⊤ Ĉ⊤

∗ QD̂∗

]
= ρ+ p. This equality is equivalent to (18).
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Remark 3.2 Note that the required matrices of dynamic controller (27) in Theorem

3.3 can be determined according to (30), where K̂∗ is the gain matrix of a static controller
(29) found for extending system (28) via the LMI technique (see the proof of Theorem
3.1). In the case δ = 0, Theorem 3.3 yields sufficient and necessary conditions for the
existence of a static controller in Theorem 3.1.

Corollary 3.2 Let the LMIs (15) and (16) with

X =
(
S +WE⊤G̃

)
E + γWE⊤CW+

E , Y =
(
T +WEF̃

)
E⊤ + γWEC

−1W+
E⊤ , (43)

where C denotes any nonsingular matrix, and

0 < E⊤
l SEl < γ2E⊤

l HEl, Γ =

[
E⊤

l SEl γIρ
γIρ E⊤

r TEr

]
> 0 (44)

hold for some S = S⊤, T = T⊤, G̃ and F̃ . Then there exists a dynamic controller (27)
of the order p = ρ such that closed-loop system (31) is admissible with J < γ.

Proof. Denote L =
[
E WE⊤

]
, R =

[
E⊤ WE

]
. Since L and R are full row

rank matrices, rank (L⊤XR) = n and rank (R⊤Y L) = n, where

L⊤XR =

[
E⊤SEE⊤ 0
W⊤

E⊤XE⊤ γW⊤
E⊤WE⊤C

]
, R⊤Y L =

[
ETE⊤E 0
W⊤

E Y E γW⊤
E WEC

−1

]
,

E⊤SEE⊤ = ErE
⊤
l SElE

⊤
r ErE

⊤
l , ETE⊤E = ElE

⊤
r TErE

⊤
l ElE

⊤
r ,

E⊤
l SEl > 0, E⊤

r TEr > 0, W⊤
E⊤WE⊤ > 0, W⊤

E WE > 0,

X and Y in (43) are nonsingular.
Next, we use the following transformation of matrix ∆ = γ2In −XY :

L⊤∆L =

[
Er 0
0 In−ρ

][
DE⊤

l El 0
−W⊤

E⊤XY El 0

][
E⊤

r 0
0 In−ρ

]
,

where D = γ2Iρ−E⊤
l SElE

⊤
r TEr. Then, due to (44), detD ̸= 0 and rank∆ = ρ. Hence,

the rank conditions in (34) hold with rankΓ = 2ρ and δ = ρ. The statement of Corollary
3.2 follows from Theorem 3.3.

Note that Theorems 3.1 and 3.3 can be extended to a class of descriptor systems (8)
with the following polyhedral uncertainties:

A ∈ Co
{
A1, . . . , Aα

}
, B1 ∈ Co

{
B11, . . . , B1β

}
,

C1 ∈ Co
{
C11, . . . , C1µ

}
, D11 ∈ Co

{
D111, . . . , D11ν

}
,

where Co{A1, . . . , Aα} =
{ α∑

i=1

aiAi : ai ≥ 0, i=1, α,
α∑

i=1

ai = 1
}
. For this, instead of

(15) and (16), we can use the corresponding LMIs systems

W⊤
R

[
A⊤

i X +X⊤Ai + C⊤
1pQC1p X⊤B1j + C⊤

1pQD11q

B⊤
1jX +D⊤

11qQC1p D⊤
11qQD11q − γ2P

]
WR < 0,

W⊤
L

[
AiY +Y ⊤A⊤

i +B1jP
−1B⊤

1j Y ⊤C⊤
1p +B1jP

−1D⊤
11q

C1pY +D11qP
−1B⊤

1j D11qP
−1D⊤

11q−γ2Q−1

]
WL < 0
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for i = 1, α, j = 1, β, p = 1, µ, q = 1, ν.

Considering formulas (28) and (29) with constraints (24) and the conditions (a) and
(d) in Lemma A.2, we can formulate an analog of Theorem 3.2 that yields conditions
for the existence of a dynamic controller (27) in terms of LMIs and GARIs such that
closed-loop system (31) is admissible and its performance measure J < γ.

4 Numerical Example: Controlled Electrical Circuit

Consider the electrical circuit given in Fig. 1. The dynamics of this system is described

Figure 1: The electrical circuit.

by descriptor form (8) with the following data [23]:

E =

 L 0 0
0 C 0
0 0 0

 , A =

 −R1 −1 1
0 −1/R2 0
1 0 0

 , B1 = B2 =

 0
1
−1

 ,

C1 =

[
0 1 0
0 0 α

]
, C2 =

[
0 1 0
0 0 1

]
, D12 =

[
0
1

]
, D11 = D21 = D22 =

[
0
0

]
,

where x =
[
i v2 v1

]⊤
, i(t) denotes the current flow, v1 and v2 are the voltages,

i(t) = u(t) + w(t), u(t) is the control input, w(t) is the bounded disturbance, L and
C are the inductance and the capacitance, respectively, R1 and R2 are the resistances,
α is a constant parameter. In this example, n = 3, m = s = 1 and k = l = 2.

Regulated and measured outputs of the system have the form z =
[
v2 αv1 + u

]⊤
and

y =
[
v2 v1

]⊤
, respectively.

Let L = 3, C = 2, R1 = 2, R2 = 1 and α = 1. Then the pair (E,A) is impulsive, the
triple (E,A,B2) is I-controllable and the triple (E,A,C2) is I-observable.

Assume that the standard performance index J0 and performance measure J of the
form (3) are defined by the weight matrices P = 1, Q = I2 and X0 = E⊤E. Let γ = 0.5,
then conditions (24) of Theorem 3.2 are satisfied. Using the Mathcad Prime 6.0 system,
we found the matrices

S =

 0.06402 0.03218 −0.02942
0.03218 0.23409 0.00678

−0.02942 0.00678 0.16182

 , X =

 0.19206 0.06436 0
0.09654 0.46818 0
0.07355 0.46119 −0.33001

 ,

G =
[
0.16181 0.44763 −0.33001

]
,

satisfying (11), (15) and (25). Further, we determine the gain matrix K =[
0.01512 −1.81255

]
of controller (9) for which J0 = 0.44823, J = 0.48232 < γ and a
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closed-loop system (10) with the finite spectrum
{
− 0.67528 ± 0.36681i

}
is admissible.

Also, by using Lemma 2.3, the structured worst disturbance

w = K0x, K0 =
[
−0.72013 0.28805 1.14308

]
, (45)

and the worst initial vector x0 =
[
0.08668 0.88792 0.17938

]⊤
are determined.

The finite spectrum of system (10) with the worst pair (w, x0)

Eẋ = (A∗ +B∗K0)x, x(0) = x0, (46)

is computed as
{
− 0.59864,−1.42448

}
. Figs. 2 and 3 show the behavior of system (46)

and function w(t) in (45), respectively.

Figure 2: Closed-loop system behavior
with the worst pair (w, x0). Figure 3: The worst disturbance.

Computational experiments have shown that the decrease of parameter α in the
interval [0, 1] leads to the increase of the minimum possible characteristics J0 and J for
a closed-loop system using static controllers of the form (9).

Also, on the basis of Theorem 3.3 (see Remark 3.2), a dynamic controller (27) with

[
K U
V Z

]
=

 −0.08957 −0.96093 0.57234 2.61512
0.03600 −0.07555 −0.38338 −0.00721
−0.00232 −0.00068 0.08507 −0.41471


is determined, for which system (31) is admissible with J0 = 0.25070 and J = 0.47138.

5 Conclusion

This paper presents new approaches to the generalized problem of H∞ control with
transients for continuous-time descriptor systems. The weighted performance measure
used takes into account the influence of both exogenous disturbances and initial states.
Necessary and sufficient conditions for the solvability of this problem via static and
dynamic controllers have been proposed in terms of LMIs and GARIs with special matrix
variables.

New auxiliary Lemmas 3.1 and 3.2 are obtained here, and used in the synthesis of
static and dynamic controllers, respectively. These lemmas make it possible to search for
solutions of the arising linear and quadratic matrix inequalities in parametric form (11)
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and (12) with considering the skeletal decomposition of system matrix E. This makes
the main results (Theorems 3.1, 3.2 and 3.3) more constructive in comparison with
[20,21]. Moreover, with this approach, it is possible to formulate necessary and sufficient
conditions for the existence of generalized H∞ controllers exclusively in terms of LMIs
(see Corollaries 3.1 and 3.2). Projection Lemma (Lemma A.1) and its new generalization
(Lemma A.2) gives criteria for the solvability of linear and quadratic matrix inequalities,
respectively. The presented synthesis approaches have been illustrated by a numerical
example of the controlled electrical circuit.

A Solvability of Some Matrix Inequalities

Lemma A.1 (see [8]) Given matrices A = A⊤ ∈ Rn×n,
B ∈ Rp×n and C ∈ Rq×n, the LMI

A+B⊤XC + C⊤X⊤B < 0 (47)

is solvable for X ∈ Rp×q if and only if one of the following conditions holds:

(a) rankB = n, rankC = n; (b) rankB < n, rankC = n, W⊤
BAWB < 0;

(c) rankB = n, rankC < n, W⊤
C AWC < 0;

(d) rankB < n, rankC < n, W⊤
BAWB < 0, W⊤

C AWC < 0.

Consider the following quadratic matrix inequality:

A+B⊤XC + C⊤X⊤B + C⊤X⊤RXC < 0, (48)

where A = A⊤ ∈ Rn×n, B ∈ Rp×n, C ∈ Rq×n and R ∈ Rp×p. Suppose that matrices C
and R are nonzero and R = R⊤ ≥ 0.

Lemma A.2 (see [21]) There exist a matrix X ∈ Rp×q satisfying (48) if and only if

(a) either rankC = n or rankC < n and W⊤
C AWC < 0;

and one of the following conditions hold:

(b) R > 0, A < B⊤R−1B; (c) rankR < p, rankB0 = n;

(d) rankR < p, rankB0 < n, W⊤
B0

(
A−B⊤R+B

)
WB0

< 0;

where B0 = W⊤
RB and R+ is a pseudo-inverse of R.
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