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Abstract: This paper presents the control of chaotic dynamical systems by design-
ing linear and nonlinear feedback controllers, the stability of chaotic systems has
been studied by three methods, the Lyapunov function, Routh-Hurwitz criteria and
finally, a new method which is based on the Jacobian matrix conditions, we proved
that we can find stability by the third method and not by the Lyapunov function
and Routh-Hurwitz methods, we have also found a good interval or exact value for
the parametric control which stabilises the chaotic system at its equilibruim point.
Numerical simulations show the effectiveness or non-effectiveness of the results for
the three different methods, we apply the feedback control to the Sprott J system,a
novel chaotic system and the Genesio system.
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1 Introduction

The term “control of chaos” is used mostly to denote the area of studies lying at the
interface between the control theory and the theory of dynamic systems studying the
methods of control of deterministic systems with non-regular, chaotic behavior [16]. Sev-
eral techniques have been devised for chaos control, but most are the developments of
two basic approaches: the OGY (Ott, Grebogi and Yorke) method [17], and Pyragas con-
tinuous control [18]. Both methods require a previous determination of unstable periodic
orbits of the chaotic system before the controlling algorithm can be designed. Different
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control strategies for stabilizing chaos [11] have been proposed, namely, an adaptive con-
trol [10, 14], time delay control [3], and fuzzy control [7]. Generally speaking, there are
two main approaches for controlling chaos: a feedback control [9, 12] and nonfeedback
control. The feedback control approach offers many advantages such as robustness and
computational complexity over the non-feedback control method.

We generally study stability for feedback control by two methods: the function of
Lyapunov [1] and the criterion of Routh-Huritz, but we fail in the cases when we cannot
assure the existence of stability for all the control laws. In this work, we show that we
can use the third method which is based on the Jacobian matrix conditions, and we can
also choose the function of feedback control.

2 Stability Condition

Suppose that B is an n× n matrix of real constants, its characteristic polynomial is

f(λ) = λn + aλn−1 + bλn−2 + cλn−3 + . . . , n = 1, 2, 3, 4.

The Routh-Hurwitz theorem [4–6] is as follows.

Theorem 2.1 All the roots of the caracteristic polynomial have negative real parts
precisely when the given conditions are satisfied:
λ2 + aλ+ b : a > 0, b > 0.
λ3 + aλ2 + bλ+ c : a > 0, c > 0, ab− c > 0.
λ4 + aλ3 + bλ2 + cλ+ d : a > 0, ab− c > 0, (ab− c)c− a2d > 0, d > 0.

Jacobian matrix conditions. We consider A is the Jacobian matrix at a fixed
point [19],

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (1)

and t = a12a23a31 + a13a21a32, where

A11 =

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣ , A22 =

∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ , A33 =

∣∣∣∣ a11 a12
a21 a22,

∣∣∣∣ .
Theorem 2.2 If t ≥ 0, all the roots of the characteristic polynomial of A have neg-

ative real parts when the given conditions are satisfied:
det(A) < 0, aii < 0 and Aii > 0, for i = 1, 2, 3.

3 Control of Sprott J System

Theorem 3.1 The controlled Sprott J system [15] is
·
x = 2z − u1,
·
y = −2y + z − u2,
·
z = −x+ y + y2 − u3,

(2)

where u1 = kx, u2 = 0, u3 = y2 + kz and k is the feedback coefficient, the system (2)
will gradually converge to the equilibrium point (0; 0; 0) when k > 1, 5 for the Lyapunov
method and when k > 0, 5 for the Jacobian matrix conditions.
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Proof. For non linear feedback system (2) consider a quadratic Lyapunov function
as v = 1

2 (x
2 + y2 + z2), then

·
v = −kx2 − kz2 − 2y2 + xz + 2yz

< −kx2 − kz2 − 2y2 +
1

2
(y2 + z2) + y2 + z2

< (−k +
1

2
)x2 − y2 + (−k +

3

2
)z2.

So, if k > 1, 5, we can obtain
·
v < 0.

For the Jacobian matrix conditions, the Jacobian matrix is as follows:

A =

 −k 0 2
0 −2 1
−1 1 −k

 ⇔ det(A) = −2k2 + k − 4,

A11 =

∣∣∣∣ −2 1
1 −k

∣∣∣∣ = 2k − 1,

A22 =

∣∣∣∣ −k 2
−1 −k

∣∣∣∣ = k2 + 2,

A33 =

∣∣∣∣ −k 0
0 −2

∣∣∣∣ = 2k.

According to the previous Theorem 2, we have t = 0, then det(A) < 0, aii < 0 and
Aii > 0 for i = 1, 2, 3 if k > 0.5.
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Figure 1: Control of the Sprott J system at the equilibrium point (0; 0; 0) when k = 0, 8.

Remark 3.1 For the Routh-Hurwitz method we have not solutions for the same
feedback control of the Sprott J system.
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4 Control of Novel Chaotic System

Theorem 4.1 The controlled novel chaotic system [13] is
·
x = 0.2x− yz − u1,
·
y = −0.1y + xz − u2,
·
z = −z + xy − u3,

(3)

where u1 = k(x−x∗), u2 = x(z−z∗)+k(y−y∗), u3 = k(z−z∗) and k is the feedback coef-
ficient, the system (3) will gradually converge to the equilibrium point E2(0.31; 0.44; 0.14)
when k > 0.2 for the Jacobian matrix conditions.

Proof. For non linear feedback system (3) consider a quadratic Lyapunov function
as v = 1

2 [(x− x∗)2 + (y − y∗)2 + (z − z∗)2), then

·
v = 0.2x2 − 0.2xx∗ + yzx∗ − k(x− x∗)2 − 0.1y(y − y∗) + xz∗(y − y∗)− k(y − y∗)2

−z(z − z∗)− (z − z∗)2

< (0.7− k)x2 + (0.4− k + x∗

2 )y2 + (−0.5− k + x∗

2 )z2 − kx∗ − ky∗ − kz∗

+ 1
2 (−0.2x∗ + 2kx∗ − z∗y∗)2 + 1

2 (−0.1y∗ + 2ky∗)2 + 1
2 (z

∗ + 2kz∗)2.

So, if E2(0.31; 0.44; 0.14), we can obtain
·
v < 0 if

0.7− k < 0
0, 555− k < 0
−0, 345− k < 0

1. 237 2k2 − 0.616 02k + 3. 681 3× 10−2 < 0

⇔


k > 0.7

k > 0, 555
k > −0, 345

k ∈
[
6. 944 5× 10−2, 0.428 47

]
.

So, we have no solution.
For the Jacobian matrix conditions, the Jacobian matrix is as follows:

A =

 0.2− k −0.14 0
0.14 −0.1− k 0
0.44 0.31 −k

 ⇔ det(A) = K((0.2− k)(0.1− k)− 0, 0434),

A11 =

∣∣∣∣ −0.1− k 0
0.31 −k

∣∣∣∣ = k(0.1 + k),

A22 =

∣∣∣∣ 0.2− k 0
0.44 −k

∣∣∣∣ = k(k − 0.2),

A33 =

∣∣∣∣ 0.2− k −0.14
0.14 −0.1− k

∣∣∣∣ = k2 − 0.1k − 0.000 4.

According to Theorem 2, we have t = 0, then det(A) < 0, aii < 0 and Aii > 0 for
i = 1, 2, 3 if k > 0.2.

For the Routh-Hurwitz theorem, the characteristic polynomial is

p(λ) = λ3 + (3k − 0.1)λ2 +
(
3k2 − 0.2k − 0.000 4

)
λ+ k3 − 0.1k2 − 0.000 4k,

then 
a = 3k − 0.1,

b = 3k2 − 0.2k − 0.000 4,
c = k3 − 0.1k2 − 0.000 4k,

ab− c = 8.0k3 − 0.8k2 + 0.019 2k + 0.000 04,

then a > 0, c > 0 and ab− c > 0 if k ∈]0.103 85,+∞[.
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Figure 2: Control of a novel chaotic system at the equilibrium point E2(0.31; 0.44; 0.14) and
k = 4.

5 Control of Modified Genesio System

Theorem 5.1 The controlled modified Genesio system [8] is
·
x = y − u1,
·
y = −0.5y + z − u2,
·
z = 3x2 − 6x− 2.85y − 0.5z − u3,

(4)

where u1 = k(x− x∗), u2 = ky + z, u3 = kz + 3(x− x∗) and k is the feedback coefficient,
the system (2) will gradually converge to the equilibrium point (x∗; 0; 0)when k ∈] −
0.25, 0[∪]0.5,+∞[ for the Routh-Hurwitz method and when k ∈]0.5,+∞[ for the Jacobian
matrix conditions.

Proof. For non linear feedback system (4) consider a quadratic Lyapunov function
as v = 1

2 [(x− x∗)2 + y2 + z2), then

·
v = −kx2+(0.5−k)y2+(−0.5−k)z2+xy+6(x∗−1)xz−2.85yz−yx∗−3x∗z+2kxx∗−kx∗

for x∗ = 2,
·

v < (k + 3.5)x2 + (
2.85

2
− k)y2 + (

1.85

2
− k)z2 − 2k − 4.

So, we can obtain
·
v < 0, if

k + 3.5 < 0
2.85
2 − k < 0

1.85
2 − k < 0

−2k − 4 < 0

⇔


k < −3.5
k > 2.85

2
k > 1.85

2 ,
k > −2
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so we have no solution.

For x∗ = 0,

·
v < (k + 3)x2 + (

4.85

2
− k)y2 + (

8.85

2
− k)z2,

then
·
v < 0  k + 3 ≤ 0

4.85
2 − k < 0

8.85
2 − k < 0

⇔

 k < −3
k < 4.85

2
k > 8.85

2

,

so we have no solution.

For the Routh-Hurwitz method, the Jacobian matrix is as follows:

J(0;0;0) =

 −K 1 0
0 −0.5−K 0
−6 −2.85 0.5−K

, so det J(0;0;0) = 0.25K −K3,

A11 =

∣∣∣∣ −0.5−K 0
−2.85 0.5−K

∣∣∣∣ = K2 − 0.25,

A22 =

∣∣∣∣ −k 0
−6 0.5− k

∣∣∣∣ = k2 − 0.5k,

A33 =

∣∣∣∣ −K 1
0 −0.5−K

∣∣∣∣ = K2 + 0.5K,

we have t = 0, then det(j) < 0, aii < 0 and Aii > 0for i = 1, 2, 3 if k ≥ 0.5.

For the second equilibrium point,

J(2;0;0) =

 −K 1 0
0 −0.5−K 0
6 −2.85 0.5−K,

 ,

so, det J(2;0;0), A11, A22 and A33 have the same value of the first point, then, if k > 0.5,
the system (2) will gradually converge to the equilibrium point (2; 0; 0). For the Routh-
Hurwitz method, the characteristic polynomial for E1(0; 0; 0) and E2(2; 0; 0) equilibrium
points is
p(λ) = λ3 + 3Kλ2 + ((K − 0.5) (2K + 0.5) +K (K + 0.5))λ+K (K − 0.5) (K + 0.5) ,

a = 3K,

b = 3.0K2 − 0.25,

ab− c = K
(
8.0K2 − 0.5

)
,

then, if k ∈]− 0.25, 0[∪]0.5,+∞[, we have a > 0, b > 0 and ab− c > 0.

Remark 5.1 For k with a negative value of the Routh-Hurwitz method, we have
not a good result for the same feedback control of the Genesio system as we see in the
figures.
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Figure 3: Control of the Genesio system at the equilibrium point E1(0; 0; 0).
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Figure 4: Control of the Genesio system at the equilibrium point E2(2; 0; 0).
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Figure 5: Control of the Genesio system at the equilibrium point E1(0; 0; 0) when k = −0.1 .
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Figure 6: Control of the Genesio system at the equilibrium point E2(2; 0; 0) when k = −0.1 .
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6 Conclusion

This work presents a linear and nonlinear feedback control for the Sprott J system, a novel
chaotic system and the Genesio system, stabilizing the systems at equilibrium points we
use three different methods: the Lyapunov function, the Routh-Hurwitz criterion and a
new method based on the Jacobian matrix, which is a modification of Routh-Hurwitz
conditions. We proved that the stability by the new method is satisfied while we do not
have it for the others, and we can get a good interval or an exact value for the gain
matrix where the stability is satisfied.
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