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Abstract: The goal of this paper is to study the global exact controllability of a
reaction-diffusion equation in a bounded domain with Dirichlet boundary conditions.
We will first consider the case of bilinear equation, then we identify a set of target
states that can be exactly reached at any a priori given time. This result is then
applied to prove the exact controllability of semilinear reaction-diffusion equation un-
der distributed controls. The approach is constructive and based on linear semigroup
theory and null controllability properties of linear problems.
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1 Introduction

This paper deals with the controllability of the following semilinear reaction-diffusion
equation:  yt = ∆y + q(x, t)y + f(y), in QT (T > 0),

y(0, t) = 0, on ΣT ,
y(x, 0) = y0(x), in Ω,

(1)

where Ω is a bounded domain in Rn, n ≥ 1 with a boundary ∂Ω, QT = Ω × (0, T ) and
ΣT = ∂Ω×(0, T ). Here, q ∈ L∞(QT ) is a control function with the corresponding solution
y = y(x, t). The nonlinearity f : R −→ R is assumed to be a Lipschitz function such
that f(0) = 0.

In terms of applications, the equation like (1) provides the practical description of
various real problems such as chemical reactions, nuclear chain reactions, biomedical
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models etc. (see [2,9,10,14,19,20] and the references therein). Equation (1) can be also
used to describe a diffusion process with y(x, t) being the concentration of a substance at
the point x at time t, or a heat-transfer process, with y(x, t) describing the temperature
at the point x and time t (see [5] and [14], p. 17). It is shown in [2] that the equation like
(1) can be also used to study the insect dispersal with constant random motion and an
(x, t)−dependent emigration parameter. It may be also used as a model for the growth
of avascular tumor [9].

The question of controllability of the bilinear reaction-diffusion equation has attracted
many researchers (see e.g., [4,5,8] and [14]- [18]). In [4], the approximate controllability
properties have been derived for the truncated bilinear version of (1) (i.e., f = 0) for the
initial and target states y0, yd with finitely many changes of sign. The same question has
been discussed by Fernàndez and Khapalov in [8] when the support of the bilinear control
is allowed to depend on time. The exact controllability of the bilinear part of equation
(1) with inhomogeneous Dirichlet conditions has been considered in [15, 17]. However,
the assumptions of [15,17] are not compatible when dealing with homogeneous Dirichlet
conditions. Recently, the approximate and exact controllability have been studied for
the truncated bilinear version of equation (1) under the sign condition y0(x)yd(x) ≥
0, for almost every x ∈ Ω in [18]. Moreover, the partial controllability of bilinear
reaction-diffusion equation has been studied in [12]. According to the maximum principle,
it is not possible to steer the bilinear part of (1) from an initial state which has a
constant sign to a target state that change its sign. In [13], Khapalov studied the global
approximate controllability of the semilinear convection-diffusion-reaction equation by
multiplicative controls while dealing with nonnegative initial and target states. In [5],
Cannarsa, Floridia and Khapalov have studied the global approximate controllability
properties of system (1) in the one-dimensional case for suitable classes of initial and
target states that change their sign at a finite number of points. However, in the works
above, the time of steering depends on the given initial and target states. In this paper,
we are interested in the multiplicative controllability of the semilinear reaction diffusion
system (1) at a priori given time, when the initial and target states have the same sign

at almost every x ∈ Ω and satisfy ln(y
d

y0
) ∈ L∞(Ω). We will first deal with a bilinear case

(f = 0), then we proceed to the full equation (1). Moreover, we will see that the exact
steering of the semilinear system (1) can be reduced to the controllability of its bilinear
part since the nonlinear term f can be absorbed by the control in an appropriate way.

The paper is organized as follows. In the next section, we first consider the problem
of exact controllability of the bilinear part of the system (1), and we will show that the
steering time can be arbitrary small and uniform for all initial and reached states. Then,
we apply this result to solve the problem of exact controllability of the semilinear system
(1) at a priori fixed time. In the third section, we present a numerical example with
simulations.

2 The Main Results

Our goal in this section is to study the exact controllability properties of the system (1)
at a given time T > 0.
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2.1 Exact controllability of the bilinear equation

Here we consider the following system: yt = ∆y + v(x, t)y, in QT ,
y(0, t) = 0, on ΣT ,
y(x, 0) = y0(x), in Ω.

(2)

From [18], one may deduce the following approximate controllability result regarding
the bilinear part (2) of the system (1).

Lemma 2.1 [18] For any initial state y0 ∈ L2(Ω), for any function g ∈ W 2,∞(Ω)
and for all ε > 0, there exists a time T = T (y0, yd, ϵ) such that the respective solution to
(2) controlled with v := g

T satisfies

∥y(T )− egy0∥ < ε.

We also recall the following null-controllability of the linear heat equation.

Lemma 2.2 [7, 11] Consider the system ψt = ∆ψ + b(x)ψ + 1ωu2(x, t), inΩ× (t0, T ),
ψ = 0, on ∂Ω× (t0, T ),
ψ(·, t0) = ξ ∈ L2(Ω), in Ω,

(3)

where 0 ≤ t0 < T, b ∈ L∞(Ω) and ω is a nonempty open subset of Ω. Then there is a
control u2 ∈ L∞(Ω × (t0, T )) such that the corresponding solution to (3) vanishes at T.
Furthermore, we have

∥u2∥L∞(Ω×(t0,T )) ≤ C ∥ξ∥L2(Ω), (4)

where C = CT−t0 is a positive constant depending on T − t0 and such that CT−t0 is
bounded near t0 → 0+.

We now state the exact controllability result of the bilinear system (2).

Theorem 2.1 Let y0 ∈ Lp(Ω), (p ≥ 2 and p > n
2 ) and let yd ∈ H2(Ω) such that

i) for a.e. x ∈ Ω, y0(x)yd(x) ≥ 0 and yd(x) = 0 ⇔ y0(x) = 0,
ii) ln(ydy0 )1Ey0

∈ L∞(Ω), where 1Ey0
denotes the characteristic function of the set Ey0 =

{x ∈ Ω/ y0(x) ̸= 0},
iii) ∆yd

yd
1Eyd

∈ L∞(Ω) and |yd| ≥ α > 0, a.e. on some open subset ω ⊂ Ω.

Then for any T > 0, there exists a control v ∈ L∞(QT ) such that the respective solution
to (2) satisfies y(T ) = yd, a.e. in Ω.

Proof. Let T > 0.
1. Approximate steering.
Let g := ln(ydy0 )1E . It follows from the assumption (i) that egy0 = yd. Then, in the

case where g ∈ W 2,∞(Ω), we deduce from Lemma 2.1 that for any ε > 0, there exists
0 < T1 < T small enough such that the corresponding solution to (2) controlled with
v1 = g

T verifies
∥y(T1)− yd∥ < ε. (5)

Moreover, in the general case g ∈ L∞(Ω), one can construct a sequence (gk) ⊂W 2,∞(Ω)
which is uniformly bounded in Ω such that gk → g in L2(Ω), as k → +∞. We will
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consider the control v1(x) =
gk
T1

for a suitably selected k ∈ IN (large enough integer).

Let y(t) be the solution of (2) corresponding to v1(x) and to the initial state y(0) = y0.
Finally, let (y0l) ∈ L∞(Ω) such that y0l → y0 in L2(Ω), as l → +∞.
We have the following triangular inequality:

∥y(T1)− egy0∥ ≤ ∥y(T1)− egky0∥+ ∥egky0 − egky0l∥+ ∥egky0l − egy0l∥+ ∥egy0l − egy0∥

≤ ∥y(T1)− egky0∥+ ∥egky0l − egy0l∥+
(
sup
k∈IN

∥egk∥L∞(Ω) + e∥g∥L∞(Ω)
)
∥y0l − y0∥.

Let L ∈ IN be such that(
sup
k∈IN

∥egk∥L∞(Ω) + e∥g∥L∞(Ω)
)
∥y0L − y0∥ <

ϵ

3
,

and for such value of L, we consider K such that

∥egK − eg∥∥y0L∥L∞(Ω) <
ϵ

3
.

Finally, for this value of K, it comes from Lemma 2.1 that there exists T > 0 such that

∥y(T1)− egK y0∥ <
ϵ

3
.

We conclude that
∥y(T1)− egy0∥ < ϵ.

Hence, since egy0 = yd, it comes that (5) holds for some 0 < T1 < T.
2. Exact steering.
Let us consider the following system:

yt = ∆y + v(x, t)y, in Ω× (T1, T ),
y(0, t) = 0, on ∂Ω× (T1, T ),
y(T1) = y(T−

1 ), in Ω·
(6)

Let z = y − yd, where y satisfies (6). Thus z satisfies
zt = ∆z + v(x, t)(z + yd) + ∆yd, in Ω× (T1, T ),
z(0, t) = 0, on ∂Ω× (T1, T ),
z(T1) = y(T−

1 )− yd, in Ω.
(7)

In order to prove Theorem 2.1, it is sufficient to prove that (7) is exact null control-
lable. Let T2 ∈ (T1, T ) be close to T1, so we can assume in the sequel that 0 < T2−T1 < 1.
Then consider the following time-independent control in (T1, T2) :

v2(x) = −∆yd
yd

1Eyd
, a.e., in Ω.

From the definition of v2, we have v2yd + ∆yd = 0, a.e. in Ω. Thus the system (7) can
be reduced to the following one:

zt = ∆z + v2(x)z, in Ω× (T1, T2),
z = 0, on ∂Ω× (T1, T2),
z(T1) = y(T−

1 )− yd, in Ω,
(8)
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whose solution is given by

z(t) = S(t− T1)z(T1) +

∫ t

T1

S(t− s)v2(x)z(s)ds, ∀t ∈ [T1, T2]. (9)

Then, since S(t) is a contraction semigroup,

∥z(t)∥ ≤ ∥z(T1)∥+ ∥v2∥L∞(Ω)

∫ t

T1

∥z(s)∥ds

for all t ∈ [T1, T2]. Gronwall’s inequality gives

∥z(t)∥ ≤ C∥z(T1)∥, ∀t ∈ [T1, T2], C > 0. (10)

Moreover, we know that S(t)(Lp(Ω)) ⊂ L∞(Ω), and for all ξ ∈ Lp(Ω), we have

∥S(t)ξ∥L∞(Ω) ≤ C t−
n
2p ∥ξ∥Lp(Ω),∀t > 0, (11)

where the constant C is independent of ξ. We also have S(t)(L∞(Ω)) ⊂ L∞(Ω), and for
all ξ ∈ L∞(Ω), we have (see [6], p. 44)

∥S(t)ξ∥L∞(Ω) ≤ ∥ξ∥L∞(Ω),∀t ≥ 0.

Using the smooth effect of the heat semigroup S(t), we can take the mild solution z(t)
in the space of continuous function equipped with the supremum norm. Then, by taking
the L∞−norm in (9) and using (11), we get

∥z(t)∥L∞(Ω) ≤ C(t− T1)
− n

2p ∥z(T1)∥L1(Ω) + C∥v2∥L∞(Ω)

∫ t

T1

(t− s)−
n
2p ∥z(s)∥L1(Ω)ds

for all t ∈ [T1, T2], and for some constant C > 0 which is independent of η := T2 − T1.
Then, when using (10), it comes

∥z(t)∥L∞(Ω) ≤ C(t− T1)
− n

2p ∥z(T1)∥L1(Ω) + C∥v2∥L∞(Ω)∥z(T1)∥
∫ t

T1

(t− s)−
n
2p ds

for all t ∈ [T1, T2], and in particular,

∥z(T2)∥L∞(Ω) ≤ Cη−
n
2p ∥z(T1)∥,

where C is a positive constant which is independent of η ∈ (0, 1). Thus (5) implies

∥z(T2)∥L∞(Ω) ≤ Cη−
n
2p ϵ (12)

for some constant C > 0 which is independent of η.
Let us now consider the control v(x, t) = v2(x) + v3(x, t) on [T2, T ], v3 ∈ L∞(Ω ×

(T2, T )) (with v3(t) = 0, t ∈ (T1, T2)). When using this control, the system (7) becomes
zt = ∆z + v2(x)z + v3(x, t)(z + yd), in Ω× (T2, T ),
z = 0, on ∂Ω× (T2, T ),
z(T2) = y(T−

2 )− yd, in Ω.
(13)
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Let us consider the following linear system: ψt = ∆ψ + v2(x)ψ + 1ωu1(x, t), in Ω× (T2, T ),
ψ(0, t) = 0, on ∂Ω× (T2, T ),
ψ(T2) = z(T2), in Ω.

(14)

From Lemma 2.2, there exists a control u1 ∈ L∞(Ω×(T2, T )) such that the corresponding
solution to (14) satisfies ψ(., T ) = 0. Furthermore, the steering control u1 satisfies the
estimate

∥u1∥L∞(Ω×(T2,T )) ≤ C∥ψ(T2)∥L2(Ω) (15)

for some positive constant C which is independent of T2. In other words, for some positive
constant C (depending though on T − T2). Moreover, since T2 is small enough, we can
(according to the Lemma 2.2) choose C only dependent on T .
The solution of (14) is given, for all t ∈ [T2, T ], by

ψ(t) = S(t− T2)ψ(T2) +

∫ t

T2

S(t− s)(v2(x)ψ(s) + u1(·, s))ds. (16)

Since ψ(T2) ∈ L∞(Ω), we have (see [6], p. 44)

∥S(t)ψ(T2)∥L∞(Ω) ≤ ∥ψ(T2)∥L∞(Ω).

Since ψ(T2) ∈ Lp(Ω) and u1 ∈ L∞(Ω× (T2, T )), we can see that ψ(t) ∈ Lp(Ω), T2 ≤ t ≤
T.

Moreover, from (11), we have

∥S(t− s)ψ(s)∥L∞(Ω) ≤ C(t− s)−
n
2p ∥ψ(s)∥Lp(Ω), 0 ≤ s < t,

and

∥S(t− s)1ωu1(·, s)∥L∞(Ω) ≤ C(t− s)−
n
2p ∥u1(·, s)∥Lp(Ω), 0 ≤ s < t·

Thus from (16), we have ψ(t) ∈ L∞(Ω) for all t ∈ (T2, T ], and

∥ψ(t)∥L∞(Ω) ≤ ∥ψ(T2)∥L∞(Ω) + C∥u1∥L∞(Ω×(T2,T )) + C

∫ t

T2

∥ψ(s)∥L∞(Ω)

for some C which is independent of η.
Gronwall’s inequality yields, via (12) and (15),

∥ψ(t)∥L∞(Ω) ≤ C∗η
− n

2p ε, t ∈ [T2, T ],

for η small enough and for some constant C∗ > 0 which is independent of η.
Since |yd| ≥ α > 0 a.e. in ω, we can choose ε and η small enough such that

η > (C∗ϵ
α )

2p
n . Hence

|ψ(x, t) + yd| > 0, a.e ω × (T2, T ).

This enables us to define a control v3 in Ω× (T2, T ) through the following relation:

v3(x, t)(ψ(x, t) + yd) = u1(x, t).
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Since u1 ∈ L∞(Ω× (T2, T )), it follows that v3 ∈ L∞(Ω× (T2, T )).
Using the control v(x, t) = v2(x) + v3(x, t), t ∈ (T2, T ) in the system (13), leads to the
following one:

zt = ∆z + v2(x)z +
u1(x, t)

ψ(x, t) + yd
(z + yd), in Ω× (T2, T ),

z(0, t) = 0, on ∂Ω× (T2, T ),
z(T2) = y(T−

2 )− yd, in Ω,

(17)

which admits ψ as a solution. Hence, by uniqueness, we have z = ψ a.e in Ω× (T2, T ).
Finally, returning to initial system (2), the control is then defined by

v(x, t) =


v1(x), in (0, T1),
v2(x), in (T1, T2),

v2(x) +
u1(x, t)

ψ(x, t) + yd
, in (T2, T ),

so that v ∈ L∞(QT ) and y(T ) = yd.

Remark 2.1 The result of Theorem 2.1 improves the results from the literature in
terms of the steering time which is here independent of the initial and target states (see
for instance [4, 18]).

2.2 Exact controllability of the semilinear system

Presently, the system (1) is considered. The next theorem introduces significant differ-
ences with respect to the literature in terms of the proof techniques. Indeed, the method
used in [5] consists of shifting the points of sign change by making use of a finite sequence
of initial-value pure diffusion problems. In [18], a static control was used to study the ap-
proximate controllability of the truncated part of (1), and the equation at hand becomes
linear so that one can apply the linear semigroup theory. In the context of equation (1),
the central idea of our method is to try to select the bilinear control in such a way that
the corresponding trajectory of (1) can be approximated by the bilinear term v(x, t)y(t)
on a small interval of steering [0, T ]. In other words, the effect of the pure diffusion (i.e.
v = 0 and f = 0) as well as the one of the nonlinearity becomes negligible as T → 0+.

Our exact controllability result for semilinear case is as follows.

Theorem 2.2 Let T > 0. If y0 and yd satisfy the assumptions of Theorem 2.1, then
there exists a control q(·, ·) ∈ L∞(QT ) for which the respective solution to (1) is such
that y(T ) = yd.

Proof. The idea consists in looking for a control that makes the system (1) equivalent
to its bilinear part (2) so that one may apply the results of the previous section.
Let us observe that (at least formally) the system (1) can be written as follows: yt = ∆y + (q(x, t) + f(y)

y 1Ey
)y, in QT ,

y(0, t) = 0, on ΣT ,
y(x, 0) = y0(x), in Ω,

(18)

where Ey = {(x, t) ∈ QT : y(x, t) ̸= 0}. This leads us to consider the following bilinear
system:  φt = ∆φ+ v(x, t)φ, in QT ,

φ(0, t) = 0, on ΣT ,
φ(x, 0) = y0(x), in Ω.

(19)
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According to Theorem 2.1, there exists v ∈ L∞(QT ) for which the solution of the system
(19) is such that φ(T ) = yd.

From the assumptions on f, we deduce that |f(y(x))| ≤ L|y(x)| for a.e x ∈ Ω,

where L is a Lipschitz constant of f . Thus we have
f(φ)

φ
1Eφ

∈ L∞(Ω), where Eφ =

{(x, t) : φ(x, t) ̸= 0}.
Consider the following bilinear system: yt = ∆y +

(
v(x, t)− f(φ)

φ 1Eφ

)
y + f(y), in QT ,

y(0, t) = 0, on ΣT ,
y(x, 0) = y0(x), in Ω,

(20)

and let us set q(x, t) = v(x, t) − f(φ)

φ
1Eφ in (20), where φ is the solution of (19) cor-

responding to the steering control v. It is apparent that φ is a solution of (20). Hence,
by uniqueness, we have that y = φ is the unique solution of (20) corresponding to the

control q(x, t) = v(x, t)− f(φ)

φ
1Eφ . Then the controllability result of the theorem follows

from Theorem 2.1.

Remark 2.2 1. In the case where f(0) ̸= 0, we can use the control q(x, t) =

v(x, t)− f(φ)− f(0)

φ
1Eφ

.

2. The result of Theorem 2.2 extends the results of approximate multiplicative con-
trollability of semilinear systems established in [5] to the case of several dimensions.
Moreover, the result of Theorem 2.2 also holds for a nonlinearity f = f(t, x, y,∇y)
which is globally Lipschitz in y uniformly w.r.t the other parameters (see [13]).

The next result provides a set of states that can be reached with additive controls
through the following semilinear system: yt = ∆y + f(y) + u(x, t), in QT ,

y(0, t) = 0, on ΣT ,
y(x, 0) = y0(x), in Ω.

(21)

Corollary 2.1 Let assumptions of Theorem 2.1 hold. Then for any T > 0, there
exists a control u ∈ L2(0, T ;L2(Ω)) for which the respective solution to (21) satisfies
y(T ) = yd.

Proof. It suffices to take u(x, t) = q(x, t)y(x, t), where q is the steering control of (1)
from y0 to yd at T and y is the corresponding solution of (1).

3 Simulation

In this section, we investigate the exact controllability for the one dimensional version of
system (1). Note that the approximate controllability of such models has been considered
in the bilinear and semilinear context in [4, 5] (see also [14] for different interpretations
of these equations).

Let us consider the system (1) with f(x) = sin(x), x ∈ R. This function constitutes
a prototype of (non trivial) smooth Lipschitz nonlinearities that vanish at the origin,
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which is widely used for illustrative and numerical examples (see for instance [1, 3, 16]).
As initial and final data, let us take y0 = 10−2(x + 10−2)(1.01 − x) and yd = y0e

x in
Ω = (0, 1).

Thus, we have a(x) = 1
T ln yd

y0
= x

T and g(x) = −∆yd
yd

= −1 +
4x

(x+ 10−2)(1.01− x)
.

According to Theorem 2.2, we deduce that for every T > 0, there are positive real
numbers T1 and T2 which are small enough and for which the control

q(x, t) =



x

T1
− sin(φ)

φ
1Eφ

, (0, T1),

−1 +
4x

(x+ 10−2)(1.01− x)
− sin(φ)

φ
1Eφ

, (T1, T2),

−1 +
4x

(x+ 10−2)(1.01− x)
+

u(x, t)

ψ(x, t) + yd
− sin(φ)

φ
1Eφ

, (T2, T ),

(Eφ = {(x, t) : φ(x, t) ̸= 0}) achieves the exact steering of system (1) from y0 to yd at
T, where φ solves (19) with

v(x, t) =


x
T1
, (0, T1),

−1 + 4x
(x+10−2)(1.01−x) , (T1, T2),

−1 + 4x
(x+10−2)(1.01−x) +

u(x,t)
ψ(x,t)+yd

, (T2, T ),

and u(x, t) is the control of null-controllability of the linear system ψt = ∆ψ − ψ + u(x, t), in Ω× (T2, T ),
ψ(0, t) = 0, on ∂Ω× (T2, T ),
ψ(T2) = y(T2)− yd, in Ω,

and ψ is the corresponding solution.
Here we consider a globally distributed control u(x, t), which can be taken time-

independent (see [14], p.57)

u(x, t) = −
∞∑
k=1

(π2k2 + 1)e−(T−T2)(π
2k2+1)

e−(T−T2)(k2π2+1) − 1

( ∫ π

0

(y(ξ, T2)− yd(ξ))φk(ξ)dξ
)
φk(x), (22)

where φk(x) =
√
2 sin(kπx), k ≥ 1, are the eigenfunctions of A associated to the eigen-

values λk = −k2π2.
Now, note that system (1) with control q(x, t) and system (19) with control v(x, t)

have the same state and it suffices to simulate the latter. We will give simulations for
T = 1, T1 = 0.01 and T2 = 0.02, and we will follow the three steps given below.

Step 1. Approximate steering: Solve system (1), controlled on the time interval
(0, T1), by v(x, t) = v1(x) =

1
T1

ln(ydy0 ) = 100x to get y(x, T1).

Step 2. Computation of the additive control u(x, t): Solve (19) on the time interval
(0, T2), by taking the control

v(x, t) = v1(x, t) =


100x, (0, T1),

−1 +
4x

(x+ 10−2)(1.01− x)
, (T1, T2).
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This gives y(ξ, T2), which enables us to compute the control u(x, t) using the formula (22).

Step 3. Exact steering: Consider the solution ψ:

ψ(x, t) = eT2−tS(t− T2)y(x, T2) +

∫ t

T2

e−(t−s)S(t− s)u(x, s)ds

of the equation
ψt = ∆ψ − ψ + u(x, t), t ∈ (T2, T ),

with ψ(T+
2 ) = y(T−

2 ) as the initial state. Then, we use the relation y(x, t) = ψ(x, t) +
yd, t ∈ (T2, T ) to get y(x, T ) = yd. Below are the figures corresponding to the exact
steering with the error function.

Figure 1: The evolution of the state at T .

• Figure 1 reflects the exact steering and shows that the trajectory y(t) becomes very
close to the desirable state at time T .

• Figure 2 describes the variation of the error function defined by E(t) = ∥y(t) −
yd∥, t ∈ [0, T ], and shows that E(t) tends to zero when t becomes close to the time of
steering T .

4 Conclusion

In the present paper, the multiplicative controllability of a semilinear reaction-diffusion
equation is considered in several space dimensions. The approach is constructive and
consists in using a set of three controls applied subsequently in time. First, a static



548 M. JIDOU KHAYAR, A. BROURI AND M. OUZAHRA

Figure 2: The variation of the error.

control is used to achieve the approximate steering in L2 at a small time T1. Then, a
second static control is used in a small time interval [T1, T2] so that the approximate
steering becomes in L∞ sense. Finally, in the remaining time interval [T2, T ], we exploit
a (x, t)−dependent control law that ensures the zero controllability of an appropriate
linear system (with an additive control) to guarantee the exact steering. Furthermore,
the considered methods allow us to achieve the approximate and exact steering (for a
given couple of the initial and desirable states) at arbitrary small control time which can
be fixed in advance.
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