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Abstract: We study a mathematical problem modeling the antiplane shear defor-
mation of a cylinder in frictionless contact with a rigid foundation. The material
is assumed to be thermo-electro-viscoelastic with long-term memory, the friction is
modeled by Tresca’s law and the foundation is assumed to be electrically conductive.
We derive a variational formulation for the model which is in the form of a system
involving the displacement field, the electric potential field and the temperature field.
We prove the existence of a unique weak solution to the problem. The proof is based
on the arguments of time-dependent variational inequalities, parabolic inequalities,
differential equations and a fixed point theorem.
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1 Introduction

Anti-plane shear deformation problems arise naturally from many real world applications
such as rectilinear steady flow of simple fluids [6], interface stress effects of nanostruc-
tured materials [10], structures with cracks [16], layered/composite functioning materi-
als [15], and phase transitions in solids [17]. Considerable attention has been paid to the
modelling of such kind of problems, see for instance [8] and the references therein. In
particular, the review paper [8] deals with modern developments for the antiplane shear
model involving linear and nonlinear solid materials, various constitutive settings and
applications. Antiplane frictional contact problems are used in geophysics in order to
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describe the pre-earthquake evolution of the regions of high tectonic activity, see for in-
stance [5] and the references therein. The mathematical analysis of models for antiplane
frictional contact problems can be found in [2, 8, 18].

Currently, there is a considerable interest in frictional or frictionless contact prob-
lems involving piezoelectric materials, i.e., materials characterized by the coupling of
mechanical and electrical properties. This coupling, in a piezoelectric material, leads to
the appearance of electric potential when mechanical stress is present, and conversely,
mechanical stress is generated when electric potential is applied. The first effect is used
in mechanical sensors, and the reverse effect is used in actuators, in engineering control
equipment. Piezoelectric materials for which the mechanical properties are elastic are
also called electro-elastic materials and piezoelectric materials for which the mechanical
properties are viscoelastic are also called electro-viscoelastic materials. General models
for piezoelectric materials can be found in [3, 4, 12]. Static frictional contact problems
for elastic and viscoelastic materials were studied in [11, 13, 14], under the assumption
that the foundation is insulated. Contact problems with normal compliance for electro-
viscoelastic materials were investigated in [9, 19]. There, variational formulations of the
problems were considered and their unique solvability was proved. Antiplane problems
for piezoelectric materials were considered in [18].

In paper [20], the authors have studied an antiplane contact problem for viscoelas-
tic materials with long-term memory. This mechanical problem leads to an integro-
differential variational inequality. In the present paper, we deal with an antiplane contact
problem for a thermo-electro-viscoelastic cylinder, which leads to a new mathematical
model, different from the one presented in [20]. The novelty of this paper consists in the
fact that we model the friction by Tresca’s law and the material’s behavior by a thermo-
viscoelastic constitutive law with long-term memory. We neglect the inertial term in the
equation of motion to obtain a quasistatic approximation of the process.

Thermal effects in contact processes affect the composition and stiffness of the con-
tacting surfaces, and cause thermal stresses in the contacting bodies. Moreover, the
contacting surfaces exchange heat, and energy is lost to the surroundings. Our interest is
to describe a simple physical process in which the frictional contact, viscosity and piezo-
electric effects are involved, and to show that the resulting model leads to a well-posed
mathematical problem. Taking into account the frictional contact between a viscous
piezoelectric body and an electrically conductive foundation in the study of an antiplane
problem leads to a new and interesting mathematical model which has the virtue of rela-
tive mathematical simplicity without loss of essential physical relevance.The main result
we provide concerns the existence of a unique weak solution to the model. Its proof is
carried out in several steps, and is based on the arguments of evolutionary variational
inequalities and Banach’s fixed-point theorem.

The rest of the paper is structured as follows. In Section 2, we describe the model of
the frictional contact process between a thermo-electro-viscoelastic body and a conduc-
tive deformable foundation. In Section 3, we derive the variational formulation. It con-
sists of a variational inequality for the displacement field coupled with a time-dependent
variational equation for the electric potential and the heat equation for the tempera-
ture. We state our main result, the existence of a unique weak solution to the model,
in Theorem 3.1. The proof of the theorem is provided in Section 4, where it is based
on the arguments of evolutionary inequalities, an ordinary differential equation and a
fixed-point theorem.
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2 Mathematical Model

We consider a piezoelectric body B identified with a region in R3, it occupies in a fixed
and undistorted reference configuration. We assume that B is a cylinder with generators
parallel to the x3-axis with a cross-section which is a regular region Ω in the x1x2-plane,
Ox1x2x3 being a Cartesian coordinate system. The cylinder is assumed to be sufficiently
long so that end effects in the axial direction are negligible. Thus, B = Ω× (−∞,+∞).
The cylinder is acted upon by body forces of density f0 and has volume free electric
charges of density q0. It is also constrained mechanically and electrically on the boundary.
To describe the boundary conditions, we denote by ∂Ω = Γ the boundary of Ω and we
assume a partition of Γ into three open disjoint parts Γ1, Γ2, and Γ3, on the one hand,
and a partition of Γ1∪ Γ2 into two open parts Γa and Γb, on the other hand. We assume
that the one-dimensional measures of Γ1 and Γa, denoted meas Γ1 and meas Γa, are
positive. The cylinder is clamped on Γ1 × (−∞,+∞) and therefore the displacement
field vanishes there. Surface tractions of density f2 act on Γ2 × (−∞,+∞). We also
assume that the electrical potential vanishes on Γa× (−∞,+∞) and a surface electrical
charge of density q2 is prescribed on Γb × (−∞,+∞). The cylinder is in contact over
Γ3 × (−∞,+∞) with a conductive obstacle, the so-called foundation. The contact is
frictional and is modeled by Tresca’s law. We are interested in the deformation of the
cylinder on the time interval [0, T ] . We assume that

f0 = (0, 0, f0) with f0 = f0(x1, x2, t) : Ω× [0;T ] → R, (1)

f2 = (0, 0, f2) with f2 = f2(x1, x2, t) : Γ2 × [0;T ] → R, (2)

q0 = q0 (x1, x2, t) : Ω× [0, T ] → R, (3)

q2 = q2 (x1, x2, t) : Γb × [0, T ] → R. (4)

The forces (1), (2) and the electric charges (3), (4) are expected to give rise to deforma-
tions and to electric charges of the piezoelectric cylinder corresponding to a displacement
u and to an electric potential field φ which are independent of x3 and have the form

u = (0, 0, u) with u = u(x1, x2, t) : Ω× [0, T ] → R, (5)

φ = φ(x1, x2, t) : Ω× [0, T ] → R. (6)

Such kind of deformation, associated to a displacement field of the form (5), is called an
antiplane shear, see for instance [8] for details.

Below, the indices i and j denote components of vectors and tensors and run from 1 to
3, summation over two repeated indices is implied, and the index that follows the comma
represents the partial derivative with respect to the corresponding spatial variable; also,
the dot above represents the time derivative. We use S3 for the linear space of second
order symmetric tensors on R3 or, equivalently, the space of symmetric matrices of order
3, and “.”, ∥.∥ will represent the inner products and the Euclidean norms on R3 and S3;
we have

u.v = uiυi, ∥v∥ = (v.v)
1
2 ∀u =(ui) , v = (υi) ∈ R3,

σ.τ = σijτij , ∥τ∥ = (τ.τ)
1
2 ∀σ =(σij) , τ = (τij) ∈ S3.

The infinitesimal strain tensor is denoted by ε (u) = (εij (u)) and the stress field by
σ =(σij). We also denote by E (φ) = (Ei (φ)) the electric field and by D = (Di) the
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electric displacement field. Here and below, in order to simplify the notation, we do not
indicate the dependence of various functions on x1, x2, x3 or t and we recall that

εij(u) =
1

2
(ui,j + uj,i) , Ei (φ) = −φ,i.

The material’s behavior is modeled by the following thermal electro-viscoelastic consti-
tutive law with long-term memory

σ = λ(trε(u))I+ 2µε(u) + 2

t∫
0

G(t− s)ε(u(s))ds− E∗E(φ)−Mcθ, (7)

D = Eε(u) + αE(φ)− Pθ, (8)

where λ > 0 and µ > 0 are the Lamé coefficients, tr(ε(u)) =
∑3

i=1 εii(u), I is the unit
tensor in R3, G : [0, T ] → R is the relaxation function, E represents the third-order
piezoelectric tensor, and E∗ is its transpose, θ is the temperature field and Mc := (mij),
P (pi) are, respectively, the thermal expansion and the pyroelectric tensor which have
the forms

Mc =

 0 0 Mc1

0 0 Mc2

Mc1 Mc2 0

 , P =

 p1
p2
0

 .

We assume that Mci(x1, x2) : Ω → R, and pi : Ω → R.
In the antiplane context (5), (6), when using the constitutive equations (7), (8), it

follows that the stress field and the electric displacement field are given by

σ =

 0 0 σ13
0 0 σ23
σ31 σ32 0

 , (9)

D =

 eu,1 − αφ,1 − p1θ
eu,2 − αφ,2 − p2θ

0

 , (10)

where α is the electric permittivity constant, e is a piezoelectric coefficient,

σ13 = σ31 = µu,1 +

t∫
0

G(t− s)u,1(s)ds+ eφ,1 −Mc1 .θ,

σ23 = σ32 = µu,2 +

t∫
0

G(t− s)u,2(s)ds− eφ,2 −Mc2 .θ.

We assume that

Eε =

 e (ε13 + ε31)
e (ε23 + ε32)

eε33

 ∀ε = (εij) ∈ S3. (11)

We also assume that the coefficients G, µ, α, and e depend on the spatial variables x1,
x2, but are independent of the spatial variable x3. Since Eε.v = ε.E∗v for all ε ∈ S3,v
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∈ R3, it follows from (11) that

E∗v =

 0 0 ev1
0 0 ev2
ev1 ev2 ev3

 ∀v = (υi) ∈ R3. (12)

We assume that the process is mechanically quasistatic and electrically static and there-
fore is governed by the equilibrium equations

Div σ + f0 = 0, divD − q0 = 0 in B × (0, T ) ,

where Div σ = (σij,j) represents the divergence of the tensor field σ. When taking into
account (1), (3), (5), (6), (9), and (10), the equilibrium equations above reduce to the
following scalar equations:

div (µ∇u)+
t∫

0

G(t−s) div (∇u(s)) ds+ div (e∇φ)− div (θMc)+f0 = 0 in Ω×(0, T ),

(13)
div (e∇u− α∇φ)− div (θP) = q0 in Ω× (0, T ) (14)

with

Mc =

 Mc1

Mc2

0

 .

Here and below we use the notation

div τ = τ1,1 + τ1,2 for τ =(τ1 (x1, x2, t) , τ2 (x1, x2, t)) ,
∇v = (υ,1, υ,2) , ∂νv = υ,1ν1 + υ,2ν2 for υ = υ (x1, x2, t) .

We now describe the boundary condition. During the process, the cylinder is clamped
on Γ1× (−∞,+∞) and the electric potential vanishes on Γ1× (−∞,+∞). Thus, (5) and
(6) imply that

u = 0 on Γ1 × (0, T ), (15)

φ = 0 on Γa × (0, T ). (16)

Let ν denote the unit normal on Γ× (−∞,+∞). We have

ν = (ν1, ν2, 0) with νi = νi(x1, x2) : Γ → R, i = 1, 2. (17)

For a vector v, we denote by υν and vτ its normal and tangential components on the
boundary, given by

υν = v.ν , vτ = v − υνν. (18)

For a given stress field σ, we denote by σν and στ the normal and the tangential compo-
nents on the boundary, that is,

σν = (σν).ν, στ = σν − σνν. (19)

From (9), (10), and (17), we deduce that the Cauchy stress vector and the normal
component of the electric diplacement field are given by

σν = (0, 0, µ∂νu+
t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν),

D.ν = e∂νu− α∂νφ− θP.ν.
(20)
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Taking into account (2), (4), and (20), the traction condition on Γ2 × (−∞,+∞) and
the electric conditions on Γb × (−∞,+∞) are given by

µ∂νu+

t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν = f2 on Γ2 × (−∞,+∞), (21)

e∂νu− α∂νφ = q2 on Γb × (−∞,+∞). (22)

Now, we describe the frictional contact condition and electric conditions on Γ3 ×
(−∞,+∞). First, from (5) and (17), we infer that the normal displacement vanishes,
uν = 0, which shows that the contact is bilateral, that is, the contact is kept during the
whole process. Using now (5) and (17)-(19), we conclude that

uτ = (0, 0, u), στ = (0, 0, στ ), (23)

where

στ = (0, 0, µ∂νu+

t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν).

We assume that the friction is invariant with respect to the x3-axis and is modeled by
Tresca’s friction law, that is,

|στ | ≤ g,

|στ | < g ⇒ u̇τ = 0,

|στ | = g ⇒ ∃β ≥ 0, such that στ = −βu̇τ ,

on Γ3 × (0, T ). (24)

Here g : Γ3 → R+ is a given function, the friction bound, and u̇τ represents the tangential
velocity on the contact boundary. Using now (23), it is straightforward to see that the
conditions (24) imply

|µ∂νu+
t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν| ≤ g,

|µ∂νu+
t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν| < g ⇒ u̇ (t) = 0,

|µ∂νu+
t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν| = g ⇒ ∃β ≥ 0,

such that µ∂νu+
t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν = −βu̇.

on Γ3 × (0, T ).

(25)
Next, since the foundation is electrically conductive and the contact is bilateral, we
assume that the normal component of the electric displacement field or the free charge
is proportional to the difference between the potential on the foundation and the body’s
surface. Thus,

D.ν = k (φ− φF ) on Γ3 × (0, T ),

where φF represents the electric potential of the foundation and k is the electric conduc-
tivity coefficient. We use (20) and the previous equality to obtain

e∂νu− α∂νφ− θP.ν = k (φ− φF ) on Γ3 × (0, T ). (26)
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Finally, we prescribe the initial displacement

u(0) = u0 in Ω, (27)

where u0 is the given function on Ω.

We collect the above equations and conditions to obtain the classical formulation of
the antiplane problem for thermo-electro-viscoelastic materials with long-term memory,
in frictional contact with a foundation.
Problem P: Find the displacement field u : Ω × (0, T ) → R, a temperature field
θ : Ω× (0, T ) → R+ and the electric potential φ : Ω× (0, T ) → R such that

div (µ∇u)+
∫ t

0

G(t−s) div (∇u(s)) ds+ div (e∇φ)−div (θMc)+f0 = 0 in Ω× (0, T ),

(28)

div (e∇u− α∇φ)− div (θP) = q0 in Ω× (0, T ), (29)

θ̇ − div(K∇θ) = −Mc∇u̇+ h(t) in Ω× (0, T ), (30)

u = 0 on Γ1 × (0, T ), (31)

µ∂νu+

∫ t

0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν = f2 on Γ2 × (0, T ), (32)


|µ∂νu+

∫ t

0
G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν| ≤ g,

|µ∂νu+
∫ t

0
G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν| < g ⇒ u̇ = 0,

|µ∂νu+
∫ t

0
G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν| = g ⇒ ∃β ≥ 0,

such that µ∂νu+
∫ t

0
G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν = −βu̇,

on Γ3 × (0, T ),

(33)

θ = 0 on Γ1 ∪ Γ2 × (0, T ), (34)

e∂νu− α∂νφ = q2 on Γb × (0, T ), (35)

e∂νu− α∂νφ− θP.ν=k (φ− φF ) on Γ3 × (0, T ), (36)

− kij
∂θ

∂xj

ni = ke(θ − θR) on Γ3 × (0, T ), (37)

u(0) = u0, θ(0) = θ0 in Ω. (38)

The differential equation (30) describes the evolution of the temperature field, where
K := (kij) represents the thermal conductivity tensor, h(t) is the density of volume heat
sources. The associated temperature boundary condition is given by (37), where θR is the
temperature of the foundation, and k is the heat exchange coefficient between the body
and the obstacle. Finally, u0, θ0 represent the initial displacement and temperature,
respectively.
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3 Variational Formulation and Main Result

We derive now the variational formulation of Problem P . To this end we introduce the
function spaces

V =
{
v ∈ H1(Ω) | v = 0 on Γ1

}
, W =

{
ψ ∈ H1(Ω) | ψ = 0 on Γa

}
,

and we assume that
E =

{
η ∈ H1(Ω) | η = 0 on Γ1 ∪ Γ2

}
.

Similarly, we write ζ for the trace γζ of the function ζ ∈ H1(Ω) on Γ. Since measΓ1 > 0
and measΓa > 0, it is well known that V and W are real Hilbert spaces with the inner
products

(u, v)V =

∫
Ω

∇u.∇υ dx ∀ u, υ ∈ V, (φ,ψ)W =

∫
Ω

∇φ.∇ψ dx ∀ φ,ψ ∈W.

Moreover, the associated norms

∥ υ ∥V =∥ ∇v ∥L2(Ω)2 ∀ υ ∈ V, ∥ ψ ∥W=∥ ∇ψ ∥L2(Ω)2 ∀ ψ ∈W, (39)

are equivalent on V and W , with the usual norm ∥ . ∥H1(Ω). By Sobolev’s trace theorem
we deduce that there exist three positive constants c1 > 0, c2 > 0 and c3 > 0 such that

∥ υ ∥L2(Γ3) ≤ c1 ∥ υ ∥V ∀ υ ∈ V, ∥ ψ ∥L2(Γ3) ≤ c2 ∥ ψ ∥W ∀ ψ ∈W,
∥ η ∥L2(Γ3) ≤ c3 ∥ η ∥E ∀ η ∈ E.

(40)

If (X, ∥ . ∥X) represents a real Banach space whereX = V ×W , we denote by C([0, T ];X)
the space of continuous functions from [0, T ] to X, with the norm

∥ x ∥C([0;T ];X)= max
t∈[0,T ]

∥ x(t) ∥X ,

and we use standard notations for the Lebesgue space L2(0, T ;X) as well as for the
Sobolev spaceW 1,2(0, T ;X). In particular, recall that the norm on the space L2(0, T ;X)
is given by the formula

∥ u ∥2L2(0,T ;X)=

∫ T

0

∥ u(t) ∥2X dt,

and the norm on the space W 1,2(0, T ;X) is given by the formula

∥ u ∥2W 1,2(0,T ;X)=

∫ T

0

∥ u(t) ∥2X dt+

∫ T

0

∥ u̇(t) ∥2X dt.

Finally, we suppress the argument X when X = R; thus, for example, we use the
notation W 1,2(0, T ) for the space W 1,2(0, T ;R) and the notation ∥ . ∥W 1,2(0,T ) for the
norm ∥ . ∥W 1,2(0,T ;R) .

In the study of Problem P we assume that the viscosity coefficient satisfies

G ∈W 1,2(0, T ) (41)

and the electric permittivity coefficient satisfies

α ∈ L∞ (Ω) and there exists α∗ > 0 such that α (x) ≥ α∗ a.e. x ∈ Ω. (42)
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We also assume that the Lamé coefficient and the piezoelectric coefficient satisfy

µ ∈ L∞ (Ω) and µ (x) > 0 a.e. x ∈ Ω, (43)

e ∈ L∞ (Ω) . (44)

The thermal tensor and the pyroelectric tensor satisfy

Mc =

 Mc1

Mc2

0

 , Mci(x1, x2) : Ω → R, Mci ∈ L∞(Ω). (45)

The boundary thermal data satisfy

h ∈W 1,2(0, T ;L2(Ω)), θR ∈W 1,2(0, T ;L2(Γ3)), ke ∈ L∞(Ω,R+). (46)

The thermal conductivity tensor verifies the usual symmetry and ellipticity: for some
ck > 0 and for all ξi ∈ Rd,

K = (kij), kij = kji ∈ L2(Ω), ∀ck > 0, ξi ∈ Rd; kijξi.ξj ≤ ckξi.ξj . (47)

The forces, tractions, volume, and surface free charge densities have the regularity

f0 ∈ W 1,2(0, T ;L2(Ω)), f2 ∈W 1,2(0, T ;L2(Γ2)), (48)

q0 ∈ W 1,2(0, T ;L2(Ω)), q2 ∈W 1,2(0, T ;L2(Γb)). (49)

The electric conductivity coefficient and the friction bound function g satisfy the following
properties:

k ∈ L∞(Γ3) and k (x) ≥ 0 a.e. x ∈ Γ3, (50)

g ∈ L∞(Γ3) and g (x) ≥ 0 a.e. x ∈ Γ3. (51)

Also, we assume that the electric potential of the foundation is such that

φF ∈W 1,2(0, T ;L2(Γ3)). (52)

Finally, we assume that the initial data verifies

u0 ∈ V, θ0 ∈ L2(Ω), (53)

and moreover,

aµ(u0, υ)V + j(υ) ≥ (f(0), υ)V , ∀υ ∈ V. (54)

We consider the functional j : [0, T ] → R+ given by

j(υ) =

∫
Γ3

g |υ| da ∀υ ∈ V, (55)

and let f : [0, T ] → V and q : [0, T ] →W be defined by

(f(t), υ)V =

∫
Ω

f0(t)υdx+

∫
Γ2

f2(t)υ da, (56)

(q(t), ψ)W =

∫
Ω

q0(t)ψdx−
∫
Γb

q2(t)ψ da+

∫
Γ3

kφF (t)ψda, (57)

∀υ ∈ V, ψ ∈W , ∀t ∈ [0, T ].
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The definitions of f and q are based on Riesz’s representation theorem and by (48) and
(49), we infer that the integrals above are well-defined and

f ∈ W 1,2(0, T ;V ), (58)

q ∈ W 1,2(0, T ;W ). (59)

Next, we define the bilinear forms aµ : V × V → R, ae : V ×W → R, a∗e : W × V → R,
and aα :W ×W → R, by the equalities

aµ (u, υ) =

∫
Ω

µ∇u.∇υ dx, (60)

ae (u, φ) =

∫
Ω

e∇u.∇φ dx = a∗e (φ, u) , (61)

aα (φ,ψ) =

∫
Ω

α∇φ.∇ψ dx+

∫
Γ3

kφψ da (62)

for all u, υ ∈ V, φ, ψ ∈ W . Assumptions (55)–(57) imply that the integrals above are
well-defined and when using (39) and (40), it follows that the forms aµ, ae and a∗e are
continuous; moreover, the forms aµ and aα are symmetric and, in addition, the form aα
is W-elliptic since

aα (ψ,ψ) ≥ α∗ ∥ψ∥2W ∀ψ ∈W. (63)

By using Green’s formula, it is straightforward to derive the following variational
formulation of P. We denote by ⟨ , ⟩V ′×V the duality pairing between V

′
and V .

Problem PV : Find a displacement field u : [0;T ] → V , an electric potential
field φ : [0;T ] →W and a temperature field θ : [0;T ] → E such that

aµ(u(t), υ − u̇(t)) + (
∫ t

0
G(t− s)u(s)ds, υ − .

u(t))V + a∗e (φ (t) , υ − u̇ (t))
+(Mcθ(t), υ − u̇(t))V + j(υ)− j(u̇(t)) ≥ (f(t), υ − u̇(t))V ∀υ ∈ V, t ∈ (0, T ),

(64)

aα (φ (t) , ψ)− ae (u (t) , ψ)− (Pθ,∇ψ)H = (q (t) , ψ)W ∀ψ ∈W, t ∈ [0, T ] , (65)

θ̇(t) +Kθ(t) = Ru̇(t) +Q(t) in E′, (66)

u(0) = u0, θ(0) = θ0 in Ω. (67)

Here, the function Q : [0, T ] → E′ and the operators K : E → E′, R : V → E′; Mc :
E → V ′ are defined by ∀υ ∈ V, ∀τ ∈ E, ∀µ ∈ E:

⟨Q(t), µ⟩E′×E =

∫
Γ3

kcθRµds+

∫
Ω

qµ dx,

⟨Kτ, µ⟩E′×E =

d∑
i,j=1

∫
Ω

kij
∂µ

∂xj

∂µ

∂xi
dx+

∫
Γ3

kcτµ ds,

⟨Rυ, µ⟩E′×E =

∫
Γ3

hτ (|υτ |)µds−
∫
Ω

(Mc ∇υ)µdx,

⟨Mcτ, υ⟩V ′×V = (−τMc, υ)V .

Our main existence and uniqueness result is stated as follows.
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Theorem 3.1 Assume that (41)-(59) hold. Then there exists a unique solution
(u, θ, φ) of problem PV . Moreover, the solution satisfies

u ∈ W 1,2(0, T ;V ); φ ∈W 1,2 (0, T ;W ) , (68)

θ ∈ W 1,2(0, T ;E
′
) ∩ L2(0, T ;E) ∩ C(0, T ;L2(Ω)).

An element (u, φ, θ) which solves PV is called a weak solution of the mechanical
problem P. We conclude by Theorem 3.1 that the antiplane contact problem P has a
unique weak solution, provided that (41)-(59) hold.

4 An Abstract Existence and Uniqueness Result

The proof of Theorem 3.1 is carried out in several steps that we prove in what follows.
Everywhere in this section, we suppose that assumptions of Theorem 3.1 hold and we
denote by c > 0 a generic constant, whose value may change from lines to lines.

In the first step of the proof, we introduce the set

W =
{
η ∈W 1,2(0, T ;X) | η(0) = 0X

}
, (69)

and we prove the following existence and uniqueness result.

Lemma 4.1 For all η ∈ W, there exists a unique element uη ∈ W 1,2(0, T ;X) such
that

a(uη(t), v − u̇η(t)) + (η(t), v − u̇η(t))X + j(v)− j(u̇η(t))

≥ (f(t), v − u̇η(t))X ∀v ∈ X, a.e. t ∈ [0, T ] ,
(70)

uη(0) = u0. (71)

Here X is a real Hilbert space endowed with the inner product (. , .)X and the data
a is a bilinear continuous coercive and symmetric form.

Proof. We use an abstract existence and uniqueness result which may be found
in [2].

In the second step, we use the displacement field uη obtained in Lemma 4.1 and we
consider the following lemma.

Lemma 4.2 For all η ∈ W , there exists a unique solution

θη ∈W 1,2(0, T ;E
′
) ∩ L2(0, T ;E) ∩ C(0, T ;L2(Ω)), c > 0 ∀η ∈ L2([0, T ], V

′
),

satisfying {
θ̇η(t) +Kθη(t) = Ru̇η(t) +Q(t) in E

′
a.e. t ∈ [0, T ] ,

θη(0) = θ0,
(72)

|θη1 − θη2 |2L2(Ω) ≤ C

∫ t

0

|u̇η1(s)− u̇η2(s)|2V ds ∀t ∈ [0, T ] , (73)

and

|θ̇η1
− θ̇η2

|2L2(Ω) ≤ c

∫ t

0

|u̇η1(s)− u̇η2(s)|2V ds a.e.t ∈ [0, T ] . (74)
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Proof. The existence and uniqueness result verifying (72) follows from the classical
result for the first order evolution equation, applied to the Gelfand evolution triple

E ⊂ F ≡ F
′
⊂ E

′
.

We verify that the operator K : E → E
′
is linear continuous and strongly monotone,

and from the expression of the operator R,

υη ∈W 1,2(0, T ;V ) =⇒ Rυη ∈W 1,2(0, T ;F ),

as Q ∈W 1,2(0, T ;E), then Rυη +Q ∈W 1,2(0, T ;E), we deduce (73) and (74) (see
[1]).

In the third step, we use the displacement field uη obtained in Lemma 4.1 and θη
obtained in Lemma 4.2 and we consider the following lemma.

Lemma 4.3 For all η ∈ W , there exists a unique solution φη ∈W 1,2(0, T ;W ) which
satisfies

aα (φη (t) , ψ)− ae (uη (t) , ψ)− (Pθη,∇ψ)H = (q (t) , ψ)W ∀ψ ∈W, t ∈ [0, T ] . (75)

Moreover, if φη1
and φη2 are the solutions of (4.7) corresponding to η1, η2 ∈ C([0, T ] , V ),

then there exists c > 0 such that

∥φη1 (t)− φη2 (t)∥W ≤ c ∥uη1 (t)− uη2 (t)∥V ∀t ∈ [0, T ] . (76)

Proof. Let t ∈ [0, T ]. We use the properties of the bilinear form aα and the Lax-
Milgram lemma to see that there exists a unique element φη (t) ∈ W which solves (75)
at any moment t ∈ [0, T ]. Consider now t1, t2 ∈ [0, T ]; using (75), we get

aα (φη (t1) , ψ)− ae (uη (t1) , ψ)− ( Pθη (t1) ,∇ψ)H
= (q (t1) , ψ)W ∀ψ ∈W, t1 ∈ [0, T ] ,

(77)

aα (φη (t2) , ψ)− ae (uη (t2) , ψ)− ( Pθη (t2) ,∇ψ)H
= (q (t2) , ψ)W ∀ψ ∈W, t2 ∈ [0, T ] .

(78)

Using (77), (78) and (63), we find that

α∗ ∥φ (t1)− φ (t2)∥2W ≤ (∥e∥L∞(Ω) ∥u (t1)− u (t2)∥V + ∥q (t1)− q (t2)∥W +

∥p∥L∞(Ω) ∥θ (t1)− θ (t2)∥L2(Ω) ) ∥φ (t1)− φ (t2)∥W ,

and using (73) we find that

α∗ ∥φ (t1)− φ (t2)∥2W ≤ (∥e∥L∞(Ω) ∥u (t1)− u (t2)∥V + ∥q (t1)− q (t2)∥W +

∥p∥L∞(Ω) ∥u (t1)− u (t2)∥V ) ∥φ (t1)− φ (t2)∥W .

It follows from the previous inequality that

∥φ (t1)− φ (t2)∥W ≤ c(∥u (t1)− u (t2)∥V + ∥q (t1)− q (t2)∥W ). (79)

Then, the regularity uη ∈ W 1,2(0, T ;V ) combined with (59 ) and (79) imply that φη ∈
W 1,2(0, T ;W ), which concludes the proof.
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Now, for all η ∈ W, we denote by uη the solution obtained in Lemma 4.1, by θη the
solution obtained in Lemma 4.2 and by φη the solution obtained in Lemma 4.3.

Step 4: In the fourth step, we consider the operator Λ : W → W.
We now use Riesz’s representation theorem to define the element Λη (t) ∈ W by the

equality

⟨Λη(t), w⟩W = (

∫ t

0

G(t− s)uη(s)ds−Mcθη, w)V + a∗e (φη (t) , w) (80)

∀η ∈ W, w ∈ V, t ∈ [0, T ] .

Clearly, for a given η ∈ W, the function t → Λη (t) belongs to W. In this step we show
that the operator Λ : W → W has a unique fixed point.

Lemma 4.4 The operator Λ has a unique fixed point η∗ ∈ W such that Λη∗ = η∗.

Proof. Let η1, η2 ∈ W and t ∈ [0, T ] . In what follows we denote by ui, θi and φi the
functions uηi , θηi and φηi obtained in Lemmas 4.1, 4.2 and 4.3, for i = 1, 2. Using (80)
and ( 61), we obtain

∥Λη1 (t)− Λη2 (t)∥2X (81)

≤ C

(∫ t

0

∥u1 (s)− u2 (s)∥2X ds+ ∥θ1 − θ2∥2L2(Ω) + ∥φ1 (t)− φ2 (t)∥
2
W

)
∀t ∈ [0, T ] .

The constant C represents a generic positive number which may depend on
∥θ∥W 1,2(0,T ), T,mij and e, and whose value may change from place to place.

Since uη ∈ W 1,2(0, T ;V ) and φη ∈ W 1,2(0, T ;W ), we deduce from inequality (81)
that Λη ∈ W 1,2(0, T ;V ). On the other hand, (76) and arguments similar to those used
in the proof of (79) yield

∥φ
1
(t)− φ

2
(t)∥W ≤ C ∥u

1
(t)− u

2
(t)∥V . (82)

Using now (73)(82) in (81), we get

∥Λη1 (t)− Λη2 (t)∥2X

≤ C

(∫ t

0

∥u1 (s)− u2 (s)∥2X ds+

∫ t

0

∥u̇1 (t)− u̇2 (t)∥2X ds+ ∥u
1
(t)− u

2
(t)∥2V

)
.

Using the norm on the space W 1,2 (0, T,X) , we deduce that

∥Λη1 (t)− Λη2 (t)∥2X ≤ C ∥u1 (s)− u2 (s)∥2X ds ∀t ∈ [0, T ] . (83)

Taking into account (64), we have the inequalities

a(u1(t), v − u̇1(t)) + (η1(t), v − u̇1(t))X + j(v)− j(u̇1(t))

≥ (f(t), v − u̇1(t))X ∀υ ∈ X, t ∈ [0, T ] ,

and

a(u2(t), v − u̇2(t)) + (η2(t), v − u̇2(t))X + j(v)− j(u̇2(t))

≥ (f(t), v − u̇2(t))X ∀υ ∈ X, t ∈ [0, T ] ,
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for all υ ∈ X, a.e. s ∈ [0, T ] . We choose υ = u̇2(s) in the first inequality and υ = u̇1(s)
in the second inequality, add the result to obtain

1

2
∥u1 (s)− u2 (s)∥2X ≤ − (η1 (s)− η2 (s) , u̇1 (s)− u̇2 (s))X a.e. s ∈ [0, T ] .

Let t ∈ [0, T ] . Integrating the previous inequality from 0 to t using (68), we obtain

1
2 ∥u1 (t)− u2 (t)∥2X ≤ − (η1 (t)− η2 (t) , u1 (t)− u2 (t))X∫ t

0
(η̇1 (s)− η̇2 (s) , u1 (s)− u2 (s))X ds.

We deduce that

C ∥u1 (t)− u2 (t)∥2X ≤ ∥η1 (t)− η2 (t)∥X ∥u1 (t)− u2 (t)∥X
+
∫ t

0
∥η̇1 (s)− η̇2 (s)∥X ∥u1 (s)− u2 (s)∥X ds.

Using Young’s inequality, we get

∥u1 (t)− u2 (t)∥2X ≤ C(∥η1 (t)− η2 (t)∥2X +
∫ t

0
∥η̇1 (s)− η̇2 (s)∥2X ds

+
∫ t

0
∥u1 (s)− u2 (s)∥2X ds).

(84)

On the other hand, as

η1 (t)− η2 (t) =

∫ t

0

η̇1 (s)− η̇2 (s) ds,

we can obtain

∥η1 (t)− η2 (t)∥2X ≤ C

∫ t

0

∥η̇1 (s)− η̇2 (s)∥2X ds. (85)

Using now (85) in (84), we have

∥u1 (t)− u2 (t)∥2X ≤ C(

∫ t

0

∥η̇1 (s)− η̇2 (s)∥2X ds+

∫ t

0

∥u1 (s)− u2 (s)∥2X ds).

Taking into account Gronwall’s inequality, we deduce

∥u1 (t)− u2 (t)∥2X ≤ C

∫ t

0

∥η̇1 (s)− η̇2 (s)∥2X ds. (86)

From (83), (86), we obtain

∥Λη1 (t)− Λη2 (t)∥2X ≤ C

∫ t

0

∥η̇1 (s)− η̇2 (s)∥2X ds.

Iterating the last inequality m times, we infer

∥Λmη1 (t)− Λmη2 (t)∥2X ≤ Cm

∫ t

0

∫ s1

0

.....

∫ sm−1

0

∥η̇1 (sm)− η̇2 (sm)∥2X dsm.....ds1,

where Λm denotes the power of operator Λ. The last inequality gives

∥Λmη1 (t)− Λmη2 (t)∥2W1.2(0,T ;X) ≤
CmTm

m!
∥η1 (t)− η2 (t)∥2W 1.2(0,T ;X) ,
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which implies that for m sufficiently large, the power Λm of Λ is a contraction in the
Banach space, since

lim
m→∞

CmTm

m!
= 0,

it follows now from Banach’s fixed-point theorem that there exists a unique element
η∗ ∈ W such that Λmη∗ = η∗. Moreover, since

Λm (Λη∗) = Λ (Λmη∗) = Λη∗,

we deduce that Λη∗ is also a fixed point of the operator Λm. By the uniqueness of the
fixed point, we conclude that Λη∗ = η∗, which shows that η∗ is a fixed point, we conclude
that Λη∗ = η∗. Step 5: In the fifth and last step of our demonstration, we have now all
the ingredients to provide the proof of Theorem 3.1.

Existence. Let η∗ ∈W 1.2 (0, T ;V ) be the fixed point of the operator Λ, and let uη∗ ,
θη∗ and φη∗ be the solutions defined in Lemmas 4.1, 4.2 and 4.3, respectively, for η = η∗.
It follows from (80) that

⟨η∗(t), w⟩V = (

∫ t

0

G(t− s)uη∗(s)ds−Mcθη, w))V + a∗e (φη∗ (t) , w) ∀w ∈ V, t ∈ [0, T ] ,

(87)
and, therefore, (64), ( 66), and (76) imply that (uη∗ , θη∗ , φη∗) is a solution of problem
PV . Regularity (68) of the solution follows from Lemmas 4.1, 4.2 and 4.3.

Uniqueness. The uniqueness of the solution follows from the uniqueness of the fixed
point of the operator Λ. It can also be obtained by using arguments similar to those used
in [20] and [9].

5 Conclusion

This work models the phenomenon of contact with friction between a cylindrical body
and a foundation. These contact phenomena abound in industry and in everyday life, so
they play an important role in the behavior of mechanical structures.

The envisaged mechanical model is an antiplane one. We recall that the antiplane
shear deformation is the expected deformation of a very long cylinder loaded in the
direction of its generators. In such a model, the displacement vectorial field is parallel to
the generators of the cylinder and it is independent of the axial coordinate. Due to their
simplicity in the writing of the equations without loss of physical relevance, antiplane
models have enjoyed special attention in recent years. The antiplane models appear in
the technical literature in engineering, describing the functioning of various mechanisms,
and in geophysics, focusing on the deformation of the tectonic plates, and in particular,
on earthquakes.

The novelty of the result obtained is the coupling of an electro-viscoelastic problem
and a thermal effect.

The problem is formulated as a coupled system of evolutionary variational inequality
for the displacement field with a time-dependent variational equation for the electric
potential field and the heat equation for the temperature. We establish a variational
formulation for the model and we prove the existence of a unique weak solution to the
problem.
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