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Abstract: In this paper, we study the existence of the maximum number of crossing
limit cycles of planar piecewise differential systems formed by linear Hamiltonian
saddles. Firstly, we prove that if we separate these systems by either a parabola or
hyperbola or an ellipse, they can have at most three crossing limit cycles. Secondly,
we provide an example of four crossing limit cycles when these systems have four
zones separated by two intersecting straight lines zy = 0.

Keywords: piecewise differential system , limit cycles, linear Hamiltonian saddles,
conics.

Mathematics Subject Classification (2010): 34A36, 34A07, 34C25.

1 Introduction

One of the important and difficult problems in the qualitative study of differential systems
is the determination of the existence or non-existence of limit cycles and their position in
the plane, the same problem arises for the piecewise linear differential systems separated
by an algebraic curve. Planar discontinuous piecewise linear differential systems were
firstly studied by Andronov, Vit and Khaikin [1].

Recently, these systems have been of great importance to the mathematical com-
munity due to their applicability to modeling and control of the environment, see for
example the books [7]14].

* Corresponding author: mailto:r.benterki@univ-bba.dz
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Many authors studied the upper bound of crossing limit cycles that some families of
discontinuous piecewise differential systems can have. In 2010, Han and Zhang 9] conjec-
tured that we can have two crossing limit cycles when we separate planar discontinuous
piecewise linear differential systems by a straight line, but in 2012, Huan and Yang [10]
proved that the conjecture of Han is wrong by proving the existence of a numerical ex-
ample with three limit cycles. Afterward, Llibre and Ponce in [12] proved analytically
the existence of this example. In 2015, Llibre et al. [11] showed that the discontinuous
piecewise linear differential centers sepatated by a straight line can not exhibit any limit
cycle, while if we consider that the curve of discontinuity is different from a straight
line, we can produce limit cycles, see for example the papers [3-5]. For another kind of
discontinuous planar piecewise differential systems, Benterki and Llibre [2/6] studied the
existence of limit cycles of planar piecewise linear Hamiltonian systems without equilib-
rium points, where they solved the 16th Hilbert problem of these systems when the curve
of separation are conics or irreducible cubic curves.

In [8], Damene and Benterki provided the maximum number of crossing limit cycles
of two different families of discontinuous piecewise linear differential systems separated
by cubic curves.

Our objective in this paper is to study the crossing limit cycles of planar piecewise
differential systems with linear Hamiltonian saddles separated by conics.

We recognize that each conic occurs in nine canonical forms, but we omit some of
them due to the fact that they do not separate the plane into connected regions such as
224+1=0,22+92=0,and 22 +y* +1=0.

In [13], the authors proved that the maximum number of limit cycles for discontinuous
planar piecewise differential systems formed by linear Hamiltonian saddles and separated
by two parallel straight lines is at most one.

The main goal of our work is to provide the upper bounds of crossing limit cycles of
discontinuous planar piecewise differential linear Hamiltonian saddles (or simply PHS)
separated by either an ellipse 22 + y2 — 1 = 0, or a parabola y — z? = 0, or a hyperbola
x? — 3% = 1 or by the two intersecting straight lines zy = 0. The main tool that we used
to prove our results is the first integrals method.

A normal form for an arbitrary linear differential system with Hamiltonian saddles is
given in the following proposition. For the proof, see for instance [13].

Proposition 1.1 Differential systems with a linear Hamiltonian saddle can be writ-
ten as

T = —br — oy +d, y=ax+by+ec, (1)

where a € {0,1} and b,8,¢c,d € R. Moreover, if « = 0, then ¢ = 0, and if « = 1, then
§ = b2 —w? withw # 0. The corresponding first integral of system 18

H(z,y) = —(a/2)x? — bay — (6/2)y* — cx + dy.

2 Statements of the Main Results

In this section, and specialy in Theorem [2.1] we prove our results for discontinuous piece-
wise differential systems formed by linear Hamiltonian saddles intersecting the parabola,
or hyperbola or ellipse at two points. While in Theorem we are interested in studying
the number of crossing limit cycles intersecting the straight lines zy = 0 at exactly four
points. Our first main result is the following.
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Theorem 2.1 The following statements hold.

(1) The maximum number of crossing limit cycles of PHS intersecting the parabola at
two points, is at most three. This mazimum is reached in Figure[]

(#4) The maximum number of crossing limit cycles of PHS intersecting the hyperbola
at two points, is at most three. This mazimum is reached in Figure [3

(#9t) The mazimum number of crossing limit cycles of PHS intersecting the ellipse at
two points, is at most three. This mazimum is also reached in Figure[3

L L L L L L L
-2 -1 0 1 2 3 4

Figure 1: Three crossing limit cycles of piecewise differential system 7.

L L L L L L |
-3 -2 -1 0 1 2 3

Figure 2: Three crossing limit cycles of piecewise differential system 7.

Theorem 2.2 The mazximum number of crossing limit cycles of piecewise linear dif-
ferential systems formed by four linear Hamiltonian saddles and separated by the two
intersecting straight lines xy = 0, is at most eight. There is an example of these systems
with exactly four limit cycles.
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2 -1 0 1 2 3

Figure 3: Three crossing limit cycles of piecewise differential system 7.

Ny

L L L L L L
-3 -2 -1 0 1 2 3

Figure 4: Four crossing limit cycles of piecewise differential system 7.

3 Proof of Theorem [2.1]

Proof. In this part, we are going to prove the statement (i) of Theorem Then in
the first region Ry = {(z,y) : y—2 > 0}, we consider the planar discontinuous piecewise
Hamiltonian saddle

T=—bx—6y+d, Yy=oa1x+by+ec, (2)

its corresponding Hamiltonian function is

o o
Hy(z,y) = ——a% — byay — Elyg —cx + dyy. (3)

2
In the second region Ry = {(x,y) : y — 2% < 0}, we consider the PHS system
T = —box — doy +do, Y= aax+ boy+ ca, (4)
with its corresponding Hamiltonian function

« 1)
Hy(z,y) = —72322 — boxy — EzyQ — cox + day. (5)
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In order to have a crossing limit cycle that intersects the parabola y — 22 = 0 at the
points (z;,y;) and (zg,yx), with ¢ # k, these points must satisfy the following system:

Hy(xi,y:) — Hi(xk,yx)) = 0,
Hy(xi,y;) — Ha(xg, yx) = 0, (6)
yi —a; =0, yp —aj = 0.

We suppose that the system (2| . has four crossing limit cycles. Then, system @ must
have four pairs of points as solutlons namely, p; and ¢; taking the forms p; = (r;,77) and
¢ = (8i,57), with i = 1,2,3,4. Due to the fact that these points satisfy system @ and
if we consider the points p; = (r1,7%) and q; = (s1, s7), then simple calculations give the
following expressions of the parameters ¢; and co:

1
c1 = E(le(rl + 51) — 2b1(7‘% +ri1s1 + S%) — (7“1 + 81)(041 + (7‘% + S%)(Sl)),

and ¢y has the same expression as ¢; with the change of (dy,d1, b1, @1) by (da, d2, ba, a2).
If the two points pa = (r2,73) and g2 = (s2,s3) satisfy system @, then by solving
the two first equations of (@, we obtain the expressions of the two parameters d; and ds
dy = 1 (2b1(r2 — 73+ 1181 + 87 — 1989 — 83) — roy + S107
2(r1 — T2+ 51 — 52) v ! 2

—sg0 + 1381 — 1361 + 138101 + 8301 — 135901 — ros361 — s301 + 11y + s 51)>,

and do has the same expression as d; with the change of (41, b1, 1) by (d2, b2, a2).
Now let us suppose that the points p3 = (r3,r3) and g3 = (s3, s3) satisfy system
then the parameters §; and d; must be 6; = A/B, where

A= =2b ((31 — 59)(r% + (51— s3)(s2 — 83) — r3(s1 + 82 — 83)) + ri(r2 — r3 + s2
—83) +713(r3 — s1+ 83) +11(—13 + 13 —r351 +ra(s1 — s2) + S182 — 55 + 1383

—5183 + s%) — rz(rg +r3(—s2 + s3) — (51 — 83)(51 — S2 + 33))),

B= 13(rg —r3+ 89— 83) +1751(ro — 13+ 83 — 83) + 73 (r3 — 51 + 83) + 1r352(r3
—81 4 83) +7r1(=73 + 75 —r3s? —r3sy + 5789 — 83 + 1o(s? — 83) + 1383 + S5
2 2 3 2 _ _ _ 2
+r385 — s783) + (81— $2)(r5 + 1383 + (s1 — $3)(s2 — $3)(81 + 82 + 83) — r3(s7
+5182 + 83 — 83)) — ra(ri — 53 + 5153 + r2s3 — s3s3 + 3 + r3(—s% + s2)),

and we get the expression of d; by changing (b1, 1) by (bs, a2) in the expression of d;.
Finally, if we suppose that the points py = (74,72) and g4 = (s4,53) satisfy system @
and if o; € {0,1} with ¢ = 1,2, then we obtain b; = 0 and b = 0.

We replace ¢1,dy, 01, @; and by in the expression of Hy(z,y), and cg, da, 62, a and by
in the expression of Hy(z,y), we known that the expression of the first integral H; (z,y)
is the same as the expression of the first integral Hg(x y), i.e., Hi(z,y) = Ha(x,y).
Therefore, the piecewise linear differential system (2| . becomes a linear differential
system, which does not have limit cycles. Consequently, the maximum number of crossing
limit cycles in this case is at most three.

Example with three limit cycles. Consider the planar discontinuous piecewise
linear Hamiltonian saddle

@ = 752 + 250y — 550, ¢ = —75y — 100, (7)
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in the region R; with its corresponding Hamiltonian function
Hy(z,y) = 125y* + 75xy + 100z — 550y.
In the region R,, we consider the PHS system
& = 0.071252 + 0.2375y — 0.0225, ¢y =z — 0.07125y — 0.095, (8)

its corresponding Hamiltonian function is

2
Ho(z,y) = —% +0.0712..2y + 0.1187..4% — 0.0224..y + 0.095..2.

Now system (6) has the three solutions (xgl), y§1)7 mél), yél)) = (1.5569..,2.4239..,0.7417..,
0.5502..), (2, y{® 2{? {2 = (1.6356..,2.6753..,0.543..,0.2948..), and (z\* y* 2{?
yé3)) = (1.6977..,2.8823..,0.264..,0.0698..), which provide the three limit cycles shown in
Figure [1} This completes the proof of statement (i) of Theorem [2.1

To prove the statement (i) of Theorem we consider in the region Ry = {(z,y) :
2?2 —y? — 1 > 0} the PHS given in , with its corresponding Hamiltonian function
given in .

In the region Ry = {(z,y) : 2% —y*> — 1 < 0}, we consider the PHS given in (4)), with
its corresponding Hamiltonian function given in . In order to have a crossing limit
cycle that intersects the hyperbola 22 — y? — 1 = 0 at the points (z;,%;) and (2, y&),
with ¢ £ k, they must satisfy the system of equations

Hy (x5, y:) — Hi(xk,yx) =0,
H2<x17yl) - HQ(mlwyk) = O? (9)
22 —y?—1=0, 27 —y; —1=0,

;=

we suppose that system f has four crossing limit cycles. So, system @D must
have four pairs of solutions which can be written as p; = (coshr;,sinhr;) and ¢; =
(cosh s;,sinh s;), for ¢ = 1,2,3, 4.

Due to the fact that the two points p; = (coshry,sinhr) and ¢; = (cosh sq,sinh s7)
satisfy system @D, then by solving the two first equations in @D, we obtain the parameters
c¢1 and ¢y as follows:

1
2(coshry; — cosh s1)
sinhry — &; sinh?r; — 2d, sinh s; + & sinh s2 + by sinh 251).

c1 = ( — cosh? r1 + a1 cosh? $1 + 2d; sinh r; — 2by coshry

By changing (aq,01,b1,d1) by (a2, d2,be, d2) in the expression of ¢1, we get the expression
of ¢co. We know that the two points ps = (coshrsy,sinhre) and ga = (cosh so, sinh s5)
satisfy system @D, then from this system, we get the parameters d; and dz, where

1
d, = (csch( oA (Oq cosh? ro cosh s;

A(cosh (P2 qoop (S22

+aq cosh? r1(coshre — cosh s2) + cosh? s1 cosh s — g cosh s1 cosh? Sy — 01
cosh s sinh? ry + 1 cosh s sinh? ry + by cosh s; sinh(2r3) + 1 cosh sq sinh? s,
+b; cosh so sinh(2s1) + cosh 7‘2( — ay cosh? s; + sinh(r; — s1) (2b1 cosh(ry + s1)
+41 sinh(r + 51))) — 2b; cosh s cosh sy sinh sy — d; cosh s; sinh? sy

+ coshry ( — cosh? ro + o cosh? 89 — 2by cosh s5 sinh 71 + 2b; cosh r3 sinh 7o
—&y sinh? ro + 6; sinh? 55 + by sinh(252))))’
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and by changing (aq,d1,b1) by (aw, da,be) in the expression of di, we obtain ds.
We know that the points p3 = (coshrs,sinhrs) and g3 = (cosh s3, sinh s3) satisfy

system @, then we obtain the values of d; and do. The value of 4y is given by 6; = A/B,
where
e — 5o —3 e — — 355 —
A— —0&1<COSh(T1 9 — 13+ 81 — S2 Sg)-ﬁ-COSh(Tl ro — 13+ 81 So 33)
—COSh(Tl ro — 3r3 + S1 — S2 53)+ (T1+3T2—T3+81+82—83
—3ro—1r3+851—83— 8 3ri+reo—1r3+s1+50—8
+cosh( 2 32 1 2 3)+ sh( 1 2 32 1 2 3)
7‘1+3T277‘3+51+52783 7’1+T2*T‘3+381+82783
— cosh( 5 ) + cosh( 5 )
r1+ 10— 13+ 81 + 359 — S3 3ri —ro4+r3+ 51 — S+ s3
— cosh( 5 ) — cosh( 5 )
71 —To + 313 + 81 — S2 + 83 ry — T2+ 13+ 351 — s2+ 83
+ cosh( 5 ) — cosh( )
— — 3 — Ty — — 89— 3
Jrcosh(r1 T2+T3+281 21+ 53)) 2b1(s1nh 2 T3+251 52 53)
e — -3 —ro—3 _ e _
—sinh(rl T2 7“3-5-251 So — —|—smh(r1 73 + S1 — S2 53)
. ., 71 —3r9g — T3+ 5] —S3 — 83 3ry +re —r3+ 51 + 52 — 83
— sinh( 5 ) h( 5 )
., T1+3ry —r3+ 51+ 52— 83 ., T1+ 71y — 13+ 351 + 52 — 83
— sinh( 5 ) + sinh( 5 )
., T1+Tr2—r3+ 51+ 352 — 83 ., 3T — T2+ 713+ 51 — 82+ 83
— sinh( 5 ) — sinh( 5 )
. r1 —1ro+ 3r3+ 51 — So + S3 r1 —Tro+r3+ 351 — S+ S3
+ sinh( 5 ) h( 5 )
+si h(”_r2+r3+81_82+383)),
2
B_ COSh(rl—7“2—7“34—81—52—333)_ Osh(rl—rg—r;;—i—sl—?)sz—s;g)
+Cosh7“177"2737“3;81782*83)7 Osh(r1737"27r3+51732—83)
3 — — 3ry — —
_ cosh( 1+ T2 7‘3;-314-52 S3)+cosh(r1+ T2 7"3;-814-82 33)
r1+ 1o — 13+ 381 + S92 — S3 r1+1ro —1r3+ 81 + 359 — s3
— cosh 5 ) + cosh )
+COSh(3r1_r2+r3;81_82+83)7 Osh(Tl—T2+37‘3;-81—82+83)
+Cosh(7‘1—7‘2+7’3+381—52+53)_ OSh(Tl—T2+T3+81_52+333).

2

2

We get the expression of §; by changing (g, b1) by (e, bs) in the expression of dj.

If oy = as =1 or (g = ag = 0), we assume that the points py = (coshry,sinhry)
and g4 = (cosh s4, sinh s4) satisfy system @, then we obtain by = 0 and by, = 0.
We replace ¢y, dy, 81, @ and by in the expression of Hi(x,y), and ¢z, da, d2, o and

by in the expression of Hy(x,y) and we obtain Hi(x,y)

= Hs(x,y). Hence, in these cases,

the piecewise linear differential system becomes a linear differential system, which does
not have any limit cycle. Therefore, the maximum number of crossing limit cycles in the
piecewise linear Hamiltonian saddles separated by a hyperbola is at most three.

Example with three limit cycles.
hyperbola

i = —18z + 95y + 15,

We consider the PHS separated by the

g =18y — 14, (10)
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in the region Ry = {(z,y) : 2% — y?> — 1 > 0}, which has the Hamiltonian function

95
Hi(z,y) = 7y2 — 18xy + 14x + 15y.

Now, in the region Ry = {(z,y) : 2% — y?> — 1 < 0}, we consider the second PHS
= —0.2699..7 + 2.425..y + 0.225.., § = + 0.2699..y — 0.21, (11)

its corresponding first integral is

2
Hy(z,y) = % —0.2699..7y + 1.2124..4 + 0.212 + 0.2249..y.

The PHS f has exactly three crossing limit cycles because the system of equa-
tions () has three real solutions (z{", y{", 25" y$") = (1.0571..,0.3427..,1.0362..,
—0.2715.), (22,4 2P y{P) = (1.1283..,0.5227.., 1.0885.., —0.43..), and (), 4@,
a:g?’), yéS)) = (1.1969..,0.6577..,1.1385.., —0.5442), see Figure This completes the proof
of statement (i1).

Finally, to prove the statement (iii), we consider the PHS given in in the region
Ry = {(z,y) : * + y* — 1 > 0}, with its corresponding Hamiltonian function (3)). We
consider the PHS given in in the region Ry = {(x,y) : 2% + y* — 1 < 0}, with its
corresponding Hamiltonian function . In order that system f has crossing limit
cycles intersecting the ellipse y? + 22 — 1 = 0 at the points (z;,v;) and (2, yx), with
1 # k, they must satisfy the system

Hi(zi,y;) — Hi(xk, yx)) =0,
Hy(zi,y;) — Ha(xg, yx) = 0, (12)
yi+a?-1=0, y,%Jr:cifl:O.

Now we assume that system 7 has four crossing limit cycles. Consequently, system
must have four pairs of points p; = (cosr;,sinr;) and ¢; = (coss;,sins;) with
i = 1,...,4 as solutions. So, if we consider the points p; = (cosry,sinr) and ¢ =
(cos s1,sin 1) from , we obtain that the parameters ¢; and ¢y must be

1
2(cosry — cos s1)
8y sin? 7y — 2d; sin sy + 0 sin? s1 + by sin(251)).

c = ( — aq cos? 1 + aq cos? s1 + 2d; sinry — 2by cosry sinr, —

Changing (dy, 01, a1,b1) by (dg, d2, e, bs) in the expression of ¢;, we get the expression
of co. Due to the fact that the two points ps = (cosra,sinre) and ga = (cos s, sin s9)
satisfy system , then the parameters d; and ds have the expressions

cse((ry — s1)/2)

dy = )
P 4(cos(2(r1 — 2ra + 51)/2) — cos((r1 + 51 — 252)/2)) (o1 cos”rz cos sy

+ar1 cos? 71 (oS 7y —COS 83) + v1 €OS? 51 COS 89 — (v COS 51 COS> 89 — 07 COS 89 8in% 77
+6; cos s1 sin® ro + by cos 51 sin(2rg) + 01 cos so sin® s; + by

. 2 . .
oS 82 sin(2sy) 4 cos ra(—aq cos® s1+sin(ry —s1)(2b1 cos(ry+s1)+d1 sin(r1+$1)))
—2b1 cos 81 €OS Sg sin s5 — 71 COS 81 sin® S92+ cosTi(—ay cos? 19 + aq cos? so — 2By
COS o Sin T, — 2by COST9 sinTy — & sin® 7y + & sin? s + by sin(2ss2))).
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We get the expression of dy by changing (d1, a1,b1) by (02, as,bs) in the expression of
di.

Likewise, the points ps = (cosrs,sinrs) and g3 = (cos s3, sin s3) satisfy system ,
then we obtain the expressions of d; and d5 such that §; = A/B, where

7“1—7“2—7“3+81—82—383
A= oy cos

7“1—7“2—T3+S1—382—33)

+ cos

2
rl—r2—3r3+31—82—53) r1—3r2—r3+51—32—53>

2 2
37"14’7’277‘34’514’52783 7"1+37’277"3+81+82783

2
r1+ 31y — 13+ 81 + 52 — 83

COS

( 2
(T1+T2—7‘3—|—31+352—83>
2
(3r1—r2+7’3+81—82+83>

2
rl —ro 4+ 13+ 351 — So + S3

( )+
(37“ —r—H"%ks —s +s)
W CELILE L EL AL
( )~

2
7"1—7"2—1—7"3—1—51—32—1—353)

2 2
’I"1—7"2—7"3+81—52—383) 7‘1—1“2—1"3+81—382—83)

2
3r1—r2+r3+51—52—|—53

S

—2b1<sin + sin 5
. 7”1—T2—37“3+81—82—83 r1—3ry —r3+ 81 — So — S3
—Sln( +s )
2 2
. 37‘1+T2—7‘3+S1+82—83 L (r1+3rg —r3 s+ 52— 53
—sm( + sin
—sin( + sin

2
(7"1—7“2+3r3+51—52+53

)
) 5 )
r1+r27r3+351+52*83) (T1+T2*7’3+51+352*53)
)- )
)- )

) rl—r2+r5+3sl—s2—|—53
—|—sm(

2
. (T1—T9+ T3+ S — Sy + 353
5 sm(

2

).

and the expression of B is

B = cos

(T17T27T3+817527353) (7’177’27T3+517352753)
S

2
r1—1Tro —3r3+ 81 — Sg — S3 r1—3ro —r3+ 81 — So — S3
— COS

-+ cos

2 2
3ry +re —r3+ 51+ 52 — 83 71+ 3rg — 13+ 81 + 52 — 83

— COS

)—i—cos )
2 2
r1+ 19 — 13+ 351 + 52 — s3 1+ 79 — 13+ 51 + 350 — S3
— COS + cos

2
1 —7To 4+ 3r3 + 81 — S0 + S3

-+ cos

2
(37‘1—7‘2+7‘3+51—82+83
— cos

2 2
rl—r2+r3+381—52+53>_COS(rl—r2+r3+sl—52+383)

+ cos ( B 2

A simple change of (a1,b1) to (ag,bs) in the expression of 471, allows us to get the
expression of Js.

Now, if we suppose that the points py = (cosr4,sinry) and g4 = (cos s4, sin s4) satisfy
equation and if a; € {0,1} with i = 1,2, then we obtain b; = 0 and by = 0.
We replace ¢1,dq, 01,1 and by in the expression of Hi(x,y), and cg,ds, d2, @ and by in
the expression of Hy(z,y), we have Hi(x,y) = Ha(z,y). Therefore, the piecewise linear
differential system becomes a linear differential system, which does not have limit cy-
cles. Therefore, the maximum number of crossing limit cycles in this case is at most three.

Example with three limit cycles. In the region R; (,9) : 22 +y* — 1> 0},
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we consider the linear PHS
&= —18x+ 95y + 15, ¢y =18y — 14, (13)

with its Hamiltonian function Hi(z,y) = 14a + 15y — 18zy + %y? In the region Ry =
{(z,y) : 22 + y* — 1 < 0}, we consider the linear PHS

@ = —0.2442..2 + 0.2802..y + 0.203571, 4 = x + 0.2442..y — 0.19, (14)

which has the Hamiltonian function

2
Hy(z,y) = —% —0.2442..2y + 0.1446..5% + 0.192 + 0.20357..y.

The linear PHS — has exactly three crossing limit cycles because the
system of equations has exactly three real solutions (xgl),ygl),xgl),yél))
(0.9273..,0.3741..,0.9445.., —0.3282..), (2, 4@ (2 y{?) = (0.8357..,0.5491..,

0.83658.., —0.5478..), and (2 y{* 2{¥ 4{) = (0.7397..,0.6729..,0.6809.., —0.732..),
see Figure [3]

4 Proof of Theorem [2.2]

In the quarter-plane Ry = {(z,y) : @ > 0,y < 0}, we consider the PHS given by (2). Its
corresponding Hamiltonian function is given by equation .

In the quarter-plane Ry = {(z,y) : < 0,y < 0}, we consider the PHS given by ,
with its corresponding Hamiltonian function .

In the quarter-plane Rz = {(z,y) : « < 0,y > 0}, we consider the PHS

&= —byx — 03y +d3, y=azr+byy+cs, (15)
its corresponding Hamiltonian function is

o 0
Hs(z,y) = —ng — bxy — ?3312 — c3x + d3y. (16)

In the quarter-plane R4 = {(x,y) : * > 0,y > 0}, we consider the PHS
&= —byx — 4y +dg, Y= aux+byy-+cy. (17)

Its corresponding Hamiltonian function is

Qg (54
Hy(z,y) = —7$2 — byzy — 53/2 — cu + dgy. (18)
In order to have a crossing limit cycle that intersects the two intersecting straight lines
xy = 0 at the points (1,0), (22,0), (0,y1) and (0,y2), we must satisfy the following
system:

Py(x1,y1) = Hi(21,0) — H1(0,91) =0,
PQ(Ig,yl) = HQ(O,yl) — HQ(JZQ,O) = O, (19)
P3(x2,y2) = H3(x2,0) — H3(0,12) = 0,
Py(z1,y2) = Ha(0,y2) — Hy(21,0) = 0,
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or, equivalently,

Pi(z1,y1) = —2c121 — 2d1y1 — 951041 + 4161 =0,

Py (3;‘ ) = 2¢coms + 2doy1 + IQOQ y%ég =0, (20)
P3(.T2 y2) 7203132 — 2d3y2 — IQOég + y%ég = 0,

Py(x1,12) = 2ca421 + 2days + 270y — Y364 = 0.

As x1 # x9 and y; # yo, we know that the polynomials Py (x1,y1), Pa(z2,y1), Ps(x2,y2)
and Py(z1,y2) are of degree 2. By using Bézout Theorem, we know that the number
of solutions of the system is bounded by the product of the degrees of the four
polynomials P;(xg,y;), with k, j = 1,2, which is equal to 16. According to the symmetry
of the solutions of this system, we know that the maximum number of solutions satisfying
is at most 8. Then the upper bound of limit cycles of system f is eight.

Because of the higher degree of these polynomials and the number of their parameters,
we only can give an example with four limit cycles.

Example of four limit cycles for PHS separated by zy = 0. In the quarter-
plane Ry = {(x,y) : x > 0,y < 0}, we consider the PHS

T =—4xr—-35y+8, y=-—-c+4y+S8, (21)
its Hamiltonian function is
1, 35
Hy(z,y) = 5 + dxy + Y + 8x — 8y.
In the quarter-plane Ry = {(x,y) : < 0,y < 0}, we consider the PHS
& =-3x—10.32.y +5.17.., y=—x+ 3y —4.23.., (22)
its Hamiltonian function is

1
Hy(z,y) = —iﬁ + 32y 4+ 5.16..y% — 4.23.x — 5.17..y.

In the quarter-plane R3 = {(x,y) : * < 0,y > 0}, we consider the PHS
& =+250—9y+1, §=—z—25y—5, (23)
where its Hamiltonian function is
Hs(z,y) = —%xz — 252y + gyz —y — bx.
In the quarter-plane Ry = {(z,y) : * > 0,y > 0}, we consider the PHS
i = —4x — 2261y +4.46.., §=—a+4y+9.05., (24)

with the Hamiltonian function
1
Hy(z,y) = —ixz + 4oy +11.3..y% — 4.46..y + 9.05..z.

The PHS (21))-(24)) has exactly four crossing limit cycles because the system of equations
[20) has four real solutions (2!, y{", 25" y{V) = (=0.524..,1.2176.., —1.12.., 1.171..),

(@, 8 ) = (-059..,L510.., ~1.894..,1.27.), @ 4 oD 4 = (~0.66..,
1.83..,—1.68..,1.36..) and (2 ,yf‘), (4),y(4)) (—0.72..,2.16..,—2,0,1.44..), see Figure
This completes the proof of Theorem
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5 Conclusion

‘We

have solved the extension of the second part of the 16th Hilbert problem for a

family of discontinuous planar differential systems separated by conics. These piecewise
differential systems are formed by planar linear Hamiltonian saddles. By using the fisrt
integrals of these systems, we proved that the maximum number of crossing limit cycles
of this family of systems is either three or eight depending on the curve of separation.
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1 Introduction
The main purpose of this paper is to study the nonlinear elliptic equation
div(|VU|P72VU) + oU + Bz VU + |U|"'U =0, z€R", (1)

where p > 2, ¢ > 1, N > 1, a > 0 and 8 > 0. The equation is derived from the
self-similar solutions of the nonlinear parabolic equation

vy — Apv — 07t =0, in RN x (0, +00). (2)
These particular solutions are of the form
o(t,x) =t~ Ut Px)), (3)
where

1 qg+1—p
ao=—— and f=-—"F—+.
q-—1 plg—1)

If p=2, a=0and 8 =0, the equation is due to Emden-Fowler and plays an impor-
tant role in astrophysics, this motivates many researchers to be interested in the study
of this case, the examples include (but are not limited to) [3}7HLOL12L|17,|18]. In the case
p=2,a>0and g > 0, the equation was studied in [6,(14H16}/19,[20,/22+24]. In the
case p > 2, « = 0 and 8 = 0, (1) was investigated in 2], [13] and [21]. Whenp > 2, >0
and 8 = 1, equation (1) was studied in [1]. When p > 2, a = ﬁ and 8 = %,
equation was studied in [11]. In the case p > 2, @ < 0 and S < 0, we have studied
an equation similar to (1)) but with the term |U]9~1U weakened by its multiplication by
the function |z|' with [ < 0 that tends to 0 at infinity. This study was carried out in [4]
and gave the existence and asymptotic behavior of unbounded solutions near infinity
using nonlinear dynamical systems theory. In this paper, we consider the case where
a>0,08 >0and ! = 0. It is also a generalization of the study carried out in |11].
We will present a result that improves asymptotic behavior near infinity of positive

. . . . . o
solutions, we investigate the structure of solutions of problem (P) in the cases — > N

B

@
and — < N and we give an important relation between the solutions of the problem

(P) and those of a nonlinear dynamical system obtained by using the logarithmic change.

If we put U(z) = u(|z]), it is easy to see that u satisfies the equation
N -1
(W' P~2u) + —— /[P0 + au(r) + Bro () + [ul*"tu(r) = 0, r>0. (4)

Since we are interested in radial regular solutions, we impose the condition «'(0) = 0.
Thus we consider the following Cauchy problem.

Problem (P): Find a function u defined on [0,+oo[ such that |u/|P72u’ €
C1([0, +00[) and satisfying

N

-1
(Ju'|P~2u") + — |u' [P0 + au(r) + Bru’ (r) 4 [u|T tu(r) =0, r>0 (5)
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and
uw(0)=A4>0, 4/'(0)=0, (6)

wherep>2,¢g>1, N>1, a>0and g > 0.

By reducing the problem (P) to a fixed point for a suitable integral operator (see for
example [5]), we prove that for each A > 0, the problem (P) has a unique global solution
u(., A, a, ).

The main results are the following.

Theorem 1.1 Problem (P) has a unique solution u(., A). Moreover,

(1 [P~ 0) = S (a+ 477Y). ™
'Eheorem 1.2 Problem (P) has no positive solutions in the following cases:
. BNZZ‘ e
(44) o1 < 3 < N. N
(#it) g <p—1 and % < p—_f
(i) g>p—1 (mdg;é P N=p

Theorem 1.3 Assume % < N. Then the solution u(., A) of problem (P) is strictly
positive in the following cases:
1
(i) 0< A< (BN —a)7T1.

o« P . (N-p p)
1) - = ——— < min y = |-
()B qg+1—p ( p 2

o _
Theorem 1.4 Assume — = P p‘ Let u be a strictly positive solution

<
Boq+l-p p-1
of problem (P). Then

lim rfu(r)=0T>0

r——400
and
. a —
lim 75t/ (r) = —T,
r—~400 ﬂ
where

The rest of the paper is organized as follows. In the second section, we present basic
tools for the study of the problem (P). The third section concerns asymptotic behavior
near infinity of solutions of problem (P); more precisely, we give explicit equivalents of
solutions and their derivatives near infinity. The fourth section concerns the structure
of solutions of problem (P). The last section, in the form of a conclusion, presents
the asymptotic behavior of the solution of a nonlinear dynamical system around its
equilibrium point and explains its relation with the asymptotic behavior of the solution
of the problem (P).
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2 Preliminaries and Basic Tools

In this section, we give existence of global solutions of problem (P) and we present the
necessary basic tools that will be useful to us in the rest of the work.

Theorem 2.1 Problem (P) has a unique solution u(., A). Moreover,

(Ju'[P~2u') (0) = % (a+ A7), ®)

Proof. The proof of theorem is divided into three steps.
Step 1: Existence and uniqueness of a local solution.
Multiply equation by rN~1, we obtain

’

(TN_I\u/|p_2ul (r) + 57"Nu(r)) = (BN — o)V tu(r) — N 9 (). (9)

Integrating @ twice from 0 to r and taking into account @, we see that problem (P)
is equivalent to the equation

w(r) = A — / G(F[u](s)) ds, (10)

where
G(s) = |s|@P/P=Ds  seR, (11)

and the nonlinear mapping F' is given by the formula

Flu](s) = Bsu(s) + sV /O‘N_lu(0'> (= BN) + [u(c)|9™") do. (12)

Now, we consider for A > M > 0, the complete metric space
Ey={peC([0,R]) suchthat ||¢— Allo < M}. (13)
Next, we define the mapping ¥ on F4 by

Bgl(r) = A— / G(Fgl(s)) ds. (14)

Claim 1: ¥ maps F4 into itself for some small M and R > 0.

Obviously, ¥[y¢] € C([0, R]). From the definition of the space E4, ¢(r) € [A— M, A+ M],
for any r € [0, R]. It is easy to prove that F[p] has a constant sign in [0, R] for every
@ € E4. Moreover, there exists a constant K > 0 such that

Fly](s) > Ks for all s €[0,R], (15)

where K = % (a—i—Aq’l).

Taking into account that the function r —

Glr)

is decreasing on (0, 400), we have

wlelr) - Al < [ CRED i) as < [ CED P ds

0 0
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for r € [0, R]. On the other hand,
[Fll(s)] < Cs, where C =[5+ |% = Bl + (A+ M) (A + M).
We thus get
Wel(r) - 4| < Pt oK it
for every r € [0, R]. Choose R small enough such that
[W[pl(r) — Al < M, @€ Ea.
And thereby P[] € E4. The first claim is thus proved.
Claim 2: U is a contraction in some interval [0,74].

According to Claim 1, if r4 is small enough, the space E4 applies into itself. For any
©, Y € E4, we have

[Wp](r) = wly)(r)] < /IG(F[@](S)) = G(F[Y](s))] ds, (16)

where F[y] is given by Next, let
®(s) = min(F[g](s), F[¢](s))-
As a consequence of estimate , we have

O(s) > Ks for 0<s<r<ry

and then
GFIpl(s) - GFIulEN] < S SRl - FIvlG) (17)
G(Ks)
< 2 Flp)(s) - Fly)(s)
Moreover,

IFlel(s) = FI1(s)| < C'lle = wllos, (15)
where C' = [ + |% — B] + (A+ M)~ (A + M). Combining , and , we
have

Wlel(s) ~ Ivl(e)] < Er O K o~ vl (19)

for any r € [0,74]. When choosing r 4 small enough, ¥ is a contraction. This proves the
second claim.

The Banach Fixed Point Theorem then implies the existence of a unique fixed point
of ¥ in E 4, which is a solution of and consequently, of problem (P). As usual, this
solution can be extended to a maximal interval [0, 7maz], 0 < s < 400.
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Step 2: Existence of a global solution.
Define the energy function

p—1, e +1
Er)=—"+ =u*(r) + —|u|T"". 20
() = L+ ) + (20)
Then by equation , the energy function satisfies
N -1
E'(r)=— ( [/ |P + BruQ) . (21)
T

Then E is decreasing, hence it is bounded. Consequently, u and u’ are also bounded and
the local solution constructed above can be extented to RY.

’ ! _A
Step 3: (|u'|"~2u) (0) = =~ (a + A7),
Integrating (9) between 0 and r, we get

/

™ ”

= —pu(r) + (BN — a)r*N/stlu(s) ds —r= N / sV Hu|7 tu(s) ds.

0 0

ju' [P~

r

Hence, using L’Hospital’s rule and letting » — 0, we obtain the desired result. The proof
of the theorem is complete. O

Proposition 2.1 Let u be a solution of problem (P) and let S, := {r >0, u(r) > 0}.
Then v'(r) <0 for anyr € S,.

Proof. We argue by contradiction. Let 7o > 0 be the first zero of u’. Since by
u'(r) < 0 for r ~ 0, we have by continuity and the definition of rq, there exists a left
neighborhood |rg — €,79[ (for some ¢ > 0), where «’ is strictly increasing and strictly
negative, that is, (|u/|P~2u/)'(r) > 0 for any r €]rg — €, 79[, hence, by letting r» — 7o,
we get (|u'|P=2u’)(ro) > 0. But by equation (5)), we have (|u/[P~2u’) (rg) = —au(ro) —
|u|?tu(rg) < 0 since u(rg) > 0, u/(rg) = 0 and « > 0. This is a contradiction. The
proof is complete. O

Proposition 2.2 Assume N > 1. Let u be a solution of problem (P). Then

lim u(r)= lim u/(r) = 0. (22)

r—-+00 r—-+00

Proof. Since E'(r) < 0 and E(r) > 0 for all 7 > 0, there exists a constant [ > 0 such
that lirf E(r) =1. Suppose | > 0. Then there exists r; > 0 such that
T—+00

E(r) > % for r > ry. (23)
Now consider the function
N-1 N-1 f
D(r) = E(r) 7\u’\p72u'(r)u(r) + %UZ(T) + B/sua(s) ds.

0
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Then
N -1

N
D'(r) = == — |/ ()P + — /| 2uur) + [u(r)[T + au?(r)

Recall that u and u’ are bounded (because E is bounded), then

’ _ ’7
f P ()

r—+00 r

Moreover, by and , we have for r > rq,

=0.

Ju(r)[ T+ SuP(r) = B(r) >

~1
au?(r) + [u'(r)|7 + Ju(r) |1 > pTIU’(T)I” + 3

qg+1
Consequently, there exist two constants ¢ > 0 and ro > r1 such that
c
D'(ry< —= forr >rs.
r

Integrating the last inequality between ro and r, we get

D(r) < D(rq) — cln(L) for r > ro.

T2
In particular, we obtain lim D(r) = —oco. Since
r—+00
N -1
B(r) + —5— /" (r)u(r) < D(r),
r
we get lim E(r) = —oco. This is impossible, hence the conclusion. |

r——400

Proposition 2.3 Let u be a strictly positive solution of problem (P), then u and v’
have the same behavior @

Proof. If N > 1, then by Proposition lim u(r) = lim «/(r)=0. f N =1,

r—+00 r—+00
let
J(r) = |/ [P~/ (r) + Bru(r). (24)
Then by equation ,
J'(r) = (B — a)u— |ulT" u(r). (25)

Since w is strictly positive, it is strictly decreasing by Proposition Therefore
lir+n u(r) € [0,4o00[. Since the energy function E given by converges (because
r—+00
it is positive and decreasing), u’ also necessarily converges and hIE u'(r) = 0. Sup-
r—+00

pose by contradiction that 1ir+n u(r) = L > 0. Therefore lirJP J(r) = +o0.
r—+o0 =100

Using L’Hospital’s rule, we have

lm J(r) = lim 2
r—-+00 r—+oco T
That is,
(B—a)L—LT=p3L.

Therefore —aL — L? = 0. But this contradicts the fact that L > 0 and o > 0. Hence
lim wu(r) =0. U

r—400
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Proposition 2.4 Let(0 < c# g. Let u be a strictly positive solution of problem (P).
Then the function rcu(r) is strictly monotone for large r.
Proof. For any ¢ > 0, we consider the function
ge(r) = cu(r) +ru'(r), r>0. (26)

It is clear that
(reu(r)) = r“"tg.(r), r>0. (27)

The monotonicity of the function r°u(r) can be obtained by the sign of the function
ge(r). Using (B)), we have for any r > 0 such that u'(r) # 0,

_ N—p _
(p = D' ()P 2g.(r) = (p = 1)(e - pj)h/lp u/(r)
— Br2u (r) — aru(r) — rlu|d tu(r).
Consequently, if g.(ro) = 0 for some rg > 0, we obtain by and ,

(p = D[P~ (ro)g(r0) = rou(ro) [(ﬁc —a) = |u(ro)|*™

(28)

N — u(ro)|P~2 (29)

ot (Y e
Suppose that there exists a large 79 such that g.(rg) = 0. Since TEI-POO u(r) = 0 and
according to , we have for ¢ > % (respectively, ¢ < %), g-(ro) > 0 (respectively,
g.(rg) < 0) and thereby g.(r) # 0 for large r if ¢ # %. Consequently, the function r°u(r)
is strictly monotone for large r if ¢ # 2 O

B

Proposition 2.5 Let u be a strictly positive solution of problem (P). Then for any
0<e< %, we have g.(r) <0 for large r and liT ru(r) = 0.
T—>+00
Proof. We know by Proposition that if 0 < ¢ < %, ge(r) # 0 for large . Suppose

that g.(r) > 0 for large r. Then, by (26]) and the fact that «'(r) < 0, we get

u'(r)] <
This gives by equation ,

cu(r)

for large r. (30)

(I [P~2u) () < u(r) [(ﬁc —a) (v et 0] (31)

rp
As 0 < ¢ < %, u(r) > 0 and liIJP u(r) = 0, then (|/|P~2/)(r) < 0 for large r.
T—+00
Combining with u' < 0, we get hT u'(r) € [~o0,0[, which is impossible. Hence,
T—+00
ge(r) < 0 for large r and by , Tl}rlloor u(r) € [0,4o00[. Suppose that THI’_POO’I‘ u(r) =

L > 0. Then ligl reteu(r) = 400 for 0 < c+¢ < %, but this contradicts the fact that
r—+00

gete(r) < 0 for large r. Consequently, lirf ru(r) = 0. O
100
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Proposition 2.6 Let u be a strictly positive solution of problem (P). Then for any
% < ¢ < N, we have g.(r) > 0 for large r and lim 7°u(r) = 4o0.

—+o0

Proof. Let Y k< B. We introduce the following energy function:
¢

o(r) = rHu' P72 + kréu(r). (32)
Using equation , we have
&' (r) =(c — N)re 2o/ P20’ + (k — B)ra/ (r)+
(ke — a)retu(r) — v u| 9 tu(r). (33)
Asu <0,c< N and k < f3, then
¢'(r) >rrulke —a— [u|t]. (34)
As kc—a > 0 and ngr_loo u(r) =0, then ¢'(r) > 0 for large r, therefore ¢(r) # 0 for large
r. Suppose that ¢(r) < 0 for large r, then
W/ |P~2u’ < —kru(r) for large r. (35)
Therefore
WurT < —kFireT  for large 1. (36)

Integrating this last inequality on (R, r) for large R, we obtain

u= (1) < ub T (R) = 22 2 ittt P2 2 gt
p p
Letting » — 400, we obtain lim w(r) = —oo, which is a contradiction. Consequently,

r—-+00
¢(r) > 0 for large . Since ¢ is strictly increasing for large r, we have ligl o(r) €]0, +0o0],
r—+00

so there exists C; > 0 such that ¢(r) > C; for large r. This gives by and the fact
that u/(r) <0,

C
ru(r) > ?1 for large 7.

On the other hand, using and the fact that lim wu(r) = 0, we obtain

Stoo
r¢'(r) > kc; arcu(r) for large r. (37)
This implies that
r¢'(r) > C for large r, (38)
Ci(ke — a)

where C' =
. . ' /
obtain 7-115?00 ¢(r) = +oo. Consequently, by 1' and the fact that v/(r) < 0, we have

lim 7°u(r) = 4+o00. Moreover, since g.(r) # 0 for large r, using l) we have necessarily
r—+00

ge(r) > 0 for large 7.

> 0. Integrating this last inequality on (R,r) for large R, we
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@
Proposition 2.7 Assume — < N. Let u be a strictly positive solution of problem

(P). Then the function r®/Bu(r) is not strictly monotone for large r.

Proof. Assume by contradiction that r®/8u(r) is strictly monotone for large r. Then
by , gs (r) # 0 for large 7. We distinguish two cases.
Case 1: gg (r) <0 for large 7.
We set
V(r) =u(r) — rP o' P71 (39)
Then by equation ,
Vi(r)y=r""u[—a—u? ] +rPu [-B+ 1P+ (p— N)r 2|/ P72 (40)

Using Proposition we have gy (r) > 0 for large r. Then

0 < rlu/(r)] < Nu(r) for large r, (41)
so lim ru/(r) =0 and therefore
r——4o00
ngloo V(r)y=0.

Using again inequality 1] we have
V(r)>u(r) (1— NP"'uP2(r)) for large r. (42)

Since 1iIJP u(r) = 0, one has V(r) > 0 for large r.
T—>+00
On the other hand, since lim wu(r) =0, hrf u'(r) =0 and g5 (r) <0 for large r, one
rT—+00

r—+00
has by ,

V'(r) ~ —arP tu(r) — preu/(r) = —BrP"tga(r) > 0 for large r. (43)

+o0 B

But this contradicts the fact that V(r) > 0 for large r and lim V(r) = 0.

r—+00
Case 2: g5 (r) > 0 for large r.
Using equation , we obtain
1p—2, 1\/ / N-1 /1p—2 q—1
(W'[P=2u) (1) = =1/ (r) | B+ —5— /P~ | —u(r) [a +[ul"™"]. (44)

r

Since lim wu(r) =0, lim u'(r) =0 and gs (1) > 0 for large 7, we have

r—+00 r—+00
(Ju'|P~20Y (1) fox —pru/(r) — au(r) = —Bgs (r) <0 for large r. (45)
But this contradicts the fact that v/(r) <0 and lim u/(r) = 0. O

r——4o00
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3 Asymptotic Behavior Near Infinity

In this section, we give explicit equivalents of the strictly positive solutions of the problem
(P) and their derivatives near infinity.

N —
Theorem 3.1 Assume & P < P
B q+l-p p-1
of problem (P). Then

. Let u be a strictly positive solution

ngrnoorfﬂu(r) =I'>0 (46)

and N
lim 75t/ (r) = —T 47
Jim o8 () = T (47)

where
o T [\ HE

I'= N—p—p—l) () . 48
( 2p-1) - (48)

Proof. We consider the following function:

N l\p—2,,/
h(r) = r¥u(r) {ﬂ + W} . (49)
ru
Using equation , we have
n'(r) = <g — N) 2| P2 () — B T (). (50)
The proof will be done in four steps.
Step 1: h(r) o Bre/Bu(r).
We know by Proposition [2.6] that gy (r) > 0 for large r, then using (1)), we get
/ p—1 p—2
0< % < Np_lurip(r) for large 7. (51)

: R ] i
Asp>2and lim wu(r) =0, we get lim ——~—— = 0. Consequently, by (49)), we

r—-+00 r—too  ru(r)
get h(r) ~ Bro/Bu(r).
—+oo
Step 2: liI_P r#u(r) exists and is finite. By Proposition we have for any o > 0,
r—r+00

lim 7% “u(r) = 0. In particular, for

r—-+too
O<U<min<a(q_l),1(a(p—2)+p>><aa (52)
Bq p-1\B B
there exists a constant M > 0 such that
w(r) < M r°~%  for large r. (53)
We have also by ,
[u'(r) [Pt < N Tur i (r) for large r. (54)

rp—1
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Combining and , we obtain

r%_luq(r) < M@= 5+E-1 for large r (55)
and
P ()P < (MNP LB @GP remD=p=l g Jarge 1. (56)

By , and , we get the function r — r% 'u?(r) and the function r —
75 %/ (r)[P~t belong to L'(rg,+00) for any ro > 0; therefore h'(r) € L'(rq,+oc) for
any ro > 0. Hence,

+oo
lim h(r) = h(rg) + / h'(s) ds (57)

r—+00
0
exists and is finite. Then by Step 1, lim 7% u(r) exists and is finite. Let lim r#u(r) =
r—-+4oo r——400
r>ao.

Step 3: lim riu(r) =T >0 and lim r&*u/(r) = T <0.
ep 3: lim r u(r) >0 and lim 75"y (r) 3 <
We argue by contradiction and assume that liI_P réu(r) = 0. Then by the first step,
r—+400

lir+n h(r) = 0. Therefore, using L’Hospital’s rule, we obtain
r—+00

. hI(T) . h(r)
lim ———— = lim — = 0. 58
r—4o00 (T%u(r)) r—+oo p 5 y(r) p (58)

On the other hand, we have

W) =P (V-5 - ). (59)

Let 0 <ec< %, then by Proposition we have g.(r) < 0 for large r, then

[/ (r] > cu(r) for large r. (60)
T
This leads to
T“q(r) 1-p,.p, q+1—p
0< W <c U (T) (61)
q
Since % = q—l—r%—p’ then Tginoo rPudtP(r) = 0, therefore by » TEIJPOO m,g;% =

0. Using the fact that < N and |u/(r)] > 0, we obtain by , R'(r) > 0 for

o !/
large r. Therefore by 1} we have (’I"EU(’I’)> > 0 for large r, but this contradicts
Proposition [2.7, Consequently, HIJP r%u(r) =T > 0. Hence, using L'Hospital’s rule
T—>+00
(because rlﬂloo u(r) = 0), we get

TETOOT%HLLI(T) = ?a TEI_POOT%U(T) = _?OZF <0.
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1 p—1
q+1—p q+1—p
Step4:F(Npa(p1)) (a) .

5 5
By , we have

—B7 gasp(r) = /"7 (r) [ (N —p- %(p - 1)> +
(62)

(p— 1)9;/5(7’) rul(r) 1 .

W) ()

. . _ : 1y i o =
Since TEIJPOO u(r) = 0 and TEIEOO ru’'(r) = 0 (by Step 3), one has TBIJPOO gs(r) = 0.

Therefore, using again Step 3 and L’Hospital’s rule, we obtain

ga(r) gs(r '
s L L o) W (63)
r—+oo u/(1) r—+oo u(r) r—+oo \ f3 u(r)
Moreover, since @ L, we have
Boa+l-p
q _T[eti-p
im0 . (64)
r—+oo |u/|P~2u/ (1) (a>p
B
Suppose by contradiction that
a Tatl-r
Nep= 51— £0 (65)
(5)
Then, according to , and , we have
N2 1 a Te+1-p
—Brgs(r) ~ [W'P72(r) [N=p—2(—1)———=|- (66)
+00 I}

g
This gives gs (r) # 0 for large 7, that is, re u(r) is strictly monotone for large r, but this
contradicts Proposition Consequently,

- (N . % (p_ 1)) q+i-p (g) g+1—-p '

The proof of this theorem is complete. O

The following Figures[I]and [2 describe the strictly positive solution and its comparison
with the function r=/#.
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Figure 1: Strictly positive solution wu. fﬁ%‘f; e 2: Comparison of solution u with

4 Structure of Radial Solutions

In this section, we investigate the structure of the solutions of the problem (P). The
study depends strongly on the sign of N8 — a and the comparison between the three

N —
determining values —, b and b
B aq+1l-p p—1

Theorem 4.1 Assume % > N. Then the solution u of problem (P) changes the
stgn.
Proof. We consider the following function:
p(r) =N PR () + Bru(r). (67)
Therefore by @, we get
¢'(r) = (BN — o)V tu(r) — N Hul T u(r). (68)

Suppose that u(r) > 0 for all r € [0,400). As a > SN, then ¢'(r) < 0. Therefore, as
©(0) = 0, we have ¢(r) < 0 Vr € [0,400). Consequently, the function r — H(r) =

P 2u1€;—?(7’) + B71r7°T is decreasing. Then for any r € [0,400), we have

p

H(r) < H(0) = 2 A5, (69)

When letting » — 400, the term on the left-hand part of the inequality converges to
400, so we reach a contradiction.
Now, let 7o be the first zero of u, then ¢'(r) < 0 for all » € (0,7¢), thus ¢(rg) <
©(0) = 0. Therefore v'(rg) < 0, consequently, u changes the sign. O
The solution that changes the sign is illustrated by Figure

Theorem 4.2 Assume ¢ < N. Then the solution u of problem (P) is not strictly

positive in the following cases:
N —
() — <3

_1 3
(i) ¢g<p—1 and < <

=
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Figure 3: Solution that changes the sign.

o p N-—p
wi) ¢g>p—1 and — < .
(#) 67éq+1—p p—1

Proof. Assume by contradiction that u is strictly positive. The idea is to show that
under this assumption, we have g, /5(r) # 0 for large r in these three cases, which is not
possible by Proposition

Assume that there exists a large ro such that g, /s(ro) = 0, we obtain by ,

—1+(p—1) (Z)p_l x

(p — D' [P=2(r0)ge,5(ro) = rou(ro)

(70)
(5=t-5) o]
Using the fact that TEIEOO u(r) = 0, we have in the cases (i) and (i), g;/ﬁ(ro) < 0.
For the case (iii), we have by Proposition [2.5| and Proposition TEI—‘POO rariru(r) =0

or hT raFip u(r) = 400, then we get g’% (ro) # 0. Therefore, in the three cases, we
T—>+00

have g, /5(r) # 0 for large r, that is, 7*/Pu(r) is strictly monotone for large r. But this
contradicts Proposition 2.7} Consequently, u is not strictly positive in the three cases. O

Theorem 4.3 Assume - < N. Then for any 0 < A < (BN — a)ﬁ, the solution
u(., A) of problem (P) is strictly positive.

Proof. Let ro be the first zero of u, then u(rg) = 0 and u/(rg) < 0. Integrating (9)
on (0,79), we obtain

To

P 120 () = / [(BN — a) — ut="(s)] sN Lus) ds. (71)
0

As u(r) > 0 and v/(r) < 0 on (0,79), then

BN —a—u?(s) >N —a— ATt >0 forany s € (0,70). (72)
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Therefore by (71)), we get u/(rg) > 0, but this contradicts the fact that u'(ro) < 0. Hence
u(., A) is strictly positive. O

B q+l-p p
problem (P) is strictly positive.

N —
Theorem 4.4 Assume a__ P < min ( p, Z) Then the solution u of

Before giving the proof of the theorem, we need the following result.

Proposition 4.1 Let u be a solution of problem (P). Assume that there exists R > 0,
the first zero of u. Then for A > 1 and 0 < v < p, we have

R R
A
/ M/ |VsP L ds < ﬂ/ ! PP ds. (73)
0 P—=7Jo

Proof. By Holder’s inequality, we have

R R 1 R EE
/ urMu/|VsP 7 ds < </ uMTsP1=Y ds) (/ u [ LsP ds) . (74)
0 0 0

On the other hand, using the fact that u(R) = 0, we obtain
R , R
/ (WM sds = —/ w1 ds, (75)
0 0
Therefore

R R
A+7) / WM TPV ds + (p—1— ) / uWMsPTI ds =
0 0

R (76)
- / uM P71 ds,
0
Using the fact that ' < 0 in (0, R), we get
R R
A
/ Mgy g = 20 u/ |ur T 1@ ds. (77)
0 P—7Jo

Applying Holder’s inequality again, we obtain

R Atr [ R T R Ea
/ uMsP T ds < T / M sPIY ds / ! PP ds . (78)
0 P—7 \Jo 0

Therefore,

R 1_ﬁ R ﬁ
/ uMT P17 ds < Aty / w7 sP ds . (79)
0 P—7 \Jo

Combining and , we easily obtain the estimation . This completes the proof
of this proposition. O
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Now we turn to the proof of Theorem [£.4]
Proof. Assume that there exists ro > 0, the first zero of w. Then u(r) > 0
Vr € (0,70, u'(r) <0 ¥r € (0,79) and u'(ro) < 0.

N — N — N

Since P < p’ one has P > —.

%+1—p P P q+1
Let P <6 < —= and we consider the following energy function:

q
_ N(p-—1 I"p 1 q+1 N—1, |, I {p—2, !
Gr)=r" | — P + ——u] + 6 T/ P (80)
P qg+1

Using equation , we get

N — N
G'(r)= ((5 - p) PN P+ ( — 6) N

p q+1 (81)
(a+ B8)rNulu!| — adrN "1u?(r) — BrVFIu2(r).
Integrating the last inequality on (0,rg), we obtain
N — To N T0
Go) = (3-8 ) [T e ase (2 - 6) [Tl as

T0 To T0
+ (a+ 65)/ sNulu'| ds — aé/ sVl (s) ds — B/ sV (s) ds.
0 0 0
With the choice of § and the fact that u > 0 and u’ < 0 on (0,79), we obtain by (82),
T0o T0o
G(ro) < (a+ 56)/ sNulu'| ds — ,3/ sNTLu/2(s) ds. (83)
0 0

According to Proposition we have

To 2 To
/ sNulu'| ds < —/ sV (s) ds. (84)
0 N Jo
Then by and , we see that
2 o
G(ro) < (N(a +36)—p / sV (s) ds. (85)
0
N — N

Since N > p and P < B, one has P < = - %. Again, with the choice of

q+1l—p 2 2

N « L . 2 .
0, we have § < 27 which implies that N(a + B86) — B | <0, that is, G(rg) < 0,
but this contradicts the fact that

-1
G(ro) = Z=20 N (ro)|P > 0.

Consequently, u is strictly positive. This completes the proof. O
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5 Conclusion

In this work, we studied the Cauchy problem (P). We proved the existence of global

o
solutions, we presented their complete classification in the cases — > N and — < N, and

we gave an explicit behavior near infinity of the positive solutions. More precisely, we
have given explicit equivalents to the positive solution u of problem (P) and its negative
derivative u’. The study of asymptotic behavior of positive solutions is carried out in
P — p7 which recalls the form of radial self-similar solutions
g+1—-p p—1
of the parabolic problem (2)) from which the problem (P) is derived.
Asymptotic behavior of positive solutions is ensured by the study of a nonlinear
dynamical system that we obtained by using the logarithmic change

«
the case — =

v(t) = r*Pu(r), r>0andt= Log(r). (86)

This obtained system, which we call (5), is as following:

V() = (0] wt) + o)
w'(t) :—(N—p—%(p—1))w(t)—Oée(er%(H))tv(t)—56(p+%(p_2))tz(f)—|U|q_1”(t)7
where
w(t) = |2[P~22(t) (87)
and o .
2(t) ='(t) — Ev(t) =5t/ (7). (88)

The solution (v,w) of the system (S) satisfies v > 0 and w < 0 (because u > 0 and
p—1
u’ < 0) and tends near infinity to the equilibrium point [ T, — <5F) , where T is

explicitly dependent on p, ¢ and N. Indeed, rewriting the second equation of the system
(S) by using expression (88), we obtain

a ' !
_ B+ EG=2Dty (1) — o (N —p— %(p —1)+ % - Z)U) : (89)

We have by and 7

im Y= 1 950
t—>1—~rpoo w T_}I_Poo(p -1 ' (r) 0 (90)
and ) o+l
) e _ rud(r _Tgq+1-p
til?ooz - rginoo \u’\P_Qu’(r) B (a)pl' (91)
B
Therefore
1 q+1—p
L gtz ) _ a0 T
im —pet o =N-p 5(19 1) (92)
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Recall by Proposition that v(t) is not strictly monotone for large ¢, then since w is
strictly negative, necessarily we have by ,

lim 756(p+%(p—2))t v'(t) =0
t—>+oo w ’

Hence the explicit expression of T' given by (48)).
Finally, using expressions , and , the convergence of the solution (v,w)

p—1
Q@
I‘) ) near infinity is expressed

of the system (S) to the equilibrium point (I‘, — <5

in terms of u and v’ by

. T i
lim reu(r) = (N —p-2 (p— 1)) (a)

r—+00 ﬂ ﬂ
and ) -
N — Fi-p +i-p
o= (rr- o) ™7 (5)
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Abstract: In this paper, we study a model of dynamic von Karman equation coupled
to the thermoelastic equation, with rotational forces and not clamped boundary con-
ditions. Our fundamental goal is to establish the existence as well as the uniqueness
of a weak solution for the so-called global energy. In the end, we display a numerical
simulation.
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1 Introduction

In nonlinear oscillation of elastic plates, a dynamic von Karman equation with rotational
forces, (o > 0) [1], describes the buckling and flexible phenomenon of small nonlinear
vibration of vertical displacement to the elastic plates. In nonlinear thermoelastic plate
interaction, we study in this paper the case when the plate is coupled with thermal
dissipation. From physical point of view, the main peculiarities of the model are the
possibility of large deflections of the plate and small changes of the temperature near the
reference temperature of the plate. As is well-known, the model with clamped boundary
conditions, taking and not taking into account the rotational terms, for displacement u,
the Airy stress function ¢ and the thermal function 6, can be formulated by the following
system, see for instance [1].
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Find (u, ¢,6) € (L*([0,T], (H3(w))?) x H}(w) such that

g — aAugy + A%+ pAb — (¢ + Fo,u) = p(z)  in w x [0,T],
kb; —nAO — pAuy =0 mn wx[0,T],
(Po) § Uy = o, (Ut)),_y = ul, 0),_, = bo m w,
u=0,u=0 on T'x[0,T],
=0 on T,
and
A%+ [u,u] =0 in wx[0,T],
Q)
=0, 0,0=0 on T x[0,77,
where w is the surface plate, ug, u; and 6, are the initial data and [.,.] is the so-called
Monge-Ampere operator defined by [2]
(6, u] = 0110D22u + O11uD22¢ — 2012001 2u. (1)

The parameters p, n are positive and «, k are non negative. The case o > 0 corre-
sponds to the equation with rotational term. But the parameter k has the meaning of
heat /thermal capacity. Now, in the case k = 0 and o = 0, the model (Py) without rota-
tional inertia can be decoupled, if we substitute Af from the second equation, the first
equation becomes just a model of dynamic von Karman equations with internal viscous
damping [1].

The plate is subjected to the internal force Fj and external force pg. In [1], Chueshov
and Lasiecka studied the problem of structural interaction coupled with the von Karman
evolution and established the theoretical result for a strong, generalized and weak solution
by using the theory of nonlinear semi-group, if one chooses 0 < a<land 0 <k <1. To
justify the uniqueness, the authors used the limit definition of a generalized solution along
weak continuity of the nonlinear terms involving the Airy stress function and known Lip
continuity of the von Karman bracket with the Airy stress function.

The aim of this paper is to give a condition verified by the external, internal loads
and the initial datums to have a unique weak solution of the von Karman evolution with
rotational terms and not clamped boundary conditions subject to thermal dissipation
and for all @« > 0, £ > 0 and 0 < p < 7. Our approach is based on an iterative problem
(Py)n>0 whose sequence-solution (ty,, ¢n, 0 )n>0 converges to the unique solution of the
problem under consideration.

This paper is organized as follows. Section 2 is devoted to the description of the
mathematical structure of the model. In Section 3, we use the iterative method for
establishing the uniqueness of weak solution of the associated dynamical plates with
rotational terms, subject to thermal dissipation. In Section 3, we describe the numerical
test.

2 Preliminary Results and Needed Tools

Throughout the following consideration, w denotes a nonempty bounded domain in R?,
with the regular boundary I' = 0w and a > 0, k > 0, 0 < p < 7 are the reals.
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Let p > 1 be a real number and m > 1 be an integer. We denote by |.|,., the classical
norm of LP(w) and by ||.||m.. that of H™(w). For u € H*(w), we set |lu| = |Aula,, for
the sake of simplicity. We also set

W(0,T) = {u, ue L*([0,T],H§(w)),us € L*([0,T], L*(w))},

which is a Hilbert space with the associated norm

1/2
(|u|i2([o,T],Hg(w)) + |ut|2L2([o,T},L2(w))) / :
In this paper, for the sake of simplicity, we denote
el = llell® + @[Vl , + s, - (2)
We recall the following result [3}/4].
Theorem 2.1 Let f € L?(w). Then the following problem:

Av=1f in w,

v =0 on T,
has one and only one solution v € HZ(w) N H*(w) satisfying
[oll < colfly,
for some constant co > 0 depending only on mes(w).
The following remark is of interest.

Remark 2.1 If the function f is in L2([0,7],L*(w)), then the unique solution of
the last problem is in L?( [0,7], H3(w) N H*(w)).

We also need to recall the following result [4}[5].

Theorem 2.2 Let g € L2( [0,T] ,LQ(w)), up € L*(w) and k, n, p are non negative
reals. Then the following problem :

kuy —nAu=pg in wx|[0,T],
(D) Uj,_o = Up mow,
u=0 on T'x[0,T7],

has one and only one solution v € C([0,T]; H*(w) N H}(w)) NC*([0,T]; L?(w)).

Proposition 2.1 Under the assumptions of Theorem[2.9 and if we choose g = —Af,
then the unique solution of the problem (D) satisfies the following inequality:

t t
VO<t<T, kluf2, 47 / V2, < kluolZ, + / VIR, (3)
0 0

where f € H*(w), k>0 and 0 < pu <.
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Proof. Since u is a solution of the problem (D), we have

k d

2 2 1 2 1 2
sl nlvul, = [gu= [ —apu= [ Vrvu< 398, + 5 1vud,.

Now, if we integrate the latter inequality with respect to ¢ > 0, we then deduce, by using
the fact that (u)|,_, = uo in w,

[t=0

k2 ‘ 2 k 2 I ¢ 2 H ‘ 2
Slulotn [ Vol < St + b [ 198+ [ vad,
0 0 0

we have that 0 < p <7, then we conclude that

¢ ¢
2 2 2 2
k‘“|2,w+77/ ‘Vu‘z,w < k‘UO‘z,w“‘M/ |Vf|2,w'
0 0
The following theorem is of interest, see [1].

Theorem 2.3 Assume that for f € L*(w), a > 0 and (ug,u') € HZ(w) x HE(w), the
problem
(1 — al)uy + A%u = f in wx][0,T],

(S) u=0,u=0 on T x[0,T],

— _ 1 .
U~y = U0, (ut)h:o =u m w,

has a unique solution (u,us) € C([0,T ], H3(w) x H}(w)), and the energy equality

Eo(u,ut) = Eo(umul) _|_/O / fut

holds, here
Eo(ug,u') =

N | =

2 2
/(H’U’OH;W + |u1‘2,w +a ’vuwlw)'
Now, let us put
Fi(u,0) = [¢+ Fo,u]. @

Before giving our main result, we now state the following results.

Proposition 2.2 Let (u,v) € (HZ(w))? and Fy € H*(w) be with small norms. Let
¢, € HZ(w) be the solutions of the following two problems:

A% = —[u,u] and A%p = —[v,v].

Then the following estimations:

[u, ¢] = [v, ]|, < cillu—]

B

and
1F1(u, @) = Fr(v, @)l (L2 (wyys < 1 llu—
hold for some 0 < c¢; < 1.
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Proof. Following [1], we have
[ 6] = 0,61 |, < eo(llul
2w
for some ¢y > 0. Let ¢ > 0 be small enough such that ||u|| < ¢ and ||v]| < c¢. We have

| 1w 6] =[] | < 20 fu—vo]

s

and so

IFi(,9) = B0, 0l oy < | 16+ Fooul = o+ Fov]|

W

<| )= lowl|, +|Fou—vl|, .

2w

< (2c0¢® +4 || Folly, ) llu—v.

! L—4|Folly,,
Pl < md0<c<¢&b7

0<c = 26002 +4 ||F0||47w <1,

If we choose

we have

we then conclude the proof. The following proposition is of interest.

Proposition 2.3 Let f € L*([0,T],L*(w)), 6o € H}(w) and (ug,u') € HE(w) x
HY(w). The following problem :

(W) — aA(u)y + A%u+ pAf = f in wxI[0,7T],

kb, — nAf = pAuy, in wx[0,7T],
(S1)

u=0,u=60=0 on T x[0,T],

(U)|t=o = Uo, (Ut)h:o = Ul’ (9)|t=0 =0y in w,

has one and only one solution (u,0) € L*([0,T],H3(w) x H}(w)) and u, €
L2([0,T ], H}(w)) satisfies

t T
2 2
July + k108 +20 [ 1908 < e (ol + a|Val; + ol [3, + Koo+ [ 1BL). )

Proof. For establishing the existence and uniqueness of solution of the problem under
consideration, we will study the problem (S); by considering the n-order approximate
solution and we use the variational problem.

Let { ex, e}, } be a basis in the space Hg(w) x H}(w). We define an n-order Galerkin
approximate solution to the problem (S); with clamped boundary conditions on the
interval [ 0,T ], as a function (u™(t),0™(t)) of the form, see for instance [1,6],

u” = th(t)ek and 0" = Zlk(t)e}€ n=123,..,
k=1 k=1
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where (hi(t),lx(t)) € W21°°(0,T,IR) x WHT°(0,T,IR) and ¢" is determined by u"
according to the problem (Q) and (ung, 0n0), un1 are chosen such that (u,g, 0,0) converges
to (ug, ) in L%([0,T], HZ(w) x H}(w)) and u,; converges to u' in L2([0,T], H (w)).
Let the variational problem of (S); be

/uttut +a/VuttVut /Au"Auf+,u/A9”u?:/fu?
/0?9"—7]/(V€")2 zu/ Aug ™.

Since (uy,0") € Hg(w) x Hj(w) and [ A6™uf = [ 0"Auj, we have

and

ld n n n
i (B + 1P+ a9 )+ [ 0oy = [ pug.

and

oy "+ 0V = [ ama.

Hence

d n n n n n
i (8 B 1P 0V )+ 510" B o+ VOB = [ g

Now, if we integrate the latter inequality with respect to ¢ > 0, with and by using

the fact that Uji_g = Uno, (uf)jt=0 = un1 and 9|t o = Ono, we deduce that

t
Sl 0B [ 190" = S B+ Vun B + ol + 100+ [ [

And for all 0 < s < ¢,
2 ! 2 2 2 2 2 r 2
||un||a+k|9n|2,w+2n/ |V9n|27w < ‘un1|2,w+a|vun1|2,w+”un0H +k ‘9n0|2,w+/ ‘f|2,w
0 0

t s
[ (el koo [ 1veBL) @
0 0

For any 0 < s < t, we put
n 2 *opn2
1) = "l + 107+ 20 1907
The inequality @ yields

s T
e (16)~ [ 10)a0) < e (Juml3o+a [ Vun b+ funal + kiouol3 + [ 175 )
0 0

Now, we have
4 (e_s I I(a)da> =e*I(s)—e* [ I(o)do =e* (I(s) - I(a)da),

— 2 2 2 2 T 2
e (T3 + @ [Vum 3 o + llunoll® + K [0uol3  + o 1715 ),
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and

T T
2 2 2 2 2 2
a2, + 0 [t 2, + lanoll? + & o2, + / 12, = 1(0) + / I

does not depend on s, then

t d s t
[ 5 [ 1@do)as < ([ e i)l + alVumlie + funal® + k16l .
o @s 0 0

+ [ k)

from which we deduce

t T
eft/ I(o)do < (1 — e*t)<|un1|§7w + |Vun1|;w + [Junol® + & |9n0‘§,w +/ |f|§w)
0 0

Since . . .
/ (lanl, + E[0"2, + 20 / von2,) = / I(0)do,
0 0 0

it follows that

-t
(a-e) (|un1|§’w + o [Vun

fot I(o)do

IN

2 2 2 T 2

2 o lunoll® + K [Bol2, + Jif 112, ),
T

< (et = 1) (unt o, + @ [ Va3 + linol® + E 100l + fo 175 )

< (€ = ) Jum 3, + 0 [V 3, + lwnol* + k10n0l3,, + Jy 1515, ):
This, with (6, yields
lunll + k1073, + 20 f3 19073, < (lunal3, + a|Vunal3, + lunol® + k10nol3 , + fo' 1713,
+(eT = 1) (lun1l3, + & |Vunal3, + lunol® + K 10nol3 o, + fo 17130,

T
< T (funtl3 o + @ [Vun1l3 o + lunol® + kl0nol3 o, + Jo 113, )-

This estimate implies that there exists a subsequence (u™, ™) such that
(u™,0™) — (u,0) weakly in HZ(w) x L*(w)) and ((u™);, V™) — ((u)s, VO) weakly in
H}(w) x L*(w).

For showing that (u, 6) is a weak solution of the problem (S);, we use the same method
as in [6]. Let ¢; € C*(0,T), 1 < j < jo, such that ¢;(T) = 0 and

Jo Jo
V=) ¢i®e p=) ¢;®e
=1 =1

After the variational problem, we have

T T T T
—/ /u;‘lwt+a/ /vugﬂwt+p/ /venlvw+/ /Au”lmp
0 w 0 w 0 w 0 w
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:/[)T/Uwa—/uunll¢(O)—a/quanl/)(O) (7)

T
f/ (/ Onl<;0t+77/ VG”leofu/ Vu"leot) =7/ 9nzo<p(0)+u/ Vuni1Ve(0).  (8)
0 w w w w

w

and

Now, we can pass to the limit nl — 4oo0, in and (8), we find that for all
¢ € L*[0,T],H§(w)), ¢ € L*([0,T],H'(w)), ¢ € L*([0,T],Hj(w)) and ¢; €
L2([0,T], L*(w)) such that ¢(T) = »(T) = 0. We deduce that

- Lwera [ [wuwicen [ [wowe [ f s
:/OT/wfw_/wulzp(o)—a/qulvw(O)

_/()T(/wecpt—i-n/u)V@ch—u/quV%) :_/w%(p(o)+“/wvulv"0(0)'

This shows that (u,6) is a weak solution of the problem (S);, by the some method as in
the last proof, we deduce the following inequality:

and

2 T 2
2 4 / ).

For the uniqueness, let (u1,6;) and (ug,602) be two solutions. We use a similar proof
as that of inequality , for the solution (u; — ug, 81 — 602) of the following problem:

t
2 2 2 2 2
||U|\a+k|9|z,w+277/0 Vol;,, < GT(|U1|2)W+Q|Vu1|27w+||uo|| +k 6o

(1 — aA)(uy — ug)y + A%(ug —ug) + pAl; —6) =0  in wx[0,7T],
k‘(01 — eg)t — 77A(91 — 92) = uA(ul - UQ)t mn w X [O,T] s

91792:U17’UJ2:8U(U17U2):0 on FX[O,T},

(u1 —u2)j,_o =0, ((u1 —u2)t)|,., =0,(01 —02),_, =0 in w,

it follows that
t
2
lur — usll, + k|61 — 62|53, + 21 / V(01— 02)]5, < €T (|(ur)" — (ua2)'],
; ,

() — (uz)oll® +a [V((ur) = ()5, + k1020 — (O2)ol2,).

Then u; = us and 6; = #3. The proof of the proposition is completed.

3 Iterative Approach: The Main Results

For establishing the existence and uniqueness of solution of the problem (Py) in the case
of rotational terms a > 0, we use the following iterative approach.
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Let n > 2 and let 0 # u; € HZ(w) be given. We first find ¢,,_1 € H3(w) as the
solution of the equation A%¢, 1 = — [un_1,un_1] and (un,0,) as the solution of the
following problem:

(un)tt - aA(un)tt + Azun - F(Un71,¢n7179n) m w X [OvT] )
k(0n): — nA6, = uA(un): n wx[0,7T],
(Py)
Up = Oy =0, =0 on T x[0,T],
(Un),—o = U0, (Un)e)],—g = u"s (0n)},_, = o in w,
where

F(u7¢a9) = Fl(u7¢) _MA9+pa

and F} is defined by .
We are now in a position to state our main result of this section.

Theorem 3.1 Let p € L*(w), (ug,u') € H(w) x Hi(w) and Oy € H}(w). Assume
that all the following quantities:

2 2 2 2
1Folly s [Pl luoll® + [ul[5, + o[ Vull, and [0,

are small with 0 < p < 7. Then the problem (Py) with rotational forces has one and
only one weak solution (u,¢,0) in L?([0,T], H3(w) x HE(w) x Hj(w)) such that u; €
L*([0,T), Hg(w)) and uy € L*([0,T], L*(w)).

Proof. We divide the proof into four steps.
Step 1: Let us consider the problem (IP,,), where 0 # u; does not depend on ¢.
Throughout this proof, we use the notation

t
1w O)I1, = llull, + k1612, + 21 / w2,

where ||.||, is defined by (2)). According to Proposition 2.2 and Theorem [2.1] there exists
a constant ¢o > 0. Now, for || Fof,,, < 1, we can choose ¢ := c(|[Folly,, > co, T') > 0 such

that
1—4|Folly,,
0<dcpe< 1, 0<ec< e and |[juifl,y, <c <1
Co ’

By a mathematical induction on n > 1, we will prove that the following two inequalities:
2 2 2 2
lullg = llunll”™ + alV(un)dly, + [(un)ils < lurllz,, and flonlly,, < lluall,
hold for all n > 1 and any 0 < ¢ < T. For n = 1, we have
2 2 2
utlly = lluall™ + [(ua)elz, = llurllz,

since u; does not depend on t. Otherwise, for ¢; being the solution of the problem
A%¢y = —[uy,uy |, Theorem ensures that there exists cg > 0 such that

D1l < o[ ur,un ]l s
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using the proof of Proposition with [lully,, < ¢ and 0 < 4cpe < 1, we can deduce
that
2
H¢1H2,w S 400 Hu1H2,w S 4COC||U1H2,W S ||u1||2,w :

The desired inequalities are true for n = 1.
Suppose that for K =2,...,n and 0 <t < T, we have

2
lurlly < llurllz,, and [[drlly e < llually, -
According to Proposition [2.2] and Theorem we have
16nllo. < colluns tn ]Iy, < 4eo [lunl® < deoelunll < e lfunl]-

Since up+1 is a solution of (P,4+1), Proposition Proposition and Theorem [2.1
imply that there exists 0 < ¢; = 2¢oc? + 4 [ Foll4,, <1 such that

2 2 2 2 T
(s, Oni1)ll, < €7 luoll® + o [Vul [, +Eboly, + [u' 5, + Jo (IF1(ns $0)ll (1202
2 2 2 2 T 2
+2)* < €7 (luol* +a [Vul [y, + k160f3, + [t +2 Jy (1Fs (s )52y

2 2 2 2 2 T 2 2
1o ) < P luoll® + o[V fs |+ 100l + [l 5, +2 i & llunll® + 27 o3,

< e (fuoll* + o |Vl s, + |5 + K00l +2 fy e llunll® + 27 |pl3 ),

< e (fuol* + o |Vl +ul]s 4 k10013, + 2 fy cr(lunl® +2T|pl3,),

< e (luoll* + o |Vl s +[ul]5, + Klfol3,, + 2T [[ul]]5, +2T |pl3 ).
If we choose ¢ > 0 sufficiently small, then 0 < ¢; < 1, 0 < ¢p := 2eT¢; < 1, and we have
1, Ong)l. < € (fuol® + o[ Va5 + [ul |5 +k160[3, + 2T [pl3,,) + e w3,
and we can choose

2 2 2 2 2 (1—c2)
lluo|l* + a |Vu1’27w + ’“1|2,w +2T |pl;,, + K 10ol5,, < — |

2
|U1 ||2,w .
‘We have

2 2 2
[untilla = lluntall” + @[V (uni1)ily o, + [(Uni1)ily o < l(unta; Onia)l,

and
||¢n||2w <a ||Un||2w < ||u1||2,w'

It follows that

2 2 2 2 2 2
||un+1||a S eT(HuO” +a |V’u‘1|2,w + |’U,1|27w + k |00‘2,w + 2T |p|2,w> +c2 ||u1H2,w ’

1— 2 2 ;
< T U ull3 , + 2l = Nl -
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Further, we have
[Pn+1llaw < coll Unt1s unt ]|,

which, with [lu1]], , < ¢ and 0 < 4coe < 1, immediately yields
2 2
[ént1llg, < 4co lunall” < deo fJully,, < dcocurlly,, < llullyy, -
Summarizing, we have proved that, for all n > 1 and any V0 < ¢ < T, we have

2
lunlly < lluallz,, and (nlly, < [lullyy, -
Moreover, we have
2 k 2 2
B10ul3+ 20 [ 1900 <m0, <
Step 2: For n > 2, let uy,, 6, be the solution of (P,).

Let 2 < m < n, then it is easy to see that 6,, — 0,, and u,, — u,, are solutions of the
following problem:

(1= ad)(un = um)i + A2 (un — tm) + pA(On — Om) = Fi (un—1, ¢n-1)

—Fi(um—1, pm-1) in wx[0,T],
k((0n)t — (6m)t) = nA(On — Om) = pA((un)r — (un)t) in wx[0,77],
Un — Um = O — O = By (Un — tum) = 0 on T x[0,T],
(un —um),_y = ((un)t = (Um)t)|,_o = ((On)t = (Om)¢),_, =0 in w.

According to Proposition [2.2] and Theorem [2.1] we deduce, for all 0 < ¢ < T,
1(@n—1 = ¢m-1)lla,, < 4cocftin-1 — tm—1]l.
Using Proposition and Proposition again we have, with 0 < ¢z = Tel¢; < 1,

T
||(Un — Um, gn - om)H* § eT fO |F1(un—1> (ybn—l) - Fl(um—la ¢M—1)|?L2(w))2 9

<eT [ e un—1 — uml-
It follows that

[t =0l < €3 fy l(Un—1 — wm—1,0n-1 — Om—1)|.,
< (e3)™ 2 fy o Jy (Mttn-msz = 01,02 = 01,
< (es)™ 2 [ fy SR )k Sy e Sy Nz —urf2—01)]],
m—2 [t n m+1 k
< (e3) fo fo (e3) fo fo (H u2792

(001 ) < (o)™ 2 SR e T) (23,
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and
T e
Jo N =ty 0 = 0)[1 < TesT)™ =2 3025 (esT)R(2 [ [f3.,)-
And so we have
pn — ¢m||27w < deoc ||un — um|| -

The sequence (U, dn—1)n>2 is a Cauchy sequence in H(w) x HZ(w) and (up)n>2
is also a Cauchy sequence in W(0,T). It follows that (u,,¢,—1) converges to
(u,¢) in HE(w) x HZ(w), (un); converges to (u); in L?(w) and V(uy,); converges to
Vug in L?(w). We then have A% (u,,, ¢,,—1) weakly converges to A%(u, ¢) in L?(w) x L?(w).

Step 3: Using the inequality 7 we have

t t
Blons = Ol + 0 [ 1900s =00 < 0 (Vs = il
0 0

We deduce that 6, is a Cauchy sequence in L?([0,T], H}(w)), then 6,, converges to 6 in
L3([0,T], H}(w)). By Proposition we have Fy(up—1,dn—1) converges to Fi(u,d) in
(L?(w))?.
Since the operator "trace” is continuous, for all n >
(auunvaud)nfl) (0 0) and so (u ¢)F = (a u aud)) ( 0)
Thanks to Theorem [2.3 -, we have (un,(un):) € C([0,

2, we have (Up,dn_1)r =

T), Hy(w) x Hi(w)) with
(un),o = w0, ((un)i),_y = w1, which implies that (u),_, = uo, ((v)¢)},_, = u'. By
the assumption (ug,u') € HZ(w) x H}(w), we have u,, € C°([0,T], H3(w)) and (uy,)n>2
converges to w in W(0,T). -
Let v € L?([0,7], HZ(w)) be such that v, € L2([0,T], L*(w)), (1 — al)vy + A?v €
L*([0,T), H *(w)), v(z1,22,T) = 0 and vy(z1,22,T) = 0. Since u,, is a solution of
(P,), by virtue of the transposition theorem, see [4], we deduce that

/OT/wun((l—aA)vtt—kA%) — /OT/UJF(unl,qsnhgn1)U+/0Julv(0)_/wuovt(0)+

a/(—V(ut)n(T)Vv(T) + Vu'Vo(0)) —I—a/(Vun(T)Vvt(T) — VgV (0)).

We have u,, converges to u in H2(w), then

T T
/ / U (1 — @A)y + A2v) converges to / / u((1 — al)vy + sz)’
0 w 0 w

and using Proposition with

/OT/MF(U,(/Z@):/OT/wF1(u,¢,9)+M/OT/wv9vu+p’

we deduce that

T T
/ /F(un_l,d)n_l,ﬁn_l)v converges to / /F(u,d),@)v,
0 w 0 w
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and so we have

/OT/wu((l—aA)vtt—i-A%) :/OT/WF(u,gb,H)v—i—/wulu(o)_/wuovt(o)_i_

a/(—Vut(T)Vv(T) + Vu'Vo(0)) + a/(Vu(T)Vvt(T) — VugVue(0)).

By the transposition theorem, we obtained that u is a solution of the problem (S);.
In summary, we have proved that (u,¢,8) is a solution of the thermoelastic von
Karman evolution.

Step 4: We now prove the uniqueness. Assume that there exist two solutions
(ul, ¢, 0Y) and (u?,¢2,62) in L?([0,T], H(w) x HZ(w) x H}(w)) such that, for some

¢ > 0 being sufficiently small, we have ||u1||W(0 o) S cand Hu2||W(0 w SC

This implies that u! — u? and (§' — 62) satisfies the following problem:

(1 —aA)(ut —u?)y + A2(ul —u?) = F(ul, ¢, 0%)
—F(u?,¢2,6%) in wx[0,T],
k(0' — 6%), — nA(0' — 0%) = pA(ut — u?), in wx|[0,7T],
(P3) ut —u? =0, (ul —u?)=0'-0>=0 on T x[0,7T],
ul (21, 12,0) — u?(z1,22,0) =0 mo w,
(u')¢ (21, 22,0) — (u?)(21,22,0) =0 in w,
(0")e(1,22,0) = (0%)¢(21,22,0) = 0 in w,

which means that (u! — u? 6 — 6?) is a solution of the problem (P3). Proposition
Proposition [2.3] and Theorem ensure that there exists ¢y > 0 such that

T
||(u1 - u2, 91 - 92)}’* S ET/ |F1(Ula ¢)1) - Fl(u27 ¢2)|?L2(w))2
0

T ) T
< eT/ 1 ||u1 — u2H < eTcl/ H(ul —u?, 0 — 92)”* .
0 0

Since ¢ is small and thus 0 < ¢3 = Tel¢y < 1, it follows that

T T
|t =t o), < [ =0 0]
0 0

which, with 0 < ¢z < 1, immediately yields V0 < ¢ < T, u! = u? in w, ¢' = ¢? in w and
0' = 0% in w.

We conclude that the dynamic von Karman equation coupled with thermal dis-
sipation, without rotational inertia, has one and only one weak solution (u,¢,6) in

L2([0,T], Hi(w) x HE(w) x H} (w)) The proof of the theorem is completed.
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Proposition 3.1 Let (u,¢,0) € L*([0,T], H§(w) x H§(w) X Hé(w)) be the unique
solution of (Py). Then the following equalities:

k t ~ k
E(u(t), u(t),¢) + B} |9|g,w - 77/ |V9t|g,w = i (ug, u', ¢o) + ) |90|§,w ;
0

with
~ o 1 2 2 2 1 2
B(u(t),u(0),0) = 5 (lul + Nl + o Va3, ) + 7 | (186 = 2[u, FoJu — 4pu)
and

1

~ 1 2 2
Ev(uo,u',60) = 5 ([u'ly, +a|Vully + luoll.,) + /(|A¢0\2 — 2[uo, Fo] uo — 4puo)
w

4
hold for any 0 < t < T. Here ¢g € HZ(w) is the unique solution of the equation
A¢g = — [ug, U]

Proof. According to Theorem for any VO < t < T, u satisfies the following
energy equality:

&wmmmzamMM+A/Fw¢wﬁ

¢ ¢ ¢
:EO(U07U1)+/ /[U»¢+F0]Ut—#/ /A9Ut+/ /P(xhxz)ut~
0 w 0 w 0 w

First we have
t
/ /p($17932)ut :/P(ﬂﬂh%)u(t)*/P(xl,xz)uu
0 w w w

Otherwise, see [1], one has, with A%¢ = [u, u],

[ [ worriu=[ [wous [ [wria
] Ao [ ] A rin,

1 1 1 1
:_Z/w|A¢‘2+1/&;|A¢0‘2+§/w[u’u]F _§L[UOvu0]FO

and

t t k/’ td 5 t 5
u/ /Aeut:u/ /HAut:f/ —|9|2_w—77/ Vol
0 Juw 0 Juw 2 )y dt = 0 ’

k 2 k 2 t 2
=fW|w—fwaw—n/vaw-
2 2, 2 2, 0 2,
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Finally, we conclude that

k ¢ ~ k
E(u(t), w(t),d) + 5 |9|§7w - 77/ |V9t|;w = Ey(ug, u', ¢o) + 3 |90|§,w :
0

Remark 3.1 In this section, we described an iterative method for constructing a
unique weak solution, this method is a very good tool to illustrate this solution from a
numerical point of view.

4 Numerical Application

This section displays a numerical resolution in terms of the previous theoretical study.

4.1 Preliminaries

Let w be defined by
w =]0,1[x]0, 1[C R?

and T' > 0. In order to solve numerically the problem (Py), we introduce a uniform mesh
of width h. Let wp be the set of all mesh points inside w with the internal points
. . . 1 A 1
x; =th, y; =jh, i,7=1,.N—1, h:m, t:T.

Let @y, be the set of boundary mesh points and u;, be the finite-difference approximation
of w. In [7], Bilbao presented a numerical study of the convergence and stability of the
conservative finite difference schemes for the dynamic von Karman plate equations via
energy conserving methods.

For approaching the weak unique solution of the dynamic nonlinear plate coupled
with structural acoustic model, we will utilize the following discrete model of the von
Karman evolution developed by Bilbao and Pereira in [7}§]:

(1 — (62 4 02))07uiy + (07 + 02)07 + Ajury = [ iy v + Fij 1+ pij in - wn,

k6,075 — n(02 + 62)075 — pd (67 + 0z )uiy = 0 in  wp,

A%L’U;(Lj =—| Ui ug ] n wp,
(*) 0 0 0 .

uy; = (0)izy Oruiy = (¢1)ij, 055 = (00)i; in o wp,

u%:v%:@?j:O on Wy,

8Vu% = 8yvfj =0 on Wy,

with the following discrete differential operators:
+1 -1
521,6747'4 — U’Z B 2u:LJ + UZ
£y (At)? ’
=

At

no o _
6tuij —
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2 —4
Apuiy = h77 [uij—2 + Uijp2 + Uimgj + Uig2j — 8(Usj—1 + Uijp1 + Ui—1j + Uit1j)

+ 2(wi—1j—1 + Uim1j41 + Wir1j—1 + Uig1j41) — 20w ],

n n n
Uiy1; — 2uij T Uy

82y =
x ) (h)2 )
n n n
Sl — Uhiq —2u +ugh g
yhij (h)2 J
n n n n
52 g = Yt T i1 Yis1ye Uy
xyij (2h)2 )
n nil_ 2. ng2 . n 2 ng2 n 2 n g2 n
[uij, o 1= 0w 0, v — 205, it oz, vk + 0y uik 050

We have transformed the above problem to the numerical resolution in two steps itemized
as follows.
First step: We use the numerical procedure of 13-point formula of finite difference de-
veloped by Gubta in [9] for illustrating the weak solution of the following biharmonic
problem:

Av=1f in w,

V= on T,

d,v = go on T.

Second step: According to the first and second steps, we use the discrete model of the
von Karman evolution (k) for illustrating the unique solution of the structural interaction
model coupled with the dynamic von Karman evolution.

4.2 Non-coupled approach

In [9], Gubta presented a numerical analysis of the finite-difference method for solving
the biharmonic equation. Such method is known as the non-coupled method of 13-point
formula of finite difference.

Proposition 4.1 [J§] The 13-point approxzimation of the biharmonic equation for
approaching the unique solution v of the problem (P) is defined by

Lpvij = h™* [vij—g + vijy2 + vimgj + vigas — 8(vij—1 + Vijr1 + vie1j + Vig1s)
(1)
+2(Vim1j—1 F Vic1j41 + Vig1j—1 F Vig1j41) — 20055] = fi(@i, y;)

fori,j=1,2,..,N —1, where we set v;j = v(Z;,Y;)-

When the mesh point (z;,y;) is adjacent to the boundary @p, then the undefined
values of vy, are conventionally calculated by the following approximation of 0, v:

1 3 %)

Vi—2,5 = 35Vit+1,j5 Vij o Vi—1,5 h( mv)i—l,ja
1 3

Vij—2 = 5V j+1 — Vij + SVij—1 — h(ayv)i,j 1,
1 3

Vi+2,j = 5Vi+1,5 — Vij + 5Vi—1,5 — h(arv)i-i-l,ja

_ 1 3
Vijy2 = 3Vijr1 — Vij + 50i5-1 = h(Oyv)i 1.
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4.3 Numerical test

We consider the following analytical body force and lateral forces:

2

Fo(z,y) = ye"”z_yz, p(z,y) = 0.01z(x — y)e"”z_y ,

w0 = 1510 %22 (x —y — 1)%(y — l)ze*mzfyz, 1 = 1510~ % (sin(7x) sin(7y))?,

0o = 1073223 (x — 1)%(y — 1)2(67362 — e*y2).

Figure 1: The thermal function 6, t; = 0.2s and t7 = 60s.

5 Conclusion

In this paper, we described an iterative method for constructing a unique weak solution
to the model of dynamic von Karman equations with a flexible phenomenon of small
nonlinear vibration of displacement in nonlinear oscillation of elastic plate, with rota-
tional terms and not clamped boundary conditions subject to thermal dissipation. Our
approach is in fact a good tool for justifying the theoretical results. We then use the
method of finite difference for approaching the unique solution of the theoretical prob-
lem. These results have potential for application in the fields of physics. Similar study
for the models of dynamic von Karman equations with thermal dissipation and for free
boundary conditions of the shell could be the purpose for future research.

Figure 2: Displacement of plate, ¢t; = 0.2s and t7 = 60s.
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Figure 3: The Airy stress function, t; = 0.2s and ts = 32s.
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Abstract: Indonesia has tropical climate so that many crops can be harvested. One
of agricultural problems is the agricultural pest (Nilaparvata lugens) in a rice field.
This pest can be devastated by the natural predator spider (Lycosa pseudoannulata).
To reduce the number of pests, we use pesticide as a control which is applied in
the pest population. For the problem, we can construct the model as a predator-
prey model with the pest as the prey and the spider as the natural predator. This
paper discusses stability analysis and optimal control of the agricultural pest growth
dynamical model by pesticide. In the agricultural pest dynamical model, there are
populations of pests and spiders. From the mathematical model of agricultural pest
growth, we obtain three equilibrium points. We will analyze the stability of each
equilibrium point by using the eigenvalue. In this paper, for the original mathematical
model of agricultural pest growth, we will introduce a control variable, i.e., pesticide.
Then we will formulate an optimal control problem. The forward-backward sweep
method is employed to solve the optimal control problem and to obtain the numerical
solutions. According to simulation results, pesticide usage can minimize the number
of pests achieving the minimum performance index.
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1 Introduction

Indonesia has a tropical climate so that many crops can be harvested. Indonesia has
large fertile lands for rice fields and rice is one of the primary foods in Indonesia. One
of agricultural problems is the agricultural pest (Nilaparvata lugens) in the rice field.
This pest can be devastated by using the natural predator such as the spider (Lycosa
pseudoannulata).

The behavior of the agricultural pest and the natural predator can be constructed
as a predator-prey mathematical model. In a predator-prey model, there are pest and
predator populations. The pest is the attacking organism damaging crops, while the
predator is the eating organism consuming the pest [1]. In this research, the agricultural
pest (Nilaparvata lugens) and the natural predator spider (Lycosa pseudoannulata) will
be included.

In the previous research, there were numerous works on modelling of diseases, for
example, influenza 23], bird flu [4], dengue fever [5]/6], cancer |7] and Corona virus [g].
Generally, the mathematical model of spreading diseases divides the population into
several subpopulations such as the susceptible population, infected population, and re-
covered population [9H11]. For the three subpopulations, we can determine the reproduc-
tion number and the stability by using the available parameters. Let us mention that the
predator-prey model has been used for determining the stability in the case of natural
selection [12].

In order to reduce the number of pests, we use pesticide as a control variable which is
applied in the pest population. However, the usage of pesticide should be proportional.
Using more pesticide causes side effects on crops and high cost of pesticide. On the
other hand, using less pesticide causes pest growth. For the problem, we can construct
a predator-prey model with the pest as the prey and the spider as the natural predator.
This paper focuses on the stability analysis and optimal control of the agricultural pest
growth dynamical model by using pesticide as the control variable.

In the agricultural pest dynamical model, there are two subpopulations: pest and
spider. From the mathematical model of agricultural pest growth, we obtain three equi-
librium points. We will analyze the stability of each equilibrium point by using the
eigenvalue. The first equilibrium point is unstable, whereas the second and third equilib-
riums are stable, which depends on certain conditions. From the preceding mathematical
model of agricultural pest growth, we introduce a control variable that represents pes-
ticide. Next, we formulate an optimal control problem: the objective function and the
constraints. We use the forward-backward sweep method to obtain the solution of the
optimal control problem and to compute the numerical solutions. This method leverages
the state variables with certain initial condition and adjoint variables with certain final
condition [13]. According to the simulation results, pesticide usage can minimize the
number of pests achieving the minimum performance index.

2 Mathematical Model of Agricultural Pest Growth

In the mathematical model of agricultural pest growth, there are two populations used,
namely, the agricultural pest (Nilaparvata lugens) as the prey and the spider (Lycosa
pseudoannulata) as the natural predator. This model can be constructed as a predator-
prey model.
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2.1 Mathematical model
The mathematical model of agricultural pest growth with the functional response of

SP
Holling i and the denominator being a constant value, can be constructed as follows

a+ 0
(1]:
- S ~vSP
S=rS{l1—-—=] - 1
r ( K) e 1)
. aySP
P= — 0P 2
a+ Sy @)
with the following parameters:
S(t) : the population of the pest (Nilaparvata lugens) as the prey,
P(t) : the population of the spider (Lycosa pseudoannulata) as the natural predator,

r intrinsic rate of growth of the pest as the prey,

K : environmental carrying capacity of the pest as the prey population,
5y : search rate of the pest as the prey by the predator,

@ :  conversion factors,

6 natural death rate of predators,

a : half saturation constant.

From the model, we conclude the following conditions. Without the existence of
predators, the pest as the prey grows based on the logistic function, and without the
existence of the pest as the prey, the predators go away. Based on the natural selection,
the existence of the pest as the prey will increase the predator, and the existence of
predators will decrease the pest as the prey.

2.2 Existence of solutions

The solutions of this problem exist if the populations of predators and preys are greater
than or equal to zero, i.e., S(t) > 0, P(¢t) > 0. As it will be clear later, the equilibrium
points must satisfy these conditions [14].

2.3 Equilibrium points

In order to compute the equilibrium points, we find the solutions of S = 0, P = 0 as

follows:
S vSP
1 - — =
rS( K) PR 0, (3)
avySP
—dP =0. 4
a+ Sy 0 @

By using simple algebraic manipulations, from and , we obtain the following equi-
librium points:

1. Equilibrium point 1 : Se; =0, P.; = 0;
2. Equilibrium point 2 : S.s = K, P,y = 0;
5(& + So)

(a+ So)r(ayK —d(a+ Sp))

ay?K '
Next, we analyze the stability of each equilibrium point by using the eigenvalue method
of the Jacobian matrix.

3. Equilibrium point 3 : S5 = , Peg =



284 T. HERLAMBANG, A.Y.P. ASIH, D. RAHMALIA, D. ADZKIYA AND N. AINI

2.4 Stability analysis

First of all, we derive the Jacobian matrix from and . In order to simplify the
notations in the Jacobian matrix, we introduce

B S vSP
fi TS(lK) b —eul,
aySP
= —0P.
f2 a+ Soy
Then the Jacobian matrix is
8f1 6f1 r ~yP rYS
Jn o dn —9(—)8 — _
95 P ARSI TS Tav s,
Jac = = . (5)
of, 0f: P @S
oS oOP a+ So a+ Sy

In order to analyze the stability, we compute the eigenvalue of the Jacobian matrix by
using the formula det(A — Jac) = 0 after substituting the equilibrium points. The
equilibrium point is stable if the real parts of all eigenvalues are negative. Based on
these conditions, we can conclude that

1. Equilibrium point 1 : Se; = 0, P.; = 0 is always unstable;

K
2. Equilibrium point 2 : Ses = 0, P.o = 0 is stable if ﬁ <1
6 S S K—-9§ S
3. Equilibrium point 3 : Sg3 = M, P.s = (a + So)r(ay 5 (a+ 50)) is
ary avtK
. ayK
table if ——— > 1.
AP 5@+ So)

3 Optimal Control of Agriculture Pest Growth

In the optimal control of agricultural pest growth, we introduce a control variable u. The
control variable is used to reduce the number of pests. The effectiveness range of the
control variable u lies in the interval [0, 1], where the value of 0 represents the failure
of control functions or the control functions are not to be applied, and the value of 1
represents the successful control functions or the control functions are applied to the
entire population. Therefore, after introducing the control variable u, the mathematical

model in and becomes @ and , respectively.

. S vSP
= 1 _— — J— _
S rS( K) P eus, (6)
avySP
= — 0P
a—+ SO (7)

with € being the rate of reducing the pest as the prey due to pesticide.
Now, we formulate an optimal control problem. First, we define an objective function.
The objective function is minimizing the number of pests and the cost of pesticides. As
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such, the objective function is defined as follows:

0
J:/ (A8 + Agu?) dt, 8)
T

where the weights A; > 0, Ay > 0 are associated with the number of pests as the prey
and the cost of pesticides, respectively. The solution is an optimal control u*.

3.1 Pontryagin’s maximum principle

If u is an optimal control associated with the state of the system, then there exist adjoint
variables (As Ap) that satisfy the following conditions [10]:

. H P 2 P

oS K a+ Sp K a+ Sy
ayP
Y 9
P (a + So) ( )
: 0H ~vS ayS
=———=-)Ag | — - A — 1
AP = 5P S( a+So> P<a+SO 5) (10)
As(T) = Ap(T) =0, (11)
where the Hamiltonian is
S vSP
12— _
rS ( K) a5 eusS
H=A;S + Ayu? + ()\5 )\p) . (12)
aySP
— 0P
a+ Sy
An optimal control u* is obtained as follows:
OH
el 13
ou 0 (13)
2Au + Ag(—eS) = 0, (14)
. )\S &S
u = min (1,max (0, 2142)) . (15)

3.2 Forward-backward sweep method

In order to compute the optimal control, we use the forward-backward sweep method.
When we apply the method to the optimal control problem of agricultural pest growth,
the steps are as follows [15]. Notice that the state and adjoint variables are

S\ ~SP
= 1—7 J— J—
h ’"S( K) At g, T
avySP
- _ P
f2 a+ So ’

2r vP ayP
= —A — _ — — — —
9 1o As (’” K a+ So 5“) Ap <a+50)’

vS avyS
=—-)ds|— - A -6 .
92 S( a+50> P(a+50 )
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Next, we describe the forward-backward sweep method. The method is written as an
algorithm so that we can implement the method easily. Here is the complete algorithm:

Uold = U

1. Calculate the solution of state variables, where the initial conditions are Sp, Py,
by using the Runge-Kutta fourth-order method. For the agricultural pest growth
model, the steps are

ki = f1 (Siapmui),
kl? - f2 (527 PZ7uZ) )
h h U; + Uy
ka1 = f1 <51'+2k11,Pi+ 21612, +1>
h h u; + U
koo = fo <Si+2k117pi+ 2k12, +1>
h h u; + U
k31 = fi <5i+2k217pi+2k‘22’ +1>
h h Ui + U
k32 = fa (Si + *k217Pi + k’227 H)
kyy = f1(Si + hks1, P + hk327uz+1)
kaz = fo (Si + hksi, P; + hksa, wiy1) ,
h
Sit1 =5 + (/611 + 2ko1 + 2ks1 + ka1) ,

h
Py =P+ 5 (k12 + 2koo + 2k3o + ka2) -

2. Calculate the solution of adjoint variables, where the final conditions are
AN(T)> AP(T), by using the Runge-Kutta fourth-order method as follows:

lll =01 ()‘S '),AP '),Si,Pi,Ui),

l12_g2( )7AP()7SMP1’UZ)’
h Sl+Sllp+PZfl U1+U11
lor = ¢ <)\S(z Sl Ape) — ghe, —— >
A hl A hl Sz'—FSilP—FPZ—l UZ—FUZl
@) ~ gl Are) — Fhe, 5 5
h h S; + Si_1 Pi-‘rP?:—l ul—&—uzl
ls1 =g <)\S(z 21217)\P( 2122, 5 5
h h S; +.5;_ P+Pz—1 ul—&—uz
ls2 = g2 | Asq) — 121,>\P(1) 1227 =, -
2 2
lan = g1 (Asq) — Plsr, Apy — hls2, Si—1, Pim1,uizt)

liz = g2 (As(i) — hl31, Apy — hls2, Si—1, Pi—1,ui—1)

As(i—1) = As() — = (lin + 221 + 2131 + l41),

S| >ol >

Ap(i—1) = As() — = (l12 + 2lag + 232 + l42) .
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3. Calculate the optimal control u* using (15).

4. Update the optimal control

u w (16)

5. Calculate the performance index as the value of objective function
T—1
)= Y7 (AiS(k)* + Agu(k)?) (17)
k=0

4 Simulation Results

To simulate the closed-loop system, we need to define the parameters. Table [1| describes
the parameters used in the simulation.

Table 1: Parameters of optimal control of agricultural pest growth.

Parameters Value
The population of the pest (Nilaparvata lugens) as the prey S(0) 20
The population of the spider (Lycosa pseudoannulata) as 10
the natural predator P(0)
Intrinsic rate of growth of the pest as the prey r 1
Environmental carrying capacity of the pest as the prey population K 30
Search rate of the pest as the prey by the predator 1
Natural death rate of the predator § 0.6
Half saturation constant a 10
Rate of reducing the pest as the prey due to pesticide 5
Weight related to the number of the pest as the prey A; 1
Weight related to the cost of pesticide Ag 2

The simulation results are applied with two parts because there are three equilibrium
points, but an equilibrium (equilibrium of type 1) is unstable. In the first simulation,
the conversion factor a = 0.1, and in the second simulation, the conversion factor a = 8.

4.1 Simulation with equilibrium point of type 2

In this simulation, conversion factors a = 1 will be applied. From the results, we obtain

ayK  (0.1)(1)(30) 3
6(a+Sy)  0.6(10+20) 18 0.167 < 1.

avK
5(a+ So) < 1. The
numerical simulation with the equilibrium point of type 2 can be seen in Figure [I] and
Figure [2| (left).

Figure (left) displays the number of agricultural pests (Nilaparvata lugens) as preys
while Figure[]] (right) displays the number of spiders (Lycosa pseudoannulata) as natural
predators. In Figure [1| (left), the number of pests as preys with pesticide control is
smaller than the number of pests as the prey without control. In Figure [l (right), the

At the equilibrium point of type 2, the equilibrium point is stable if
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Figure 1: The left panel represents the numerical solution of the number of agricultural pests
(Nilaparvata lugens) as preys. The right panel denotes the numerical simulation of the number
of spiders (Lycosa pseudoannulata) as natural predators.

number of predators with pesticide control tends to 0 and is almost similar to the number

of predators without control because pesticide is only applied in the pest population.
Figure [2| (left) shows the optimal control of pesticide used. Initially, the pesticides

are given to around 95% of the population. Then the number of individuals receiving

the pesticides is decreasing. When ¢ > 10, the pesticides are given to around 55% of the
population.

— With Control
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@

Optimal Control uit)
=
o
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T T
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Figure 2: The left panel denotes the optimal control of pesticides. The right panel represents
the numerical solution of the number of agricultural pests (Nilaparvata lugens) as preys.

4.2 Simulation with equilibrium of type 3
In this simulation, conversion factors a = 8 will be applied. From the results, we obtain

oK (®)(1)(30) _ 240 _
S(a+Sp)  0.6(10+20) 18 1333 > 1.
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K
At the equilibrium point of type 3, the equilibrium point is stable if 5 il > 1.

a+ Sp
Numerical simulation with the equilibrium point of type 3 can be seen in Figgure (>right)
and Figure [3]

Figure (right) shows the number of agricultural pests (Nilaparvata lugens) as preys,
while Figure [3| (left) displays the number of spiders (Lycosa pseudoannulata) as natural
predators. Both Figure (right) and Figure (left) show fluctuative graphs. When pests
as the prey increase, then predators follow the increase, and if pests as the prey decrease,
then predators follow the decrease. The pesticide as the control can cause the number
of pests as the prey to decrease. However, it also affects predators so that predators
also decrease. Figure |3| (right) shows the optimal control of pesticide used. Initially,

160 T T 0.9 T T T T T T T

T
: : : : : i | —— With Control

140 : : aeemmeebeseesbenenadooo| T Without Centrol
| | _E_ :L H H : :

Predator P(t)
Optimal Contral uit)

Figure 3: The left panel represents the numerical simulation of the number of spiders (Lycosa
pseudoannulata) as natural predators. The right panel denotes the optimal control of pesticides.

the pesticides are given to around 88% of the population. After that, the number of
individuals receiving the pesticides is decreasing. Starting from ¢ = 4, the number of
individuals receiving the pesticides is fluctuating between 0 and 3.8.

5 Conclusions

In the agricultural pest dynamical model, there are populations of the pest and the spider.
From the mathematical model of agriculture pest growth, we obtain three equilibrium
points. We analyze the stability of each equilibrium point by using the eigenvalue. The
first equilibrium point is unstable, whereas the second and third equilibriums are stable
if certain conditions are satisfied. Furthermore, we have introduced a control variable,
which represents pesticide, in the agricultural pest growth model. We have formulated
an optimal control problem and solved it numerically. Moreover, we have conducted
several simulations to show the effectiveness of the proposed method.
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