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Abstract: This paper deals with certain new fractional-order three-dimensional
chaotic systems. These autonomous systems are the fractional version of dynami-
cal systems introduced recently by Faghani et al. [6]. The feature property of these
systems is the presence of fractional order derivatives as well as equality of their
eigenvalues. Numerical investigations on the dynamics of these systems have been
carried out using a systematic computer search. Some simple fractional chaotic sys-
tems with identical eigenvalues were obtained, and their dynamical properties have
been analyzed by means of the Lyapunov exponents.
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1 Introduction

Chaos systems have been receiving much attention from scientific community in the
study of dynamical systems due to their applications in ecology, engineering and secure
communications [3, 20]. Since the publication of Lorenz’s seminal paper in 1963, there
is no theory that allows us to predict chaotic solutions.The relationship between chaotic
systems and their strange attractors is still unknown. Thanks to numerical simulations,
we have been studying chaos, it was the essential tool by which many works have been
done to study chaos in dynamical systems. Chaotic systems can be categorized as systems
with self-excited attractors and systems with hidden attractors. The basin of attraction
for the chaotic system with self-excited attractor intersects with an unstable equilibrium,
while the chaotic system with hidden attractors has a basin of attraction which does not
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intersect with the neighborhoods of the equilibrium. It is well known that if real parts
of all eigenvalues at the equilibrium point are negative, then there exist stable manifolds
in a small neighborhood of an equilibrium point, whereas the existence of a positive real
part in at least one eigenvalue of them shows the unstable manifolds.

Recently, fractional calculus, which is a mathematical topic whose history goes back
more than 300 years, has received a considerable attention. It has been found that
many systems can be described by fractional differential equations. For instance, frac-
tional derivatives have been widely used in viscoelasticity, anomalous diffusion phenom-
ena, electromagnetism, digital cryptography and many other phenomena [13, 15]. Some
fractional-order dynamical systems have been investigated since the seminal paper of
Grigorenko and Grigorenko [7], which demonstrated the existence of chaotic solutions in
the fractional-order Lorenz dynamical system, see [2, 4, 5, 8, 9, 11,18,19].

In 2011, Sprott presented criteria for proposing new systems with strange attractors.
To date, many new chaotic systems which satisfy Sprott’s criteria are proposed, among
which we cite chaotic systems without any equilibria, with a line, curve, and surface
equilibria [1, 10,12,14].

Recently, Faghani et al. [6] defined a new category of chaotic systems with identical
eigenvalues, proposed three general structures with special conditions and described their
chaotic attractors.

In this paper, we propose the fractional version of systems studied by Faghani et
al. [6]. These systems have the features of the presence of fractional derivatives and the
equality of eigenvalues. The paper is organized as follows. In Section 2, the fractional
systems are defined with their conditions. From defined systems, 14 simple chaotic flows
are proposed according to the initial conditions, parameters, and fractional orders. The
paper is concluded in Section 3.

2 Proposed Fractional Systems

First of all, we define the Caputo fractional derivative. The reader can refer to [13], for
more details.

Definition 2.1 The αth-order Caputo fractional derivative of function f (t) with
respect to t and the terminal 0 is given by

0D
α
t f =

dαf (t)

dtα
=

1

Γ (m− α)

t∫
0

f (m) (τ)

(t− τ)
α+1−m dτ,

where m is an integer such that m − 1 ≤ α < m, and Γ is the well-known Gamma
function.

We consider now the fractional version of systems proposed in [6] with the Caputo
fractional derivatives as follows:

Dα1x = y, (1)

Dα2y = z,

Dα3z = a1x+ a2y + a3z + a4x
2 + a5y

2 + a6z
2 + a7xy + a8xz + a9yz + a10,

Dα1x = −z, (2)

Dα2y = b1x+ b2z,

Dα3z = a1x+ a2y + a3z + a4x
2 + a5y

2 + a6z
2 + a7xy + a8xz + a9yz + a10,
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Dα1x = z, (3)

Dα2y = z − y

Dα3z = a1x+ a2y + a3z + a4x
2 + a5y

2 + a6z
2 + a7xy + a8xz + a9yz + a10,

where Dαi denotes the derivatives of order αi (0 < αi < 1, i = 1, 3 ) in the sense of
Caputo, ai, i = 1, 10, are the real parameters of the systems, and (b1, b2) = (−1, 1) or
(b1, b2) = (1,−1).

Our next step is to make the three eigenvalues equal, we do this by putting some
suitable conditions on systems parameters. The equilibrium points of the above systems
are calculated as follows:

Dα1x = 0,
Dα2y = 0,
Dα2z = 0.
For the system (1) and system (3), the equilibrium point is

(x∗, y∗, z∗) = (m, 0, 0) ,m =
−a1 ±

√
a21 − 4a4 a10
2a4

if a4 ̸= 0 and a21 − 4a4 a10 ≥ 0.
For the system (2), the equilibrium point is

(x∗, y∗, z∗) =

(
0,

−a2 ±
√
a22 − 4a5a10
2a5

, 0

)

for a5 ̸= 0 and a22 − 4a5a10 ≥ 0.
The eigenvalues of the equilibrium points for the systems are determined by setting

the determinant of the matrix λI − J to zero, where J is the Jacobien matrix defined as

J =

 δxf1 (q) δyf1 (q) δzf1 (q)
δxf2 (q) δyf2 (q) δzf2 (q)
δxf3 (q) δyf3 (q) δzf3 (q)

 ,

where Dαixi = fi (x, y, z) , 1 ≤ i ≤ 3, (x1, x2, x3) = (x, y, z) and q = (x∗, y∗, z∗) is the
equilibrium point.

We obtain the characteristic equation for each equilibrium point. For example, the

characteristic equation for the equilibrium point

(
−a1 +

√
a21 − 4a4 a10
2a4

, 0, 0

)
is

λ3 − (a3 + a8m)λ2 − (a2 + a7m)λ− (a1 + 2a4m) = 0,

where

m =
−a1 +

√
a21 − 4a4 a10
2a4

.

Eigenvalues are solutions of the characteristic equation, if they are equal, we have iden-
tical eigenvalues. Under the following conditions, the eigenvalues are equal:

a2 =
−1

3

(
a3 + a8

−a1 +
√
a21 − 4a4 a10
2a4

)2

−a7
−a1 +

√
a21 − 4a4 a10
2a4

, (4)
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and

a3 = 3

(√
a21 − 4a4a10

) 1
3

−a8
−a1 +

√
a21 − 4a4a10
2a4

. (5)

In a similar manner, we found conditions for the second equilibrium point of Eq. (1)
and for the equilibrium points in the other structures in Eqs. (2) and (3).

Under these conditions, we search for systems according to the fractional-order, pa-
rameters, and initial conditions which show chaotic dynamics.

So, using a systematic computer search, fourteen systems with chaotic dynamics were
found by combining the parameters a1 through a10, which satisfy the constraints in Eq.
(4)-(5) (and similar constraints for systems (2) and (3)) on the fractional orders and initial
conditions. The found simple chaotic systems are listed in Table 1 as FE1 − FE14. The
equilibriums of all these systems are at the origin. The systems FE1 − FE9 have three
zero eigenvalues, then the stability of the equilibrium point is not determined, while the
systems FE10 − FE14 have positive identical eigenvalues, thus the equilibrium point is
unstable. The Lyapunov exponents of the systems are calculated by Wolf’s method [17].
The chaotic solutions are determined by the positivity of at least one Lyapunov exponent,
which is the case in all systems FE1−FE14. Also, the Lyapunov exponents with respect
to time of some proposed systems are presented in Fig.1. Attractors projected onto the
xy−plane for all proposed systems are shown in Fig. 2.
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FE1 Dα1x = y 0.99 a = 0.78 0 0 0.0103 −48.73
Dα1y = z 0 0 0.0007 −30.86
Dα1z = x2−y2+axz 0 0 −16.6512 63.52

FE2 Dα1x = y 0.98 a = 0.78 0 0 0.0085 −48.73
Dα1y = x− z 0 0 −0.0011 −30.86
Dα1z = −x2+ay2+byz 0 0 −16.9313 63.52

FE3 Dα1x = −z 0.95 a = 6 0 0 0.0207 −2.64
Dα1y = x− z b = 9 0 0 −0.0006 0.91
Dα1z = x2−y2+axz 0 0 −0.8690 −4.14

FE4 Dα1x = −z 0.9 a = 6 0 0 0.0212 −2.64
Dα1y = x− z b = 9 0 0 −0.0003 0.91
Dα1z = x2−y2+axz 0 0 −1.0683 −4.14

FE5 Dα1x = z 0.9 a = 0.3 0 0 0.1450 −39.56
Dα1y = z −y b = −1.5 0 0 0.0002 −2.85
Dα1z = −y + z + ax2 c = 0.6 0 0 −37.5602 −41.22
+bxy + cxz

FE6 Dα1x = z 0.8 a = 0.3 0 0 0.1914 −39.56
Dα1y = z −y b = −1.5 0 0 −0.0008 −2.85
Dα1z = −y + z + ax2 c = 0.6 0 0 −44.2027 −41.22
+bxy + cxz
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FE7 Dα1x = z 0.9 a = −0.4364 0 0 0.1812 −3.87
Dα1y = z −y b = 2 0 0 0.0010 −0.7
Dα1z = −y + z + ax2 c = −0.7229 0 0 −36.7658 2.31

+bxy + cxz
FE8 Dα1x = z 0.85 a = −0.4364 0 0 0.1743 −3.87

Dα1y = z −y b = 2 0 0 0.0009 −0.7
Dα1z = −y + z + ax2 c = −0.7229 0 0 −41.3095 2.31

+bxy + cxz
FE9 Dα1x = −z 0.99 a = 0.128 0 0.2 0.0323 −21.36

Dα1y = −x+ z b = 0.008 0 0.2 0.0001 −18.43
Dα1z = a x+ b y + cz c = 0.6 0 0.2 −1.7123 −11.03
+d x2 + e y2 + fzy d = −0.16

e = 0.01
f = 0.1

FE10 Dα1x = −z 0.88 a = 0.128 0 0.2 0.0538 −21.36
Dα1y = −x+ z b = 0.008 0 0.2 0.0002 −18.43
Dα1z = a x+ b y + cz c = 0.6 0 0.2 −2.5653 −11.03
+d x2 + e y2 + fzy d = −0.16

e = 0.01
f = 0.1

FE11 Dα1x = −z 0.99 a = 0.544 0 0.4 0.1754 −21.36
Dα1y = −x+ z b = 0.64 0 0.4 −0.1676 −18.43
Dα1z = a x+ b y + cz c = 1.2 0 0.4 −1.0270 −11.03
+d x2 + e y2 + f zy d = −0.16

e = 0.01
f = 0.1

FE12 Dα1x = −z 0.89 a = 0.544 0 0.4 0.2714 −21.36
Dα1y = −x+ z b = 0.64 0 0.4 −0.2575 −18.43
Dα1z = a x+ b y + cz c = 1.2 0 0.4 −1.5700 −11.03
+d x2 + e y2 + f zy d = −0.16

e = 0.01
f = 0.1

FE13 Dα1x = −z 0.97 a = 0.875 0 0.5 0.17.86 −21.36
Dα1y = −x+ z b = 0.125 0 0.5 −0.4383 −18.43
Dα1z = a x+ b y + cz c = 1.5 0 0.5 −1.0196 −11.03
+d x2 + e y2 + f zy d = −0.16

e = 0.01
f = 0.1

FE14 Dα1x = −z 0.99 a = 0.875 0 0.5 0.1636 −21.36
Dα1y = −x+ z b = 0.125 0 0.5 −0.4013 −18.43
Dα1z = a x+ b y + cz c = 1.5 0 0.5 −0.9368 −11.03
+d x2 + e y2 + f zy d = −0.16

e = 0.01
f = 0.1

Table 1: Fourteen fractional-order three-dimensional chaotic systems with identical
eigenvalues.
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FE13

FE11

FE10

FE3

Figure 1: Lyapunov Exponents of some systems in Table 1 with respect to time.
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FE1 FE2

FE3 FE4

FE5 FE6

FE7 FE8

Figure 2: Attractors for 14 fractional-order systems in the xy-plane with initial conditions
given in Table 1.
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FE9 FE10

FE11 FE12

FE13 FE14

Figure 3: Attractors for 14 fractional-order systems in the xy-plane with initial conditions
given in Table 1 (continued).

3 Conclusion

This paper introduces new fractional-order three-dimensional chaotic systems which have
identical eigenvalues as a particular property. Using an exhaustive computer search, we
proposed 14 fractional-order systems which show chaotic dynamics, where the origin was
the equilibrium of these systems. Eight of the proposed systems have zero identical
eigenvalues, while six of the other systems have three positive and equal eigenvalues.
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For all fractional-order chaotic systems proposed, the attractors were projected onto the
xy-plane, and the Lyapunov exponents were calculated.
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