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Abstract: Micromagnetics is a continuum theory describing magnetization patterns
inside ferromagnetic media. The dynamics of a ferromagnetic material are governed
by the Landau-Lifshitz equation (LL). This equation is highly nonlinear and has
a non-convex constraint. In this work, we propose two new algorithms for solving
this equation in high dimension, by using deep neural networks. Numerical and
comparative tests using TensorFlow illustrate the performance of our algorithms.
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1 Introduction

Differential equations, including ordinary differential equations (ODEs) and partial dif-
ferential equations (PDEs), formalize the description of the dynamical nature of the world
around us. However, solving these equations is a challenge due to extreme computational
cost and because most PDEs do not have an analytical solution, their solution can be
approximated using classical numerical methods (which are based on a discretization of
the domain) [17], [18], [11]. These methods are particularly efficient for low-dimensional
problems on regular geometries; however, finding an appropriate discretization for a com-
plex geometry can be as difficult as solving the partial differential equation itself. This
problem is particularly severe if the space dimension is large as there is no straightfor-
ward way to discretize irregular domains in space dimensions larger than three. Solving
equations is a high-level human intelligence work and a crucial step towards general
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artificial intelligence (AI). Therefore, the obstacle of extreme computational cost in nu-
merical solution may be bypassed by using general AI techniques such as deep learning
and reinforcement learning, which were rapidly developed during the last decades. Data
used to train the network is randomly sampled within the entire solution domain in each
training batch, including initial conditions and boundary conditions.

Recently, deep learning has revolutionized many scientific fields [4], [7], [5]. Including
the solution of the differential equation PDEs, R. Maziar [14] proposes a deep learning
approach for discovering nonlinear partial differential equations from scattered and po-
tentially noisy observations in space and time. Beck and et al. [6] propose a new method
for solving high-dimensional fully nonlinear second-order PDEs. The Deep Galerkin
Method uses a deep neural network instead of a linear combination of basis functions.
The deep neural network is trained to satisfy the differential operator, initial condition,
and boundary conditions using stochastic gradient descent at randomly sampled spatial
points. In the stochastic framework, Weinan et al. [23] propose a new algorithm for solv-
ing PDEs and backward stochastic differential equations in high dimension. There are
many other works on solving differential equations using the neural network [22], [9], [16].
The ODEs and PDEs are equations which impose relationships between the different par-
tial derivatives of a multivariable function. We ask the following question: if there exists
a neural network capable of simultaneously and uniformly approaching a function and its
partial derivatives. The answer to this question and the mathematical theory of physics-
informed neural networks is already treated by Allan Pinkus in [20]. In this work, we
will solve the LL equation in high dimension, using the artificial neural network by two
different methods as will be described below. One of the major difficulties that exists for
solving this equation by the classical methods is the non-covex contraint, see [2, 3, 17].
We will see that this constraint is not a problem for the neural network approach because
we add this constraint in the loss function.

The rest of the paper is structured as follows. In the next section, we present the LL
equation arising in micromagnetism and which will be the subject of our investigation. In
Section 3, we explore the use of deep learning for solving the PDEs under consideration
in micromagnetism in high dimension. To this end, it is necessary to formulate the PDEs
as a learning problem. We put forth two distinct classes algorithms of deep learning, and
highlight their performance through the lens of different benchmark problems. In fact, we
use a deep neural network to approximate the PDE solution with this parameterization,
a loss function is set up, and then we train so that the Loss function becomes very small.
For the training data, the network uses points randomly sampled from the region where
the function is defined, and the optimization is performed using gradient descent. We
conclude the paper in Section 4 by giving some comments and a direction for future work.

2 The Model Statement

In this paper, we consider the simplified LL equation in which we neglect magnetostatic,
anistotropy, and a Zeeman field. To describe the model equations, we consider Ω ⊂ Rd,
d ∈ N∗, a bounded and regular open set. We assume that a ferromagnetic material
occupies the domain Ω. The magnetization field of the ferromagnetic material is denoted
by M(x, t), where x and t mean the position and time, respectively. Then, the LL model
in Q = Ω× (0, T ) is described by

∂tM(x, t) = −M(x, t)×△M(x, t)− µM(x, t)×M(x, t)×△M(x, t) in Q (1)
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subject to the initial conditions

M(x, 0) = M0(x), |M0(x)| = 1 in Ω (2)

and a periodic boundary condition. Here, × denotes the exterior product, M(x, t) =
(m1(x, t),m2(x, t),m3(x, t)) ∈ R3, and µ ⩾ 0 is the damping parameter. Next, we
consider the energy-structure

E(M(t)) = ∥∇M(t)∥L2(Ω).

By integration on the equation (1), we obtain the following energy equation:

E(M(t)) = E(M(0))− 2µ

∫ t

0

∫
Ω

∥ M(x, s)×△M(x, s) ∥2 dxds. (3)

For any t ⩾ 0, equation (3) implies that the problem has the energy dissipation property
for the case µ > 0 and the energy conservation property for the case µ = 0.

If we multiply the LL equation (1) by M(x, t), we obtain the important hypothesis of
micromagnetism is that the local magnetization vector must be constant in magnitude

|M(x, t)| = |M0(x)| = 1 for any t > 0. (4)

Ferromagnetic materials are very important in industry and modern technology and have
been used for fundamental studies and in many everyday applications such as sensors,
electric motors, generators, hard disk media, and most recently spintronic memories.

3 Deep Learning Algorithm

The goal is to approximate the solution M = (m1,m2,m3) for the equation (1) by a
deep neural network with parameter set {weights,biases}. For this, we will work on two
different cases. In the first case, suppose we know the solution at some random points in
Q. In the second case, assume we only know the solution at some random points in ∂Q
and some random points in Ω× {0}.

3.1 First case

We consider a neuron network composed by several layers such that the first layer
represents the inputs (the random points (ti, xi) of Q), while the last layer represents
the output solution Mp = (m1p,m2p,m3p) at the random points (ti, xi) linked by the
parameters weights and biases, the other layers are hidden layers.
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The first step in approximating the solution M at all points of Q is to calculate the
objective function Loss.

Let N be the number of the random points (xi, ti) ∈ Q at which we know the exact
solution. We define

(fm1 , fm2 , fm3) =
∂Mp(x, t)

∂t
+Mp(x, t)×△Mp(x, t)+µMp(x, t)×Mp(x, t)×△Mp(x, t),

MSEf = MSEfm1
+MSEfm2

+MSEfm3
,

MSEM = MSEm1 +MSEm2 +MSEm3

and

MSEContraint =
1

N

N∑
i=1

|(m1(x
i, ti))2 + (m2(x

i, ti))2 + (m3(x
i, ti))2 − 1|2

with

MSEfmr
=

1

N

N∑
i=1

|fmr (x
i, ti)|2, MSEmr =

1

N

N∑
i=1

|mr(x
i, ti)−mrp(x

i, ti)|2.

for r = 1, 2, 3. The objective function Loss is given by

Loss = MSEf +MSEM +MSEContraint.

In the next step, we will deduce an iterative gradient algorithms designed to minimize
Loss. This minimization is achieved by an adequate weight configuration. For this, we
will use the limited-memory quasi-Newton code for unconstrained optimization L-BFGS,
developed at the Optimization Center, a joint venture of Argonne National Laboratory
and Northwestern University by Liu and Nocedal [13]. Numerical and comparative tests
using TensorFlow [1] illustrate the performance of our algorithm. More specifically, we
apply the following algorithm.
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1. Initialize the parameter set {weights,biases}.

2. Generate random samples (ti, xi) from Q.

3. Calculate the Loss functional for the current mini-batch si = {(ti, xi)}.

4. We choose {weights,biases} randomly such that Loss becomes minimal.

5. Repeat steps (3)-(4) until Loss is very small.

When the Loss function becomes small enough, we say that the neuron network has
become trained and in this case, we can determine the solution of the equation (1) at
any point of Q.

Numerical simulation. For our purpose we consider non-trivial exact solutions [10]
for LL equation (1) on Ω. Here, let α ∈ R, l ∈ Z and k = lπ. The exact solution in
one-dimensional space is given by

M(t, x) = (m1(t, x),m2(t, x),m3(t, x)),

where

m1(t, x) =
sinα cos(kx− ϕ(x, t, α, k, µ))

d(t, α, k, µ)
,

m2(t, x) =
sinα sin(kx− ϕ(x, t, α, k, µ)

d(t, α, k, µ)
,

m3(t, x) =
exp(k2µt) cosα

d(t, α, k, µ)
,

with

d(t, α, k, µ) =

√
sin2 α+ exp(2k2µt) cos2 α

and

ϕ(x, t, α, k, µ) =
1

µ
log

(d(t, α, k, µ) + exp(k2µt) cosα

1 + cosα

)
.

The exact solution in two-dimensional space is given by

M(t, x) = (m1(t, x, y),m2(t, x, y),m3(t, x, y)),

where

m1(t, x, y) =
sinα cos(k(x+ y)− ϕ(x, t, α, k, µ)

d(t, α, k, µ)
,

m2(t, x, y) =
sinα sin(k(x+ y)− ϕ(x, t, α, k, µ)

d(t, α, k, µ)
,

m3(t, x, y) =
exp(2k2µt) cosα

d(t, α, k, µ)
,

with

d(t, α, k, µ) =

√
sin2 α+ exp(4k2µt) cos2 α
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Figure 1: A comparison between the exact solution m1 and the calculated solution m1p, for
different number of iterations and d = 1.

and

ϕ(x, t, α, k, µ) =
1

µ
log

(d(t, α, k, µ) + exp(2k2µt) cosα

1 + cosα

)
.

We trained the neural network on 2000 random points; which took approximately 5000
and 25000 iterations for the one-dimensional space and two-dimensional space, respec-
tively. After the training we gave to neural network 100×100 for d = 1, and 100×100×100
for d = 2 we compared the outputs m1p, m2p and m3p with the exact solutions m1, m2

and m3. We observed that they were almost equal, indicating that the neural network
has become well trained to find the value of m1, m2 and m3 at each point of the domain
Q. The following figures illustrate everything we have said. Figures 1, 2 and 3 propose
a comparison between the exact solutions m1, m2 and m3 and the calculated solutions
m1p, m2p and m3p, respectively, for different number of iterations and d = 1. Figure 4
proposes a comparison between the exact solution m1 and the calculated solution m1p,
for different number of iterations, t = 0.5 and d = 1. Figures 5 and 6 propose a compar-
ison between the exact solutions m1 and m2 and the calculated solutions m1p and m2p,
respectively, for different number of iterations, t = 0.5 and d = 2. We use the parameters
µ = 0.01, α = π/3 and k = 4. This data-set is then used to train a 5-layer deep neural
network with 200 neurons per a hidden layer by minimizing the mean square error loss
of using the L-BFGS optimizer.
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Figure 2: A comparison between the exact solution m2 and the calculated solution m2p, for
different number of iterations and d = 1.

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

x

2000 iterations

0.39

0.40

0.41

0.42

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

x

3000 iterations

0.35

0.40

0.45

0.50

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

x

10000 iterations

0.375

0.400

0.425

0.450

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

x

15000 iterations

0.40

0.42

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

x

exact solution 

0.40

0.42

Figure 3: A comparison between the exact solution m3 and the calculated solution m3p, for
different number of iterations and d = 1.
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Figure 4: A comparison between the exact solution represented by the red color and the
approximate solution represented by the blue color for t = 0.50, d = 1 and for different iterations.
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Figure 5: A comparison between the exact solution m1 and the approximate solution m1p for
t = 0.50, d = 2 and for different iterations.
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Figure 6: A comparison between the exact solution m2 and the approximate solution m2p for
t = 0.50, d = 2 and for different iterations.

3.2 Second case

This situation differs from the first case in the input layer, but it is very similar in
terms of the method and steps used in determining the solution of the equation at all
points. Here we will consider a neuron network composed by several layers such that
the first layer represents the inputs (the random points sn = {(xn, tn), (δn, vn), wn} on
Q, ∂Q and Ω), it is composed of five neurons, the first for xn, the second for tn, the
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third for δn, the fourth for vn and the last for wn, the last layer represents the output
solution Mp = (m1p,m2p,m3p) at the random points {(tn, xn), δn, vn, (wn, 0)} linked by
the weights and biases parameters, while the other layers are hidden layers.
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m3p

Output
layer

The objective function Loss in this case is given by

Loss = MSEf +MSEinit +MSEbound +MSEContraint

with
MSEinit = MSEm1init +MSEm2init +MSEm3init ,

and
MSEbound = MSEm1bound

+MSEm2bound
+MSEm3bound

,

with

MSEmrinit
=

1

Ninit

Ninit∑
i=1

|mr(δ
i, vi)−mrp(δ

i, vi)|2,

MSEmrbound
=

1

Nbound

Nbound∑
i=1

|mr(w
i, 0)−mrp((w

i, 0)|2,

for r = 1, 2, 3, the numbers Ninit and Nbound are, respectively, the numbers of the random
points (δi, vi) ∈ ∂Q and (wi, 0) ∈ Ω×{0} for which we know the solution of the equation
(1). In the next step, we will deduce an iterative gradient algorithm designed to minimize
Loss. We apply the following algorithm.
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1. Initialize the parameter set {weights,biases}.

2. Generate random samples from the domain’s and time spatial boundaries, i.e.,

• Generate (tn, xn) from Q.

• Generate (δn, vn) from ∂Q.

• Generate wn from Ω.

3. Calculate the Loss functional for the current mini-batch

sn = {(xn, tn), (δn, vn), wn}.

4. We choose {weights,biases} randomly such that Loss becomes minimal.

5. Repeat steps (3)-(4) until Loss is very small.

Numerical simulation. At this stage, we solve the equation in the two -dimensional
space only, for the numerical test, we apply an initial condition

M0(x, y) =


sin(α) cos(k(x+ y)),

sin(α) sin(k(x+ y)),

cos(α).

(5)

We trained the neural network on N = 2000 random points in Q, Ninit = 100 in Ω×{0}
and Nbound = 200 in ∂Q. We use the parameters µ = 3, α = π/3 and k = 4. This
data-set is then used to train a 5-layer deep neural network with 50 neurons per a
hidden layer. Figure 7 represent Magnetization component averages < m1 >, < m2 >,
< m3 >, < norm > and the Energy versus time. Through this figure, we find that
the solution obtained realizes all the properties of the equation, the decreasing energy,
the conservation of the norm. Thus, we conclude that this method is effective in solving
differential equation (1).
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Figure 7: Magnetization component averages < m1 >,< m2 >,< m3 >,< norm > and
Energy versus time for µ = 3, α = π/3 and k = 4.

4 Concluding Remarks

In this work, we proposed two essentially different approaches, but they are similar
in steps for solving differential equation (1). The first method is based on knowledge
of equation solutions at some random points of the field Q. The second depends on
the knowledge of the solution at some random points of the fields Ω × {0} and ∂Q.
We obtain good results because we can find a solution for the equation using the two
methods at each point of Q. Through these results, we conclude the following. The first
method is ineffective because we often do not know the solution at some random points



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (4) (2022) 432–446 445

of Q, but they are good at identifying some variables in the differential equation, for
example, looking for the correct PDEs, see [15], as we think, it will give good results
in an inverse source problem. For the PDEs to be well posed, it is necessary to give
the initial conditions and the conditions at the edge, which implies that it is possible
to find the solutions of PDEs at random points of Ω × {0} and ∂Q, this makes the
second method more effective and more realistic in solving differential equations. In the
next works, we will apply a deep learning approach to solve the model of magnetization
dynamics with inertial effects [8] and compare the results we will get with the results
obtained in [17]. Also, we will try to propose a new algorithm for solving PDE (1) in high
dimension, by making an analogy between the backward stochastic differential equations
and reinforcement learning with the gradient of the solution playing the role of the policy
function.
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