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Abstract: We consider a dynamic contact problem between a piezo-thermo-elastic-
viscoplastic material with damage and a rigid obstacle. The contact is frictional and
bilateral, the friction is modeled by Coulomb’s law with heat exchange. We employ
the electro-elastic-viscoplastic with damage constitutive law for the material. The
evolution of the damage is described by an inclusion of parabolic type. We establish
a variational formulation for the model and we prove the existence of a unique weak
solution to the problem. The proof is based on a classical existence and uniqueness
result on parabolic inequalities, differential equations and a fixed point argument.
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1 Introduction

Because of its considerable impact in everyday life and its multiple open problems, con-
tact mechanics still remains a rich and fascinating domain of challenge. The literature
devoted to various aspects of the subject is considerable, it concerns the modelling, the
mathematical analysis as well as the numerical approximation of the related problems.
For example, many food materials used in process engineering are elastic-viscoplastic [14]
and consequently, mathematical models can be very helpful in understanding various
problems related to the product development, packing, transport, shelf life testing, ther-
mal effects, and heat transfer. It is thus important to study mathematical models that
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can be used to describe the dynamical behavior of a given elastic-viscoplastic material
subjected to various highly nonlinear and even non-smooth phenomena like contact, fric-
tion, lubrication, adhesion, wear, damage, electrical and thermal effects. The uncoupled
thermo-viscoplastic models were obtained in [13]. Different models have been devel-
oped to describe the interaction between the thermal and mechanical field [6]. The new
papers use several types of contact for coupled materials such as thermo-mechanical,
electro-mechanical and thermo-electromechanical materials. For the thermo-mechanical
materials, a transmission problem in thermo-viscoplasticity is studied in [11], a thermo-
viscoelastic body is considered in [5], several problems for thermo-elastic-viscoplastic
materials are studied in [6–8]. For the electro-mechanical bodies, many laws of behavior
are considered by many authors, see for example [1, 2, 9, 12] and references therein.

Realistically, it may be impossible to predict the electro-mechanical behaviour without
thermal considerations. To achieve this, the authors have started to study a new model
for thermo-electro-mechanical behaviour, see for example [4]. The aim of this paper is to
study a frictionless contact problem for elastic-viscoplastic materials with piezoelectric
effect, also called electro-elasto-viscoplastic materials. To this end, we consider that the
material is electro-elasto-viscoplastic with an internal state variable α which may describe
the damage of the system caused by elastic deformations and thermal effects. The main
difficulty is that Korn’s inequality cannot be applied any more. For this proposal, fol-
lowing the technique already developed by Duvaut and Lions [10] for Coulomb’s friction
models, we use the inertial term of the dynamic process to compensate the loss of coer-
civeness in the a priori estimates. By the change of variable, we bring the coupled second
order evolution inequality into a classical first order evolution inequality. After this, we
use classical results on first order evolution nonlinear inequalities, a parabolic variational
inequality and equations and the fixed point arguments. Existence and uniqueness results
for the boundary value problem for thermo-electro-viscoelastic materials were obtained
by many authors using different functional methods. The novelty in this paper is to
make the coupling of an electro-elasto-viscoplastic problem with damage and thermal
effect. We employ the thermo-elastic-viscoplastic with damage constitutive law for the
material. The damage of the material is caused by elastic deformations. The evolution
of the damage is described by an inclusion of parabolic type. The problem is formulated
as a coupled system of an elliptic variational inequality for the displacement, a parabolic
variational inequality for the damage and the heat equation for the temperature. We
establish a variational formulation for the model and we prove the existence of a unique
weak solution to the problem. A new law of behaviour for the so-called thermo-electro-
elastic-viscoplastic material is given by

σ(t)=A(ε(
·
u(t)))+B(εu(t), α(t))+

∫ t

0

G
(
σ(s)−A(ε(

·
u(t))), ε (u (s))

)
ds+E∗∇φ (t)−Mθ (t) ,

(1)

D (t) = Eε (u (t))− B∇ (φ (t))− Pθ (t) , (2)

where A and B are nonlinear operators describing the purely viscous and the elastic
properties of the material, respectively, G, E(φ) = −∇φ, E = (eijk), M, B, and P are the
relaxation operator, electric field, piezoelectric, thermal expansion, electric permittivity
and pyroelectric tensors. E∗ is the transpose of E .

Many types of evolution of the temperature field are given by several authors, see for
example [4, 5, 8]. In this paper, we use the evolution of the temperature field obtained
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from the conservation of energy and define it with the following differential equation:

θ̇(t)− div(K∇θ(t)) = −M∇u̇(t) + q,

where θ is the temperature, K denotes the thermal conductivity tensor, M is the thermal
expansion tensor, q is the density of volume heat sources and ψ is a nonlinear function
assumed here to depend on the thermal expansion tensor and the velocity.

The differential inclusion used for the evolution of the damage field is

α̇− k1△α+ ∂φ(α) ∋ Φ(ε(u), α), in Ω× (0, T ), (3)

where φF (α) denotes the sub-differential of the indicator function of the set F of an
admissible damage function given as follows:

F = {α ∈ H1(Ω) : 0 ≥ α ≥ 1, a.e. in Ω}

and Φ are given constitutive functions which describe the sources of the damage in the
system. When α = 0, the material is completely damaged, when α = 1, the material is
undamaged, and for 0 < α < 1, there is partial damage. The Coulomb friction is one of
the useful friction laws known from the literature. This law has two basic ingredients,
namely, the concept of friction threshold and its dependence on the normal stress. Various
versions of the normal compliance law were recently presented in the literature [1,2,12].
The paper is organized as follows. In Section 2, we present the model. In Section 3,
we introduce the notations, some preliminary results, a list of the assumptions on the
data and we give the variational formulation of the problem. In Section 4, we state our
main existence and uniqueness result, Theorem 4.1. The proof of the theorem is based
on evolutionary elliptic variational inequalities, ordinary differential equations and fixed
point arguments.

2 The Model

The physical setting is the following. A thermo-electro- elastic-viscoplastic body occupies
a bounded domain Ω ⊂ Rd (d = 2, 3) with the outer Lipschitz surface Γ. This boundary
is divided into three open disjoints Γ1, Γ2 and Γ3, on one hand, and a partition of Γ1∪Γ2

into two open parts Γa and Γb, on the other hand. We assume that meas(Γ1) > 0 and
meas(Γa) > 0. Let T > 0 and let [0, T ] be the time interval of interest. The body is
subjected to the action of body forces of density f0, a volume electric charges of density
q0 and a heat source of constant strength q.

The body is clamped on Γ1 × (0, T ), so the displacement field vanishes there. A
surface traction of density f2 acts on Γ2 × (0, T ). We also assume that the electrical
potential vanishes on Γa × (0, T ) and a surface electric charge of density qb is prescribed
on Γb×(0, T ). Moreover, we suppose that the temperature vanishes on (Γ1 ∪ Γ2)×(0, T ).
In the reference configuration, the body is in contact with an obstacle, or foundation,
over the contact surface Γ3. The contact is frictional and thermo-mechanical. The model
of the contact is specified by the normal compliance and it is associated with Coulomb’s
law of dry friction for the mechanical contact and by an associated temperature boundary
condition for the thermal contact.

The classical formulation of the mechanical problem is as follows.
Problem P. Find the displacement field u : Ω × [0, T ] → Rd, the stress field σ :
Ω× [0, T ] → Sd, the electric potential φ : Ω× [0, T ] → R, the electric displacement field
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D : Ω × [0, T ] → Rd, the temperature field θ : Ω × [0, T ] → R and the damage field
α : Ω× [0, T ] → R such that

σ(t) = A(ε(
·
u(t)))+B(εu(s), α(t))+

∫ t

0

G
(
σ(s)−A(ε(

·
u(t))), ε (u (s))

)
ds+E∗∇φ (t)−Mθ (t) ,

(4)
D (t) = Eϵ (u (t))− B∇ (φ (t))− Pθ (t) , (5)

�
θ − div (K∇θ) = −M∇u̇+ q in Ω× (0, T ), (6)

divσ + f0 = ρü in Ω× (0, T ), (7)

α̇−K△α+ ∂φK(α) ∋ Φ(ε(u)− α) in Ω× (0, T ), (8)

divD− q0 = 0 in Ω× (0, T ), (9)

u = 0 on Γ1 × (0, T ), (10)

σν = f2 on Γ2 × (0, T ), (11)

στ = pr (uν − h) on Γ3 × (0, T ), (12) ∥στ∥ ≤ µp∥Rσν∥,
∥στ∥ < µp∥Rσν∥ =⇒ u̇τ = 0,
∥στ∥ = µp∥Rσν∥ =⇒ ∃ λ > 0 : στ = −λ u̇τ on Γ3 × (0, T ),

(13)

−Kij
∂θ

∂v
νj = Ke(θ − θR)− hτ (|u̇τ |) on Γ3 × [0, T ], (14)

∂α

∂ν
= 0 on Γ× (0, T ), (15)

D · ν = 0 on Γ3 × (0, T ), (16)

θ = 0 on (Γ1 ∪ Γ2)× (0, T ), (17)

φ = 0 on Γa × (0, T ), (18)

D· ν = qb on Γb × (0, T ), (19)

D · ν =ψ (uν − h)ϕL (φ− φ0) on Γ3 × (0, T ), (20)

u(0) = u0, u̇(0) = v0, α(0) = α0 and θ(0) = θ0 in Ω. (21)

We now describe problem (4)-(21) and provide the explanation of the equations and
the boundary conditions. Equations (4) and (5) represent the thermo-electro-elastic-
viscoplastic constitutive law, the evolution of the temperature field is governed by a
differential equation given by the relation (6), assumed to be a rather general function
of the strains. Next equations (20) and (9) are the steady equations for the stress and
electric-displacement field, conditions (10) and (11) are the displacement and traction
boundary conditions. Equation (17) means that the temperature vanishes on (Γ1 ∪ Γ2)×
(0, T ) which implies that there is only an electro-mechanical effect on (Γ1 ∪ Γ2).

Next, (18) and (19) represent the electric boundary conditions for the electrical po-
tential on Γa, and the electric charges on Γb, respectively. We use (19) as the elec-
trical contact condition on Γ3 which represents a regularized condition. Equation (20)
represents the initial displacement field and the initial damage field, where u0 is the
initial displacement, and θ0 is the initial temperature.
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We turn to the contact conditions (12)-(14) and describe the frictional thermo-
mechanical contact on the potential contact surface Γ3. The relation (12) describes
a normal compliance conditions with Coulomb’s law. The equation (14) represents an
associated temperature boundary condition on the contact surface. The equation (16)
shows that there are no electric charges on the contact surface. Rν is the truncation
operator defined by

Rν(s) =

 L if s < −L,
−s if − L ≤ s ≤ 0,
0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which it does not offer any
additional traction. The introduction of the operator Rν , together with the operator
Rτ defined below, is motivated by mathematical arguments but it is not restrictive from
a physical point of view since no restriction on the size of the parameter L is made in
what follows, where u1τ − u2τ stands for the jump of the displacements in the tangential
direction. Rν is the truncation operator given by

Rν(s) =

{
v if |v| ≤ L,
L v

|v| if |v| > L.

3 Variational Formulation

In order to obtain the variational formulation of the Problem P, we use the following
notations and preliminaries

3.1 Notations and preliminaries.

In this short section, we recall some preliminary material and notations. For more details,
we refer the reader to [7, 10]. The indices i, j, k and l run from 1 to d and summation
over repeated indices is implied. An index that follows the comma represents the partial
derivative with respect to the corresponding component of the spatial variable. We also
use the following notations:

H = L2(Ω)d = { u = (ui) : ui ∈ L2(Ω)}, H = { σ = (σij) : σij = σji ∈ L2(Ω)},
H1(Ω)d = { u = (vi) ∈ H : ε (u) ∈ H }, H1 = {σ ∈ H: Div σ ∈ H} .

The operators of deformation ε and Div are defined by

ε (u) = (εij (u)) , εij (u) = (ui,j + uj,i) /2, Div σ = (σij,j) ·

The associated norms on spaces H, H1(Ω)d, H, and H1 are denoted by ∥·∥H , ∥·∥H1(Ω)d ,

∥·∥H, and ∥·∥H1
respectively. Let HΓ = H1/2(Γ)d and γ : H1(Ω)d → HΓ be the trace

map. For every element v ∈ H1(Ω)d, we also use the notation v to denote the trace
γv of v on Γ and we denote by vν and vτ the normal and tangential components of v
on Γ . Moreover, we use the dot above to indicate the derivative with respect to the
time variable and, for a real number r, we use r+ to represent its positive part, that
is, r+ = max(0, r). To obtain the variational formulation of the problem (4)-(21), we
introduce, for the bonding field, the sets

W =
{
ϕ ∈ H1(Ω)d : ϕ = 0 on Γa

}
, W =

{
D = (Di) : Di ∈ L2(Ω),divD ∈ L2(Ω)

}
.
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On the spaces V , W , W , we define the following inner products:

(u · v)V = (σ, ε(v))H,∀u, v ∈ V, (22)

(φ, ϕ)W = (∇φ,∇ϕ)W ,∀φ, ϕ ∈W, (23)

(w, z)E = (∇w,∇z)H ,∀w, z ∈ E, (24)

where E =
{
γ ∈ H1(Ω) : γ = 0 a.e. on Γ1 ∪ Γ2

}
.

Therefore, the spaces (V, (·, ·)V ) , (W ,(·, ·)W ) and (E, (·, ·)E) are real Hilbert spaces.

3.2 Assumptions on the data

We now list the assumptions on the problem’s data.

The viscosity operator A : Ω× Sd −→ Sd satisfies

(a) There exists LA > 0 such that
∥A (x, ε1)−A (x, ε2)∥ ⩽ LA ∥ε1 − ε2∥ ∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω ,
(b) There exists mA > 0 such that

(A (x, ε1)−A (x, ε2)) · (ε1 − ε2) ⩾ mA ∥ε1 − ε2∥2 , ∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω ,
(c) The mapping x −→ A (x, ε) is Lebesgue measurable on Ω , ∀ ε ∈ Sd,
(d) The mapping x −→ A (x, ε) belongs to H.

(25)

The elasticity operator B : Ω× Sd −→ Sd satisfies
(a) There exists LB > 0 such that
∥B (x, ε1)− B (x, ε2)∥ ⩽ LB ∥ε1 − ε2∥ ∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω,

(b) The mapping x −→ B (x, ε) is Lebesgue measurable on Ω , ∀ ε ∈ Sd,
(c) The mapping x −→ B (x, 0) belongs to H.

(26)

The visco-plasticity operator G : Ω× Sd × Sd −→ Sd satisfies

(a) There exists a constant LG > 0 such that
∥G (x, σ1, ε1)− G (x, σ2, ε2)∥ ⩽ LG (∥σ1 − σ2∥+ ∥ε1 − ε2∥) ,
for all σ1, σ2, ε1, ε2 ∈ Sd , a.e. x ∈ Ω,
(b) The mapping x −→ G (x, σ, ε) is Lebesgue measurable on Ω , ∀ ε ∈ Sd,
for any ε, σ ∈ Sd,
(c) The mapping x −→ G (x, 0, 0) ∈ H.

(27)

The piezoelectric operator E : Ω× Sd −→ Rd satisfies{
(a) E (x, τ) = (eijk , τjk) , ∀τ = (τjk) ∈ Sd, a.e. x in Ω ,
(b) eijk = eikj ∈ L∞ (Ω) , 1 ⩽ i, j, k ⩽ d.

(28)

The thermal expansion operator M:Ω× R −→ R satisfies
(a) There exists a constant LM > 0 such that
∥M (x, θ1)−M (x, θ2)∥ ⩽ LM ∥θ1 − θ2∥ ∀ θ1, θ2 ∈ R, a.e. x ∈ Ω ,
(b) The mapping x −→ M (x, θ) is Lebesgue measurable on Ω, ∀ θ ∈ R,
(c) The mapping x −→ M (x, 0) ∈ H.

(29)
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The tangential function satisfies:
hτ : Γ3 × R+ → R+ verifies:
(a) : ∃ Lτ > 0 s.t. |hτ (x, r1 − hτ (x, r2) | ≤ Lτ | r1 − r2 | ,

∀r1, r2 ∈ R, a.e. x ∈ Γ3.
(b) : The mapping x 7→ hτ (x, r) belongs to L

2(Γ3).

(30)

The electric permittivity operator B = (Bij) : Ω× Rd −→ Rd satisfies
(a) B (x,E) = (Bij (x)Ej) ∀ E = (Ei) ∈ Rd , a.e. x ∈ Ω,
(b) Bij = Bji ∈ L∞ (Ω) , 1 ⩽ i, j ⩽ d,

(c) There exists a constant MB > 0 such that BE.E ⩾MB |E|2 ,
∀ E = (Ei) ∈ Rd , a.e. in Ω.

(31)

The thermal conductivity operator K : Ω× R −→ R satisfies


(a) There exists a constant LK > 0 such that
∥K (x, r1)−K (x, r2)∥ ⩽ LK ∥r1 − r2∥ for all r1, r2 ∈ R, a.e. x ∈ Ω,
(b) mij = mji ∈ L∞ (Ω) , 1 ⩽ i, j ⩽ d,
(c) The mapping x −→ S (x, 0, 0) belongs to L2 (Ω) .

(32)

The damage source function Φ : Ω× Sd × Sd × R −→ R satisfies

(a) There exists a constant LΦ > 0 such that
|Φ(x, η1, ω1, β1)− Φ(x, η2, ω2, β2)| ≤ LΦ(|η1 − η2|+ |ω1 − ω2|+ |β1 − β2|)
for all η1, η2, ω1, ω2 ∈ Sd, β1, β2 ∈ R, x ∈ Ω,
(b) The mapping x −→ Φ(x, η, ω, β) is Lebesgue measurable on Ω,
for any η, ω ∈ Sd and for all β ∈ R,
(c) The mapping x −→ Φ(x, 0, 0, 0) belongs to L2(Ω).

(33)

The function Ψ : ε× Sn × Sn × Sn × R× R −→ R satisfies

(a) There exists a constant LΨ > 0 such that
|Ψ(x, σ1, ε1, θ1, ξ1)−Ψ(x, σ2, ε2, θ2, ξ2)| ≤ LΨ(|σ1 − σ2|+ |ε1 − ε2|
+|θ1 − θ2|+ |ξ1 − ξ2|), for all σ1, σ2, ε1, ε2 ∈ Sn, θ1, θ2, ξ1, ξ2 ∈ R, x ∈ Ω,
(b) The mapping x −→ Ψ(x, σ, ε, θ, ξ) is Lebesgue measurable on Ω,
for all σ, ε ∈ Sn and for all θ, ξ ∈ R,
(c) The mapping x −→ Ψ(x, 0, 0, 0) belongs to L2(ε).

(34)

We also suppose that the body forces and surface tractions have the regularity

f0 ∈ L2(0, T ;L2(Ω)), f2 ∈ L2(0, T ;L2(Ω)), ρ ∈ L∞(Ω), (35)

q0 ∈ C
(
0, T, L2 (Ω)

)
, q2 ∈ C

(
0, T, L2 (Γb)

)
, (36)

q2 (t) = 0 on Γ3,∀t ∈ [0, T ] . (37)

The functions g and µ have the following properties:

g ∈ L2 (Γ3) , g (x) ⩾ 0, a.e. on Γ3, (38)

µ ∈ L∞ (Γ3) , µ (x) > 0, a.e. on Γ3, (39)
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here µ is the coefficient of friction. The initial displacement field satisfies

u0 ∈ V, (40)

and the initial temperature field satisfies

θ0 ∈ E, θF ∈ L2
(
0, T, L2 (Γ3)

)
, ke ∈ L∞ (Ω,R+) , qth ∈ L2

(
0, T, E

′
)
. (41)

Using the above notation and Green’s formulas, we obtain the variational formulation of
the mechanical problem (4)-(21) for all functions v ∈ V, w ∈ Wth, ϕ ∈ We and a.e. t ∈
(0, T ) , given as follows.
Problem PV. Find the displacement u : [0, T ] → V , the stress σ : [0, T ] → H1 , and
an electric potential φ : [0, T ] → W , the electric displacement D : [0, T ] −→ H and the
temperature θ : [0, T ] −→ V , and the damage α : [0, T ] −→ E1 such that

σ(t) = A(ε(
·
u(t))) + B(u(t), α(t)) +

∫ t

0

G
(
σ(s)−A(ε(

·
u(t))), ε (u (s))

)
ds

+ E∗∇φ (t)−Mθ (t) ,

(42)

(ü(t), v− u̇(t))V ′×V +(σ(t), ε (v(t)−u̇(t))H+ j(v(t))− j(u̇(t)) ⩾ (f(t),v− u̇(t))V , (43)

(α̇(t), ζ − α(t))L2(Ω) + a(α(t), ζ − α(t)) ≥ (Φ(ε(u(t))), α(t), ζ − α(t))L2(Ω), (44)

for all α(t) ∈ F , ζ ∈ F and t ∈ [0, T ].

D (t) = Eε (u (t))− B∇ (φ (t))− Pθ (t) , (45)

(D (t) ,∇ϕ)H = − (qe (t) , ϕ)W + (h (u (t) , φ) , ϕ)W , ∀φ ∈W, t ∈ [0, T ] , (46)

�
θ(t) +Kθ(t) = R

.
u(t) +Q(t) on E

′
, (47)

u(0) = u0, u̇(0) = v0, α(0) = α0 and θ(0) = θ0 on Ω. (48)

Here, the function Q : [0, T ] → E′ and the operators K : E → E′, R : V → E′; M :
E → V ′ are defined by ∀v ∈ V, ∀τ ∈ E, ∀η ∈ E:

⟨Q(t), η⟩E′×E =

∫
Γ3

keθRη ds+

∫
Ω

qη dx,

⟨Kτ, η⟩E′×E =

d∑
i,j=1

∫
Ω

kij
∂τ

∂xj

∂η

∂xi
dx+

∫
Γ3

keτη ds,

⟨Rv, η⟩E′×E =

∫
Γ3

hτ (|vτ |)η ds−
∫
Ω

(Me∇v)η dx,

⟨Mτ, v⟩V ′×V = (−τMe, ε(v))H,

where Jε : V × V → R , f : [0;T ] → V , qe : [0;T ] → W and γ : V ×W → W are
respectively defined by

Jε (N, v) =

∫
Γ3

µp |R×Nν |
√

|vτ |2 + ε2da, ∀v ∈ V, ∀ε > 0, (49)

(f(t),v)V =

∫
Ω

f0(t) · v dx+

∫
Γ2

f2(t) · v da. (50)
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We define the bilinear form a : H1(Ω)×H1(Ω) −→ R

a(α, ζ) = κ

∫
Ω

▽α · ▽ζ dx, (51)

(qe(t), ϕ)W =

∫
Ω

q0(t)ϕdx−
∫
Γb

q2(t)ϕda, (52)

(γ (u, φ) , ϕ)W =

∫
Γ3

ψ (uν − h)ϕL(φ− φ0)ϕda (53)

for all u, v ∈ V , θ, w ∈W , ϕ ∈W and t ∈ [0;T ]. We note that the definitions of f and qe
are based on the Riesz representation theorem. Moreover, the conditions (35) and (36)
imply that

f ∈ C (0, T, V ) , qe ∈ C (0, T,We) . (54)

We denote by ∥.∥V , ∥.∥H and . ∥.∥V ′ the norms on the spaces V , H and V ′, respec-
tively, and we use (., .)V ′×V for the duality pairing between V ′ and V . Note that if f ∈
H, then

(f, v)V ′×V = (f, v)H ,∀v ∈ H. (55)

The existence of the unique solution of problem PV is stated and proved in the next
section.

4 Existence and Uniqueness of the Solution

Our main existence and uniqueness result is the following.

Theorem 4.1 Assume that (25)-(41) hold. Then, if Nψ <
mβ

a20
, there exists a unique

solution {u, σ, θ, φ,D} to problem PV satisfying

u ∈W 1,2(0;T ;V ) ∩ C1(0;T ;V ) ∩ W 2,2(0;T ;V
′
), σ ∈ C(0;T ;H), (56)

φ ∈ C(0;T ;W ), D ∈ C(0;T ;W), (57)

θ ∈W 1,2(0;T ;E
′
) ∩ L2(0;T ;E) ∩ C(0;T ;L2(Ω)). (58)

α ∈W 1,2
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
. (59)

Functions u, σ, θ, φ, D, θ and α, which satisfy (42)-(48), are called the weak solution to
the contact problem P. We conclude that, under the assumptions (25)-(40) and if Nψ <
mβ

a20
is satisfied, the mechanical problem (4)-(21) has a unique weak solution satisfying

(56)-(58).

The proof of Theorem 4.1 is carried out in several steps. It is based on the results
of evolutionary variational inequalities, ordinary differential equations and fixed point
arguments.

In the first step, we let η ∈ L2(0, T ;V ) be given and consider the following variational
inequality.
Problem PVuη. Find a displacement field uη : [0;T ] → V such that ∀ t ∈ [0, T ] ,

(ü(t), v − u̇(t))V ′×V + (Aε
(

·
uη(t)

)
,ε(v − ·

uη(t)))H + j(uη (t) , v)− j(uη (t)
·
, uη(t))

+
(
η (t) , v − ·

uη(t)
)

V ≥ (f(t), v − ·
uη(t))V ,

(60)
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uη (0) = u0, u̇η(0) = v0 for all uη, v ∈ V . In the study of the problem PVuη, we have
the following result.

Lemma 4.1 PVuη has a unique solution satisfying the regularity expressed in (56):

uη (t) = u0 +

∫ t

0

vηgη (s)ds ∀t ∈ [0, T ] .

We define the operator A : V → V ′ by

(Av,w)V ′×V = (Aε(v), ε(w))H, ∀v, w ∈ V. (61)

We consider the following variational inequality.
Problem PVvη. Find a displacement field vη : [0;T ]× Ω → V such that ∀ t ∈ [0, T ].

(v̇Nη(t), w − vNη(t))V ′×V + (AvNη(t)), w − vNη(t))V ′×V + j(N,w)

−j(N, vNη(t)) ≥ (fη(t), w − vNη(t))V ′×V , ∀w ∈ V,
(62)

vNη(0) = vo. (63)

In the study of Problem PVvη, we have the following result.

Lemma 4.2 For all N ∈ L2(0, T,H1) and η ∈ L2(0, T, V ′), the Problem PVvη has
a unique solution with the regularity vNη ∈ C(0, T,H) ∩ L2(0, T, V ) ∩W 1,2(0, T, V ′).

Proof. We begin by the step of regularization we defined, for all ε > 0,

J̇ε (N, v) =

∫
Γ3

µp |R×Nν |
√

|vτ |2 + ε2da, ∀v ∈ V, ∀ε > 0.

After some algebra, for all ε > 0, J̇ε is C
1 convex on V , and its Frechet derivative satisfies

∀c > 0, ∀w ∈ V
∣∣∣J̇ ′
ε(N,w)

∣∣∣
V ′

≤ C|N |L2(Γ3). (64)

From (25) and the monotonicity of J̇ ′
ε, it follows from the classical first order evolution

equation that

∀ε > 0, vεNη ∈ L2(0, T, V ) ∩ C(0, T,H) and v̇εNη ∈ L2(0, T, V ′)

such that {
v̇εNη(t) +AvεNη + j′ε(N, v

ε
Nη) = fη(t) in V

′, a.e. t ∈ [0, T ],

vεNη(0) = v0.
(65)

Therefore, vεNη ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ′), we obtain{ (
v̇εNη(t), w − vεNη

)
V ′×V +

(
AvεNη(t), w − vεNη

)
V ′×V + jε(N,w)

−jε(N, vεNη(t)) ≥
(
fη(t), w − vεNη(t)

)
V ′×V ∀w ∈ V, a.e. t ∈ [0, T ].

(66)

Using (25) and the monotony of j′ε, we deduce that

∃C > 0, ∀t ∈ [0, T ] :
∣∣vεNη(t)∣∣ ≤ C

∫ T

0

∣∣vεNη(t)∣∣2V dt ≤ C

∫ T

0

∣∣v̇εNη(t)∣∣2V ′ dt ≤ C,
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using a subsequence to find that{
vεNη ⇀ vNη weakly in L2(0, T ;V ) and weakly in L∞(0, T ;H),

v̇εNη ⇀ v̇Nη star weakly in L2(0, T ;V ′).
(67)

It follows that

vNη ∈ C(0, T ;H) and vεNη(t)⇀ vNη(t) weakly in H, ∀t ∈ [0, T ]. (68)

Integrating (66), we have ∀w ∈ L2(0, T ;V ),∫ T

0

(v̇εNη(t), w)V ′×V dt+

∫ T

0

(AvεNη(t), w)V ′×V dt+

∫ T

0

jε(N,w)dt ≥
∫ T

0

(fη(t), w(t))V ′×V dt,

then we have∫ T
0
(v̇εNη(t), w)V ′×V dt+

∫ T
0
(AvεNη(t), w)V ′×V dt+

∫ T
0
jε(N,w)dt

≥
∫ T
0
(v̇εNη(t), v

ε
Nη(t))V ′×V dt+

∫ T
0
(AvεNη(t), v

ε
Nη(t))V ′×V dt+∫ T

0
jε(N, v

ε
Nη(t))dt+

∫ T
0
(fη(t), w(t)− vεNη(t))V ′×V dt

≥ 1
2

∣∣vεNη(t)∣∣2H − 1
2

∣∣vεNη(0)∣∣2H +
∫ T
0
(AvεNη(t), v

ε
Nη(t))V ′×V dt+∫ T

0
jε(v

ε
Nη(t))dt+

∫ T
0
(fη(t), w(t)− vεNη(t))V ′×V dt.

From (67) and (68) we obtain that for all w ∈ L2(0, T ;V ),∫ T
0
(v̇εNη(t), w − vεNη(t))V ′×V dt+

∫ T
0
(AvεNη(t), w − vεNη(t))V ′×V dt+∫ T

0
(j(N,w)− j(N, vNη)) dt ≥

∫ T
0
(fη(t), w(t)− vεNη(t))V ′×V dt.

The previous inequality implies (see [10]) that(
v̇εNη(t), w − vεNη

)
V ′×V +

(
AvεNη(t), w − vεNη

)
V ′×V + jε(N,w)

−jε(N, vεNη(t)) ≥
(
fη(t), w − vεNη(t)

)
V ′×V ∀w ∈ V, t ∈ [0, T ].

We conclude that Problem PVvη has at least a solution vNη ∈ C(0, T ;H)∩L2(0, T ;V )∩
W 1,2(0, T ;V ′) and v̇Nη ∈ L2(0, T ;V ′). For the uniqueness, let v1Nη, v

2
Nη be two solutions

of Problem PVvη, we use (62) to obtain for a.e. t ∈ [0, T ],

(v̇2Nη(t)− v̇1Nη(t), v
2
Nη(t)− v1Nη(t))− (Av2Nη(t)−Av1Nη(t), v

2
Nη(t)− v1Nη(t)) ≤ 0.

Integrating the previous inequality, using (25) and (61), we find

1

2

∣∣v2Nη(t)− v1Nη(0)
∣∣2
V
+mA

∫ T

0

∣∣v2Nη(s)− v1Nη(s)
∣∣2
V
ds ≤ 0, ∀t ∈ [0, T ],

which implies v1Nη = v2Nη. Let us consider now uNη : [0, T ] → V is the function defined
by

uNη(t) =

∫ T

0

vNη(s)ds+ u0, ∀t ∈ [0, T ]. (69)

In the study of Problem PVuη, we have the following result.

Lemma 4.3 Problem PVuη has a unique solution satisfying the regularity expressed
in (56).
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Proof. The proof of Lemma 4.3 is a consequence of Lemma 4.2 together with (69).
In the second step, let η ∈ C(0, T ;V ), we use the displacement field uη obtained in
Lemma 4.1 and consider the following variational problem.
Problem PVφη. Find an electrical potential φη : [0;T ] →W such that ∀t ∈ [0, T ],

(B ∇φη (t) ,∇ϕ)− (E ε (uη (t)) ,∇ϕ)H + (γ (uη (t) , φη (t)) , ϕ)W = (qe (t) , ϕ)w. ∀ ϕ ∈W.
(70)

We have the following result.

Lemma 4.4 PVφη has a unique solution φη which satisfies the regularity expressed
in (57). Moreover, if φη1 and φη2 are solutions of (70) corresponding to η1, η2 ∈
L2(0, T ;V ), then there exists C > 0 such that

|φη1(t)− φη2(t)|W ≤ C |uη1 (t)− uη2 (t)|V ,∀t ∈ [0, T ] . (71)

Proof. The same result for this Lemma 4.4 is given in [12]. In the third step, we
let λ ∈ L2

(
0, T ;L2(Ω)

)
be given and consider the following variational problem for the

temperature field.
Problem PVθλ. Find a temperature field θλ : [0, T ] −→ E such that{

θ̇λ(t) +Kθλ(t) = Ru̇η(t) +Q(t) in E′ a.e. t ∈ [0, T ],
θλ(0) = θ0,

(72)

for all θλ, w ∈ E, a.e. t ∈ (0, T ). For the Problem PVθλ we have the following result.

Lemma 4.5 PVθλ has a unique solution such that

θλ ∈ L2(0, T ;E) ∩ C(0, T ;L2(Ω)) ∩W 1,2(0, T ;E′). (73)

Moreover, ∃C > 0 such that ∀λ1, λ2 ∈ L2(0, T ;V ′),

∥θ1(t)− θ2(t)∥2L2(Ω) ≤ C

∫ T

0

∥λ1(s)− λ2(s)∥2E′ ds, ∀t ∈ [0, T ]. (74)

Proof. The result follows from the classical first order evolution equation given in [3].
Here the Gelfand triple is given by

E ⊂ L2 (Ω) = (L2 (Ω))′ ⊂ E′.

The operator K is linear continuous and coercive. By Korn’s inequality, we have

|K(u)|H ≥ C|u|H1
, for all u ∈ V,

with C being a strictly positive constant defined only on Ω and Γ1. Therefore

(Kτ, τ)E′×E ≥ C|τ |2E . (75)

In the fourth step, we let µ ∈ L2(0, T ;L2(Ω)) be given and consider the following
variational problem for the damage field.
Problem PVαµ. Find the damage field αµ : [0, T ] −→ H1(Ω) such that αµ ∈ F and

(α̇µ(t), ζ − αµ(t))L2(Ω) + a (αµ(t), ζ − αµ(t)) ≥ (S(ε(uµ(t)), αµ(t)), ζ − αµ(t))L2(Ω) , (76)
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αµ(0) = α0, (77)

for all α(t) ∈ F , ζ ∈ F and t ∈ [0, T ]. Note that if f ∈ H, then

(f, v)V ′×V = (f, v)H , ∀v ∈ H.

Theorem 4.2 Let V ⊂ H ⊂ V ′ be a Gelfand triple. Let K be a nonempty, closed
and convex set of V . Assume that a(·, ·) : V × V −→ R is a continuous and symmetric
form such that for some constants ζ > 0 and c0,

a(v, v) = c0∥v∥2H ≥ ζ∥v∥2V , ∀v ∈ H.

Then, for every u0 ∈ K and f ∈ L2(0, T ;H), there exists a unique function u ∈
H1(0, T ;H) ∩ L2(0, T, V ) such that u(0) = u0, u(t) ∈ K for all t ∈ [0, T ] and for al-
most all t ∈ [0, T ],

(u̇(t), v − u(t))V ′×V + a(u(t), v − u(t)) ≥ (f(t), v − u(t))H , ∀v ∈ K.

We apply this theorem to Problem PVαµ.

Lemma 4.6 There exists a unique solution αµ to the auxiliary problem PVαµ such
that

αµ ∈W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)). (78)

The above lemma follows from the standard result for parabolic variational inequalities.

Proof. The inclusion mapping of
(
H1(Ω), ∥ · ∥H1(Ω)

)
into (L2(Ω), ∥ · ∥L2(Ω)) is con-

tinuous and its range is dense. We denote by
(
H1(Ω)

)′
the dual space of H1(Ω) and,

identifying the dual of L2Ω with itself, we can write the Gelfand triple

H1(Ω) ⊂ L2(Ω) ⊂
(
H1(Ω)

)′
.

We use the notation (·, ·)(H1(Ω))′×H1(Ω) to represent the duality pairing between
(
H1(Ω)

)′
and H1(Ω), we have

(α, β)(H1(Ω))′×H1(Ω) = (α, β)L2(Ω), ∀α ∈ L2(Ω), β ∈ H1(Ω),

and we note that F is a closed convex set in H1(Ω). Then we use the definition of the
bilinear form a given by (51), and the fact that αµ ∈ F .

Problem PVση,λ,µ. Find a stress field σηλµ : [0, T ] −→ H,

σηλµ(t) = B(ε (uη(t)) , αµ(t) (v))H +

∫ t

0

G (σ(s), ε (uη (s))) ds−Mθλ(t), ∀t ∈ [0, T ]. (79)

In the study of problem PVσηλµ, we have the following result.

Lemma 4.7 There exists a unique solution of problem PVσηλµ, which satisfies (56).
Moreover, if uηi , θλi , αµi and σηi,λi,µi represent the solution of problems PVuηi , PVθλi ,
PVαµi

and PVσηi,λi,µi
, respectively, for i = 1, 2, then there exists c > 0 such that

∥ση1,λ1,µ1
(t)− ση2,λ2,µ2

(t)∥H2 ≤ C(∥uη1(t)−uη2
(t)∥2V

+

∫ t

0

(∥uη1(s)−uη2 (s)
∥2V + ∥θλ1

(s)− θλ2
(s)∥2V + ∥αµ1

(s)− αµ2
(s)∥2V ) ds).

(80)
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Proof. Let Πη,λ;µ : L2(0, T,H) −→ L2(0, T ;H) be the mapping given by

Πη,λ,µσ(t) = B(ε(uη(t)), αµ(t)) +
∫ t

0

G(σ(s), ε(uη(s))) ds−Mθλ(t). (81)

Let σi ∈ L2(0, T ;H) : i = 1, 2 and t1 ∈ [0, T ]. Using hypothesis (27) and Hölder’s
inequality, we find

∥Πη,λ,µσ1(t)−Πη,λ,µσ2(t)∥2H ≤ L2
GT

∫ t

0

∥σ1(s)− σ2(s)∥2H ds.

It follows from this inequality that for m large enough, a power Πmη,λ,µ of the mapping

Πη,λ,µ is a contraction of the Banach space L2(0, T ;H), and therefore there exists a
unique element ση,λ,µ ∈ L2(0, T ;H) such that Πη,λ,µση,λ,µ = ση,λ,µ. Moreover, ση,λ,µ is
the unique solution of the problem PVσηλµ. If uηi , θλi

αµi
and σηi,λi,µi

represent the
solution of the problems PVuηi , PVθλi , PVαµi and PVσηiλiµi , respectively, for i = 1, 2,
then we use (4), (25), (26) and Young’s inequality to obtain

∥ση1,λ1,µ1(t)− ση2,λ2,µ2(t)∥H2 ≤ C(∥uη1(t)−uη2
(t)∥2V

+

∫ t

0

(∥ση1,λ1,µ1
(t)− ση2,λ2,µ2

(t)∥H2 + ∥uη1(s)−uη2
(s)∥2V + ∥θλ1

(s)− θλ2
(s)∥2V

+ ∥αµ1
(s)− αµ2

(s)∥2V ) ds).

This permits us to obtain, using Gronwall’s lemma, the inequality (80). Finally, we
consider the operator Λ such that

Λ(η, λ, µ)(t) = (Λ1(η, λ, µ)(t),Λ2(η, λ, µ)(t),Λ3(η, λ, µ)(t)), (82)

where Λ1, Λ2 and Λ3 are defined by

(Λ1(η(t), λ(t), µ(t), v(t))V ′×V = B(ε (uη(t)) , ε (v(t)))H + (E∗∇φη (t) , ε (v(t)))H

+ J̇ε(uη(t), v(t)) +

(∫ t

0

G (ση,λ,µ(s), ε (uη(s))) ds−Mθλ(t), ε(v(t))

)
H
, ∀v ∈ V,

(83)

Λ2(η(t), λ(t), µ(t), v(t) = Ψ(ση,λ,µ(t), ε(uη(t)), θλ(t))) (84)

and

Λ3(η(t), λ(t), µ(t), v(t)) = Φ(ση,λ,µ(t), ε(uη(t)), αµ(t))). (85)

Here, for η ∈ L2(0, T ;V ), λ ∈ L2(0, T ;L2(Ω)) and µ ∈ L2(0, T ;L2(Ω)), uη, ϕη, θλ, αµ
and ση,λ,µ represent the displacement field, the potential electric field, the temperature,
the damage field and the stress field obtained in Lemmas 4.1, 4.4, 4.5, 4.6 and 4.7. We
have the following result.

Lemma 4.8 The operator Λ has a unique fixed point (η∗, λ∗, µ∗) ∈ L2(0, T ;V ×
L2(Ω))× L2(Ω)).

Proof. We show for a positive integer m, the mapping Λm is a contraction on
L2(0, T ;V × L2(Ω))× L2(Ω)). To this end, we suppose that (η1, λ1, µ1) and (η2, λ2, µ2)
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are two functions in L2(0, T ;V ×L2(Ω))×L2(Ω)) and denote uηi = ui, u̇ηi = vi, φηi = φi,
θλi

= θi, αµi
= αi and σηi,λi,µi

= σi for i = 1, 2. We have

∥Λ1(η1, λ1, µ1)(t)− Λ1(η2, λ2, µ2)(t)∥2V ′ ≤ C∥Rν(uν(t)− u2ν(t))∥2L2(Γ3)

+ C∥Rτ (uτ (t)− u2τ (t))∥2L2(Γ3)
+ ∥Bε(u1(t))− Bε(u2(t))∥2H

+ ∥ε∗∇φ1(t)− ε∗∇φ2(t)∥2H + C∥α1(t)− α2(t)∥2L2(Ω)

+

∫ t

0

∥G(σ1(s), ε(u2(s)))− G(σ2(s), ε(u2(s)))∥2H ds

+ C∥θ1(t)− θ2(t)∥2L2Ω.

(86)

Therefore, from (26), (27), (28) and the definition of Rν , Rτ , we obtain

∥Λ1(η1, λ1, µ1)(t)− Λ1(η2, λ2, µ2)(t)∥2V ′ ≤ C(∥u1(t)− u2(t)∥2V

+

∫ t

0

∥u1(s)− u2(s)∥2V ds+
∫ t

0

∥σ1(s)− σ2(s)∥2H ds

+

∫ t

0

∥θ1(s)− θ2(s)∥2E ds+
∫ t

0

∥α1(s)− α2(s)∥2F ds

+ ∥φ1(t)− φ2(t)∥2W ).

(87)

We use estimate (81) to obtain

∥Λ1(η1, λ1, µ1)(t)− Λ1(η2, λ2, µ2)(t)∥2V ′ ≤ C(∥u1(t)− u2(t)∥2V

+

∫ t

0

∥u1(s)− u2(s)∥2V ds+
∫ t

0

∥θ1(s)− θ2(s)∥2E ds

+

∫ t

0

∥α1(s)− α2(s)∥2F ds+ ∥φ1(t)− φ2(t)∥2W ).

(88)

Recall that above uην and uητ denote the normal and the tangential component of the
function uη, respectively. By similar arguments, from the function Φ and the definition
of Λ2, it follows that

∥Λ2(η1, λ1, µ1)(t)− Λ2(η2, λ2, µ2)(t)∥2E ≤ C(∥u1(t)− u2(t)∥2V

+

∫ t

0

∥σ1(s)− σ2(s)∥2V ds+ ∥θ1(s)− θ2(s)∥2E)

≤ C(∥u1(t)− u2(t)∥2V + ∥θ1(s)− θ2(s)∥2E

+

∫ t

0

∥u1(s)− u2(s)∥2V ds+
∫ t

0

∥θ1(s)− θ2(s)∥2E ds).

(89)

On the other hand, by (33), (80) and the definition of Λ3, we get

∥Λ3(η1, λ1, µ1)(t)− Λ3(η2, λ2, µ2)(t)∥2F ≤ C(∥u1(t)− u2(t)∥2V

+ ∥φ1(t)− φ2(t)∥2W +

∫ t

0

∥u1(s)− u2(s)∥2V ds

+ ∥α1(s)− α2(s)∥2F +

∫ t

0

∥α1(s)− α2(s)∥2F ds).

(90)
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Also, since

ui(t) =

∫ t

0

vi(s) ds+ u0, t ∈ [0, T ], (91)

we have

ui(t) = ∥u1(t)− u2(t)∥2V ≤
∫ t

0

∥vi(s)∥2V ds+ u0, (92)

which implies

∥u1(t)− u2(t)∥2V +

∫ t

0

∥u1(s)− u2(s)∥2V ds ≤ C

∫ t

0

∥v1(s)− v2(s)∥2V ds. (93)

Therefore

∥Λ(η1, λ1, µ1)(t)− Λ(η2, λ2, µ2)(t)∥2V ′×E×F ≤ C(∥u1(t)− u2(t)∥2V

+

∫ t

0

∥u1(s)− u2(s)∥2V ds+ ∥α1(s)− α2(s)∥2F

+

∫ t

0

∥α1(s)− α2(s)∥2F ds+ ∥θ1(s)− θ2(s)∥2E

+

∫ t

0

∥θ1(s)− θ2(s)∥2E ds+ ∥φ1(t)− φ2(t)∥2W ).

(94)

Moreover, from (60), we obtain

(v̇1 − v̇2, v1 − v2)V ′×V = (Aε(v1)−Aε(v2), ε(v2 − v1))V ′×V

+ (η1 − η2, v1 − v2)V ′×V ≤ 0.
(95)

We integrate this equality with respect to time, use the initial conditions, v1(0) = v2(0) =
v0, (27) and (61) to find

mA

∫ t

0

∥v1(s)− v2(s)∥2V ds ≤ C

∫ t

0

∥η1(s)− η2(s)∥V ∥v1(s)− v2(s)∥V ds (96)

for all t ∈ [0, T ]. Then, using the inequality 2ab ≤ a2

mA
+mAb

2, we obtain∫ t

0

∥v1(s)− v2(s)∥2V ds ≤ C

∫ t

0

∥η1(s)− η2(s)∥V ds,∀t ∈ [0, T ]. (97)

Since u1(0) = u2(0) = u0, we have

∥u1(s)− u2(s)∥2V ≤ C

∫ T

0

∥v1(s)− v2(s)∥V ds, (98)

and from (74), we have

∥θ1(t)− θ2(t)∥2L2(Ω) ≤ C

∫ T

0

∥λ1(s)− λ2(s)∥2E′ds, ∀t ∈ [0, T ], (99)

and from (71), we have

∥φ1(t)− φ2(t)∥2W ≤ C∥u1(t)− u2(t)∥2V , ∀t ∈ [0, T ]. (100)
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We substitute (93) and (100) in (94) to obtain

∥Λ(η1, λ1, µ1)(t)− Λ(η2, λ2, µ2)(t)∥2V ′×E×F ≤ C(

∫ t

0

∥v1(s)− v2(s)∥2V ds

+ ∥θ1(s)− θ2(s)∥2E +

∫ t

0

∥θ1(s)− θ2(s)∥2E ds

+ ∥α1(s)− α2(s)∥2F +

∫ t

0

∥α1(s)− α2(s)∥2F ds),

(101)

on the other hand, from (76), we deduce that

(α̇1 − α̇2, α1 − α2)F ′×F + a(α1 − α2, α1 − α2) ≤ (µ1 − µ2, α1 − α2)F , a.e. t ∈ [0, T ].
(102)

Integrating the previous inequality with respect to time, using the initial conditions
α1(0) = α2(0) = α0 and inequality a(α1 − α2, α1 − α2) ≥ 0, we find

1

2
∥α1(s)− α2(s)∥2F ≤

∫ t

0

(µ1(s)− µ2(s), α1(s)− α2(s))F ds. (103)

This inequality, combined with Gronwall’s inequality, leads to

∥α1(s)− α2(s)∥2F ≤ C

∫ t

0

∥µ1(s)− µ2(s)∥2F ds, ∀t ∈ [0, T ]. (104)

We substitute (97), (99) and (104) in (101) to obtain

∥Λ(η1, λ1, µ1)(t)− Λ(η2, λ2, µ2)(t)∥2V ′×E×F ≤ C

∫ t

0

∥((η1, λ1, µ1)(s)

− (η2, λ2, µ2)(s))∥2V ′×E×F ds.

(105)

Reintegrating this inequality n times, we obtain

∥Λn(η1, λ1, µ1)− Λn(η2, λ2, µ2)∥2L2(0,T ;V ′×E×F ) ≤
CnTn

n!
∥((η1, λ1, µ1)

− (η2, λ2, µ2))∥2L2(V ′×E×F ),
(106)

thus, for n sufficiently large, Λn is a contraction on the Banach space L2(0, T ;V ′×E×F )
and so Λ has a unique fixed point. Now, we have all ingredients to prove Theorem 4.1.

Proof. (of Theorem 4.1). Let (η∗, λ∗, µ∗) ∈ L2(0, T ;V ′ × L2(Ω)× L2(Ω)) be the
fixed point of Λ defined by (82), (83), (84) and (85) and

u∗ = uη∗ , φ∗ = φη∗ , θ∗ = θη∗ and α∗ = αη∗ . (107)

Let σ∗ : [0, T ] −→ H be the function defined by

σ∗ = Aε(u̇∗) + ε∗∇φ∗ + ση∗,λ∗,µ∗ . (108)

We prove that {u∗, σ∗, φ∗, θ∗, α∗} satisfies (42), (48) and the regularities (56)-(58). In-
deed, we write (60) and use (107) to find

(ü∗(t), v)V ′×V + (Aε(u̇∗(t)), ε(v))H + Jε(u̇∗(t), v)

+ (η∗(t), v)V ′×V ≥ (f(t), v)V ′×V , ∀v ∈ V a.e., t ∈ 0, T ,
(109)
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we use equalities Λ1(η∗, λ∗, µ∗) = µ∗, Λ2(η∗, λ∗, µ∗) = λ∗ and Λ3(η∗, λ∗, µ∗) = η∗, it
follows that

(η∗(t), v)V ′×V = (Bε(u∗(t)), ε(v))H + (ε∗∇φ∗(t), ε(v))H

+

(∫ t

0

G(ση∗,λ∗,µ∗(s), ε(u∗(s), α∗(s))) ds−Mθ∗(t), ε(v)

)
H

+ Jε(u∗(t), v(t)),

(110)

λ∗(t) = Φ(ση∗,λ∗,µ∗(t), ε(u∗(t)), θ∗(t)), (111)

µ∗(t) = Ψ(ση∗,λ∗,µ∗(t), ε(u∗(t)), α∗(t)). (112)

We now substitute (110) in (109) to obtain

(ü∗(t), v)V ′×V + (Aε(u̇∗(t), ε(v))H + (Bε(u∗)(t), ε(v), α∗(t))H + (ε∗∇φ∗, ε(v))H

+

(∫ t

0

G(ση∗,λ∗,µ∗(s), ε(u∗(s))) ds−Mθ∗(t), ε(v)

)
H

+ Jε(u∗(t), v) ≥ (f(t), v̇)V ′×V , ∀v ∈ V.

(113)

It follows from Lemma 4.7 and (108) that σ∗ ∈ L2(0, T ;H) and (43) implies that

divσ∗ + f0(t) = ρü∗(t), a.e., t ∈ [0, T ].

We write (72) for λ = λ∗ to find that (74) is satisfied, also write (76) for µ = µ∗ to find
that (76) is satisfied , we consider now (60) for η = η∗ to find that (60) is satisfied. Next,
the regularities (56)-(59) follow from Lemmas 4.1, 4.2, 4.4, 4.5, 4.6 and the regularity
(56) follows from Lemma 4.7, the uniqueness part of Theorem 4.1 is a consequence of
the uniqueness of the fixed point of the operator Λ defined by (82)-(85) and thus follows
the unique solvability of the problems PVuη, PVφη, PVθλ, PVαµ and PVση,λ,µ, which
completes the proof.

5 Conclusion

As a conclusion, we can say that our model, which describes the contact problem with
damage and thermal effect for an electro-elasto-viscoplastic problem, based on thermo-
dynamics is developed to describe the self-heating and stress-strain behavior of thermo-
plastic polymers under tensile loading. The constitutive model considers temperature-
dependent elasticity, nonlinear viscoplastic flow and damage evolution. The literature
devoted to various aspects of the subject is considerable, it concerns the modelling and
the mathematical analysis of the related problems. For example, many food materials
used in process engineering are elastic-viscoplastic, mathematical models can be very
helpful in understanding various problems related to the product development, packing,
transport, shelf life testing, thermal effects, and heat transfer. It is thus important to
study mathematical models that can be used to describe the dynamical behavior of a
given elastic-viscoplastic material subjected to various highly nonlinear and even non-
smooth phenomena like contact, friction, lubrication, adhesion, wear, damage, electrical
and thermal effects. Thermal effects in contact processes affect the composition and
stiffness of the contacting surfaces, and cause thermal stresses in the contacting bodies.
Moreover, the contacting surfaces exchange heat and energy is lost to the surroundings.
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