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Analysis of an Antiplane Thermo-Electro-Viscoelastic

Contact Problem with Long-Term Memory

L. Benziane ∗ and N. Lebri

Applied Mathematics Laboratory, Department of Mathematics, Setif 1 - University,
19000, Algeria.

Received: May 6, 2022; Revised: October 10, 2022

Abstract: We study a mathematical problem modeling the antiplane shear defor-
mation of a cylinder in frictionless contact with a rigid foundation. The material
is assumed to be thermo-electro-viscoelastic with long-term memory, the friction is
modeled by Tresca’s law and the foundation is assumed to be electrically conductive.
We derive a variational formulation for the model which is in the form of a system
involving the displacement field, the electric potential field and the temperature field.
We prove the existence of a unique weak solution to the problem. The proof is based
on the arguments of time-dependent variational inequalities, parabolic inequalities,
differential equations and a fixed point theorem.

Keywords: weak solution; variational formulation; antiplane shear deformation;
thermo-electroviscoelastic material; Tresca’s friction law; fixed point; variational
inequality.

Mathematics Subject Classification (2010): 74M10, 49J40, 70K70, 70K75.

1 Introduction

Anti-plane shear deformation problems arise naturally from many real world applications
such as rectilinear steady flow of simple fluids [6], interface stress effects of nanostruc-
tured materials [10], structures with cracks [16], layered/composite functioning materi-
als [15], and phase transitions in solids [17]. Considerable attention has been paid to the
modelling of such kind of problems, see for instance [8] and the references therein. In
particular, the review paper [8] deals with modern developments for the antiplane shear
model involving linear and nonlinear solid materials, various constitutive settings and
applications. Antiplane frictional contact problems are used in geophysics in order to

∗ Corresponding author: mailto:la.benziane@yahoo.fr
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474 L. BENZIANE AND N. LEBRI

describe the pre-earthquake evolution of the regions of high tectonic activity, see for in-
stance [5] and the references therein. The mathematical analysis of models for antiplane
frictional contact problems can be found in [2, 8, 18].

Currently, there is a considerable interest in frictional or frictionless contact prob-
lems involving piezoelectric materials, i.e., materials characterized by the coupling of
mechanical and electrical properties. This coupling, in a piezoelectric material, leads to
the appearance of electric potential when mechanical stress is present, and conversely,
mechanical stress is generated when electric potential is applied. The first effect is used
in mechanical sensors, and the reverse effect is used in actuators, in engineering control
equipment. Piezoelectric materials for which the mechanical properties are elastic are
also called electro-elastic materials and piezoelectric materials for which the mechanical
properties are viscoelastic are also called electro-viscoelastic materials. General models
for piezoelectric materials can be found in [3, 4, 12]. Static frictional contact problems
for elastic and viscoelastic materials were studied in [11, 13, 14], under the assumption
that the foundation is insulated. Contact problems with normal compliance for electro-
viscoelastic materials were investigated in [9, 19]. There, variational formulations of the
problems were considered and their unique solvability was proved. Antiplane problems
for piezoelectric materials were considered in [18].

In paper [20], the authors have studied an antiplane contact problem for viscoelas-
tic materials with long-term memory. This mechanical problem leads to an integro-
differential variational inequality. In the present paper, we deal with an antiplane contact
problem for a thermo-electro-viscoelastic cylinder, which leads to a new mathematical
model, different from the one presented in [20]. The novelty of this paper consists in the
fact that we model the friction by Tresca’s law and the material’s behavior by a thermo-
viscoelastic constitutive law with long-term memory. We neglect the inertial term in the
equation of motion to obtain a quasistatic approximation of the process.

Thermal effects in contact processes affect the composition and stiffness of the con-
tacting surfaces, and cause thermal stresses in the contacting bodies. Moreover, the
contacting surfaces exchange heat, and energy is lost to the surroundings. Our interest is
to describe a simple physical process in which the frictional contact, viscosity and piezo-
electric effects are involved, and to show that the resulting model leads to a well-posed
mathematical problem. Taking into account the frictional contact between a viscous
piezoelectric body and an electrically conductive foundation in the study of an antiplane
problem leads to a new and interesting mathematical model which has the virtue of rela-
tive mathematical simplicity without loss of essential physical relevance.The main result
we provide concerns the existence of a unique weak solution to the model. Its proof is
carried out in several steps, and is based on the arguments of evolutionary variational
inequalities and Banach’s fixed-point theorem.

The rest of the paper is structured as follows. In Section 2, we describe the model of
the frictional contact process between a thermo-electro-viscoelastic body and a conduc-
tive deformable foundation. In Section 3, we derive the variational formulation. It con-
sists of a variational inequality for the displacement field coupled with a time-dependent
variational equation for the electric potential and the heat equation for the tempera-
ture. We state our main result, the existence of a unique weak solution to the model,
in Theorem 3.1. The proof of the theorem is provided in Section 4, where it is based
on the arguments of evolutionary inequalities, an ordinary differential equation and a
fixed-point theorem.
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2 Mathematical Model

We consider a piezoelectric body B identified with a region in R3, it occupies in a fixed
and undistorted reference configuration. We assume that B is a cylinder with generators
parallel to the x3-axis with a cross-section which is a regular region Ω in the x1x2-plane,
Ox1x2x3 being a Cartesian coordinate system. The cylinder is assumed to be sufficiently
long so that end effects in the axial direction are negligible. Thus, B = Ω× (−∞,+∞).
The cylinder is acted upon by body forces of density f0 and has volume free electric
charges of density q0. It is also constrained mechanically and electrically on the boundary.
To describe the boundary conditions, we denote by ∂Ω = Γ the boundary of Ω and we
assume a partition of Γ into three open disjoint parts Γ1, Γ2, and Γ3, on the one hand,
and a partition of Γ1∪ Γ2 into two open parts Γa and Γb, on the other hand. We assume
that the one-dimensional measures of Γ1 and Γa, denoted meas Γ1 and meas Γa, are
positive. The cylinder is clamped on Γ1 × (−∞,+∞) and therefore the displacement
field vanishes there. Surface tractions of density f2 act on Γ2 × (−∞,+∞). We also
assume that the electrical potential vanishes on Γa× (−∞,+∞) and a surface electrical
charge of density q2 is prescribed on Γb × (−∞,+∞). The cylinder is in contact over
Γ3 × (−∞,+∞) with a conductive obstacle, the so-called foundation. The contact is
frictional and is modeled by Tresca’s law. We are interested in the deformation of the
cylinder on the time interval [0, T ] . We assume that

f0 = (0, 0, f0) with f0 = f0(x1, x2, t) : Ω× [0;T ] → R, (1)

f2 = (0, 0, f2) with f2 = f2(x1, x2, t) : Γ2 × [0;T ] → R, (2)

q0 = q0 (x1, x2, t) : Ω× [0, T ] → R, (3)

q2 = q2 (x1, x2, t) : Γb × [0, T ] → R. (4)

The forces (1), (2) and the electric charges (3), (4) are expected to give rise to deforma-
tions and to electric charges of the piezoelectric cylinder corresponding to a displacement
u and to an electric potential field φ which are independent of x3 and have the form

u = (0, 0, u) with u = u(x1, x2, t) : Ω× [0, T ] → R, (5)

φ = φ(x1, x2, t) : Ω× [0, T ] → R. (6)

Such kind of deformation, associated to a displacement field of the form (5), is called an
antiplane shear, see for instance [8] for details.

Below, the indices i and j denote components of vectors and tensors and run from 1 to
3, summation over two repeated indices is implied, and the index that follows the comma
represents the partial derivative with respect to the corresponding spatial variable; also,
the dot above represents the time derivative. We use S3 for the linear space of second
order symmetric tensors on R3 or, equivalently, the space of symmetric matrices of order
3, and “.”, ∥.∥ will represent the inner products and the Euclidean norms on R3 and S3;
we have

u.v = uiυi, ∥v∥ = (v.v)
1
2 ∀u =(ui) , v = (υi) ∈ R3,

σ.τ = σijτij , ∥τ∥ = (τ.τ)
1
2 ∀σ =(σij) , τ = (τij) ∈ S3.

The infinitesimal strain tensor is denoted by ε (u) = (εij (u)) and the stress field by
σ =(σij). We also denote by E (φ) = (Ei (φ)) the electric field and by D = (Di) the
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electric displacement field. Here and below, in order to simplify the notation, we do not
indicate the dependence of various functions on x1, x2, x3 or t and we recall that

εij(u) =
1

2
(ui,j + uj,i) , Ei (φ) = −φ,i.

The material’s behavior is modeled by the following thermal electro-viscoelastic consti-
tutive law with long-term memory

σ = λ(trε(u))I+ 2µε(u) + 2

t∫
0

G(t− s)ε(u(s))ds− E∗E(φ)−Mcθ, (7)

D = Eε(u) + αE(φ)− Pθ, (8)

where λ > 0 and µ > 0 are the Lamé coefficients, tr(ε(u)) =
∑3

i=1 εii(u), I is the unit
tensor in R3, G : [0, T ] → R is the relaxation function, E represents the third-order
piezoelectric tensor, and E∗ is its transpose, θ is the temperature field and Mc := (mij),
P (pi) are, respectively, the thermal expansion and the pyroelectric tensor which have
the forms

Mc =

 0 0 Mc1

0 0 Mc2

Mc1 Mc2 0

 , P =

 p1
p2
0

 .

We assume that Mci(x1, x2) : Ω → R, and pi : Ω → R.
In the antiplane context (5), (6), when using the constitutive equations (7), (8), it

follows that the stress field and the electric displacement field are given by

σ =

 0 0 σ13
0 0 σ23
σ31 σ32 0

 , (9)

D =

 eu,1 − αφ,1 − p1θ
eu,2 − αφ,2 − p2θ

0

 , (10)

where α is the electric permittivity constant, e is a piezoelectric coefficient,

σ13 = σ31 = µu,1 +

t∫
0

G(t− s)u,1(s)ds+ eφ,1 −Mc1 .θ,

σ23 = σ32 = µu,2 +

t∫
0

G(t− s)u,2(s)ds− eφ,2 −Mc2 .θ.

We assume that

Eε =

 e (ε13 + ε31)
e (ε23 + ε32)

eε33

 ∀ε = (εij) ∈ S3. (11)

We also assume that the coefficients G, µ, α, and e depend on the spatial variables x1,
x2, but are independent of the spatial variable x3. Since Eε.v = ε.E∗v for all ε ∈ S3,v
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∈ R3, it follows from (11) that

E∗v =

 0 0 ev1
0 0 ev2
ev1 ev2 ev3

 ∀v = (υi) ∈ R3. (12)

We assume that the process is mechanically quasistatic and electrically static and there-
fore is governed by the equilibrium equations

Div σ + f0 = 0, divD − q0 = 0 in B × (0, T ) ,

where Div σ = (σij,j) represents the divergence of the tensor field σ. When taking into
account (1), (3), (5), (6), (9), and (10), the equilibrium equations above reduce to the
following scalar equations:

div (µ∇u)+
t∫

0

G(t−s) div (∇u(s)) ds+ div (e∇φ)− div (θMc)+f0 = 0 in Ω×(0, T ),

(13)
div (e∇u− α∇φ)− div (θP) = q0 in Ω× (0, T ) (14)

with

Mc =

 Mc1

Mc2

0

 .

Here and below we use the notation

div τ = τ1,1 + τ1,2 for τ =(τ1 (x1, x2, t) , τ2 (x1, x2, t)) ,
∇v = (υ,1, υ,2) , ∂νv = υ,1ν1 + υ,2ν2 for υ = υ (x1, x2, t) .

We now describe the boundary condition. During the process, the cylinder is clamped
on Γ1× (−∞,+∞) and the electric potential vanishes on Γ1× (−∞,+∞). Thus, (5) and
(6) imply that

u = 0 on Γ1 × (0, T ), (15)

φ = 0 on Γa × (0, T ). (16)

Let ν denote the unit normal on Γ× (−∞,+∞). We have

ν = (ν1, ν2, 0) with νi = νi(x1, x2) : Γ → R, i = 1, 2. (17)

For a vector v, we denote by υν and vτ its normal and tangential components on the
boundary, given by

υν = v.ν , vτ = v − υνν. (18)

For a given stress field σ, we denote by σν and στ the normal and the tangential compo-
nents on the boundary, that is,

σν = (σν).ν, στ = σν − σνν. (19)

From (9), (10), and (17), we deduce that the Cauchy stress vector and the normal
component of the electric diplacement field are given by

σν = (0, 0, µ∂νu+
t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν),

D.ν = e∂νu− α∂νφ− θP.ν.
(20)
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Taking into account (2), (4), and (20), the traction condition on Γ2 × (−∞,+∞) and
the electric conditions on Γb × (−∞,+∞) are given by

µ∂νu+

t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν = f2 on Γ2 × (−∞,+∞), (21)

e∂νu− α∂νφ = q2 on Γb × (−∞,+∞). (22)

Now, we describe the frictional contact condition and electric conditions on Γ3 ×
(−∞,+∞). First, from (5) and (17), we infer that the normal displacement vanishes,
uν = 0, which shows that the contact is bilateral, that is, the contact is kept during the
whole process. Using now (5) and (17)-(19), we conclude that

uτ = (0, 0, u), στ = (0, 0, στ ), (23)

where

στ = (0, 0, µ∂νu+

t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν).

We assume that the friction is invariant with respect to the x3-axis and is modeled by
Tresca’s friction law, that is,

|στ | ≤ g,

|στ | < g ⇒ u̇τ = 0,

|στ | = g ⇒ ∃β ≥ 0, such that στ = −βu̇τ ,

on Γ3 × (0, T ). (24)

Here g : Γ3 → R+ is a given function, the friction bound, and u̇τ represents the tangential
velocity on the contact boundary. Using now (23), it is straightforward to see that the
conditions (24) imply

|µ∂νu+
t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν| ≤ g,

|µ∂νu+
t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν| < g ⇒ u̇ (t) = 0,

|µ∂νu+
t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν| = g ⇒ ∃β ≥ 0,

such that µ∂νu+
t∫
0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν = −βu̇.

on Γ3 × (0, T ).

(25)
Next, since the foundation is electrically conductive and the contact is bilateral, we
assume that the normal component of the electric displacement field or the free charge
is proportional to the difference between the potential on the foundation and the body’s
surface. Thus,

D.ν = k (φ− φF ) on Γ3 × (0, T ),

where φF represents the electric potential of the foundation and k is the electric conduc-
tivity coefficient. We use (20) and the previous equality to obtain

e∂νu− α∂νφ− θP.ν = k (φ− φF ) on Γ3 × (0, T ). (26)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (5) (2022) 473–488 479

Finally, we prescribe the initial displacement

u(0) = u0 in Ω, (27)

where u0 is the given function on Ω.

We collect the above equations and conditions to obtain the classical formulation of
the antiplane problem for thermo-electro-viscoelastic materials with long-term memory,
in frictional contact with a foundation.
Problem P: Find the displacement field u : Ω × (0, T ) → R, a temperature field
θ : Ω× (0, T ) → R+ and the electric potential φ : Ω× (0, T ) → R such that

div (µ∇u)+
∫ t

0

G(t−s) div (∇u(s)) ds+ div (e∇φ)−div (θMc)+f0 = 0 in Ω× (0, T ),

(28)

div (e∇u− α∇φ)− div (θP) = q0 in Ω× (0, T ), (29)

θ̇ − div(K∇θ) = −Mc∇u̇+ h(t) in Ω× (0, T ), (30)

u = 0 on Γ1 × (0, T ), (31)

µ∂νu+

∫ t

0

G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν = f2 on Γ2 × (0, T ), (32)


|µ∂νu+

∫ t

0
G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν| ≤ g,

|µ∂νu+
∫ t

0
G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν| < g ⇒ u̇ = 0,

|µ∂νu+
∫ t

0
G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν| = g ⇒ ∃β ≥ 0,

such that µ∂νu+
∫ t

0
G(t− s)∂νu(s)ds+ e∂νφ− θMc.ν = −βu̇,

on Γ3 × (0, T ),

(33)

θ = 0 on Γ1 ∪ Γ2 × (0, T ), (34)

e∂νu− α∂νφ = q2 on Γb × (0, T ), (35)

e∂νu− α∂νφ− θP.ν=k (φ− φF ) on Γ3 × (0, T ), (36)

− kij
∂θ

∂xj

ni = ke(θ − θR) on Γ3 × (0, T ), (37)

u(0) = u0, θ(0) = θ0 in Ω. (38)

The differential equation (30) describes the evolution of the temperature field, where
K := (kij) represents the thermal conductivity tensor, h(t) is the density of volume heat
sources. The associated temperature boundary condition is given by (37), where θR is the
temperature of the foundation, and k is the heat exchange coefficient between the body
and the obstacle. Finally, u0, θ0 represent the initial displacement and temperature,
respectively.
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3 Variational Formulation and Main Result

We derive now the variational formulation of Problem P . To this end we introduce the
function spaces

V =
{
v ∈ H1(Ω) | v = 0 on Γ1

}
, W =

{
ψ ∈ H1(Ω) | ψ = 0 on Γa

}
,

and we assume that
E =

{
η ∈ H1(Ω) | η = 0 on Γ1 ∪ Γ2

}
.

Similarly, we write ζ for the trace γζ of the function ζ ∈ H1(Ω) on Γ. Since measΓ1 > 0
and measΓa > 0, it is well known that V and W are real Hilbert spaces with the inner
products

(u, v)V =

∫
Ω

∇u.∇υ dx ∀ u, υ ∈ V, (φ,ψ)W =

∫
Ω

∇φ.∇ψ dx ∀ φ,ψ ∈W.

Moreover, the associated norms

∥ υ ∥V =∥ ∇v ∥L2(Ω)2 ∀ υ ∈ V, ∥ ψ ∥W=∥ ∇ψ ∥L2(Ω)2 ∀ ψ ∈W, (39)

are equivalent on V and W , with the usual norm ∥ . ∥H1(Ω). By Sobolev’s trace theorem
we deduce that there exist three positive constants c1 > 0, c2 > 0 and c3 > 0 such that

∥ υ ∥L2(Γ3) ≤ c1 ∥ υ ∥V ∀ υ ∈ V, ∥ ψ ∥L2(Γ3) ≤ c2 ∥ ψ ∥W ∀ ψ ∈W,
∥ η ∥L2(Γ3) ≤ c3 ∥ η ∥E ∀ η ∈ E.

(40)

If (X, ∥ . ∥X) represents a real Banach space whereX = V ×W , we denote by C([0, T ];X)
the space of continuous functions from [0, T ] to X, with the norm

∥ x ∥C([0;T ];X)= max
t∈[0,T ]

∥ x(t) ∥X ,

and we use standard notations for the Lebesgue space L2(0, T ;X) as well as for the
Sobolev spaceW 1,2(0, T ;X). In particular, recall that the norm on the space L2(0, T ;X)
is given by the formula

∥ u ∥2L2(0,T ;X)=

∫ T

0

∥ u(t) ∥2X dt,

and the norm on the space W 1,2(0, T ;X) is given by the formula

∥ u ∥2W 1,2(0,T ;X)=

∫ T

0

∥ u(t) ∥2X dt+

∫ T

0

∥ u̇(t) ∥2X dt.

Finally, we suppress the argument X when X = R; thus, for example, we use the
notation W 1,2(0, T ) for the space W 1,2(0, T ;R) and the notation ∥ . ∥W 1,2(0,T ) for the
norm ∥ . ∥W 1,2(0,T ;R) .

In the study of Problem P we assume that the viscosity coefficient satisfies

G ∈W 1,2(0, T ) (41)

and the electric permittivity coefficient satisfies

α ∈ L∞ (Ω) and there exists α∗ > 0 such that α (x) ≥ α∗ a.e. x ∈ Ω. (42)
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We also assume that the Lamé coefficient and the piezoelectric coefficient satisfy

µ ∈ L∞ (Ω) and µ (x) > 0 a.e. x ∈ Ω, (43)

e ∈ L∞ (Ω) . (44)

The thermal tensor and the pyroelectric tensor satisfy

Mc =

 Mc1

Mc2

0

 , Mci(x1, x2) : Ω → R, Mci ∈ L∞(Ω). (45)

The boundary thermal data satisfy

h ∈W 1,2(0, T ;L2(Ω)), θR ∈W 1,2(0, T ;L2(Γ3)), ke ∈ L∞(Ω,R+). (46)

The thermal conductivity tensor verifies the usual symmetry and ellipticity: for some
ck > 0 and for all ξi ∈ Rd,

K = (kij), kij = kji ∈ L2(Ω), ∀ck > 0, ξi ∈ Rd; kijξi.ξj ≤ ckξi.ξj . (47)

The forces, tractions, volume, and surface free charge densities have the regularity

f0 ∈ W 1,2(0, T ;L2(Ω)), f2 ∈W 1,2(0, T ;L2(Γ2)), (48)

q0 ∈ W 1,2(0, T ;L2(Ω)), q2 ∈W 1,2(0, T ;L2(Γb)). (49)

The electric conductivity coefficient and the friction bound function g satisfy the following
properties:

k ∈ L∞(Γ3) and k (x) ≥ 0 a.e. x ∈ Γ3, (50)

g ∈ L∞(Γ3) and g (x) ≥ 0 a.e. x ∈ Γ3. (51)

Also, we assume that the electric potential of the foundation is such that

φF ∈W 1,2(0, T ;L2(Γ3)). (52)

Finally, we assume that the initial data verifies

u0 ∈ V, θ0 ∈ L2(Ω), (53)

and moreover,

aµ(u0, υ)V + j(υ) ≥ (f(0), υ)V , ∀υ ∈ V. (54)

We consider the functional j : [0, T ] → R+ given by

j(υ) =

∫
Γ3

g |υ| da ∀υ ∈ V, (55)

and let f : [0, T ] → V and q : [0, T ] →W be defined by

(f(t), υ)V =

∫
Ω

f0(t)υdx+

∫
Γ2

f2(t)υ da, (56)

(q(t), ψ)W =

∫
Ω

q0(t)ψdx−
∫
Γb

q2(t)ψ da+

∫
Γ3

kφF (t)ψda, (57)

∀υ ∈ V, ψ ∈W , ∀t ∈ [0, T ].
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The definitions of f and q are based on Riesz’s representation theorem and by (48) and
(49), we infer that the integrals above are well-defined and

f ∈ W 1,2(0, T ;V ), (58)

q ∈ W 1,2(0, T ;W ). (59)

Next, we define the bilinear forms aµ : V × V → R, ae : V ×W → R, a∗e : W × V → R,
and aα :W ×W → R, by the equalities

aµ (u, υ) =

∫
Ω

µ∇u.∇υ dx, (60)

ae (u, φ) =

∫
Ω

e∇u.∇φ dx = a∗e (φ, u) , (61)

aα (φ,ψ) =

∫
Ω

α∇φ.∇ψ dx+

∫
Γ3

kφψ da (62)

for all u, υ ∈ V, φ, ψ ∈ W . Assumptions (55)–(57) imply that the integrals above are
well-defined and when using (39) and (40), it follows that the forms aµ, ae and a∗e are
continuous; moreover, the forms aµ and aα are symmetric and, in addition, the form aα
is W-elliptic since

aα (ψ,ψ) ≥ α∗ ∥ψ∥2W ∀ψ ∈W. (63)

By using Green’s formula, it is straightforward to derive the following variational
formulation of P. We denote by ⟨ , ⟩V ′×V the duality pairing between V

′
and V .

Problem PV : Find a displacement field u : [0;T ] → V , an electric potential
field φ : [0;T ] →W and a temperature field θ : [0;T ] → E such that

aµ(u(t), υ − u̇(t)) + (
∫ t

0
G(t− s)u(s)ds, υ − .

u(t))V + a∗e (φ (t) , υ − u̇ (t))
+(Mcθ(t), υ − u̇(t))V + j(υ)− j(u̇(t)) ≥ (f(t), υ − u̇(t))V ∀υ ∈ V, t ∈ (0, T ),

(64)

aα (φ (t) , ψ)− ae (u (t) , ψ)− (Pθ,∇ψ)H = (q (t) , ψ)W ∀ψ ∈W, t ∈ [0, T ] , (65)

θ̇(t) +Kθ(t) = Ru̇(t) +Q(t) in E′, (66)

u(0) = u0, θ(0) = θ0 in Ω. (67)

Here, the function Q : [0, T ] → E′ and the operators K : E → E′, R : V → E′; Mc :
E → V ′ are defined by ∀υ ∈ V, ∀τ ∈ E, ∀µ ∈ E:

⟨Q(t), µ⟩E′×E =

∫
Γ3

kcθRµds+

∫
Ω

qµ dx,

⟨Kτ, µ⟩E′×E =

d∑
i,j=1

∫
Ω

kij
∂µ

∂xj

∂µ

∂xi
dx+

∫
Γ3

kcτµ ds,

⟨Rυ, µ⟩E′×E =

∫
Γ3

hτ (|υτ |)µds−
∫
Ω

(Mc ∇υ)µdx,

⟨Mcτ, υ⟩V ′×V = (−τMc, υ)V .

Our main existence and uniqueness result is stated as follows.
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Theorem 3.1 Assume that (41)-(59) hold. Then there exists a unique solution
(u, θ, φ) of problem PV . Moreover, the solution satisfies

u ∈ W 1,2(0, T ;V ); φ ∈W 1,2 (0, T ;W ) , (68)

θ ∈ W 1,2(0, T ;E
′
) ∩ L2(0, T ;E) ∩ C(0, T ;L2(Ω)).

An element (u, φ, θ) which solves PV is called a weak solution of the mechanical
problem P. We conclude by Theorem 3.1 that the antiplane contact problem P has a
unique weak solution, provided that (41)-(59) hold.

4 An Abstract Existence and Uniqueness Result

The proof of Theorem 3.1 is carried out in several steps that we prove in what follows.
Everywhere in this section, we suppose that assumptions of Theorem 3.1 hold and we
denote by c > 0 a generic constant, whose value may change from lines to lines.

In the first step of the proof, we introduce the set

W =
{
η ∈W 1,2(0, T ;X) | η(0) = 0X

}
, (69)

and we prove the following existence and uniqueness result.

Lemma 4.1 For all η ∈ W, there exists a unique element uη ∈ W 1,2(0, T ;X) such
that

a(uη(t), v − u̇η(t)) + (η(t), v − u̇η(t))X + j(v)− j(u̇η(t))

≥ (f(t), v − u̇η(t))X ∀v ∈ X, a.e. t ∈ [0, T ] ,
(70)

uη(0) = u0. (71)

Here X is a real Hilbert space endowed with the inner product (. , .)X and the data
a is a bilinear continuous coercive and symmetric form.

Proof. We use an abstract existence and uniqueness result which may be found
in [2].

In the second step, we use the displacement field uη obtained in Lemma 4.1 and we
consider the following lemma.

Lemma 4.2 For all η ∈ W , there exists a unique solution

θη ∈W 1,2(0, T ;E
′
) ∩ L2(0, T ;E) ∩ C(0, T ;L2(Ω)), c > 0 ∀η ∈ L2([0, T ], V

′
),

satisfying {
θ̇η(t) +Kθη(t) = Ru̇η(t) +Q(t) in E

′
a.e. t ∈ [0, T ] ,

θη(0) = θ0,
(72)

|θη1 − θη2 |2L2(Ω) ≤ C

∫ t

0

|u̇η1(s)− u̇η2(s)|2V ds ∀t ∈ [0, T ] , (73)

and

|θ̇η1
− θ̇η2

|2L2(Ω) ≤ c

∫ t

0

|u̇η1(s)− u̇η2(s)|2V ds a.e.t ∈ [0, T ] . (74)
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Proof. The existence and uniqueness result verifying (72) follows from the classical
result for the first order evolution equation, applied to the Gelfand evolution triple

E ⊂ F ≡ F
′
⊂ E

′
.

We verify that the operator K : E → E
′
is linear continuous and strongly monotone,

and from the expression of the operator R,

υη ∈W 1,2(0, T ;V ) =⇒ Rυη ∈W 1,2(0, T ;F ),

as Q ∈W 1,2(0, T ;E), then Rυη +Q ∈W 1,2(0, T ;E), we deduce (73) and (74) (see
[1]).

In the third step, we use the displacement field uη obtained in Lemma 4.1 and θη
obtained in Lemma 4.2 and we consider the following lemma.

Lemma 4.3 For all η ∈ W , there exists a unique solution φη ∈W 1,2(0, T ;W ) which
satisfies

aα (φη (t) , ψ)− ae (uη (t) , ψ)− (Pθη,∇ψ)H = (q (t) , ψ)W ∀ψ ∈W, t ∈ [0, T ] . (75)

Moreover, if φη1
and φη2 are the solutions of (4.7) corresponding to η1, η2 ∈ C([0, T ] , V ),

then there exists c > 0 such that

∥φη1 (t)− φη2 (t)∥W ≤ c ∥uη1 (t)− uη2 (t)∥V ∀t ∈ [0, T ] . (76)

Proof. Let t ∈ [0, T ]. We use the properties of the bilinear form aα and the Lax-
Milgram lemma to see that there exists a unique element φη (t) ∈ W which solves (75)
at any moment t ∈ [0, T ]. Consider now t1, t2 ∈ [0, T ]; using (75), we get

aα (φη (t1) , ψ)− ae (uη (t1) , ψ)− ( Pθη (t1) ,∇ψ)H
= (q (t1) , ψ)W ∀ψ ∈W, t1 ∈ [0, T ] ,

(77)

aα (φη (t2) , ψ)− ae (uη (t2) , ψ)− ( Pθη (t2) ,∇ψ)H
= (q (t2) , ψ)W ∀ψ ∈W, t2 ∈ [0, T ] .

(78)

Using (77), (78) and (63), we find that

α∗ ∥φ (t1)− φ (t2)∥2W ≤ (∥e∥L∞(Ω) ∥u (t1)− u (t2)∥V + ∥q (t1)− q (t2)∥W +

∥p∥L∞(Ω) ∥θ (t1)− θ (t2)∥L2(Ω) ) ∥φ (t1)− φ (t2)∥W ,

and using (73) we find that

α∗ ∥φ (t1)− φ (t2)∥2W ≤ (∥e∥L∞(Ω) ∥u (t1)− u (t2)∥V + ∥q (t1)− q (t2)∥W +

∥p∥L∞(Ω) ∥u (t1)− u (t2)∥V ) ∥φ (t1)− φ (t2)∥W .

It follows from the previous inequality that

∥φ (t1)− φ (t2)∥W ≤ c(∥u (t1)− u (t2)∥V + ∥q (t1)− q (t2)∥W ). (79)

Then, the regularity uη ∈ W 1,2(0, T ;V ) combined with (59 ) and (79) imply that φη ∈
W 1,2(0, T ;W ), which concludes the proof.
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Now, for all η ∈ W, we denote by uη the solution obtained in Lemma 4.1, by θη the
solution obtained in Lemma 4.2 and by φη the solution obtained in Lemma 4.3.

Step 4: In the fourth step, we consider the operator Λ : W → W.
We now use Riesz’s representation theorem to define the element Λη (t) ∈ W by the

equality

⟨Λη(t), w⟩W = (

∫ t

0

G(t− s)uη(s)ds−Mcθη, w)V + a∗e (φη (t) , w) (80)

∀η ∈ W, w ∈ V, t ∈ [0, T ] .

Clearly, for a given η ∈ W, the function t → Λη (t) belongs to W. In this step we show
that the operator Λ : W → W has a unique fixed point.

Lemma 4.4 The operator Λ has a unique fixed point η∗ ∈ W such that Λη∗ = η∗.

Proof. Let η1, η2 ∈ W and t ∈ [0, T ] . In what follows we denote by ui, θi and φi the
functions uηi , θηi and φηi obtained in Lemmas 4.1, 4.2 and 4.3, for i = 1, 2. Using (80)
and ( 61), we obtain

∥Λη1 (t)− Λη2 (t)∥2X (81)

≤ C

(∫ t

0

∥u1 (s)− u2 (s)∥2X ds+ ∥θ1 − θ2∥2L2(Ω) + ∥φ1 (t)− φ2 (t)∥
2
W

)
∀t ∈ [0, T ] .

The constant C represents a generic positive number which may depend on
∥θ∥W 1,2(0,T ), T,mij and e, and whose value may change from place to place.

Since uη ∈ W 1,2(0, T ;V ) and φη ∈ W 1,2(0, T ;W ), we deduce from inequality (81)
that Λη ∈ W 1,2(0, T ;V ). On the other hand, (76) and arguments similar to those used
in the proof of (79) yield

∥φ
1
(t)− φ

2
(t)∥W ≤ C ∥u

1
(t)− u

2
(t)∥V . (82)

Using now (73)(82) in (81), we get

∥Λη1 (t)− Λη2 (t)∥2X

≤ C

(∫ t

0

∥u1 (s)− u2 (s)∥2X ds+

∫ t

0

∥u̇1 (t)− u̇2 (t)∥2X ds+ ∥u
1
(t)− u

2
(t)∥2V

)
.

Using the norm on the space W 1,2 (0, T,X) , we deduce that

∥Λη1 (t)− Λη2 (t)∥2X ≤ C ∥u1 (s)− u2 (s)∥2X ds ∀t ∈ [0, T ] . (83)

Taking into account (64), we have the inequalities

a(u1(t), v − u̇1(t)) + (η1(t), v − u̇1(t))X + j(v)− j(u̇1(t))

≥ (f(t), v − u̇1(t))X ∀υ ∈ X, t ∈ [0, T ] ,

and

a(u2(t), v − u̇2(t)) + (η2(t), v − u̇2(t))X + j(v)− j(u̇2(t))

≥ (f(t), v − u̇2(t))X ∀υ ∈ X, t ∈ [0, T ] ,
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for all υ ∈ X, a.e. s ∈ [0, T ] . We choose υ = u̇2(s) in the first inequality and υ = u̇1(s)
in the second inequality, add the result to obtain

1

2
∥u1 (s)− u2 (s)∥2X ≤ − (η1 (s)− η2 (s) , u̇1 (s)− u̇2 (s))X a.e. s ∈ [0, T ] .

Let t ∈ [0, T ] . Integrating the previous inequality from 0 to t using (68), we obtain

1
2 ∥u1 (t)− u2 (t)∥2X ≤ − (η1 (t)− η2 (t) , u1 (t)− u2 (t))X∫ t

0
(η̇1 (s)− η̇2 (s) , u1 (s)− u2 (s))X ds.

We deduce that

C ∥u1 (t)− u2 (t)∥2X ≤ ∥η1 (t)− η2 (t)∥X ∥u1 (t)− u2 (t)∥X
+
∫ t

0
∥η̇1 (s)− η̇2 (s)∥X ∥u1 (s)− u2 (s)∥X ds.

Using Young’s inequality, we get

∥u1 (t)− u2 (t)∥2X ≤ C(∥η1 (t)− η2 (t)∥2X +
∫ t

0
∥η̇1 (s)− η̇2 (s)∥2X ds

+
∫ t

0
∥u1 (s)− u2 (s)∥2X ds).

(84)

On the other hand, as

η1 (t)− η2 (t) =

∫ t

0

η̇1 (s)− η̇2 (s) ds,

we can obtain

∥η1 (t)− η2 (t)∥2X ≤ C

∫ t

0

∥η̇1 (s)− η̇2 (s)∥2X ds. (85)

Using now (85) in (84), we have

∥u1 (t)− u2 (t)∥2X ≤ C(

∫ t

0

∥η̇1 (s)− η̇2 (s)∥2X ds+

∫ t

0

∥u1 (s)− u2 (s)∥2X ds).

Taking into account Gronwall’s inequality, we deduce

∥u1 (t)− u2 (t)∥2X ≤ C

∫ t

0

∥η̇1 (s)− η̇2 (s)∥2X ds. (86)

From (83), (86), we obtain

∥Λη1 (t)− Λη2 (t)∥2X ≤ C

∫ t

0

∥η̇1 (s)− η̇2 (s)∥2X ds.

Iterating the last inequality m times, we infer

∥Λmη1 (t)− Λmη2 (t)∥2X ≤ Cm

∫ t

0

∫ s1

0

.....

∫ sm−1

0

∥η̇1 (sm)− η̇2 (sm)∥2X dsm.....ds1,

where Λm denotes the power of operator Λ. The last inequality gives

∥Λmη1 (t)− Λmη2 (t)∥2W1.2(0,T ;X) ≤
CmTm

m!
∥η1 (t)− η2 (t)∥2W 1.2(0,T ;X) ,
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which implies that for m sufficiently large, the power Λm of Λ is a contraction in the
Banach space, since

lim
m→∞

CmTm

m!
= 0,

it follows now from Banach’s fixed-point theorem that there exists a unique element
η∗ ∈ W such that Λmη∗ = η∗. Moreover, since

Λm (Λη∗) = Λ (Λmη∗) = Λη∗,

we deduce that Λη∗ is also a fixed point of the operator Λm. By the uniqueness of the
fixed point, we conclude that Λη∗ = η∗, which shows that η∗ is a fixed point, we conclude
that Λη∗ = η∗. Step 5: In the fifth and last step of our demonstration, we have now all
the ingredients to provide the proof of Theorem 3.1.

Existence. Let η∗ ∈W 1.2 (0, T ;V ) be the fixed point of the operator Λ, and let uη∗ ,
θη∗ and φη∗ be the solutions defined in Lemmas 4.1, 4.2 and 4.3, respectively, for η = η∗.
It follows from (80) that

⟨η∗(t), w⟩V = (

∫ t

0

G(t− s)uη∗(s)ds−Mcθη, w))V + a∗e (φη∗ (t) , w) ∀w ∈ V, t ∈ [0, T ] ,

(87)
and, therefore, (64), ( 66), and (76) imply that (uη∗ , θη∗ , φη∗) is a solution of problem
PV . Regularity (68) of the solution follows from Lemmas 4.1, 4.2 and 4.3.

Uniqueness. The uniqueness of the solution follows from the uniqueness of the fixed
point of the operator Λ. It can also be obtained by using arguments similar to those used
in [20] and [9].

5 Conclusion

This work models the phenomenon of contact with friction between a cylindrical body
and a foundation. These contact phenomena abound in industry and in everyday life, so
they play an important role in the behavior of mechanical structures.

The envisaged mechanical model is an antiplane one. We recall that the antiplane
shear deformation is the expected deformation of a very long cylinder loaded in the
direction of its generators. In such a model, the displacement vectorial field is parallel to
the generators of the cylinder and it is independent of the axial coordinate. Due to their
simplicity in the writing of the equations without loss of physical relevance, antiplane
models have enjoyed special attention in recent years. The antiplane models appear in
the technical literature in engineering, describing the functioning of various mechanisms,
and in geophysics, focusing on the deformation of the tectonic plates, and in particular,
on earthquakes.

The novelty of the result obtained is the coupling of an electro-viscoelastic problem
and a thermal effect.

The problem is formulated as a coupled system of evolutionary variational inequality
for the displacement field with a time-dependent variational equation for the electric
potential field and the heat equation for the temperature. We establish a variational
formulation for the model and we prove the existence of a unique weak solution to the
problem.
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Abstract: In this work, we consider a control system governed by a dynamic equa-
tion with memory. We obtain conditions under which the system is approximately
controllable and approximately controllable on free time. In order to do this, we
use a technique developed by Bashirov et al. [4–6], where we can avoid fixed point
theorems. But first of all, we prove the existence and uniqueness of solutions of the
system and after that, we prove the prolongation of solutions under some additional
condition. Finally, we present several examples to illustrate the applicability of our
results.

Keywords: controllability; semilinear dynamic equations; memory; time scales.
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1 Introduction

Control theory addresses how a system can be modified through feedback, in particular,
how an arbitrary initial state can be directed either exactly or approximately close to
a given final state using a control in a set of admissible controls. In the last decades,
control theory of dynamic equations on time scales has attracted the attention of several
researches, because this is a powerful tool that allows to study from a unified point of
view controllability of continuous systems, discrete systems, systems in which the time
variable can vary both continuously and discretely, as well as other types of time variables.
Among the works made, we can cite Bartosiewicz [1] who explored linear positive control
systems, Bartosiewicz and Pawłuszewicz [2, 3] reviewed linear systems, Janglajew and
Pawłuszewicz [15] analyzed constrained local controllability of linear dynamic systems,
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Bohner and Wintz [8] studied controllability and observability of linear systems, Grow
and Wintz [13] proved existence and uniqueness of solutions to a bilinear state system
with locally essentially bounded coefficients on an unbounded time scale. Approximate
and exact controllability of semilinear systems on time scales was studied by Duque,
Leiva and Uzcátegui in [10,11], Malik and Kumar in [18] established exact controllability
for time-varying neutral differential equations with impulses. More works can be seen
in [9, 17,19] and references therein.

In this regard, in this paper, we will consider a control system governed by the
dynamic equation with memory

z∆(t) =−A(t)zσ(t) +B(t)u(t) + a

∫ t

t0

M(t, s)g(s, zτ (s))∆s

+ bf(t, z(t), u(t)), t ≥ t0 ≥ 0,

z(t) =ϕ(t), t ∈ [τ(t0), t0]T,

(1)

where z(t) ∈ Rn is the state function, zτ (t) = z(τ(t)), and τ : T → T is the delay
function which is increasing and unbounded on T such that τ(t) ≤ t for t ∈ T (see [12]).
A ∈ R(T,Rn×n), B ∈ R(T,Rn×m), the control u ∈ L2

∆(T,Rm), M : T × T → R is a
function that is locally essentially bounded on T×T, the functions f : T×Rn×Rm → Rn,
g : T×Rn → Rn are rd-continuous and there exist rd-continuous functions Lf , Lg : T →
R+ such that

C1) ∥f(t, z, u)− f(t, z̃, ũ)∥ ≤ Lf (t)(∥z − z̃∥+ ∥u− ũ∥), with f(t, 0, 0) = 0,

C2) ∥g(t, z)− g(t, z̃)∥ ≤ Lg(t) ∥z − z̃∥, with g(t, 0) = 0.

The function ϕ lies in the space Crd([τ(t0), t0]T,Rn), which is a Banach space endowed
with the norm

∥ϕ∥0 = sup{∥ϕ(t)∥ : t ∈ [τ(t0), t0]T}.
In this paper, we suppose that the time scale T satisfies −∞ < τ(t0) < supT = ∞.

The main goal of this work is to study controllability of system (1). Specifically, we
shall show that under certain conditions, controllability of the associated linear system
implies controllability of the semilinear dynamic equation with memory. In order to
prove this assertion, we impose some conditions on the nonlinear terms presented in the
system, and then apply a direct approach developed by A. E. Bashirov et al. (see [4–6])
to avoid fixed point theorems, and approximate controllability is achieved. But before
that, we prove existence, uniqueness and continuation of solutions of the system. Finally,
we consider some examples in which our results can be applied.

2 Preliminaries

Before studying system (1), we give a brief introduction to the calculus on time scales,
especially to clarify notations and definitions, which will help for a better understanding
of the reader. For more details about time scales theory, we recommend the excellent
monograph [7].

Time scales theory was introduced by Stefan Hilger (see [14]). We define a time scale
as any arbitrary nonempty closed subset of R, this set is denoted by T. For every t ∈ T,
the forward and backward jump operators σ, ρ : T → T are defined, respectively, as

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}.
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A point t ∈ T is said to be right-dense if σ(t) = t and t < supT, right-scattered if σ(t) > t,
left-dense if ρ(t) = t and t > inf T, left-scattered if ρ(t) < t, isolated if ρ(t) < t < σ(t).
The function µ : T → [0,∞) defined by µ(t) := σ(t) − t is known as the graininess
function. It is assumed that T has the topology inherited from standard topology on the
real numbers. The time scale interval [a, b]T is defined by [a, b]T = {t ∈ T : a ≤ t ≤ b},
with a, b ∈ T, and similarly we define open intervals and open neighborhoods.

Definition 2.1 (See [7]) A function f : T → Rn is said to be right-dense continuous,
or just rd-continuous, if f is continuous at every right-dense point t ∈ T and lim

s→t−
f(s)

exists (finite) for every left-dense point t ∈ T. The class of all rd-continuous functions
f : T → Rn is denoted by Crd(T,Rn). We define fσ : T → Rn by fσ = f ◦ σ. We define
the set Tκ by Tκ = T \ (ρ(supT), supT] if T has a left-scattered maximum, and Tκ = T
otherwise.

Definition 2.2 (See [7]) A function f : T → Rn is called delta differentiable (or
simply ∆-differentiable) at t ∈ Tκ provided there exists f∆(t) with the property that
given ε > 0, there is a neighborhood U = (t− δ, t+ δ)T for some δ > 0 such that∥∥fσ(t)− f(s)− f∆(t)(σ(t)− s)

∥∥ ≤ ε |σ(t)− s)| for all s ∈ U.

In this case, f∆(t) is called the ∆-derivative of f at t.

If f is ∆-differentiable at t ∈ Tκ, then it is easy to show that (see [7, Theorem 1.16])

f∆(t) =


fσ(t)− f(t)

σ(t)− t
if σ(t) > t,

lim
s→t

f(t)− f(s)

t− s
if σ(t) = t.

Definition 2.3 (See [7]) A function F : T → Rn is called an antiderivative of f :
T → Rn if F∆(t) = f(t) for all t ∈ Tκ. The Cauchy integral is defined by∫ t

s

f(τ)∆τ = F (t)− F (s), t, s ∈ T,

where F is an antiderivative of f .

A function p : T → R is said to be regressive if 1+ µ(t)p(t) ̸= 0, t ∈ T, and positively
regressive if 1 + µ(t)p(t) > 0, t ∈ T. We will denote by R the set of all regressive and
rd-continuous functions, and by R+ the set of all positively regressive and rd-continuous
functions.

Definition 2.4 [See [7]] If p ∈ R, then the generalized exponential function is defined
by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
,

where

ξµ(z) :=

{
Log(1+µz)

µ if µ > 0,

z if µ = 0,

where z ∈ Cµ := {z ∈ C : z ̸= 1/µ} and Logz = log |z|+ i arg z, −π < arg z ≤ π.
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Definition 2.5 (See [7]) Let A be an n × n matrix-valued function on T. We say
that A is rd-continuous on T if each entry of A is rd-continuous on T, and the class of all
such rd-continuous n×n matrix-valued functions on T is denoted by Crd(T,Rn×n). A is
called regressive (with respect to T) provided I+µ(t)A(t) is invertible for all t ∈ Tκ, and
the class of all such regressive and rd-continuous functions is denoted by R(T,Rn×n).

Let t0 ∈ T and A be an n× n regressive matrix-valued function defined on T. Then,
the unique solution of the initial value problem

X∆ = A(t)X, X(t0) = I,

is called the matrix exponential function, denoted by eA(t, t0), and satisfies the properties

a) e0(t, s) ≡ I and eA(t, t) ≡ I,

b) eA(t, s)eA(s, r) = eA(t, r),

c) eA(σ(t), s) = (I + µ(t)A(t))eA(t, s),

d) eA(t, s) = e−1
A (s, t) = e∗⊖A∗(s, t),

e) eA(t, s)eB(t, s) = eA⊕B(t, s) if A(t) and B(t) commute,

where for A,B ∈ R(T,Rn×n),

A⊕B = A+B + µAB and ⊖A = −(I + µA)−1A.

3 Existence and Uniqueness

In this section, we show existence and uniqueness of solutions for system (1). The next
theorem is a consequence of straightforward computation.

Theorem 3.1 Consider a control u ∈ L2
∆(T,Rn). Then z is a solution of system (1)

if and only if z satisfies the integral equation

z(t) =



ϕ(t), t ∈ [τ(t0), t0]T,

e⊖A(t, t0)ϕ(t0) +

∫ t

t0

e⊖A(t, s)B(s)u(s)∆s

+a

∫ t

t0

e⊖A(t, s)

[∫ s

t0

M(s, ξ)g(ξ, zτ (ξ))∆ξ

]
∆s

+b

∫ t

t0

e⊖A(t, s)f(s, z(s), u(s))∆s, t ≥ t0.

(2)

For fixed η > t0, we denote

Me = sup{∥e⊖A(t, s)∥ : t, s ∈ [t0, η]T}, M = sup{∥M(t, s)∥ : t, s ∈ [t0, η]T},
L̄f = sup{Lf (t) : t ∈ [t0, η]T}, L̄g = sup{Lg(t) : t ∈ [t0, η]T}.

Theorem 3.2 Suppose there exists η > t0 such that

Me

(
|a|ML̄gη + |b| L̄f

)
η < 1. (3)

Then, for any ϕ ∈ Crd([τ(t0), t0]T,Rn) and u ∈ L2
∆(T,Rm), system (1) has a unique

solution through (t0, ϕ) defined on [τ(t0), η]T.
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Proof. Let η > t0 be such that (3) holds and consider ϕ ∈ Crd([τ(t0), t0]T,Rn) and
u ∈ L2

∆([t0, η]T,Rm). Now, finding a solution of system (1) through (t0, ϕ) is equivalent
to solving the integral equation (2). In order to do this, we consider the function space

Crdϕ
([τ(t0), η]T,Rn) = {z ∈ Crd([τ(t0), η]T,Rn) : z(t) = ϕ(t) for t ∈ [τ(t0), t0]T} ,

which is a Banach space endowed with the norm ∥z∥∗ = sup{∥z(t)∥ : t ∈ [τ(t0), η]T}, and
we show that the operator

T : Crdϕ
([τ(t0), η]T,Rn) −→ Crdϕ

([τ(t0), η]T,Rn)

defined by

(T z)(t) =



ϕ(t), t ∈ [τ(t0), t0]T,

e⊖A(t, t0)ϕ(t0) +

∫ t

t0

e⊖A(t, s)B(s)u(s)∆s

+a

∫ t

t0

e⊖A(t, s)

[∫ s

t0

M(s, ξ)g(ξ, zτ (ξ))∆ξ

]
∆s

+b

∫ t

t0

e⊖A(t, s)f(s, z(s), u(s))∆s, t ∈ [t0, η]T

(4)

has a unique fixed point. Indeed, if t ∈ [τ(t0), t0]T, then (T z)(t) = ϕ(t) = z(t). If
t ∈ [t0, η]T, then for z, z̃ ∈ Crdϕ

([τ(t0), η]T,Rn) with z ̸= z̃, we have

∥(T z)(t)− (T z̃)(t)∥

≤ |a|
∫ t

t0

∥e⊖A(t, s)∥
[∫ s

t0

∥M(s, ξ)∥ ∥g(ξ, zτ (ξ))− g(ξ, z̃τ (ξ))∥∆ξ
]
∆s

+ |b|
∫ t

t0

∥e⊖A(t, s)∥ ∥f(s, z(s), u(s))− f(s, z̃(s), u(s))∥∆s

≤ |a|
∫ t

t0

∥e⊖A(t, s)∥
[∫ s

t0

MLg(ξ) ∥z(τ(ξ))− z̃(τ(ξ))∥∆ξ
]
∆s

+ |b|
∫ t

t0

∥e⊖A(t, s)∥Lf (s) ∥z(s)− z̃(s)∥∆s

≤ |a|
∫ t

t0

Me

[∫ s

t0

ML̄g ∥z − z̃∥∗ ∆ξ
]
∆s+ |b|

∫ t

t0

MeL̄f ∥z − z̃∥∗ ∆s

≤ |a|
∫ t

t0

MeML̄gη ∥z − z̃∥∗ ∆s+ |b|MeL̄fη ∥z − z̃∥∗

≤Me

(
|a|ML̄gη + |b| L̄f

)
η ∥z − z̃∥∗ .

Therefore, using (3), we have

∥T z − T z̃∥∗ ≤Me

(
|a|ML̄gη + |b| L̄f

)
η ∥z − z̃∥∗ < ∥z − z̃∥∗ ,

so that T satisfies all assumptions of the Banach contraction theorem, and therefore,
T has only one fixed point in the space Crdϕ

([τ(t0), η]T,Rn), which is the solution of
problem (1).

Definition 3.1 We shall say that [τ(t0), η)T is the maximal interval of existence of
the solution z of system (1) if there is no solution of (1) on [τ(t0), η

∗)T with η∗ > η.
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Theorem 3.3 If z is a solution of system (1) on [τ(t0), η)T and η is maximal, then
either η = ∞ or z(t) is not bounded on any neighborhood of η.

Proof. Suppose that η <∞ and there is a neighborhood U of η such that ∥z(t)∥ ≤ R
for t ∈ U . In this case, we can suppose that ∥z(t)∥ ≤ R for all t ∈ [τ(t0), η)T. If η is
left-dense, then there is an increasing sequence {ηk}k≥1 such that lim

k→∞
ηk = η and

lim
k→∞

z(ηk) = z∗ for some z∗ ∈ Rn. We shall see that lim
t→η−

z(t) = z∗.

Let ε > 0 be small enough. Since lim
k→∞

ηk = η, we can take η
N
∈ (η− ε, η)T such that

∥z(η
N
)− z∗∥ < ε. For t ∈ (η − ε, η)T with t > η

N
, we have

∥z(t)− z∗∥ ≤ ∥z(t)− z(η
N
)∥+ ∥z(η

N
)− z∗∥ .

Now,

∥z(t)− z(η
N
)∥ ≤ ∥e⊖A(t, t0)− e⊖A(ηN

, t0)∥ ∥ϕ(t0)∥

+

∫ η
N

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ ∥B(s)∥ ∥u(s)∥∆s

+ |a|
∫ η

N

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥

[∫ s

t0

∥M(s, ξ)∥ ∥g(ξ, zτ (ξ))∥∆ξ
]
∆s

+ |b|
∫ η

N

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ ∥f(s, z(s), u(s))∥∆s

+

∫ t

η
N

∥e⊖A(t, s)∥ ∥B(s)∥ ∥u(s)∥∆s

+ |a|
∫ t

η
N

∥e⊖A(t, s)∥
[∫ s

t0

∥M(s, ξ)∥ ∥g(ξ, zτ (ξ))∥∆ξ
]
∆s

+ |b|
∫ t

η
N

∥e⊖A(t, s)∥ ∥f(s, z(s), u(s))∥∆s

≤∥e⊖A(t, t0)− e⊖A(ηN
, t0)∥ ∥ϕ(t0)∥

+

∫ η
N

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ ∥B(s)∥ ∥u(s)∥∆s

+ |a|
∫ η

N

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥

[∫ s

t0

ML̄g ∥z(τ(ξ))∥∆ξ
]
∆s

+ |b|
∫ η

N

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ L̄f (∥z(s)∥+ ∥u(s)∥)∆s

+

∫ t

η
N

∥e⊖A(t, s)∥ ∥B(s)∥ ∥u(s)∥∆s

+ |a|
∫ t

η
N

∥e⊖A(t, s)∥
[∫ s

t0

ML̄g ∥z(τ(ξ))∥∆ξ
]
∆s

+ |b|
∫ t

η
N

∥e⊖A(t, s)∥ L̄f (∥z(s)∥+ ∥u(s)∥)∆s

≤∥e⊖A(t, t0)− e⊖A(ηN
, t0)∥ ∥ϕ(t0)∥

+

∫ η

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ ∥B(s)∥ ∥u(s)∥∆s
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+ |a|
∫ η

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ML̄gRs∆s

+ |b|
∫ η

t0

∥e⊖A(t, s)− e⊖A(ηN
, s)∥ L̄f (R+ ∥u(s)∥)∆s

+

∫ η

η
N

Me ∥B(s)∥ ∥u(s)∥∆s+ |a|
∫ η

η
N

MeML̄gRs∆s

+ |b|
∫ η

η
N

MeL̄f (R+ ∥u(s)∥)∆s.

Hence, we get that, if η
N
→ η, then ∥z(t)− z(ηN )∥ → 0, so lim

t→η−
z(t) = z∗, and therefore,

z(t) can be continued beyond of η, contradicting our assumption.
If η is left-scattered, then ρ(η) ∈ (t0, η)T so that the solution z exists also at η, namely,

by putting

z(η) =[I + µ(ρ(η))A(ρ(η))]−1

{
z(ρ(η)) + µ(ρ(η))B(ρ(η))u(ρ(η))

+ aµ(ρ(η))

∫ ρ(η)

t0

M(ρ(η), s)g(s, zτ (s))∆s+ bµ(ρ(η))f(ρ(η), z(ρ(η)), u(ρ(η))

}
,

which is a contradiction.

Theorem 3.4 If there exists ∆-differentiable φ : [t0,∞)T → R+ such that

∥g(t, z)∥ ≤ φ∆(t), (5)

then the solution of system (1) is defined on [τ(t0),∞)T.

Proof. Suppose that z(t) is defined on [τ(t0), η)T with η <∞. Then, for t ∈ (t0, η)T,
we have

∥z(t)∥ ≤∥e⊖A(t, t0)∥ ∥ϕ(t0)∥+
∫ t

t0

∥e⊖A(t, s)∥ ∥B(s)∥ ∥u(s)∥∆s

+ |a|
∫ t

t0

∥e⊖A(t, s)∥
[∫ s

t0

∥M(s, ξ)∥ ∥g(ξ, zτ (ξ))∥∆ξ
]
∆s

+ |b|
∫ t

t0

∥e⊖A(t, s)∥ ∥f(s, z(s), u(s))∥∆s

≤Me ∥ϕ(t0)∥+
∫ t

t0

Me ∥B(s)∥ ∥u(s)∥∆s+ |a|
∫ t

t0

Me

[∫ s

t0

Mφ∆(ξ)∆ξ

]
∆s

+ |b|
∫ t

t0

MLf (s)(∥z(s)∥+ ∥u(s)∥)∆s

≤Me ∥ϕ(t0)∥+
∫ η

t0

(
Me ∥B(s)∥+ |b|ML̄f

)
∥u(s)∥∆s+ |a|

∫ η

t0

MeMφ(s)∆s

+ |b|
∫ t

t0

ML̄f ∥z(s)∥∆s.
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By using Gronwall’s inequality (see [7, Corollary 6.8]), we obtain

∥z(t)∥ ≤
[
Me ∥ϕ(t0)∥+

∫ η

t0

(
Me ∥B(s)∥+ |b| L̄fM

)
∥u(s)∥∆s

+ |a|
∫ η

t0

MeMφ(s)∆s

]
e|b|L̄fM (t, t0)

≤
[
Me ∥ϕ(t0)∥+

∫ η

t0

(
Me ∥B(s)∥+ |b| L̄fM

)
∥u(s)∥∆s

+ |a|
∫ η

t0

MeMφ(s)∆s

]
e|b|L̄fM (η, t0).

This implies that ∥z(t)∥ stays bounded in any neighborhood of η. So, from Theorem 3.3,
we get η = ∞. This completes the proof.

4 Controllability of the Linear Equation

In order to study controllability of system (1), in this section, we shall present some
characterization of controllability of a linear system associated to (1), namely,{

z∆(t) = −A(t)zσ(t) +B(t)u(t), t ∈ [δ, η]T,

z(δ) = z0.
(6)

The results presented in this section can be seen in [11], of course, with obvious modifi-
cations.

Note that, for all z0 ∈ Rn and u ∈ L2
∆([δ, η]T,Rm), the initial value problem (6)

admits only one solution, which is given by

z(t) = e⊖A(t, δ)z
0 +

∫ t

δ

e⊖A(t, s)B(s)u(s)∆s. (7)

Definition 4.1 We say that (6) is controllable on [δ, η]T if for every z0, z1 ∈ Rn,
there exists u ∈ L2

∆([δ, η]T,Rm) such that the solution z of (6) corresponding to u satisfies
z(η) = z1.

Definition 4.2 For the linear system (6), we define the following concepts:

1) The controllability operator Bη : L2
∆([δ, η]T,Rm) → Rn is defined by

Bηu =

∫ η

δ

e⊖A(η, s)B(s)u(s)∆s. (8)

2) The Gramian map is defined by LBη = BηBη∗.

Proposition 4.1 The adjoint Bη∗ : Rn → L2
∆([δ, η]T,Rm) of the operator Bη is given

by
(Bη∗z)(t) = B∗(t)e∗⊖A(η, t)z

and
LBηz =

∫ η

δ

e⊖A(η, s)B(s)B∗(s)e∗⊖A(η, s)z∆s.
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Theorem 4.1 System (6) is controllable on [δ, η]T if and only if one of the following
statements holds:

1) Range(Bη) = Rn,

2) ⟨LBηz, z⟩ > 0 for every z ∈ Rn \ {0},

3) there exists γ > 0 such that ∥Bη∗z∥L2
∆
≥ γ ∥z∥ for every z ∈ Rn,

4) LBη is invertible. Moreover, Gη = Bη∗L−1
Bη is a right inverse of Bη, and the control

u ∈ L2
∆([δ, η]T,Rm) steering the system from the initial state zδ to a final state z1 is

given by
u = Bη∗L−1

Bη

(
z1 − e⊖A(η, δ)z

0
)
. (9)

5 Approximate Controllability of the Nonlinear System

Definition 5.1 (Approximate Controllability) System (1) is said to be approxi-
mately controllable on [t0, η]T if for every ϕ ∈ Crd([τ(t0), t0]T,Rm), z1 ∈ Rn and ε > 0,
there exists a control u ∈ L2

∆([t0, η]T,Rm) such that the solution z of (1) corresponding
to u satisfies

z(t0) = ϕ(t0) and
∥∥z(t)− z1

∥∥ < ε.

Theorem 5.1 Suppose the system (1) is defined on [t0, η]T, where η is such that (3)
is satisfied. Assume that

i) η is left-dense,

ii) there exists ∆-differentiable φ : [t0, η]T → R+ such that ∥g(t, z)∥ ≤ φ∆(t) for all
t ∈ [t0, η]T,

iii) there exists rd-continuous ψ : [t0, η]T → R+ such that ∥f(t, z, u)∥ ≤ ψ(t) for all
t ∈ [t0, η]T.

If the linear system (6) is controllable on [δ, η]T, with t0 ≤ δ < η, then system (1) is
approximately controllable on [t0, η]T.

Proof. Given ϕ ∈ Crd([τ(t0), t0]T,Rn), a final state z1 and ε > 0, we want to find
a control uε ∈ L2

∆([t0, η]T,Rm) steering the solution of system (1) to an ε-neighborhood
of z1 at time η. Indeed, let ε > 0 and consider a control u ∈ L2

∆([t0, η]T,Rm), arbitrary
but fixed, and the corresponding solution z(t) = z(t, t0, ϕ, u) of system (1). Since η is
left-dense, there exists δε ∈ (t0, η)T such that

η − δε <
ε

Me(|a|Mφ̄+ |b| ψ̄)
,

where φ̄ = sup{φ(t) : t ∈ [t0, η]T} and ψ̄ = sup{ψ(t) : t ∈ [t0, η]T}. We define the control
uε ∈ L2

∆([τ(t0), η]T,Rm) by

uε(t) =

{
u(t) if t ∈ [t0, δε]T,

ũ(t) if t ∈ (δε, η]T,
(10)

where
ũ(t) = B∗(t)e∗⊖A(η, t)L−1

Bη

(
z1 − e⊖A(η, δε)z(δε)

)
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is the control steering the solution of system (6) from the initial state z(δε) to the final
state z1 on [δε, η]T. The corresponding solution zδε(·) = zδε(·, t0, ϕ, uε) of problem (1) at
time η can be expressed by

zδε(η) =e⊖A(η, t0)ϕ(t0) +

∫ η

t0

e⊖A(η, s)B(s)uε(s)∆s

+ a

∫ η

t0

e⊖A(η, s)

[∫ s

t0

M(s, ξ)g(ξ, zδετ (ξ))∆ξ

]
∆s

+ b

∫ η

t0

e⊖A(η, s)f(s, z
δε(s)uεα(s))∆s

=e⊖A(η, δε)

{
e⊖A(δε, t0)ϕ(t0) +

∫ δε

t0

e⊖A(δε, s)B(s)u(s)∆s

+ a

∫ δε

t0

e⊖A(δε, s)

[∫ s

t0

M(s, ξ)g(ξ, zτ (ξ))∆ξ

]
∆s

+ b

∫ δε

t0

e⊖A(δε, s)f(s, z(s), u(s))∆s

}

+

∫ η

δε

e⊖A(η, s)B(s)ũ(s)∆s+ a

∫ η

δε

e⊖A(η, s)

[∫ s

t0

M(s, ξ)g(ξ, zδετ (ξ))∆ξ

]
∆s

+ b

∫ η

δε

e⊖A(η, s)f(s, z
δε(s), ũ(s))∆s

=e⊖A(η, δε)z(δε) +

∫ η

δε

e⊖A(η, s)B(s)ũ(s)∆s

+ a

∫ η

δε

e⊖A(η, s)

[∫ s

t0

M(s, ξ)g(ξ, zδετ (ξ))∆ξ

]
∆s

+ b

∫ η

δε

e⊖A(η, s)f(s, z
δε(s), ũ(s))∆s.

On the other hand, the corresponding solution y(·) = y(·, δε, y(δε), ũ) of initial value
problem (6) at time t = η is given by

y(η) = e⊖A(η, δε)y(δε) +

∫ η

δε

e⊖A(η, s)B(s)ũ(s)∆s.

Since the linear system (6) is controllable on [δε, η]T, we have that y(η) = z1. Taking
y(δε) = z(δε), we get

∥∥zδε(η)− z1
∥∥ ≤ |a|

∫ η

δε

∥e⊖A(η, s)∥
[∫ s

t0

∥M(s, ξ)∥
∥∥g(ξ, zδετ (ξ))

∥∥∆ξ]∆s
+ |b|

∫ η

δε

∥e⊖A(η, s)∥
∥∥f(s, zδε(s), ũ(s))∥∥∆s

≤ |a|
∫ η

δ

Me

[
M

∫ s

t0

φ∆(ξ)∆ξ

]
∆s+ |b|

∫ η

δe

Meψ(s)∆s

≤ |a|
∫ η

δε

MeMφ(s)∆s+ |b|
∫ η

δε

Meψ(s)∆s
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≤Me

(
|a|Mφ̄+ |b| ψ̄

)
(η − δε) < ε.

So we get that system (1) is approximately controllable.

6 Approximate Controllability on Free Time

In this section, we prove the approximate controllability on free time of the system{
z∆(t) = −A(t)zσ(t) +B(t)u(t) + bf(t, z(t), u(t)), t ≥ t0 ≥ 0,

z(t0) = z0,
(11)

which is the system (1) without memory (i.e., taking a ≡ 0).

Definition 6.1 (Approximate Controllability on Free Time) System (11) is said to
be approximately controllable on free time if for every z0, z1 ∈ Rn, and ε > 0, there exist
η ∈ T and u ∈ L2

∆([t0, η]T,Rm) such that the corresponding solution of (1) satisfies∥∥z(η)− z1
∥∥ < ε.

Theorem 6.1 Suppose that

i) There exists Me > 0 such that ∥e⊖A(t, s)∥ ≤Me for all t, s ∈ T,

ii) there exists rd-continuous ψ : [t0,∞)T → R+ such that

∥f(t, z, u)∥ ≤ ψ(t) with
∫ ∞

t0

ψ(s)∆s <∞.

If the linear system (6) is controllable on each interval [δ, η]T, then the system (11) is
approximately controllable on free time.

Proof. For ε > 0, z0 ∈ Rn and a final state z1, we want to find η > t0 and a control
uε ∈ L2

∆([t0, η]T,Rm) steering the solution of system (11) to an ε-neighborhood of z1 at

time η. Since
∫ ∞

t0

ψ(s)∆s < ∞, we can choose δε, η ∈ T big enough with t0 < δε < η

such that ∫ η

δε

ψ(s)∆s <
ε

|b|Me
.

Now, defining uε ∈ L2
∆([t0, η]T,Rm) as in (10) and proceeding similarly as in the proof

of Theorem 5.1, we have

∥∥zδε(η)− z1
∥∥ ≤ |b|

∫ η

δε

∥e⊖A(η, s)∥
∥∥f(s, zδε(s), ũ(s))∥∥∆s < ε.

So we get that system (11) is approximately controllable on free time.



500 M. BOHNER, C. DUQUE AND H. LEIVA

7 Examples

Example 7.1 Let us consider the time scale T = P1,1 =
⋃∞

k=0[2k, 2k + 1] and the
control system

z∆(t) = −zσ(t) + 2u(t) + 1
100

∫ t

1

e⊖1(t, s) sin(s) sin(z(s/5))∆s

+ 1
20 cos(t) sin(z(t) + u(t)), t ∈ [1, 5]T,

z(t) = ϕ(t), t ∈ [ 15 , 1]T,

(12)

where t0 = 1, τ(t) = t
5 , M(t, s) = e⊖1(t, s), g(t, z) = sin(t) sin(z), f(t, z, u) =

cos(t) sin(z(t) + u(t)), A(t) = 1, B(t) = 2 and e⊖A(t, s) = e⊖1(t, s). Since

∥g(t, z)− g(t, z̃)∥ ≤ |sin(t)| ∥z − z̃∥ , g(t, 0) = 0,

∥f(t, z, u)− f(t, z̃, ũ)∥ ≤ |cos(t)| (∥z − z̃∥+ ∥u− ũ∥), f(t, 0, 0) = 0,

and Me

(
|a|ML̄gη + |b| L̄f

)
η < 1

2 , Theorem 3.2 ensures existence and uniqueness of
solutions for problem (12) on [ 15 , 5]T. On the other hand,

∥g(t, z)∥ ≤ φ∆(t) for all t ∈ [1, 5]T with φ(t) = t,

∥f(t, z, u)∥ ≤ ψ(t) for all t ∈ [1, 5]T with ψ(t) = 1.

Furthermore, LB5 = 4

∫ 5

δε

e⊖(1⊕1)(5, s)∆s > 0, so this operator is invertible, and hence

the linear system {
z∆(t) = −zσ(t) + 2u(t), t ∈ [δε, 5]T,

z(δε) = z0,

is controllable and, since η = 5 is left-dense, by Theorem 5.1, system (12) is approximately
controllable on [1, 5]T.

Example 7.2 Let us consider the time scale T = {3n : n ∈ N0} and the control
system 

z∆(t) = −2zσ(t) + u(t) +
1

3t2

(
tanh(z(t)) +

u(t)

1 + u2(t)

)
, t > 1,

z(1) = z0,

(13)

where f(t, z, u) = 1
3t2

(
tanh(z) + u

1+u2

)
, A(t) = 2, B(t) = 1 and e⊖A(t, s) = e⊖2(t, s). It

is easy to see that the solution of (13) is defined on [1,∞)T. On the other hand, we have

∥f(t, z, u)∥ ≤ 1

3t2

∥∥∥∥tanh(z) + u

1 + u2

∥∥∥∥ ≤ ψ(t) with ψ(t) =
2

3t2
and

∫ ∞

1

∆t

t2
<∞.

For η > δε, the linear system{
z∆(t) = −2zσ(t) + u(t), t ∈ [δε, η]T,

z(δε) = z0,

is controllable since the operator LBη =

∫ η

δε

e⊖(2⊕2)(η, s)∆s is invertible. Hence, by

Theorem 6.1, we have that system (13) is approximately controllable on free time.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (5) (2022) 489–502 501

8 Conclusion and Final Remark

In this paper, we study a control system governed by a dynamic equation with memory on
time scales. Specifically, first of all, we prove existence and uniqueness of solutions, then
under an additional condition, and by applying Gronwall’s inequality on time scales, we
prove the prolongation of solutions. After that, we prove approximate controllability of
the system assuming that the associated linear control problem on time scales is exactly
controllable on [δ, η]T, for any δ ∈ (t0, η)T with η being a left-dense point. In the case
where the time scale does not have left-dense points, we consider the system without
memory and we prove, under additional conditions, controllability on free time, i.e., we
prove the existence of a time η such that the system (1) is approximately controllable.
For difference equations, approximate controllability on free time was introduced by
Uzcategui and Leiva in [16]. Finally, two examples show that our results are feasible. Of
course, this work can be extended to evolution equations with memory on time scales in
infinite-dimensional Banach spaces using strongly continuous semigroups on time scales
approach.
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Abstract: We consider a dynamic contact problem between a piezo-thermo-elastic-
viscoplastic material with damage and a rigid obstacle. The contact is frictional and
bilateral, the friction is modeled by Coulomb’s law with heat exchange. We employ
the electro-elastic-viscoplastic with damage constitutive law for the material. The
evolution of the damage is described by an inclusion of parabolic type. We establish
a variational formulation for the model and we prove the existence of a unique weak
solution to the problem. The proof is based on a classical existence and uniqueness
result on parabolic inequalities, differential equations and a fixed point argument.
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1 Introduction

Because of its considerable impact in everyday life and its multiple open problems, con-
tact mechanics still remains a rich and fascinating domain of challenge. The literature
devoted to various aspects of the subject is considerable, it concerns the modelling, the
mathematical analysis as well as the numerical approximation of the related problems.
For example, many food materials used in process engineering are elastic-viscoplastic [14]
and consequently, mathematical models can be very helpful in understanding various
problems related to the product development, packing, transport, shelf life testing, ther-
mal effects, and heat transfer. It is thus important to study mathematical models that
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can be used to describe the dynamical behavior of a given elastic-viscoplastic material
subjected to various highly nonlinear and even non-smooth phenomena like contact, fric-
tion, lubrication, adhesion, wear, damage, electrical and thermal effects. The uncoupled
thermo-viscoplastic models were obtained in [13]. Different models have been devel-
oped to describe the interaction between the thermal and mechanical field [6]. The new
papers use several types of contact for coupled materials such as thermo-mechanical,
electro-mechanical and thermo-electromechanical materials. For the thermo-mechanical
materials, a transmission problem in thermo-viscoplasticity is studied in [11], a thermo-
viscoelastic body is considered in [5], several problems for thermo-elastic-viscoplastic
materials are studied in [6–8]. For the electro-mechanical bodies, many laws of behavior
are considered by many authors, see for example [1, 2, 9, 12] and references therein.

Realistically, it may be impossible to predict the electro-mechanical behaviour without
thermal considerations. To achieve this, the authors have started to study a new model
for thermo-electro-mechanical behaviour, see for example [4]. The aim of this paper is to
study a frictionless contact problem for elastic-viscoplastic materials with piezoelectric
effect, also called electro-elasto-viscoplastic materials. To this end, we consider that the
material is electro-elasto-viscoplastic with an internal state variable α which may describe
the damage of the system caused by elastic deformations and thermal effects. The main
difficulty is that Korn’s inequality cannot be applied any more. For this proposal, fol-
lowing the technique already developed by Duvaut and Lions [10] for Coulomb’s friction
models, we use the inertial term of the dynamic process to compensate the loss of coer-
civeness in the a priori estimates. By the change of variable, we bring the coupled second
order evolution inequality into a classical first order evolution inequality. After this, we
use classical results on first order evolution nonlinear inequalities, a parabolic variational
inequality and equations and the fixed point arguments. Existence and uniqueness results
for the boundary value problem for thermo-electro-viscoelastic materials were obtained
by many authors using different functional methods. The novelty in this paper is to
make the coupling of an electro-elasto-viscoplastic problem with damage and thermal
effect. We employ the thermo-elastic-viscoplastic with damage constitutive law for the
material. The damage of the material is caused by elastic deformations. The evolution
of the damage is described by an inclusion of parabolic type. The problem is formulated
as a coupled system of an elliptic variational inequality for the displacement, a parabolic
variational inequality for the damage and the heat equation for the temperature. We
establish a variational formulation for the model and we prove the existence of a unique
weak solution to the problem. A new law of behaviour for the so-called thermo-electro-
elastic-viscoplastic material is given by

σ(t)=A(ε(
·
u(t)))+B(εu(t), α(t))+

∫ t

0

G
(
σ(s)−A(ε(

·
u(t))), ε (u (s))

)
ds+E∗∇φ (t)−Mθ (t) ,

(1)

D (t) = Eε (u (t))− B∇ (φ (t))− Pθ (t) , (2)

where A and B are nonlinear operators describing the purely viscous and the elastic
properties of the material, respectively, G, E(φ) = −∇φ, E = (eijk), M, B, and P are the
relaxation operator, electric field, piezoelectric, thermal expansion, electric permittivity
and pyroelectric tensors. E∗ is the transpose of E .

Many types of evolution of the temperature field are given by several authors, see for
example [4, 5, 8]. In this paper, we use the evolution of the temperature field obtained
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from the conservation of energy and define it with the following differential equation:

θ̇(t)− div(K∇θ(t)) = −M∇u̇(t) + q,

where θ is the temperature, K denotes the thermal conductivity tensor, M is the thermal
expansion tensor, q is the density of volume heat sources and ψ is a nonlinear function
assumed here to depend on the thermal expansion tensor and the velocity.

The differential inclusion used for the evolution of the damage field is

α̇− k1△α+ ∂φ(α) ∋ Φ(ε(u), α), in Ω× (0, T ), (3)

where φF (α) denotes the sub-differential of the indicator function of the set F of an
admissible damage function given as follows:

F = {α ∈ H1(Ω) : 0 ≥ α ≥ 1, a.e. in Ω}

and Φ are given constitutive functions which describe the sources of the damage in the
system. When α = 0, the material is completely damaged, when α = 1, the material is
undamaged, and for 0 < α < 1, there is partial damage. The Coulomb friction is one of
the useful friction laws known from the literature. This law has two basic ingredients,
namely, the concept of friction threshold and its dependence on the normal stress. Various
versions of the normal compliance law were recently presented in the literature [1,2,12].
The paper is organized as follows. In Section 2, we present the model. In Section 3,
we introduce the notations, some preliminary results, a list of the assumptions on the
data and we give the variational formulation of the problem. In Section 4, we state our
main existence and uniqueness result, Theorem 4.1. The proof of the theorem is based
on evolutionary elliptic variational inequalities, ordinary differential equations and fixed
point arguments.

2 The Model

The physical setting is the following. A thermo-electro- elastic-viscoplastic body occupies
a bounded domain Ω ⊂ Rd (d = 2, 3) with the outer Lipschitz surface Γ. This boundary
is divided into three open disjoints Γ1, Γ2 and Γ3, on one hand, and a partition of Γ1∪Γ2

into two open parts Γa and Γb, on the other hand. We assume that meas(Γ1) > 0 and
meas(Γa) > 0. Let T > 0 and let [0, T ] be the time interval of interest. The body is
subjected to the action of body forces of density f0, a volume electric charges of density
q0 and a heat source of constant strength q.

The body is clamped on Γ1 × (0, T ), so the displacement field vanishes there. A
surface traction of density f2 acts on Γ2 × (0, T ). We also assume that the electrical
potential vanishes on Γa × (0, T ) and a surface electric charge of density qb is prescribed
on Γb×(0, T ). Moreover, we suppose that the temperature vanishes on (Γ1 ∪ Γ2)×(0, T ).
In the reference configuration, the body is in contact with an obstacle, or foundation,
over the contact surface Γ3. The contact is frictional and thermo-mechanical. The model
of the contact is specified by the normal compliance and it is associated with Coulomb’s
law of dry friction for the mechanical contact and by an associated temperature boundary
condition for the thermal contact.

The classical formulation of the mechanical problem is as follows.
Problem P. Find the displacement field u : Ω × [0, T ] → Rd, the stress field σ :
Ω× [0, T ] → Sd, the electric potential φ : Ω× [0, T ] → R, the electric displacement field
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D : Ω × [0, T ] → Rd, the temperature field θ : Ω × [0, T ] → R and the damage field
α : Ω× [0, T ] → R such that

σ(t) = A(ε(
·
u(t)))+B(εu(s), α(t))+

∫ t

0

G
(
σ(s)−A(ε(

·
u(t))), ε (u (s))

)
ds+E∗∇φ (t)−Mθ (t) ,

(4)
D (t) = Eϵ (u (t))− B∇ (φ (t))− Pθ (t) , (5)

�
θ − div (K∇θ) = −M∇u̇+ q in Ω× (0, T ), (6)

divσ + f0 = ρü in Ω× (0, T ), (7)

α̇−K△α+ ∂φK(α) ∋ Φ(ε(u)− α) in Ω× (0, T ), (8)

divD− q0 = 0 in Ω× (0, T ), (9)

u = 0 on Γ1 × (0, T ), (10)

σν = f2 on Γ2 × (0, T ), (11)

στ = pr (uν − h) on Γ3 × (0, T ), (12) ∥στ∥ ≤ µp∥Rσν∥,
∥στ∥ < µp∥Rσν∥ =⇒ u̇τ = 0,
∥στ∥ = µp∥Rσν∥ =⇒ ∃ λ > 0 : στ = −λ u̇τ on Γ3 × (0, T ),

(13)

−Kij
∂θ

∂v
νj = Ke(θ − θR)− hτ (|u̇τ |) on Γ3 × [0, T ], (14)

∂α

∂ν
= 0 on Γ× (0, T ), (15)

D · ν = 0 on Γ3 × (0, T ), (16)

θ = 0 on (Γ1 ∪ Γ2)× (0, T ), (17)

φ = 0 on Γa × (0, T ), (18)

D· ν = qb on Γb × (0, T ), (19)

D · ν =ψ (uν − h)ϕL (φ− φ0) on Γ3 × (0, T ), (20)

u(0) = u0, u̇(0) = v0, α(0) = α0 and θ(0) = θ0 in Ω. (21)

We now describe problem (4)-(21) and provide the explanation of the equations and
the boundary conditions. Equations (4) and (5) represent the thermo-electro-elastic-
viscoplastic constitutive law, the evolution of the temperature field is governed by a
differential equation given by the relation (6), assumed to be a rather general function
of the strains. Next equations (20) and (9) are the steady equations for the stress and
electric-displacement field, conditions (10) and (11) are the displacement and traction
boundary conditions. Equation (17) means that the temperature vanishes on (Γ1 ∪ Γ2)×
(0, T ) which implies that there is only an electro-mechanical effect on (Γ1 ∪ Γ2).

Next, (18) and (19) represent the electric boundary conditions for the electrical po-
tential on Γa, and the electric charges on Γb, respectively. We use (19) as the elec-
trical contact condition on Γ3 which represents a regularized condition. Equation (20)
represents the initial displacement field and the initial damage field, where u0 is the
initial displacement, and θ0 is the initial temperature.
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We turn to the contact conditions (12)-(14) and describe the frictional thermo-
mechanical contact on the potential contact surface Γ3. The relation (12) describes
a normal compliance conditions with Coulomb’s law. The equation (14) represents an
associated temperature boundary condition on the contact surface. The equation (16)
shows that there are no electric charges on the contact surface. Rν is the truncation
operator defined by

Rν(s) =

 L if s < −L,
−s if − L ≤ s ≤ 0,
0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which it does not offer any
additional traction. The introduction of the operator Rν , together with the operator
Rτ defined below, is motivated by mathematical arguments but it is not restrictive from
a physical point of view since no restriction on the size of the parameter L is made in
what follows, where u1τ − u2τ stands for the jump of the displacements in the tangential
direction. Rν is the truncation operator given by

Rν(s) =

{
v if |v| ≤ L,
L v

|v| if |v| > L.

3 Variational Formulation

In order to obtain the variational formulation of the Problem P, we use the following
notations and preliminaries

3.1 Notations and preliminaries.

In this short section, we recall some preliminary material and notations. For more details,
we refer the reader to [7, 10]. The indices i, j, k and l run from 1 to d and summation
over repeated indices is implied. An index that follows the comma represents the partial
derivative with respect to the corresponding component of the spatial variable. We also
use the following notations:

H = L2(Ω)d = { u = (ui) : ui ∈ L2(Ω)}, H = { σ = (σij) : σij = σji ∈ L2(Ω)},
H1(Ω)d = { u = (vi) ∈ H : ε (u) ∈ H }, H1 = {σ ∈ H: Div σ ∈ H} .

The operators of deformation ε and Div are defined by

ε (u) = (εij (u)) , εij (u) = (ui,j + uj,i) /2, Div σ = (σij,j) ·

The associated norms on spaces H, H1(Ω)d, H, and H1 are denoted by ∥·∥H , ∥·∥H1(Ω)d ,

∥·∥H, and ∥·∥H1
respectively. Let HΓ = H1/2(Γ)d and γ : H1(Ω)d → HΓ be the trace

map. For every element v ∈ H1(Ω)d, we also use the notation v to denote the trace
γv of v on Γ and we denote by vν and vτ the normal and tangential components of v
on Γ . Moreover, we use the dot above to indicate the derivative with respect to the
time variable and, for a real number r, we use r+ to represent its positive part, that
is, r+ = max(0, r). To obtain the variational formulation of the problem (4)-(21), we
introduce, for the bonding field, the sets

W =
{
ϕ ∈ H1(Ω)d : ϕ = 0 on Γa

}
, W =

{
D = (Di) : Di ∈ L2(Ω),divD ∈ L2(Ω)

}
.
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On the spaces V , W , W , we define the following inner products:

(u · v)V = (σ, ε(v))H,∀u, v ∈ V, (22)

(φ, ϕ)W = (∇φ,∇ϕ)W ,∀φ, ϕ ∈W, (23)

(w, z)E = (∇w,∇z)H ,∀w, z ∈ E, (24)

where E =
{
γ ∈ H1(Ω) : γ = 0 a.e. on Γ1 ∪ Γ2

}
.

Therefore, the spaces (V, (·, ·)V ) , (W ,(·, ·)W ) and (E, (·, ·)E) are real Hilbert spaces.

3.2 Assumptions on the data

We now list the assumptions on the problem’s data.

The viscosity operator A : Ω× Sd −→ Sd satisfies

(a) There exists LA > 0 such that
∥A (x, ε1)−A (x, ε2)∥ ⩽ LA ∥ε1 − ε2∥ ∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω ,
(b) There exists mA > 0 such that

(A (x, ε1)−A (x, ε2)) · (ε1 − ε2) ⩾ mA ∥ε1 − ε2∥2 , ∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω ,
(c) The mapping x −→ A (x, ε) is Lebesgue measurable on Ω , ∀ ε ∈ Sd,
(d) The mapping x −→ A (x, ε) belongs to H.

(25)

The elasticity operator B : Ω× Sd −→ Sd satisfies
(a) There exists LB > 0 such that
∥B (x, ε1)− B (x, ε2)∥ ⩽ LB ∥ε1 − ε2∥ ∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω,

(b) The mapping x −→ B (x, ε) is Lebesgue measurable on Ω , ∀ ε ∈ Sd,
(c) The mapping x −→ B (x, 0) belongs to H.

(26)

The visco-plasticity operator G : Ω× Sd × Sd −→ Sd satisfies

(a) There exists a constant LG > 0 such that
∥G (x, σ1, ε1)− G (x, σ2, ε2)∥ ⩽ LG (∥σ1 − σ2∥+ ∥ε1 − ε2∥) ,
for all σ1, σ2, ε1, ε2 ∈ Sd , a.e. x ∈ Ω,
(b) The mapping x −→ G (x, σ, ε) is Lebesgue measurable on Ω , ∀ ε ∈ Sd,
for any ε, σ ∈ Sd,
(c) The mapping x −→ G (x, 0, 0) ∈ H.

(27)

The piezoelectric operator E : Ω× Sd −→ Rd satisfies{
(a) E (x, τ) = (eijk , τjk) , ∀τ = (τjk) ∈ Sd, a.e. x in Ω ,
(b) eijk = eikj ∈ L∞ (Ω) , 1 ⩽ i, j, k ⩽ d.

(28)

The thermal expansion operator M:Ω× R −→ R satisfies
(a) There exists a constant LM > 0 such that
∥M (x, θ1)−M (x, θ2)∥ ⩽ LM ∥θ1 − θ2∥ ∀ θ1, θ2 ∈ R, a.e. x ∈ Ω ,
(b) The mapping x −→ M (x, θ) is Lebesgue measurable on Ω, ∀ θ ∈ R,
(c) The mapping x −→ M (x, 0) ∈ H.

(29)
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The tangential function satisfies:
hτ : Γ3 × R+ → R+ verifies:
(a) : ∃ Lτ > 0 s.t. |hτ (x, r1 − hτ (x, r2) | ≤ Lτ | r1 − r2 | ,

∀r1, r2 ∈ R, a.e. x ∈ Γ3.
(b) : The mapping x 7→ hτ (x, r) belongs to L

2(Γ3).

(30)

The electric permittivity operator B = (Bij) : Ω× Rd −→ Rd satisfies
(a) B (x,E) = (Bij (x)Ej) ∀ E = (Ei) ∈ Rd , a.e. x ∈ Ω,
(b) Bij = Bji ∈ L∞ (Ω) , 1 ⩽ i, j ⩽ d,

(c) There exists a constant MB > 0 such that BE.E ⩾MB |E|2 ,
∀ E = (Ei) ∈ Rd , a.e. in Ω.

(31)

The thermal conductivity operator K : Ω× R −→ R satisfies


(a) There exists a constant LK > 0 such that
∥K (x, r1)−K (x, r2)∥ ⩽ LK ∥r1 − r2∥ for all r1, r2 ∈ R, a.e. x ∈ Ω,
(b) mij = mji ∈ L∞ (Ω) , 1 ⩽ i, j ⩽ d,
(c) The mapping x −→ S (x, 0, 0) belongs to L2 (Ω) .

(32)

The damage source function Φ : Ω× Sd × Sd × R −→ R satisfies

(a) There exists a constant LΦ > 0 such that
|Φ(x, η1, ω1, β1)− Φ(x, η2, ω2, β2)| ≤ LΦ(|η1 − η2|+ |ω1 − ω2|+ |β1 − β2|)
for all η1, η2, ω1, ω2 ∈ Sd, β1, β2 ∈ R, x ∈ Ω,
(b) The mapping x −→ Φ(x, η, ω, β) is Lebesgue measurable on Ω,
for any η, ω ∈ Sd and for all β ∈ R,
(c) The mapping x −→ Φ(x, 0, 0, 0) belongs to L2(Ω).

(33)

The function Ψ : ε× Sn × Sn × Sn × R× R −→ R satisfies

(a) There exists a constant LΨ > 0 such that
|Ψ(x, σ1, ε1, θ1, ξ1)−Ψ(x, σ2, ε2, θ2, ξ2)| ≤ LΨ(|σ1 − σ2|+ |ε1 − ε2|
+|θ1 − θ2|+ |ξ1 − ξ2|), for all σ1, σ2, ε1, ε2 ∈ Sn, θ1, θ2, ξ1, ξ2 ∈ R, x ∈ Ω,
(b) The mapping x −→ Ψ(x, σ, ε, θ, ξ) is Lebesgue measurable on Ω,
for all σ, ε ∈ Sn and for all θ, ξ ∈ R,
(c) The mapping x −→ Ψ(x, 0, 0, 0) belongs to L2(ε).

(34)

We also suppose that the body forces and surface tractions have the regularity

f0 ∈ L2(0, T ;L2(Ω)), f2 ∈ L2(0, T ;L2(Ω)), ρ ∈ L∞(Ω), (35)

q0 ∈ C
(
0, T, L2 (Ω)

)
, q2 ∈ C

(
0, T, L2 (Γb)

)
, (36)

q2 (t) = 0 on Γ3,∀t ∈ [0, T ] . (37)

The functions g and µ have the following properties:

g ∈ L2 (Γ3) , g (x) ⩾ 0, a.e. on Γ3, (38)

µ ∈ L∞ (Γ3) , µ (x) > 0, a.e. on Γ3, (39)
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here µ is the coefficient of friction. The initial displacement field satisfies

u0 ∈ V, (40)

and the initial temperature field satisfies

θ0 ∈ E, θF ∈ L2
(
0, T, L2 (Γ3)

)
, ke ∈ L∞ (Ω,R+) , qth ∈ L2

(
0, T, E

′
)
. (41)

Using the above notation and Green’s formulas, we obtain the variational formulation of
the mechanical problem (4)-(21) for all functions v ∈ V, w ∈ Wth, ϕ ∈ We and a.e. t ∈
(0, T ) , given as follows.
Problem PV. Find the displacement u : [0, T ] → V , the stress σ : [0, T ] → H1 , and
an electric potential φ : [0, T ] → W , the electric displacement D : [0, T ] −→ H and the
temperature θ : [0, T ] −→ V , and the damage α : [0, T ] −→ E1 such that

σ(t) = A(ε(
·
u(t))) + B(u(t), α(t)) +

∫ t

0

G
(
σ(s)−A(ε(

·
u(t))), ε (u (s))

)
ds

+ E∗∇φ (t)−Mθ (t) ,

(42)

(ü(t), v− u̇(t))V ′×V +(σ(t), ε (v(t)−u̇(t))H+ j(v(t))− j(u̇(t)) ⩾ (f(t),v− u̇(t))V , (43)

(α̇(t), ζ − α(t))L2(Ω) + a(α(t), ζ − α(t)) ≥ (Φ(ε(u(t))), α(t), ζ − α(t))L2(Ω), (44)

for all α(t) ∈ F , ζ ∈ F and t ∈ [0, T ].

D (t) = Eε (u (t))− B∇ (φ (t))− Pθ (t) , (45)

(D (t) ,∇ϕ)H = − (qe (t) , ϕ)W + (h (u (t) , φ) , ϕ)W , ∀φ ∈W, t ∈ [0, T ] , (46)

�
θ(t) +Kθ(t) = R

.
u(t) +Q(t) on E

′
, (47)

u(0) = u0, u̇(0) = v0, α(0) = α0 and θ(0) = θ0 on Ω. (48)

Here, the function Q : [0, T ] → E′ and the operators K : E → E′, R : V → E′; M :
E → V ′ are defined by ∀v ∈ V, ∀τ ∈ E, ∀η ∈ E:

⟨Q(t), η⟩E′×E =

∫
Γ3

keθRη ds+

∫
Ω

qη dx,

⟨Kτ, η⟩E′×E =

d∑
i,j=1

∫
Ω

kij
∂τ

∂xj

∂η

∂xi
dx+

∫
Γ3

keτη ds,

⟨Rv, η⟩E′×E =

∫
Γ3

hτ (|vτ |)η ds−
∫
Ω

(Me∇v)η dx,

⟨Mτ, v⟩V ′×V = (−τMe, ε(v))H,

where Jε : V × V → R , f : [0;T ] → V , qe : [0;T ] → W and γ : V ×W → W are
respectively defined by

Jε (N, v) =

∫
Γ3

µp |R×Nν |
√

|vτ |2 + ε2da, ∀v ∈ V, ∀ε > 0, (49)

(f(t),v)V =

∫
Ω

f0(t) · v dx+

∫
Γ2

f2(t) · v da. (50)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (5) (2022) 503–521 511

We define the bilinear form a : H1(Ω)×H1(Ω) −→ R

a(α, ζ) = κ

∫
Ω

▽α · ▽ζ dx, (51)

(qe(t), ϕ)W =

∫
Ω

q0(t)ϕdx−
∫
Γb

q2(t)ϕda, (52)

(γ (u, φ) , ϕ)W =

∫
Γ3

ψ (uν − h)ϕL(φ− φ0)ϕda (53)

for all u, v ∈ V , θ, w ∈W , ϕ ∈W and t ∈ [0;T ]. We note that the definitions of f and qe
are based on the Riesz representation theorem. Moreover, the conditions (35) and (36)
imply that

f ∈ C (0, T, V ) , qe ∈ C (0, T,We) . (54)

We denote by ∥.∥V , ∥.∥H and . ∥.∥V ′ the norms on the spaces V , H and V ′, respec-
tively, and we use (., .)V ′×V for the duality pairing between V ′ and V . Note that if f ∈
H, then

(f, v)V ′×V = (f, v)H ,∀v ∈ H. (55)

The existence of the unique solution of problem PV is stated and proved in the next
section.

4 Existence and Uniqueness of the Solution

Our main existence and uniqueness result is the following.

Theorem 4.1 Assume that (25)-(41) hold. Then, if Nψ <
mβ

a20
, there exists a unique

solution {u, σ, θ, φ,D} to problem PV satisfying

u ∈W 1,2(0;T ;V ) ∩ C1(0;T ;V ) ∩ W 2,2(0;T ;V
′
), σ ∈ C(0;T ;H), (56)

φ ∈ C(0;T ;W ), D ∈ C(0;T ;W), (57)

θ ∈W 1,2(0;T ;E
′
) ∩ L2(0;T ;E) ∩ C(0;T ;L2(Ω)). (58)

α ∈W 1,2
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H1(Ω)

)
. (59)

Functions u, σ, θ, φ, D, θ and α, which satisfy (42)-(48), are called the weak solution to
the contact problem P. We conclude that, under the assumptions (25)-(40) and if Nψ <
mβ

a20
is satisfied, the mechanical problem (4)-(21) has a unique weak solution satisfying

(56)-(58).

The proof of Theorem 4.1 is carried out in several steps. It is based on the results
of evolutionary variational inequalities, ordinary differential equations and fixed point
arguments.

In the first step, we let η ∈ L2(0, T ;V ) be given and consider the following variational
inequality.
Problem PVuη. Find a displacement field uη : [0;T ] → V such that ∀ t ∈ [0, T ] ,

(ü(t), v − u̇(t))V ′×V + (Aε
(

·
uη(t)

)
,ε(v − ·

uη(t)))H + j(uη (t) , v)− j(uη (t)
·
, uη(t))

+
(
η (t) , v − ·

uη(t)
)

V ≥ (f(t), v − ·
uη(t))V ,

(60)
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uη (0) = u0, u̇η(0) = v0 for all uη, v ∈ V . In the study of the problem PVuη, we have
the following result.

Lemma 4.1 PVuη has a unique solution satisfying the regularity expressed in (56):

uη (t) = u0 +

∫ t

0

vηgη (s)ds ∀t ∈ [0, T ] .

We define the operator A : V → V ′ by

(Av,w)V ′×V = (Aε(v), ε(w))H, ∀v, w ∈ V. (61)

We consider the following variational inequality.
Problem PVvη. Find a displacement field vη : [0;T ]× Ω → V such that ∀ t ∈ [0, T ].

(v̇Nη(t), w − vNη(t))V ′×V + (AvNη(t)), w − vNη(t))V ′×V + j(N,w)

−j(N, vNη(t)) ≥ (fη(t), w − vNη(t))V ′×V , ∀w ∈ V,
(62)

vNη(0) = vo. (63)

In the study of Problem PVvη, we have the following result.

Lemma 4.2 For all N ∈ L2(0, T,H1) and η ∈ L2(0, T, V ′), the Problem PVvη has
a unique solution with the regularity vNη ∈ C(0, T,H) ∩ L2(0, T, V ) ∩W 1,2(0, T, V ′).

Proof. We begin by the step of regularization we defined, for all ε > 0,

J̇ε (N, v) =

∫
Γ3

µp |R×Nν |
√

|vτ |2 + ε2da, ∀v ∈ V, ∀ε > 0.

After some algebra, for all ε > 0, J̇ε is C
1 convex on V , and its Frechet derivative satisfies

∀c > 0, ∀w ∈ V
∣∣∣J̇ ′
ε(N,w)

∣∣∣
V ′

≤ C|N |L2(Γ3). (64)

From (25) and the monotonicity of J̇ ′
ε, it follows from the classical first order evolution

equation that

∀ε > 0, vεNη ∈ L2(0, T, V ) ∩ C(0, T,H) and v̇εNη ∈ L2(0, T, V ′)

such that {
v̇εNη(t) +AvεNη + j′ε(N, v

ε
Nη) = fη(t) in V

′, a.e. t ∈ [0, T ],

vεNη(0) = v0.
(65)

Therefore, vεNη ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ′), we obtain{ (
v̇εNη(t), w − vεNη

)
V ′×V +

(
AvεNη(t), w − vεNη

)
V ′×V + jε(N,w)

−jε(N, vεNη(t)) ≥
(
fη(t), w − vεNη(t)

)
V ′×V ∀w ∈ V, a.e. t ∈ [0, T ].

(66)

Using (25) and the monotony of j′ε, we deduce that

∃C > 0, ∀t ∈ [0, T ] :
∣∣vεNη(t)∣∣ ≤ C

∫ T

0

∣∣vεNη(t)∣∣2V dt ≤ C

∫ T

0

∣∣v̇εNη(t)∣∣2V ′ dt ≤ C,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (5) (2022) 503–521 513

using a subsequence to find that{
vεNη ⇀ vNη weakly in L2(0, T ;V ) and weakly in L∞(0, T ;H),

v̇εNη ⇀ v̇Nη star weakly in L2(0, T ;V ′).
(67)

It follows that

vNη ∈ C(0, T ;H) and vεNη(t)⇀ vNη(t) weakly in H, ∀t ∈ [0, T ]. (68)

Integrating (66), we have ∀w ∈ L2(0, T ;V ),∫ T

0

(v̇εNη(t), w)V ′×V dt+

∫ T

0

(AvεNη(t), w)V ′×V dt+

∫ T

0

jε(N,w)dt ≥
∫ T

0

(fη(t), w(t))V ′×V dt,

then we have∫ T
0
(v̇εNη(t), w)V ′×V dt+

∫ T
0
(AvεNη(t), w)V ′×V dt+

∫ T
0
jε(N,w)dt

≥
∫ T
0
(v̇εNη(t), v

ε
Nη(t))V ′×V dt+

∫ T
0
(AvεNη(t), v

ε
Nη(t))V ′×V dt+∫ T

0
jε(N, v

ε
Nη(t))dt+

∫ T
0
(fη(t), w(t)− vεNη(t))V ′×V dt

≥ 1
2

∣∣vεNη(t)∣∣2H − 1
2

∣∣vεNη(0)∣∣2H +
∫ T
0
(AvεNη(t), v

ε
Nη(t))V ′×V dt+∫ T

0
jε(v

ε
Nη(t))dt+

∫ T
0
(fη(t), w(t)− vεNη(t))V ′×V dt.

From (67) and (68) we obtain that for all w ∈ L2(0, T ;V ),∫ T
0
(v̇εNη(t), w − vεNη(t))V ′×V dt+

∫ T
0
(AvεNη(t), w − vεNη(t))V ′×V dt+∫ T

0
(j(N,w)− j(N, vNη)) dt ≥

∫ T
0
(fη(t), w(t)− vεNη(t))V ′×V dt.

The previous inequality implies (see [10]) that(
v̇εNη(t), w − vεNη

)
V ′×V +

(
AvεNη(t), w − vεNη

)
V ′×V + jε(N,w)

−jε(N, vεNη(t)) ≥
(
fη(t), w − vεNη(t)

)
V ′×V ∀w ∈ V, t ∈ [0, T ].

We conclude that Problem PVvη has at least a solution vNη ∈ C(0, T ;H)∩L2(0, T ;V )∩
W 1,2(0, T ;V ′) and v̇Nη ∈ L2(0, T ;V ′). For the uniqueness, let v1Nη, v

2
Nη be two solutions

of Problem PVvη, we use (62) to obtain for a.e. t ∈ [0, T ],

(v̇2Nη(t)− v̇1Nη(t), v
2
Nη(t)− v1Nη(t))− (Av2Nη(t)−Av1Nη(t), v

2
Nη(t)− v1Nη(t)) ≤ 0.

Integrating the previous inequality, using (25) and (61), we find

1

2

∣∣v2Nη(t)− v1Nη(0)
∣∣2
V
+mA

∫ T

0

∣∣v2Nη(s)− v1Nη(s)
∣∣2
V
ds ≤ 0, ∀t ∈ [0, T ],

which implies v1Nη = v2Nη. Let us consider now uNη : [0, T ] → V is the function defined
by

uNη(t) =

∫ T

0

vNη(s)ds+ u0, ∀t ∈ [0, T ]. (69)

In the study of Problem PVuη, we have the following result.

Lemma 4.3 Problem PVuη has a unique solution satisfying the regularity expressed
in (56).
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Proof. The proof of Lemma 4.3 is a consequence of Lemma 4.2 together with (69).
In the second step, let η ∈ C(0, T ;V ), we use the displacement field uη obtained in
Lemma 4.1 and consider the following variational problem.
Problem PVφη. Find an electrical potential φη : [0;T ] →W such that ∀t ∈ [0, T ],

(B ∇φη (t) ,∇ϕ)− (E ε (uη (t)) ,∇ϕ)H + (γ (uη (t) , φη (t)) , ϕ)W = (qe (t) , ϕ)w. ∀ ϕ ∈W.
(70)

We have the following result.

Lemma 4.4 PVφη has a unique solution φη which satisfies the regularity expressed
in (57). Moreover, if φη1 and φη2 are solutions of (70) corresponding to η1, η2 ∈
L2(0, T ;V ), then there exists C > 0 such that

|φη1(t)− φη2(t)|W ≤ C |uη1 (t)− uη2 (t)|V ,∀t ∈ [0, T ] . (71)

Proof. The same result for this Lemma 4.4 is given in [12]. In the third step, we
let λ ∈ L2

(
0, T ;L2(Ω)

)
be given and consider the following variational problem for the

temperature field.
Problem PVθλ. Find a temperature field θλ : [0, T ] −→ E such that{

θ̇λ(t) +Kθλ(t) = Ru̇η(t) +Q(t) in E′ a.e. t ∈ [0, T ],
θλ(0) = θ0,

(72)

for all θλ, w ∈ E, a.e. t ∈ (0, T ). For the Problem PVθλ we have the following result.

Lemma 4.5 PVθλ has a unique solution such that

θλ ∈ L2(0, T ;E) ∩ C(0, T ;L2(Ω)) ∩W 1,2(0, T ;E′). (73)

Moreover, ∃C > 0 such that ∀λ1, λ2 ∈ L2(0, T ;V ′),

∥θ1(t)− θ2(t)∥2L2(Ω) ≤ C

∫ T

0

∥λ1(s)− λ2(s)∥2E′ ds, ∀t ∈ [0, T ]. (74)

Proof. The result follows from the classical first order evolution equation given in [3].
Here the Gelfand triple is given by

E ⊂ L2 (Ω) = (L2 (Ω))′ ⊂ E′.

The operator K is linear continuous and coercive. By Korn’s inequality, we have

|K(u)|H ≥ C|u|H1
, for all u ∈ V,

with C being a strictly positive constant defined only on Ω and Γ1. Therefore

(Kτ, τ)E′×E ≥ C|τ |2E . (75)

In the fourth step, we let µ ∈ L2(0, T ;L2(Ω)) be given and consider the following
variational problem for the damage field.
Problem PVαµ. Find the damage field αµ : [0, T ] −→ H1(Ω) such that αµ ∈ F and

(α̇µ(t), ζ − αµ(t))L2(Ω) + a (αµ(t), ζ − αµ(t)) ≥ (S(ε(uµ(t)), αµ(t)), ζ − αµ(t))L2(Ω) , (76)
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αµ(0) = α0, (77)

for all α(t) ∈ F , ζ ∈ F and t ∈ [0, T ]. Note that if f ∈ H, then

(f, v)V ′×V = (f, v)H , ∀v ∈ H.

Theorem 4.2 Let V ⊂ H ⊂ V ′ be a Gelfand triple. Let K be a nonempty, closed
and convex set of V . Assume that a(·, ·) : V × V −→ R is a continuous and symmetric
form such that for some constants ζ > 0 and c0,

a(v, v) = c0∥v∥2H ≥ ζ∥v∥2V , ∀v ∈ H.

Then, for every u0 ∈ K and f ∈ L2(0, T ;H), there exists a unique function u ∈
H1(0, T ;H) ∩ L2(0, T, V ) such that u(0) = u0, u(t) ∈ K for all t ∈ [0, T ] and for al-
most all t ∈ [0, T ],

(u̇(t), v − u(t))V ′×V + a(u(t), v − u(t)) ≥ (f(t), v − u(t))H , ∀v ∈ K.

We apply this theorem to Problem PVαµ.

Lemma 4.6 There exists a unique solution αµ to the auxiliary problem PVαµ such
that

αµ ∈W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)). (78)

The above lemma follows from the standard result for parabolic variational inequalities.

Proof. The inclusion mapping of
(
H1(Ω), ∥ · ∥H1(Ω)

)
into (L2(Ω), ∥ · ∥L2(Ω)) is con-

tinuous and its range is dense. We denote by
(
H1(Ω)

)′
the dual space of H1(Ω) and,

identifying the dual of L2Ω with itself, we can write the Gelfand triple

H1(Ω) ⊂ L2(Ω) ⊂
(
H1(Ω)

)′
.

We use the notation (·, ·)(H1(Ω))′×H1(Ω) to represent the duality pairing between
(
H1(Ω)

)′
and H1(Ω), we have

(α, β)(H1(Ω))′×H1(Ω) = (α, β)L2(Ω), ∀α ∈ L2(Ω), β ∈ H1(Ω),

and we note that F is a closed convex set in H1(Ω). Then we use the definition of the
bilinear form a given by (51), and the fact that αµ ∈ F .

Problem PVση,λ,µ. Find a stress field σηλµ : [0, T ] −→ H,

σηλµ(t) = B(ε (uη(t)) , αµ(t) (v))H +

∫ t

0

G (σ(s), ε (uη (s))) ds−Mθλ(t), ∀t ∈ [0, T ]. (79)

In the study of problem PVσηλµ, we have the following result.

Lemma 4.7 There exists a unique solution of problem PVσηλµ, which satisfies (56).
Moreover, if uηi , θλi , αµi and σηi,λi,µi represent the solution of problems PVuηi , PVθλi ,
PVαµi

and PVσηi,λi,µi
, respectively, for i = 1, 2, then there exists c > 0 such that

∥ση1,λ1,µ1
(t)− ση2,λ2,µ2

(t)∥H2 ≤ C(∥uη1(t)−uη2
(t)∥2V

+

∫ t

0

(∥uη1(s)−uη2 (s)
∥2V + ∥θλ1

(s)− θλ2
(s)∥2V + ∥αµ1

(s)− αµ2
(s)∥2V ) ds).

(80)
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Proof. Let Πη,λ;µ : L2(0, T,H) −→ L2(0, T ;H) be the mapping given by

Πη,λ,µσ(t) = B(ε(uη(t)), αµ(t)) +
∫ t

0

G(σ(s), ε(uη(s))) ds−Mθλ(t). (81)

Let σi ∈ L2(0, T ;H) : i = 1, 2 and t1 ∈ [0, T ]. Using hypothesis (27) and Hölder’s
inequality, we find

∥Πη,λ,µσ1(t)−Πη,λ,µσ2(t)∥2H ≤ L2
GT

∫ t

0

∥σ1(s)− σ2(s)∥2H ds.

It follows from this inequality that for m large enough, a power Πmη,λ,µ of the mapping

Πη,λ,µ is a contraction of the Banach space L2(0, T ;H), and therefore there exists a
unique element ση,λ,µ ∈ L2(0, T ;H) such that Πη,λ,µση,λ,µ = ση,λ,µ. Moreover, ση,λ,µ is
the unique solution of the problem PVσηλµ. If uηi , θλi

αµi
and σηi,λi,µi

represent the
solution of the problems PVuηi , PVθλi , PVαµi and PVσηiλiµi , respectively, for i = 1, 2,
then we use (4), (25), (26) and Young’s inequality to obtain

∥ση1,λ1,µ1(t)− ση2,λ2,µ2(t)∥H2 ≤ C(∥uη1(t)−uη2
(t)∥2V

+

∫ t

0

(∥ση1,λ1,µ1
(t)− ση2,λ2,µ2

(t)∥H2 + ∥uη1(s)−uη2
(s)∥2V + ∥θλ1

(s)− θλ2
(s)∥2V

+ ∥αµ1
(s)− αµ2

(s)∥2V ) ds).

This permits us to obtain, using Gronwall’s lemma, the inequality (80). Finally, we
consider the operator Λ such that

Λ(η, λ, µ)(t) = (Λ1(η, λ, µ)(t),Λ2(η, λ, µ)(t),Λ3(η, λ, µ)(t)), (82)

where Λ1, Λ2 and Λ3 are defined by

(Λ1(η(t), λ(t), µ(t), v(t))V ′×V = B(ε (uη(t)) , ε (v(t)))H + (E∗∇φη (t) , ε (v(t)))H

+ J̇ε(uη(t), v(t)) +

(∫ t

0

G (ση,λ,µ(s), ε (uη(s))) ds−Mθλ(t), ε(v(t))

)
H
, ∀v ∈ V,

(83)

Λ2(η(t), λ(t), µ(t), v(t) = Ψ(ση,λ,µ(t), ε(uη(t)), θλ(t))) (84)

and

Λ3(η(t), λ(t), µ(t), v(t)) = Φ(ση,λ,µ(t), ε(uη(t)), αµ(t))). (85)

Here, for η ∈ L2(0, T ;V ), λ ∈ L2(0, T ;L2(Ω)) and µ ∈ L2(0, T ;L2(Ω)), uη, ϕη, θλ, αµ
and ση,λ,µ represent the displacement field, the potential electric field, the temperature,
the damage field and the stress field obtained in Lemmas 4.1, 4.4, 4.5, 4.6 and 4.7. We
have the following result.

Lemma 4.8 The operator Λ has a unique fixed point (η∗, λ∗, µ∗) ∈ L2(0, T ;V ×
L2(Ω))× L2(Ω)).

Proof. We show for a positive integer m, the mapping Λm is a contraction on
L2(0, T ;V × L2(Ω))× L2(Ω)). To this end, we suppose that (η1, λ1, µ1) and (η2, λ2, µ2)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (5) (2022) 503–521 517

are two functions in L2(0, T ;V ×L2(Ω))×L2(Ω)) and denote uηi = ui, u̇ηi = vi, φηi = φi,
θλi

= θi, αµi
= αi and σηi,λi,µi

= σi for i = 1, 2. We have

∥Λ1(η1, λ1, µ1)(t)− Λ1(η2, λ2, µ2)(t)∥2V ′ ≤ C∥Rν(uν(t)− u2ν(t))∥2L2(Γ3)

+ C∥Rτ (uτ (t)− u2τ (t))∥2L2(Γ3)
+ ∥Bε(u1(t))− Bε(u2(t))∥2H

+ ∥ε∗∇φ1(t)− ε∗∇φ2(t)∥2H + C∥α1(t)− α2(t)∥2L2(Ω)

+

∫ t

0

∥G(σ1(s), ε(u2(s)))− G(σ2(s), ε(u2(s)))∥2H ds

+ C∥θ1(t)− θ2(t)∥2L2Ω.

(86)

Therefore, from (26), (27), (28) and the definition of Rν , Rτ , we obtain

∥Λ1(η1, λ1, µ1)(t)− Λ1(η2, λ2, µ2)(t)∥2V ′ ≤ C(∥u1(t)− u2(t)∥2V

+

∫ t

0

∥u1(s)− u2(s)∥2V ds+
∫ t

0

∥σ1(s)− σ2(s)∥2H ds

+

∫ t

0

∥θ1(s)− θ2(s)∥2E ds+
∫ t

0

∥α1(s)− α2(s)∥2F ds

+ ∥φ1(t)− φ2(t)∥2W ).

(87)

We use estimate (81) to obtain

∥Λ1(η1, λ1, µ1)(t)− Λ1(η2, λ2, µ2)(t)∥2V ′ ≤ C(∥u1(t)− u2(t)∥2V

+

∫ t

0

∥u1(s)− u2(s)∥2V ds+
∫ t

0

∥θ1(s)− θ2(s)∥2E ds

+

∫ t

0

∥α1(s)− α2(s)∥2F ds+ ∥φ1(t)− φ2(t)∥2W ).

(88)

Recall that above uην and uητ denote the normal and the tangential component of the
function uη, respectively. By similar arguments, from the function Φ and the definition
of Λ2, it follows that

∥Λ2(η1, λ1, µ1)(t)− Λ2(η2, λ2, µ2)(t)∥2E ≤ C(∥u1(t)− u2(t)∥2V

+

∫ t

0

∥σ1(s)− σ2(s)∥2V ds+ ∥θ1(s)− θ2(s)∥2E)

≤ C(∥u1(t)− u2(t)∥2V + ∥θ1(s)− θ2(s)∥2E

+

∫ t

0

∥u1(s)− u2(s)∥2V ds+
∫ t

0

∥θ1(s)− θ2(s)∥2E ds).

(89)

On the other hand, by (33), (80) and the definition of Λ3, we get

∥Λ3(η1, λ1, µ1)(t)− Λ3(η2, λ2, µ2)(t)∥2F ≤ C(∥u1(t)− u2(t)∥2V

+ ∥φ1(t)− φ2(t)∥2W +

∫ t

0

∥u1(s)− u2(s)∥2V ds

+ ∥α1(s)− α2(s)∥2F +

∫ t

0

∥α1(s)− α2(s)∥2F ds).

(90)
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Also, since

ui(t) =

∫ t

0

vi(s) ds+ u0, t ∈ [0, T ], (91)

we have

ui(t) = ∥u1(t)− u2(t)∥2V ≤
∫ t

0

∥vi(s)∥2V ds+ u0, (92)

which implies

∥u1(t)− u2(t)∥2V +

∫ t

0

∥u1(s)− u2(s)∥2V ds ≤ C

∫ t

0

∥v1(s)− v2(s)∥2V ds. (93)

Therefore

∥Λ(η1, λ1, µ1)(t)− Λ(η2, λ2, µ2)(t)∥2V ′×E×F ≤ C(∥u1(t)− u2(t)∥2V

+

∫ t

0

∥u1(s)− u2(s)∥2V ds+ ∥α1(s)− α2(s)∥2F

+

∫ t

0

∥α1(s)− α2(s)∥2F ds+ ∥θ1(s)− θ2(s)∥2E

+

∫ t

0

∥θ1(s)− θ2(s)∥2E ds+ ∥φ1(t)− φ2(t)∥2W ).

(94)

Moreover, from (60), we obtain

(v̇1 − v̇2, v1 − v2)V ′×V = (Aε(v1)−Aε(v2), ε(v2 − v1))V ′×V

+ (η1 − η2, v1 − v2)V ′×V ≤ 0.
(95)

We integrate this equality with respect to time, use the initial conditions, v1(0) = v2(0) =
v0, (27) and (61) to find

mA

∫ t

0

∥v1(s)− v2(s)∥2V ds ≤ C

∫ t

0

∥η1(s)− η2(s)∥V ∥v1(s)− v2(s)∥V ds (96)

for all t ∈ [0, T ]. Then, using the inequality 2ab ≤ a2

mA
+mAb

2, we obtain∫ t

0

∥v1(s)− v2(s)∥2V ds ≤ C

∫ t

0

∥η1(s)− η2(s)∥V ds,∀t ∈ [0, T ]. (97)

Since u1(0) = u2(0) = u0, we have

∥u1(s)− u2(s)∥2V ≤ C

∫ T

0

∥v1(s)− v2(s)∥V ds, (98)

and from (74), we have

∥θ1(t)− θ2(t)∥2L2(Ω) ≤ C

∫ T

0

∥λ1(s)− λ2(s)∥2E′ds, ∀t ∈ [0, T ], (99)

and from (71), we have

∥φ1(t)− φ2(t)∥2W ≤ C∥u1(t)− u2(t)∥2V , ∀t ∈ [0, T ]. (100)
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We substitute (93) and (100) in (94) to obtain

∥Λ(η1, λ1, µ1)(t)− Λ(η2, λ2, µ2)(t)∥2V ′×E×F ≤ C(

∫ t

0

∥v1(s)− v2(s)∥2V ds

+ ∥θ1(s)− θ2(s)∥2E +

∫ t

0

∥θ1(s)− θ2(s)∥2E ds

+ ∥α1(s)− α2(s)∥2F +

∫ t

0

∥α1(s)− α2(s)∥2F ds),

(101)

on the other hand, from (76), we deduce that

(α̇1 − α̇2, α1 − α2)F ′×F + a(α1 − α2, α1 − α2) ≤ (µ1 − µ2, α1 − α2)F , a.e. t ∈ [0, T ].
(102)

Integrating the previous inequality with respect to time, using the initial conditions
α1(0) = α2(0) = α0 and inequality a(α1 − α2, α1 − α2) ≥ 0, we find

1

2
∥α1(s)− α2(s)∥2F ≤

∫ t

0

(µ1(s)− µ2(s), α1(s)− α2(s))F ds. (103)

This inequality, combined with Gronwall’s inequality, leads to

∥α1(s)− α2(s)∥2F ≤ C

∫ t

0

∥µ1(s)− µ2(s)∥2F ds, ∀t ∈ [0, T ]. (104)

We substitute (97), (99) and (104) in (101) to obtain

∥Λ(η1, λ1, µ1)(t)− Λ(η2, λ2, µ2)(t)∥2V ′×E×F ≤ C

∫ t

0

∥((η1, λ1, µ1)(s)

− (η2, λ2, µ2)(s))∥2V ′×E×F ds.

(105)

Reintegrating this inequality n times, we obtain

∥Λn(η1, λ1, µ1)− Λn(η2, λ2, µ2)∥2L2(0,T ;V ′×E×F ) ≤
CnTn

n!
∥((η1, λ1, µ1)

− (η2, λ2, µ2))∥2L2(V ′×E×F ),
(106)

thus, for n sufficiently large, Λn is a contraction on the Banach space L2(0, T ;V ′×E×F )
and so Λ has a unique fixed point. Now, we have all ingredients to prove Theorem 4.1.

Proof. (of Theorem 4.1). Let (η∗, λ∗, µ∗) ∈ L2(0, T ;V ′ × L2(Ω)× L2(Ω)) be the
fixed point of Λ defined by (82), (83), (84) and (85) and

u∗ = uη∗ , φ∗ = φη∗ , θ∗ = θη∗ and α∗ = αη∗ . (107)

Let σ∗ : [0, T ] −→ H be the function defined by

σ∗ = Aε(u̇∗) + ε∗∇φ∗ + ση∗,λ∗,µ∗ . (108)

We prove that {u∗, σ∗, φ∗, θ∗, α∗} satisfies (42), (48) and the regularities (56)-(58). In-
deed, we write (60) and use (107) to find

(ü∗(t), v)V ′×V + (Aε(u̇∗(t)), ε(v))H + Jε(u̇∗(t), v)

+ (η∗(t), v)V ′×V ≥ (f(t), v)V ′×V , ∀v ∈ V a.e., t ∈ 0, T ,
(109)
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we use equalities Λ1(η∗, λ∗, µ∗) = µ∗, Λ2(η∗, λ∗, µ∗) = λ∗ and Λ3(η∗, λ∗, µ∗) = η∗, it
follows that

(η∗(t), v)V ′×V = (Bε(u∗(t)), ε(v))H + (ε∗∇φ∗(t), ε(v))H

+

(∫ t

0

G(ση∗,λ∗,µ∗(s), ε(u∗(s), α∗(s))) ds−Mθ∗(t), ε(v)

)
H

+ Jε(u∗(t), v(t)),

(110)

λ∗(t) = Φ(ση∗,λ∗,µ∗(t), ε(u∗(t)), θ∗(t)), (111)

µ∗(t) = Ψ(ση∗,λ∗,µ∗(t), ε(u∗(t)), α∗(t)). (112)

We now substitute (110) in (109) to obtain

(ü∗(t), v)V ′×V + (Aε(u̇∗(t), ε(v))H + (Bε(u∗)(t), ε(v), α∗(t))H + (ε∗∇φ∗, ε(v))H

+

(∫ t

0

G(ση∗,λ∗,µ∗(s), ε(u∗(s))) ds−Mθ∗(t), ε(v)

)
H

+ Jε(u∗(t), v) ≥ (f(t), v̇)V ′×V , ∀v ∈ V.

(113)

It follows from Lemma 4.7 and (108) that σ∗ ∈ L2(0, T ;H) and (43) implies that

divσ∗ + f0(t) = ρü∗(t), a.e., t ∈ [0, T ].

We write (72) for λ = λ∗ to find that (74) is satisfied, also write (76) for µ = µ∗ to find
that (76) is satisfied , we consider now (60) for η = η∗ to find that (60) is satisfied. Next,
the regularities (56)-(59) follow from Lemmas 4.1, 4.2, 4.4, 4.5, 4.6 and the regularity
(56) follows from Lemma 4.7, the uniqueness part of Theorem 4.1 is a consequence of
the uniqueness of the fixed point of the operator Λ defined by (82)-(85) and thus follows
the unique solvability of the problems PVuη, PVφη, PVθλ, PVαµ and PVση,λ,µ, which
completes the proof.

5 Conclusion

As a conclusion, we can say that our model, which describes the contact problem with
damage and thermal effect for an electro-elasto-viscoplastic problem, based on thermo-
dynamics is developed to describe the self-heating and stress-strain behavior of thermo-
plastic polymers under tensile loading. The constitutive model considers temperature-
dependent elasticity, nonlinear viscoplastic flow and damage evolution. The literature
devoted to various aspects of the subject is considerable, it concerns the modelling and
the mathematical analysis of the related problems. For example, many food materials
used in process engineering are elastic-viscoplastic, mathematical models can be very
helpful in understanding various problems related to the product development, packing,
transport, shelf life testing, thermal effects, and heat transfer. It is thus important to
study mathematical models that can be used to describe the dynamical behavior of a
given elastic-viscoplastic material subjected to various highly nonlinear and even non-
smooth phenomena like contact, friction, lubrication, adhesion, wear, damage, electrical
and thermal effects. Thermal effects in contact processes affect the composition and
stiffness of the contacting surfaces, and cause thermal stresses in the contacting bodies.
Moreover, the contacting surfaces exchange heat and energy is lost to the surroundings.
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Piezoelectric Bodies with Friction and Damage

M. L. Gossa 1, T. Hadj Ammar 2∗ and K. Saoudi 1

1 ICOSI Laboratory, Abess Laghrour University, Khenchela 40000, Algeria.
2 Departement of Mathematics, El Oued University, 39000 El Oued, Algeria.

Received: November 3, 2021; Revised: November 7, 2022

Abstract: We consider a dynamic contact problem between two thermo-electro-
viscoelastic bodies with damage and an internal state variable. The contact is bilateral
and is modeled by Tresca’s friction law. The damage of the materials is caused by
elastic deformations. We derive a variational formulation for the model which is in the
form of a system involving the displacement field, the electric potential, the internal
state variable field, the temperature and the damage. Then we proved the existence
of a unique weak solution to the model.

Keywords: viscoelastic piezoelectric materials; internal state variable; damage; tem-
perature; friction contact.
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1 Introduction

Our research paper tackles a frictional bilateral contact problem including the topic of
piezoelectric, which can be explained as follows: when we apply mechanical pressure to
some types of crystalline materials such as ceramics BaTiO3, BiFeO3, a voltage propor-
tional to the pressure is produced. Meanwhile, changes in shape and dimension occur if an
electric field is applied to some types of crystalline materials. At present, there is a great
interest in the study of piezoelectric materials for their importance in radio-electronics,
electroacoustics and instrumentation. Thus, a big interest in the contact problems occurs
because of the fact that parts of the equipment are in contact. So, many models have
been developed to explain the interaction between the electrical and mechanical fields,
see for example [2, 8] and the references therein. Frictional contact problem is a static
problem of electro-elastic materials mentioned in [3] and [10], considering that the basis is
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isolated. Contact problems involving elasto-piezoelectric materials [3], viscoelastic piezo-
electric materials [1] and the contact problem for electro-elastio-viscoplastic materials
were studied in [7].

A mathematical investigation has been conducted for some models taking into consid-
eration the influence of the internal damage of the material in the contact process. From
the virtual power principle, general models for damage were derived in [6]. In [4], we can
find the modes of mechanical damage which are derived from thermo-dynamical consid-
eration. The ratio between the elastic moduli of the damage and damage-free materials
is expressed by the function called the damage function ζκ = ζκ(x, t) mentioned in [5,6].
In an isotropic and homogeneous elastic material, let EκY be the Young modulus of the
original material and Eκeff be the current modulus, then the damage function is defined
by ζκ = Eκeff/ E

κ
Y . This definition shows that the damage function ζκ is restricted to

have values between zero and one; when ζκ = 1, there is no damage in the material,
when ζκ = 0, the material is completely damaged, when 0 < ζκ < 1, there is partial
damage and the system has a reduced load carrying capacity. The contact problem with
damage has been mentioned in [9]. The differential inclusion used for the evolution of
the damage field is

˙ζκ −∆ζκ + kκ∂χkκ(ζκ) ∋ Sκ(ϵ(uκ), ζκ) in Ωκ × [0, T ], (1.1)

where kκ is a positive coefficient and Kκ is the set of admissible damages defined by

Kκ = {ζ ∈ H1(Ωκ); 0 ≤ ζ ≤ 1. a.e ∈ Ωκ}. (1.2)

The paper is structured as follows. In Section 2, we present the physical setting and
describe the mechanical problem. We derive a variational formulation, list the assump-
tions on the data, and give the variational formulation of the problem. In Section 3, we
state our main existence and uniqueness result which is based on the classical result of
non-linear first order evolution inequalities and equations with monotone operators and
the fixed point arguments.

2 Problem Statement and Variational Formulation

The physical setting is the following. Let us consider two electro-thermovisco-elastic
bodies, occupying two bounded domains Ω1, Ω2 of the space Rd (d = 2, 3 in applications).
We put a superscript κ to indicate that the quantity is related to the domain Ωκ. In the
following, the superscript κ ranges between 1 and 2. For each domain Ωκ, the boundary
Γκ is assumed to be Lipschitz continuous, and is partitioned into three disjoint measurable
parts Γκ1 , Γ

κ
2 and Γκ3 , on one hand, and in two measurable parts Γκa and Γκb , on the other

hand, such that measΓκ1 > 0, measΓκa > 0. Let T > 0 and let [0, T ] be the time interval
of interest. The Ωκ body is subject to fκ0 forces and volume electric charges of density
qκ0 . The bodies are assumed to be clamped on Γκ1 × [0, T ]. The surface tractions fκ2
act on Γκ2 × [0, T ]. We also assume that the electrical potential vanishes on Γκa × [0, T ]
and a surface electric charge of density qκ2 × [0, T ] is prescribed on Γκb × [0, T ]. The two
bodies can enter in contact along the common part Γ1

3 = Γ2
3 = Γ3. The classical form of

the bilateral contact with Tresca’s friction and damage between two electro-thermovisco-
elastic bodies with damage and an internal state variable is the following.

Problem P . For κ = 1, 2, find a displacement field uκ : Ωκ × [0, T ] → Rd, a stress
field σκ : Ωκ × [0, T ] → Sd, an electric potential ψκ : Ωκ × [0, T ] → R, an electric
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displacement field Dκ : Ωκ × [0, T ] −→ Rd, a temperature τκ : Ωκ × [0, T ] −→ R, a
damage ακ : Ωκ × [0, T ] → R and an internal state variable field βκ : Ωκ × [0, T ] −→ Rm
such that for all t ∈ (0, T ), we have

σκ(t) = Aκε(u̇κ(t)) + Bκ(ε(uκ(t)), ακ(t))− (Eκ)∗E(ψκ(t))
+Fκ(βκ(t), τκ(t)) in Ωκ,

(2.1)

Dκ(t) = Eκε(uκ(t)) +RκE(ψκ(t)) + Gκ(βκ(t), τκ(t)) in Ωκ, (2.2)

β̇κ(t) = Θκ
(
ε(uκ(t)), ακ(t), βκ(t), τκ(t)

)
in Ωκ, (2.3)

τ̇κ(t)−Kκ0∆τκ(t) = Ψκ
(
ε(uκ(t)), ακ(t), βκ(t), τκ(t)

)
+ χκ(t) in Ωκ, (2.4)

α̇κ(t)−Kκ1∆ακ(t) + ∂IZκ(ακ(t)) ∋ Sκ(ε(uκ(t)), ακ(t)) in Ωκ, (2.5)

Div σκ(t) + fκ0 (t) = ρκüκ(t) in Ωκ, (2.6)

divDκ(t) = qκ0 (t) in Ωκ, (2.7)

uκ(t) = 0 on Γκ1 , (2.8)

σκ(t)νκ = fκ2 (t) on Γκ2 , (2.9) u1ν(t) + u2ν(t) = 0, σ1
τ (t) = −σ2

τ (t) ≡ στ (t), |στ (t)| ≤ g,
|στ (t)| < g ⇒ u̇1τ (t)− u̇2τ (t) = 0
|στ (t)| = g ⇒ ∃λ ≥ 0 such that στ (t) = −λ

(
u̇1τ (t)− u̇2τ (t)

)
,

on Γ3, (2.10)

∂ακ(t)
∂νκ = 0 on Γκ, (2.11)

Kκ0
∂κτκ(t)
∂νκ + λκ0τ

κ(t) = 0 on Γκ, (2.12)

ψκ(t) = 0 on Γκa , (2.13)

Dκ(t) · νκ = qκ2 (t) on Γκb , (2.14)

uκ(0) = uκ0 , u̇
κ(0) = vκ0 , α

κ(0) = ακ0 , β
κ(0) = βκ0 , τ

κ(0) = τκ0 in Ωκ. (2.15)

First, equations (2.1)–(2.3) represent the electro-thermovisco-elastic constitutive law with
damage and an internal state variable. The evolution of the damage field is governed by
the inclusion given by the relation (2.5). Equation (2.4) represents the conservation of
energy, where Ψκ is a nonlinear constitutive function which represents the heat generated
by the work of internal forces and χκ is a given volume heat source. Next, equations
(2.6) and (2.7) are the equations of motion written for the stress field and of balance
written for the electric displacement field, respectively, in which Div and div denote the
divergence operators for tensor and vector valued functions. Conditions (2.8) and (2.9)
are the displacement and traction boundary conditions, respectively. Boundary condi-
tions (2.11), (2.12) represent, respectively, on Γα, a homogeneous Neumann boundary
condition for the damage field and a Fourier boundary condition for the temperature,
(2.13) and (2.14) represent the electric boundary conditions, and (2.15) are the initial
conditions. Conditions (2.10) represent the bilateral contact condition with Tresca’s fric-
tion, where [uν ] = u1ν + u2ν and [uτ ] = u1τ − u2τ .
Now, to proceed with the variational formulation, we need the following function spaces:

Hκ = L2(Ωκ)d =
{
u = (ui)1≤i≤d; ui ∈ L2(Ωκ)

}
,

Hκ1 =W 1,2(Ωκ)d =
{
u = (ui)1≤i≤d; ui ∈W 1,2(Ωκ)

}
,

Hκ = L2(Ωκ)d×ds =
{
σ = (σij)1≤i,j≤d; σij = σji ∈ L2(Ωκ)

}
,

Hκ
1 = {σ ∈ Hκ; Div σ ∈ Hκ} ,

Yκ = L2(Ωκ)m =
{
β = (βi)1≤i≤m; βi ∈ L2(Ωκ)

}
,

Vκ =
{
u ∈W 1,2(Ωκ)d; u = 0 on Γκ1

}
. These are real Hilbert spaces endowed with the
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inner products ⟨u, v⟩Hκ =
∫
Ωκ u.vdx, ∀u, v ∈ Hκ, ⟨σ, θ⟩Hκ =

∫
Ωκ σ.θdx, ∀σ, θ ∈ Hκ,

⟨u, v⟩Hκ
1
=

∫
Ωκ u.vdx+

∫
Ωκ ∇u.∇vdx, ∀u, v ∈ Hκ1 ,

⟨σ, θ⟩Hκ
1
=

∫
Ωκ σ.θdx+

∫
Ωκ Div σ.Div θdx, ∀σ, θ ∈ Hκ,

⟨β, k⟩Yκ =
∫
Ωκ β.kdx, ∀β, k ∈ Y, ⟨u, v⟩Vκ = (ε(u), ε(v))Hκ ∀u, v ∈ Vκ and the associated

norms ∥.∥Hκ , ∥.∥Hκ , ∥.∥Hκ
1
, ∥.∥Hκ

1
, ∥.∥Yκ and ∥.∥Vκ , respectively. Here and below we use

the notation

∇u = (ui,j), ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), ∀u ∈ Hκ1 ,

Div σ = (σij,j), ∀σ ∈ Hκ
1 .

Completeness of the space (Vκ, ∥.∥Vκ) follows from the assumption meas(Γκ1 > 0), which
allows the use of Korn’s inequality. We denote uκ as the trace of an element uκ ∈ Hκ1 on
Γκ. For every element uκ ∈ Vκ, we denote by uκν and uκτ the normal and the tangential
components of u on the boundary Γκ given by uκν = uκ.νκ, uκτ = uκ − uκνν

κ. Also, for
an element σκ ∈ Hκ

1 , we denote by σκν, σκν and σκτ the trace, the normal trace and the
tangential trace of σκ to Γκ, respectively. In addition to the Sobolev trace theorem, there
exists a constant ctr > 0, depending only on Ωκ, Γκ1 and Γ3 such that

∥uκ∥L2(Γ3)d ≤ ctr∥uκ∥Vκ , ∀uκ ∈ Vκ. (2.16)

Denote Eκ0 = L2(Ωκ), Eκ1 = H1(Ωκ), ⟨., .⟩Eκ
0
= ⟨., .⟩L2(Ωκ), ⟨., .⟩Eκ

1
= ⟨., .⟩H1(Ωκ), ∥.∥Eκ

0
=

∥.∥L2(Ωκ) and ∥.∥Eκ
1
= ∥.∥H1(Ωκ). For the electric unknowns ψ

κ and Dκ, we use the spaces

Wκ = {ψκ ∈ Eκ1 ; ψ
κ = 0 on Γκa} ,

Wκ =
{
Dκ = (Dκ

i )1≤i≤d; D
κ
i ∈ L2(Ωκ), divDκ ∈ L2(Ωκ)

}
.

These are real Hilbert spaces with the inner products

⟨ψκ, φκ⟩Wκ =

∫
Ωκ

∇ψκ.∇φκdx, ⟨Dκ, Eκ⟩Wκ =

∫
Ωκ

Dκ.Eκdx+

∫
Ωκ

divDκ.divEκdx,

(2.17)
where divDκ = (Dκ

i,i), and the associated norms are denoted by ∥.∥Wκ and ∥.∥Wκ ,
respectively. Completeness of the space (Wκ, ∥.∥Wκ) is a consequence of the assumption
meas(Γκa) > 0 which allows the use of the Friedrichs-Poincaré inequality. When σκ ∈ Hκ

1 ,
τκ ∈ H1(Ωκ) and Dκ ∈ Wκ are sufficiently regular functions, the following three Green’s
formulas hold

⟨σκ, ε(vκ)⟩Hκ + ⟨Div σκ, vκ⟩Hκ =

∫
Γκ

σκνκ.vκda, ∀vκ ∈ Hκ1 , (2.18)

⟨∆τκ, δκ⟩Hκ + ⟨∇τκ,∇δκ⟩L2(Ωκ) =

∫
Γκ

∂τκ

∂νκ
δκda, ∀δκ ∈ H1(Ωκ), (2.19)

(Dκ,∇ϕκ)Hκ + (divDκ, ϕκ)L2(Ωκ) =

∫
Γκ

Dκνκϕκda, ∀ϕκ ∈ H1(Ωκ). (2.20)

In order to simplify the notations, we define the spaces

V = {u = (u1, u2) ∈ V1 × V2; u1ν + u2ν = 0 on Γ3},
H = H1 ×H2, H1 = H1

1 ×H2
1, H = H1 ×H2, H1 = H1

1 ×H2
1, Y = Y1 × Y2,

E0 = E1
0 × E2

0 , E1 = E1
1 × E2

1 , W = W1 ×W2, W = W1 ×W2.
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The spaces V, H, H, Y, E0, E1, W and W are real Hilbert spaces endowed with the
canonical inner products denoted by ⟨., .⟩V , ⟨., .⟩H, ⟨., .⟩H, ⟨., .⟩Y, ⟨., .⟩E0

, ⟨., .⟩E1
, ⟨., .⟩W,

and ⟨., .⟩W . The associate norms will be denoted by ∥.∥V , ∥.∥H, ∥.∥H, ∥.∥Y, ∥.∥E0 , ∥.∥E1 ,
∥.∥W, and ∥.∥W , respectively.

Finally, for any real Hilbert space X, we use the classical notation for the spaces
Lp(0, T ;X), W k,p(0, T ;X), where p ∈ [1,+∞], k ∈ [1,+∞[. We denote by C(0, T ;X)
and C1(0, T ;X) the space of continuous and continuously differentiable functions from
[0, T ] to X, respectively, with the norms

∥π∥C(0,T ;X) = max
t∈[0,T ]

∥π(t)∥X , ∥π∥C1(0,T ;X) = max
t∈[0,T ]

∥π(t)∥X + max
π∈[0,T ]

∥π̇(t)∥X ,

respectively. Moreover, we use the dot above to indicate the derivative with respect to
the time variable. Moreover, if X1 and X2 are real Hilbert spaces, then X1×X2 denotes
the product Hilbert space endowed with the canonical inner product ⟨., .⟩X1×X2 .

We now list assumptions on the data. Assume the operators Aκ, Bκ, Fκ, Gκ, Rκ,
Θκ, Ψκ, Sκ, and Eκ satisfy the following conditions

(
LAκ , mAκ , LBκ , LFκ , LGκ , mRκ ,

LΘκ , LΨκ and LSκ being positive constants
)
for κ = 1, 2:

H(1): (a) Aκ : Ωκ × Sd → Sd;
(b) |Aκ(x, ε1)−Aκ(x, ε2)| ≤ LAκ |ε1 − ε2|, ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ωκ;
(c) (Aκ(x, ε1)−Aκ(x, ε2)).(ε1 − ε2) ≥ mAκ |ε1 − ε2|2, ∀ε1, ε2 ∈ Sd a.e x ∈ Ωκ;
(d) Aκ(., ε) is measurable on Ωκ, for all ε ∈ Sd;
(e) Aκ(., 0) belongs to Hκ.

H(2): (a) Bκ : Ωκ × Sd × R → Sd;
(b) |Bκ(x, ε1, r1)− Bκ(x, ε2, r2)| ≤ LBκ

(
|ε1 − ε2|+ |r1 − r2|

)
;

∀ε1, ε2 ∈ Sd, r1, r1 ∈ R, a.e. x ∈ Ωκ;
(c) Bκ(., ε, r) is measurable on Ωκ, for all ε ∈ Sd, r ∈ R;
(d) Bκ(., 0, 0) belongs to Hκ.

H(3): (a) Fκ : Ωκ × Rm × R → Sd;
(b) |Fκ(x, k1, r1)−Fκ(x, k2, r2)| ≤ LFκ

(
|k1 − k2|+ |r1 − r2|

)
;

∀k1, k2 ∈ Rm, r1, r1 ∈ R, a.e. x ∈ Ωκ;
(c) Fκ(., k, r) is measurable on Ωκ, for all k ∈ Rm, r ∈ R;
(d) Fκ(., 0, 0) belongs to Hκ. H(4): (a) Gκ : Ωκ × Rm × R → Rd;
(b) |Gκ(x, k1, r1)− Gκ(x, k2, r2)| ≤ LGκ

(
|k1 − k2|+ |r1 − r2|

)
;

∀k1, k2 ∈ Rm, r1, r1 ∈ R, a.e. x ∈ Ωκ.
(c) Gκ(., k, r) is measurable on Ωκ, for all k ∈ Rm, r ∈ R;
(d) Gκ(., 0, 0) belongs to Hκ.

H(5): (a) Rκ : Ωκ × Rd → Rd;
(b) Rκ = (rκij), r

κ
ij = rκji ∈ L∞(Ωκ), 1 ≤ i, j ≤ d;

(c) Rℓυ.υ ≥ mRκ |υ|2, ∀υ ∈ Rd, a.e. x ∈ Ωκ.

H(6): (a) Θκ : Ωκ × Sd × R× Rm × R → Rm;
(b) |Θκ(x, ε1, r1, k1, d1)−Θκ(x, ε2, r2, k2, d2)| ≤;

LΘκ

(
|ε1 − ε2|+ |r1 − r2|+ |k1 − k2|+ |d1 − d2|

)
;

∀ε1, ε2 ∈ Sd, k1, k2 ∈ Rm, r1, r2, d1, d2 ∈ R, a.e. x ∈ Ωκ;
(c) Θκ(., ε, r, k, d) is measurable on Ωκ, for all ε ∈ Sd, k ∈ Rm, r, d ∈ R;
(d) Θκ(., 0, 0, 0, 0) belongs to L2(Ωκ).
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H(7): (a) Ψκ : Ωκ × Sd × R× Rm × R → R;
(b) |Ψκ(x, ε1, r1, k1, d1)−Ψκ(x, ε2, r2, k2, d2)| ≤;

LΨκ

(
|ε1 − ε2|+ |r1 − r2|+ |k1 − k2|+ |d1 − d2|

)
;

∀ε1, ε2 ∈ Sd, k1, k2 ∈ Rm, r1, r2, d1, d2 ∈ R, a.e. x ∈ Ωκ;
(c) Ψκ(., ε, r, k, d) is measurable on Ωκ, for all ε ∈ Sd, k ∈ Rm, r, d ∈ R;
(d) Ψκ(., 0, 0, 0, 0) belongs to L2(Ωκ).

H(8): (a) Sκ : Ωκ × Sd × R → R;
(b) |Sκ(x, ε1, r1)− Sκ(x, ε2, r2)| ≤ LSκ

(
|ε1 − ε2|+ |r1 − r2|

)
;

∀ ε1, ε2 ∈ Sd,∀r1, r2 ∈ R a.e. x ∈ Ωκ;
(c) Sκ(., ε, r) is measurable on Ωκ, for all ε ∈ Sd, r ∈ R;
(d) Sκ(., 0, 0) belongs to L2(Ωκ).

H(9): (a) Eκ : Ωκ × Sd → Rd;
(b) Eκ = (eκijk), e

κ
ijk = eκikj ∈ L∞(Ωκ), 1 ≤ i, j, k ≤ d;

(c) Eκε.υ = ε.(Eκ)∗υ, ∀ε ∈ Sd, υ ∈ Rd.

We suppose that the mass density, the forces, the traction densities and the foundation’s
temperatures satisfy

H(10): (a) ρκ ∈ L∞(Ωκ), ∃ρ0 > 0; ρκ(x) ≥ ρ0 a.e. x ∈ Ωκ;
(b) fκ0 ∈ L2(0, T ;L2(Ωκ)d), fκ2 ∈ L2(0, T ;L2(Γκ2 )

d);
(c) qκ0 ∈ C(0, T ;L2(Ωκ)), qκ2 ∈ C(0, T ;L2(Γκb ));
(d) χκ ∈ L2(0, T ;L2(Ωκ)).

The energy coefficient, microcrack diffusion coefficient and the friction yield limit g satisfy

H(11): Kκ0 , Kκ1 > 0, g ∈ L∞(Γ3), g ≥ 0, a.e. on Γ3.

Finally, we assume that the initial values satisfy the regularity

H(12): βκ0 ∈ Yκ, uκ0 ∈ Vκ, vκ0 ∈ Hκ, ακ0 ∈ Zκ, τκ0 ∈ Eκ1 .

We will use a modified inner product on H, given by

⟨⟨u, v⟩⟩H =

2∑
κ=1

⟨ρκuκ, vκ⟩Hκ , ∀u, v ∈ H (2.21)

and let |||.|||H be the associated norm. It follows from assumption H(8)(a) that |||.|||H and
∥.∥H are equivalent norms on H, and the inclusion mapping of (V, ∥.∥V) into (H, |||.|||H)
is continuous and dense. We denote by V ′ the dual of V. Identify H with its own dual.
Then

⟨u, v⟩V′×V = ⟨⟨u, v⟩⟩H, ∀u ∈ H, v ∈ V. (2.22)

We define five mappings F : [0, T ] → V ′, Q : [0, T ] → W, a0 : E1 × E1 → R, a1 :
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E1 × E1 → R and J : V → R, respectively, by

⟨F (t), v⟩V′×V =

2∑
κ=1

∫
Ωκ

fκ0 (t) · vκdx+

2∑
κ=1

∫
Γκ
2

fκ2 (t) · vκda ∀v ∈ V, (2.23)

⟨Q(t), ζ⟩W =

2∑
κ=1

∫
Ωκ

qκ0 (t)ζ
κdx−

2∑
κ=1

∫
Γκ
b

qκ2 (t)ζ
κda ∀ζ ∈ W, (2.24)

a0(ξ, ζ) =

2∑
κ=1

Kκ0
∫
Ωκ

∇ξκ.∇ζκdx+

2∑
κ=1

λκ0

∫
Γκ

ξκζκda, (2.25)

a1(ξ, ζ) =

2∑
κ=1

Kκ1
∫
Ωκ

∇ξκ.∇ζκdx, (2.26)

J(u) =

∫
Γ3

g
∣∣u1τ − u2τ

∣∣ da. (2.27)

We note that conditions H(10)(b) and H(10)(c) imply

F ∈ L2(0, T ;V ′), Q ∈ C(0, T ;W). (2.28)

We now turn to deriving a variational formulation of the mechanical problem P. To that
end we assume that {uκ, σκ, ψκ, Dκ, τκ, ακ, βκ} with κ = 1, 2 are sufficiently smooth
functions satisfying (2.1)–(2.15) and let w = (w1, w2) ∈ V and t ∈ [0, T ]. First, we use
Green’s formula (2.18) and by (2.6) (2.8), (2.9) and (2.21)–(2.23), we find

⟨ü(t), w − u̇(t)⟩V′×V +

2∑
κ=1

⟨σκ, ε(wκ − u̇κ(t))⟩Hκ = ⟨F (t), w − u̇(t)⟩V′×V

+

2∑
κ=1

∫
Γ3

σκ(t)νκ.(wκ − u̇κ(t))da.

(2.29)

Using now (2.9) and definition of V, we achieve

2∑
κ=1

σκ(t)νκ.(wκ − u̇κ(t)) = στ (t).((w
1
τ − w2

τ )− (u̇1τ (t)− u̇2τ (t))
)

and use the frictional contact conditions (2.9) and the definition (2.27) to obtain

2∑
κ=1

∫
Γ3

σκ(t)νκ.(wℓ − u̇κ(t))da ≥ −J(w) + J(u̇(t)). (2.30)

Finally, we combine (2.1), (2.29) and (2.30) to deduce that

⟨ü(t), w − u̇(t)⟩V′×V +
2∑

κ=1
⟨Aκε(u̇κ) + Bκ(ε(uκ), ακ), ε(wκ − u̇κ(t))⟩Hκ

+
2∑

κ=1
⟨(Eκ)∗ ∇ψκ, ε(wκ − u̇κ(t))⟩Hκ +

2∑
κ=1

⟨Fκ(βκ, τκ), ε(wκ − u̇κ(t))⟩Hκ

+J(w)− J(u̇(t)) ≥ ⟨F (t), w − u̇(t)⟩V′×V .

(2.31)
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Similarly, let ϕ = (ϕ1, ϕ2) ∈ W and t ∈ [0, T ], from (2.2), (2.7), (2.14), (2.19) and (2.24),
we deduce that

2∑
κ=1

〈
Rκ∇ψκ(t)− Eκε(uκ(t))− Gκ(βκ(t), τκ(t)),∇ϕκ

〉
Hκ = ⟨Q(t), ϕ⟩W. (2.32)

On the other hand, let ξ = (ξ1, ξ2) ∈ Z and t ∈ [0, T ]. Then, using (2.5), we have

2∑
κ=1

⟨α̇κ(t), ξκ − ακ(t)⟩L2(Ωκ) −
2∑

κ=1
⟨Kκ1△ακ(t), ξκ − ακ(t)⟩L2(Ωκ)

≥
2∑

κ=1
⟨Sκ(ε(uκ(t)), ακ(t)), ξκ − ακ(t)⟩L2(Ωκ).

Combining this inequality with (2.11), (2.19) and (2.26), we obtain

2∑
κ=1

⟨α̇κ(t), ξκ − ακ(t)⟩L2(Ωκ) + a1(α(t), ξ − α(t))

≥
2∑

κ=1
⟨Sκ(ε(uκ(t)), ακ(t)), ξκ − ακ(t)⟩L2(Ωκ).

(2.33)

For the temperature, let δ = (δ1, δ2) ∈ E1 and t ∈ [0, T ]. Using (2.4), (2.12) and (2.19),
we have

2∑
κ=1

〈
Ψℓ

(
ε(uκ(t)), ακ(t), βκ(t), τκ(t)

)
+ χκ(t), δκ

〉
L2(Ωκ)

=

2∑
κ=1

⟨τ̇κ(t), δκ⟩L2(Ωκ) −
2∑

κ=1

∫
Ωκ

Kκ0∆τκ(t)δκdx

=

2∑
κ=1

⟨τ̇κ(t), δκ⟩L2(Ωκ) +

2∑
κ=1

∫
Ωκ

Kκ0∇τκ(t)∇δκdx+

2∑
κ=1

∫
Γκ

λκ0τ
κ(t)δκda.

We use now (2.25) in the previous equality to obtain

a0(τ(t), δ) =

2∑
κ=1

〈
Ψℓ

(
ε(uκ), ακ, βκ, τκ

)
(t), δκ

〉
Eκ

0

−
2∑

κ=1

⟨τ̇κ(t)− χκ(t), δκ⟩Eκ
0
. (2.34)

We now gather the constitutive law (2.3), the initial condition (2.15), inequalities (2.31),
(2.33), and equalities (2.32), (2.34) to obtain the following weak formulation of the piezo-
electric contact problem P .

Problem PV . Find u = (u1, u2) : [0, T ] → V, ψ = (ψ1, ψ2) : [0, T ] → W,
τ = (τ1, τ2) : [0, T ] → E1, α = (α1, α2) : [0, T ] → E1 and β = (β1, β2) : [0, T ] → Y
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such that for a.e.t ∈ (0, T ),

β̇κ(t) = Θκ
(
ε(uκ(t)), ακ(t), βκ(t), τκ(t)

)
in Ωκ, κ = 1, 2, (2.35)

⟨ü(t), w − u̇(t)⟩V′×V +
2∑

κ=1
⟨Aκε(u̇κ(t))+Bκ(ε(uκ(t)), ακ(t)), ε(wκ − u̇κ(t))⟩Hκ

+
2∑

κ=1
⟨(Eκ)∗ ∇ψκ(t), ε(wκ − u̇κ(t))⟩Hκ+

2∑
κ=1

⟨Fκ(βκ(t), τκ(t)), ε(wκ − u̇κ(t))⟩Hκ

+J(w)− J(u̇(t)) ≥ ⟨F (t), w − u̇(t)⟩V′×V ∀w ∈ V,

(2.36)

2∑
κ=1

〈
Rκ∇ψκ(t)− Eκε(uκ(t))− Gκ(βκ(t), τκ(t)),∇ϕκ

〉
Hκ = ⟨Q(t), ϕ⟩W,

∀ϕ ∈ W,
(2.37)

α(t) ∈ Z,
2∑

κ=1
⟨α̇κ(t), ξκ − ακ(t)⟩L2(Ωκ) + a(α(t), ξ − α(t))

≥
2∑

κ=1
⟨Sκ

(
ε(uκ(t)), ακ(t)

)
, ξκ − ακ(t)⟩L2(Ωℓ) ∀ξ ∈ Z,

 (2.38)

a0(τ(t), δ) =
∑2
κ=1

〈
Ψκ

(
ε(uκ(t)), ακ(t), βκ(t), τκ(t)

)
, δκ

〉
Eκ

0

−
∑2
κ=1⟨τ̇κ(t)− χκ(t), δκ⟩Eκ

0
∀δ ∈ E1,

}
(2.39)

u(0) = (u10, u
2
0), u̇(0) = (v10 , v

2
0), α(0) = (α1

0, α
2
0), β(0) = (β1

0 , β
2
0),

τ(0) = (τ10 , τ
2
0 ).

(2.40)

The existence of a unique solution to Problem PV will be presented in the next section.

3 Main Existence and Uniqueness Result

Now, we propose our existence and uniqueness result.

Theorem 3.1 Under the assumptions H(1)–H(12), there exists a unique solution
{u, ψ, τ, α, β} to problem PV . Moreover, the solution satisfies

u ∈W 1,2(0, T ;V) ∩ C1(0, T ;H) ∩W 2,2(0, T ;V ′), (3.1)

ψ ∈ C(0, T ;W), (3.2)

τ ∈W 1,2(0, T ;E0) ∩ L2(0, T ;E1), (3.3)

α ∈W 1,2(0, T ;Y), (3.4)

β ∈W 1,2(0, T ;E0) ∩ L2(0, T ;E1). (3.5)

The functions {σ,D, u, ψ, τ, α, β}, which satisfy (2.1), (2.2) and (2.35)–(2.40) , are
called the weak solution of the thermo-piezoelectric contact Problem P. We conclude
by Theorem 3.1 that, under the assumptions H(1)–H(12), the mechanical problem (2.1)–
(2.15) has a unique weak solution {σ,D, u, ψ, τ, α, β}. To precuse the regularity of the
weak solution, we note that the constitutive relation (2.1)–(2.2), the assumptions H(1)–
H(5), H(9) and the regularities (3.1)–(3.3) show that σ ∈ C(0, T ;H) and D ∈ C(0, T ;H).
We test (2.36) with vκ ∈ C∞

0 (Ωκ;Rd) and v3−κ = 0. Then we take ϕκ ∈ C∞
0 (Ωκ) and

ϕ3−κ = 0 in (2.37) to obtain that

Div σκ(t) + fκ0 (t) = ρκüκ(t), divDκ(t) = qκ0 (t),
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almost everywhere in Ωκ for a.e. t ∈ (0, T ) and κ = 1, 2. Next, we use assumptions H(10)
to deduce that Div σκ ∈ L2(0, T ;Hκ), divDκ ∈ C(0, T ;Eκ0 ), κ = 1, 2, which shows that

σ ∈ L2(0, T ;H1), D ∈ C(0, T ;W). (3.6)

We conclude that the weak solution {σ,D, u, ψ, τ, α, β} of the thermo-piezoelectric
contact Problem P has the regularity (3.1)–(3.6).

The proof of Theorem 3.1 is carried out in several steps that we prove in what follows,
everywhere in this section we suppose that assumptions of Theorem 3.1 hold, and let a
η = (η1, η2) ∈ L2(0, T ;V ′) be given. In the first step, we consider the following variational
problem.

Problem Puη . Find uη = (u1η, u
2
η) : [0, T ] → V such that for a.e. t ∈ (0, T ),

⟨üη(t), w − u̇η(t)⟩V′×V +
2∑

κ=1

〈
Aκε(u̇κη(t)), ε(w

κ − u̇κη(t))
〉
Hκ

+J(w)− J(u̇η(t)) ≥ ⟨F (t)− η(t), w − u̇η(t)⟩V′×V , ∀w ∈ V,
uη(0) = (u10, u

2
0), u̇η(0) = (v10 , v

2
0).

 (3.7)

We define the mappings A : V → V ′ and Fη : [0, T ] −→ V ′, respectively, by

⟨Au, v⟩V′×V =
2∑

κ=1
⟨Aκε(uκ), ε(vκ)⟩Hκ , ∀u, v ∈ V,

⟨Fη(t), v⟩V′×V = ⟨F (t)− η(t), v⟩V′×V , ∀t ∈ [0, T ], v ∈ V.
(3.8)

Use velocities vκη = u̇κη with κ = 1, 2. So, Problem Puη
has been rewritten.

Problem Pvη . Find vη = (v1η, v
2
η) : [0, T ] → V such that for a.e. t ∈ (0, T ),

⟨v̇η(t), w − vη(t)⟩V′×V + ⟨Avη(t), w − vη(t)⟩V′×V + J(w)− J(vη(t))

≥ ⟨Fη(t), w − vη(t)⟩V′×V , ∀w ∈ V.
vη(0) = (v10 , v

2
0).

 (3.9)

Lemma 3.1 Assume that H(1) and H(11) hold, then the mappings A and J defined,
respectively, by (3.8) and (2.27) satisfy
(a) A : V → V ′ is semi-continuous and strongly monotonous,
(b) ∃ C1

A ≥ 0, ∃C2
A ≥ 0 such that ∥Au∥V′ ≤ C1

A∥u∥V + C2
A, ∀u ∈ V,

(c) for all sequence (uk) and u in L2(0, T ;V) such that uk ⇀ u weakly in L2(0, T ;V),
Auk ⇀ Au weakly in L2(0, T ;V ′)

and limk→+∞ inf
∫ T
0
⟨Auk(s), uk(s)⟩V′×Vds ≥

∫ T
0
⟨Au(s), u(s)⟩V′×Vds

(a′) J : V → R is a convex and lower semi-continuous functional.
There exists a sequence of C1 convex functions (Jk) : V → R

(b′) ∃ Cg ≥ 0 such that ∥J ′
k(u)∥V′ ≤ Cg, ∀k ∈ N, ∀u ∈ V,

(c′) limk→+∞
∫ T
0
Jk(u(s))ds =

∫ T
0
J(u(s))ds, ∀u ∈ L2(0, T ;V),

(d′) There exists a sequence (uk) and u in L2(0, T ;V) such that

uk ⇀ u weakly in L2(0, T ;V), then limk→+∞ inf
∫ T
0
Jk(uk(s))ds ≥

∫ T
0
J(u(s))ds,

where J ′
k(u) is the Fréchet derivative of Jk at u.
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Proof. From the definition (3.8) and assumption H(1), we can verify that A satisfies
the conditions (a)-(b), and applying the Lebesgue theorem, we deduce the condition (c).
On the other hand, by using the continuous embedding V ↪→ L2(Γ3)

d, we find that J is
convex and continuous. To approximate the function J , we use the following functional
Jk : V → R defined by

Jk(u) =

∫
Γ3

g

√∣∣u1τ − u2τ
∣∣2 + k−1 da, ∀u = (u1, u2) ∈ V, ∀k ∈ N∗.

We verify that the Fréchet derivative of Jk at u = (u1, u2) is given by

⟨J ′
k(u), h⟩V′×V =

∫
Γ3

g
(u1τ − u2τ , h

1
τ − h2τ )Rd√∣∣u1τ − u2τ
∣∣2 + k−1

da, ∀h = (h1, h2) ∈ V. (3.10)

Then Jk is of class C1. Direct algebraic computations show that for all a ≥ 0, b ≥ 0 such
that a+ b = 1, and for all reals x and y, k ≥ 1,√

(ax+ by)2 + k−1 ≤ a
√
x2 + k−1 + b

√
y2 + k−1.

Then Jk is convex for all k ∈ N∗. From (3.10), it follows that

∃c ≥ 0, ∀u ∈ V, ∥J ′
k(u)∥V′ ≤ c∥g∥L∞(Γ3),

therefore (b’) is satisfied. From the definition of Jk, we have limk→+∞Jk(u) = J(u) and
as Jk is continuous on V, applying the Lebesgue theorem, we deduce the property (c’).
Finally, (d’) is a consequence of the fact that

∀u ∈ V, ∀k ∈ N∗, Jk(u) ≥ J(u),

which finishes the proof.

Lemma 3.2 Problem Pvη has a unique solution vη which satisfies

vη ∈ C(0, T ;H) ∩ L2(0, T ;V) ∩W 1,2(0, T ;V ′).

The proof of Lemma 3.2 is found in [9, p.48].
Let now uη = (u1η, u

2
η) : [0, T ] → V be the function defined by

uκη(t) =

∫ t

0

vκη (s)ds+ uκ0 , ∀t ∈ [0, T ], κ = 1, 2. (3.11)

In the study of Problem Puη , we have the following result.

Lemma 3.3 Puη has a unique solution satisfying the regularity expressed in (3.1).

Proof. The proof of Lemma 3.3 is a consequence of Lemma 3.2 and the relation
(3.11). In the second step, let π = (π1, π2) ∈ L2(0, T ;E0) and consider the auxiliary
problem.

Problem Pτπ . Find τπ = (τ1π , τ
2
π) : [0, T ] → E0 such that for a.e. t ∈ (0;T ),∑2

κ=1⟨τ̇κπ (t)− πκ(t)− χκ(t), δκ⟩Eκ
0
+ a0(τπ(t), δ) = 0, ∀δ ∈ E0, (3.12)

τπ(0) = (τ10 , τ
2
0 ). (3.13)
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Lemma 3.4 There exists a unique solution τπ to the auxiliary problem Pτπ satisfying
(3.3).

Proof. The proof of Lemma 3.4 is a consequence of the Poincaré-Friedrichs inequality
and the definitions (2.25) of the operator a0(., .).

In the third step, let µ = (µ1, µ2) ∈ L2(0, T,Y) be given, and define βµ = (β1
µ, β

2
µ) ∈

W 1,2(0, T,Y) by

βκµ(t) = βκ0 +

∫ t

0

µκ(s)ds, κ = 1, 2. (3.14)

We use uη = (u1η, u
2
η) obtained in Lemma 3.3 and τπ = (τ1π , τ

2
π) obtained in Lemma 3.4

to construct the following variational problem.

Problem Pψηπµ
. Find ψηπµ = (ψ1

ηπµ, ψ
2
ηπµ) : [0, T ] → W such that for a.e. t ∈ (0, T ),∑2

κ=1

〈
Rκ∇ψκηπµ(t),∇ϕκ

〉
Hκ −

∑2
κ=1

〈
Eκε(uκη(t)) + Gκ(βκµ(t), τκπ (t)),∇ϕκ

〉
Hκ

= (Q(t), ϕ)W ∀ϕ ∈ W.
(3.15)

We have the following result.

Lemma 3.5 Problem Pψηπµ has a unique solution ψηπµ = (ψ1
ηπµ, ψ

2
ηπµ) which satis-

fies the regularity (3.2).

Proof. We define a bilinear form b(., .) : W×W → R by

b(ψ, ϕ) =

2∑
κ=1

⟨Rκ∇ψκ,∇ϕκ⟩Hκ , ∀ψ, ϕ ∈ W. (3.16)

We use H(5) and (3.16) to show that the bilinear form b(., .) is continuous, symmetric
and coercive on W, moreover, using (2.24) and the Riesz representation theorem, we may
define an element Qηπµ : [0, T ] → W such that

⟨Qηπµ(t), ϕ⟩W = ⟨Q(t), ϕ⟩W +
∑2
κ=1

〈
Eκε(uκη(t)) + Gκ(βκµ(t), τκπ (t)),∇ϕκ

〉
Hκ

∀ϕ ∈ W, t ∈ (0, T ).

We apply the Lax-Milgram theorem to deduce that there exists a unique element
ψηπµ(t) = (ψ1

ηπµ(t), ψ
2
ηπµ(t)) ∈ W such that

b(ψηπµ(t), ϕ) = ⟨Qηπµ(t), ϕ⟩W ∀ϕ ∈ W. (3.17)

We conclude that ψηπµ is a solution of Problem Pψηπµ
. Let t1, t2 ∈ [0, T ], it follows from

(3.15) that

∥ψηπµ(t1)− ψηπµ(t2)∥W ≤ C
(
∥uη(t1)− uη(t2)∥V + ∥βµ(t1)− βµ(t2)∥Y

+∥τπ(t1)− τπ(t2)∥E0
+ ∥Q(t1)−Q(t2)∥W

)
.

(3.18)

Due to (2.28), (3.2), (3.3) and βµ ∈W 1,2(0, T ;Y), inequality (3.18) implies that ψηπµ ∈
C(0, T ;W). In the fourth step, let θ = (θ1, θ1) ∈ L2(0.T ;E0) be given and consider the
following initial-value problem.
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Problem Pαθ
. Find αθ = (α1

θ, α
2
θ) : [0, T ] → E1 such that for a.e. t ∈ (0, T ),

αθ(t) ∈ Z,
2∑

κ=1

⟨α̇κθ (t)− θκ(t), µκ − ακθ (t)⟩L2(Ωκ) + a1(αθ(t), µ− αθ(t)) ≥ 0, ∀µ ∈ Z.

(3.19)

In the study of Problem Pαθ
, we have the following result.

Lemma 3.6 The problem Pαθ
has a unique solution αθ = (α1

θ, α
2
θ) which satisfies

the regularity (3.5).

Proof. We use a standard result for parabolic variational inequalities [9, p.47]. Fi-
nally, we now pass to the final step of the proof of Theorem 3.1 in which we use a fixed
point argument. To this end, we consider the mapping

Σ : L2(0, T ;V ′ × Y× E0 × E0) → L2(0, T ;V ′ × Y× E0 × E0)

defined by

Σ(η, µ, π, θ) =
(
Σ1(η, µ, π, θ),Σ2(η, µ, π, θ),Σ3(η, µ, π, θ),Σ4(η, µ, π, θ)

)
(3.20)

with

⟨Σ1(η, µ, π, θ)(t), v⟩V′×V =

2∑
κ=1

〈
Bκ(ε(uκη(t)), ακθ (t)) +

(
Eκ

)∗∇ψκηπµ(t), ε(vκ)〉Hκ

+

2∑
κ=1

〈
Fκ(βκµ(t), τ

κ
π (t)), ε(v

κ)
〉
Hκ , ∀v ∈ V, (3.21)

Σ2(η, µ, π, θ)(t) =
(
Θ1

(
ε(u1η(t)), α

1
θ(t), β

1
µ(t), τ

1
π(t)

)
, Θ2

(
ε(u2η(t)), α

2
θ(t), β

2
µ(t), τ

2
π(t)

))
,

(3.22)

Σ3(η, µ, π, θ)(t) =
(
Ψ1

(
ε(u1η(t)), α

1
θ(t), β

1
µ(t), τ

1
π(t)

)
, Ψ2

(
ε(u2η(t)), α

2
θ(t), β

2
µ(t), τ

2
π(t)

))
,

(3.23)

Σ4(η, µ, π, θ)(t) =
(
S1(ε(u1η(t)), α

1
θ(t)) , S

2(ε(u2η(t)), α
2
θ(t))

)
. (3.24)

We have the following result.

Lemma 3.7 The operator Σ has a unique fixed point (η∗, µ∗, π∗, θ∗) ∈ L2(0, T ;V ′ ×
Y× E0 × E0).

Proof. Let (η1, µ1, π1, θ1), (η2, µ2, π2, θ2) in L2(0, T ;V ′ × Y × E0 × E0) and let t ∈
[0, T ]. For simplicity, we use the notation ui = uηi , vi = u̇ηi , ψi = ψηiπiµi

, βi = βµi
,

τi = τπi
and αi = αθi for i = 1, 2. From the definition (3.20)–(3.24) combined with the

assumptions H(2), H(3) and H(6)–H(9), we conclude that there is C > 0 such that∥∥Σ(η1, µ1, π1, θ1
)
(t)− Σ

(
η2, µ2, π2, θ2

)
(t)

∥∥2
V′×Y×E0×E0

≤ C
(∥∥u1(t)− u2(t)

∥∥2
V

+
∥∥ψ1(t)− ψ2(t)

∥∥2
W +

∥∥β1(t)− β2(t)
∥∥2
Y +

∥∥τ1(t)− τ2(t)
∥∥2
E0

+
∥∥α1(t)− α2(t)

∥∥2
E0

)
.

(3.25)
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Moreover, from (3.11), we have

∥u1(t)− u2(t)∥V ≤
∫ t

0

∥v1(s)− v2(s)∥Vds, ∀t ∈ [0, T ]. (3.26)

Substituting η = η1, w = v2 and η = η2, w = v1 in (3.7), we find

⟨v̇1− v̇2, v1−v2⟩V′×V+

2∑
κ=1

⟨Aκε(vκ1 )−Aκε(vκ2 ), ε(v
κ
1 −vκ2 )⟩Hκ +⟨η1−η2, v1−v2⟩V′×V ≤ 0.

We integrate this inequality with respect to time, use the initial conditions
v1(0) = v2(0) = (v10 , v

2
0), the assumption H(1)(c) and the inequality

⟨v̇1 − v̇2, v1 − v2⟩V′×V ≥ 0 to find that

min(mA1 ,mA2)

∫ t

0

∥v1(s)− v2(s)∥2Vds ≤ −
∫ t

0

⟨η1(s)− η2(s), v1(s)− v2(s)⟩V′×Vds.

Then, using the inequality 2ab ≤ a2

ϵ + ϵb2, we obtain∫ t

0

∥v1(s)− v2(s)∥2Vds ≤ C

∫ t

0

∥η1(s)− η2(s)∥2V′ds, (3.27)

where C is a positive constant that may change from line to line.
From (3.26) and (3.27), we deduce

∥u1(t)− u2(t)∥2V ≤ C

∫ t

0

∥η1(s)− η2(s)∥2V′ds. (3.28)

The definition (3.14) yields

∥β1(t)− β2(t)∥2Y ≤
∫ t

0

∥µ1(s)− µ2(s)∥2Yds. (3.29)

On the other hand, from (3.12), we can write〈
τ̇1(t)− τ̇2(t), τ1(t)− τ2(t)

〉
E0

+ a0(τ1(t)− τ2(t), τ1(t)− τ2(t))

=
〈
π1(t)− π2(t), τ1(t)− τ2(t)

〉
E0

a.e.t ∈ (0, T ).

We integrate this equality with respect to time, and use the initial conditions
τ1(0) = τ2(0) = (τ10 , τ

2
0 ) and inequality a0(τ1 − τ2, τ1 − τ2) ≥ 0 to find

1

2
∥τ1(t)− τ2(t)∥2E0

≤
∫ t

0

∥π1(s)− π2(s)∥E0 .∥τ1(s)− τ2(s)∥E0ds.

Then, using the inequality 2ab ≤ a2 + b2, we obtain

∥τ1(t)− τ2(t)∥2E0
≤

∫ t

0

∥π1(s)− π2(s)∥2E0
ds+

∫ t

0

∥τ1(s)− τ2(s)∥2E0
ds

and, by using Gronwall’s inequality, we obtain

∥τ1(t)− τ2(t)∥2E0
≤ C

∫ t

0

∥π1(s)− π2(s)∥2E0
ds a.e. t ∈ (0, T ). (3.30)
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Also, (3.15) and the arguments similar to those used in the proof of (3.18) yield

∥ψ1(t)−ψ2(t)∥W ≤ C
(
∥u1(t)−u2(t)∥V+∥β1(t)−β2(t)∥Y+∥τ1(t)−τ2(t)∥E0

)
a.e. t ∈ (0, T ).

(3.31)
Furthermore, by substituting θ = θ1, µ = α1 and θ = θ2, µ = α2 in (3.19) and subtract-
ing the two inequalities obtained, we find

(α̇1(t)− α̇2(t), α1(t)− α2(t))E0
+ a1(α1(t)− α2(t), α1(t)− α2(t))

≤ (θ1(t)− θ2(t), α1(t)− α2(t))E0
, a.e. t ∈ (0, T ).

We integrate the previous inequality and applying the inequality of Hölder and Young
with Gronwall’s lemma, we deduce that

∥α1(t)− α2(t)∥2E0
≤ C

∫ t

0

∥θ1(s)− θ2(s)∥2E0
ds a.e. t ∈ (0, T ). (3.32)

We substitute (3.28)–(3.32) in (3.25), we obtain∥∥Σ(η1, µ1, π1, θ1
)
(t)− Σ

(
η2, µ2, π2, θ2

)
(t)

∥∥2
V′×Y×E0×E0

≤
C
∫ t
0

∥∥(η1, µ1, π1, θ1
)
(s)−

(
η2, µ2, π2, θ2

)
(s)

∥∥2
V′×Y×E0×E0

ds a.e. t ∈ (0, T ).

Reiterating this inequality n times leads to∥∥Σn(η1, µ1, π1, θ1
)
− Σn

(
η2, µ2, π2, θ2

)∥∥2
L2(0,T ;V′×Y×E0×E0)

≤
CnTn

n!

∥∥(η1, µ1, π1, θ1
)
−
(
η2, µ2, π2, θ2

)∥∥2
L2(0,T ;V′×Y×E0×E0)

.

Thus, for n sufficiently large, Σn is a contraction on the Banach space L2(0, T ;V ′ ×Y×
E0 × E0), and so Σ has a unique fixed point.

Now, we have all the ingredients to prove Theorem 3.1.
Proof. Let (η∗, µ∗, π∗, θ∗

)
∈ L2(0, T ;V ′ × Y × E0 × E0) be the fixed point Σ

defined by (3.20)–(3.24) and denote

u∗ = uη∗ , τ∗ = τπ∗ , (u̇κ∗(t)), ε(w
κ − ψ∗ = ψη∗π∗µ∗ , α∗ = αθ∗ , β∗ = βµ∗ . (3.33)

We prove {u∗, ψ∗, τ∗, α∗, β∗} satisfies (2.35)–(2.40) and the regularities (3.1)–(3.5). In-
deed, we write (3.7) for η = η∗ and use (3.33) to find

⟨ü∗(t), w − u̇∗(t)⟩V′×V +
2∑

κ=1
⟨Aκεu̇κ∗(t))⟩Hκ + J(w)− J(u̇∗(t))

+⟨η∗(t), w − u̇∗(t)⟩V′×V ≥ ⟨F (t), w − u̇∗(t)⟩V′×V , ∀w ∈ V, a.e. t ∈ (0, T ).
(3.34)

Equation Σ1

(
η∗, µ∗, π∗, θ∗

)
= η∗ combined with (3.21) shows that for a.e.t ∈ (0, T ),

⟨η∗(t), v⟩V′×V =

2∑
κ=1

〈
Bκ(ε(uκ∗(t)), ακ∗(t)) + Fκ(βκ∗ (t), τ

κ
∗ (t)) +

(
Eκ

)∗∇ψκ∗ (t), ε(vκ)〉Hκ
,

(3.35)

We substitute (3.35) in (3.34) and use (3.33) to see that (2.36) is satisfied. From
Σ2

(
η∗, µ∗, π∗, θ∗

)
= µ∗ and (3.14), we see that (2.35) is satisfied. We write now (3.15) for
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(η, π, µ) = (η∗, π∗, µ∗) and use (3.33) to find (2.37). The equalities Σ3

(
η∗, µ∗, π∗, θ∗

)
= π∗

and Σ4

(
η∗, µ∗, π∗, θ∗

)
= θ∗, combined with (3.12), (3.19) show that (2.38)–(2.39) are sat-

isfied. Next, (2.40) and the regularity (3.1)–(3.5) follow from Lemmas 3.1, 3.4, 3.5 and
3.6 and the relation (3.14), which concludes the existence part of Theorem 3.1. The
uniqueness of the solution follows from the uniqueness of the fixed point of the operator
Σ defined by (3.20)–(3.24) combined with the unique solvability of Problems Puη

, Pτπ ,
Pφηπµ and Pαθ

.
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Abstract: The goal of this paper is to study the global exact controllability of a
reaction-diffusion equation in a bounded domain with Dirichlet boundary conditions.
We will first consider the case of bilinear equation, then we identify a set of target
states that can be exactly reached at any a priori given time. This result is then
applied to prove the exact controllability of semilinear reaction-diffusion equation un-
der distributed controls. The approach is constructive and based on linear semigroup
theory and null controllability properties of linear problems.

Keywords: exact controllability; reaction-diffusion equation; bilinear control.
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1 Introduction

This paper deals with the controllability of the following semilinear reaction-diffusion
equation:  yt = ∆y + q(x, t)y + f(y), in QT (T > 0),

y(0, t) = 0, on ΣT ,
y(x, 0) = y0(x), in Ω,

(1)

where Ω is a bounded domain in Rn, n ≥ 1 with a boundary ∂Ω, QT = Ω × (0, T ) and
ΣT = ∂Ω×(0, T ). Here, q ∈ L∞(QT ) is a control function with the corresponding solution
y = y(x, t). The nonlinearity f : R −→ R is assumed to be a Lipschitz function such
that f(0) = 0.

In terms of applications, the equation like (1) provides the practical description of
various real problems such as chemical reactions, nuclear chain reactions, biomedical
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models etc. (see [2,9,10,14,19,20] and the references therein). Equation (1) can be also
used to describe a diffusion process with y(x, t) being the concentration of a substance at
the point x at time t, or a heat-transfer process, with y(x, t) describing the temperature
at the point x and time t (see [5] and [14], p. 17). It is shown in [2] that the equation like
(1) can be also used to study the insect dispersal with constant random motion and an
(x, t)−dependent emigration parameter. It may be also used as a model for the growth
of avascular tumor [9].

The question of controllability of the bilinear reaction-diffusion equation has attracted
many researchers (see e.g., [4,5,8] and [14]- [18]). In [4], the approximate controllability
properties have been derived for the truncated bilinear version of (1) (i.e., f = 0) for the
initial and target states y0, yd with finitely many changes of sign. The same question has
been discussed by Fernàndez and Khapalov in [8] when the support of the bilinear control
is allowed to depend on time. The exact controllability of the bilinear part of equation
(1) with inhomogeneous Dirichlet conditions has been considered in [15, 17]. However,
the assumptions of [15,17] are not compatible when dealing with homogeneous Dirichlet
conditions. Recently, the approximate and exact controllability have been studied for
the truncated bilinear version of equation (1) under the sign condition y0(x)yd(x) ≥
0, for almost every x ∈ Ω in [18]. Moreover, the partial controllability of bilinear
reaction-diffusion equation has been studied in [12]. According to the maximum principle,
it is not possible to steer the bilinear part of (1) from an initial state which has a
constant sign to a target state that change its sign. In [13], Khapalov studied the global
approximate controllability of the semilinear convection-diffusion-reaction equation by
multiplicative controls while dealing with nonnegative initial and target states. In [5],
Cannarsa, Floridia and Khapalov have studied the global approximate controllability
properties of system (1) in the one-dimensional case for suitable classes of initial and
target states that change their sign at a finite number of points. However, in the works
above, the time of steering depends on the given initial and target states. In this paper,
we are interested in the multiplicative controllability of the semilinear reaction diffusion
system (1) at a priori given time, when the initial and target states have the same sign

at almost every x ∈ Ω and satisfy ln(y
d

y0
) ∈ L∞(Ω). We will first deal with a bilinear case

(f = 0), then we proceed to the full equation (1). Moreover, we will see that the exact
steering of the semilinear system (1) can be reduced to the controllability of its bilinear
part since the nonlinear term f can be absorbed by the control in an appropriate way.

The paper is organized as follows. In the next section, we first consider the problem
of exact controllability of the bilinear part of the system (1), and we will show that the
steering time can be arbitrary small and uniform for all initial and reached states. Then,
we apply this result to solve the problem of exact controllability of the semilinear system
(1) at a priori fixed time. In the third section, we present a numerical example with
simulations.

2 The Main Results

Our goal in this section is to study the exact controllability properties of the system (1)
at a given time T > 0.
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2.1 Exact controllability of the bilinear equation

Here we consider the following system: yt = ∆y + v(x, t)y, in QT ,
y(0, t) = 0, on ΣT ,
y(x, 0) = y0(x), in Ω.

(2)

From [18], one may deduce the following approximate controllability result regarding
the bilinear part (2) of the system (1).

Lemma 2.1 [18] For any initial state y0 ∈ L2(Ω), for any function g ∈ W 2,∞(Ω)
and for all ε > 0, there exists a time T = T (y0, yd, ϵ) such that the respective solution to
(2) controlled with v := g

T satisfies

∥y(T )− egy0∥ < ε.

We also recall the following null-controllability of the linear heat equation.

Lemma 2.2 [7, 11] Consider the system ψt = ∆ψ + b(x)ψ + 1ωu2(x, t), inΩ× (t0, T ),
ψ = 0, on ∂Ω× (t0, T ),
ψ(·, t0) = ξ ∈ L2(Ω), in Ω,

(3)

where 0 ≤ t0 < T, b ∈ L∞(Ω) and ω is a nonempty open subset of Ω. Then there is a
control u2 ∈ L∞(Ω × (t0, T )) such that the corresponding solution to (3) vanishes at T.
Furthermore, we have

∥u2∥L∞(Ω×(t0,T )) ≤ C ∥ξ∥L2(Ω), (4)

where C = CT−t0 is a positive constant depending on T − t0 and such that CT−t0 is
bounded near t0 → 0+.

We now state the exact controllability result of the bilinear system (2).

Theorem 2.1 Let y0 ∈ Lp(Ω), (p ≥ 2 and p > n
2 ) and let yd ∈ H2(Ω) such that

i) for a.e. x ∈ Ω, y0(x)yd(x) ≥ 0 and yd(x) = 0 ⇔ y0(x) = 0,
ii) ln(ydy0 )1Ey0

∈ L∞(Ω), where 1Ey0
denotes the characteristic function of the set Ey0 =

{x ∈ Ω/ y0(x) ̸= 0},
iii) ∆yd

yd
1Eyd

∈ L∞(Ω) and |yd| ≥ α > 0, a.e. on some open subset ω ⊂ Ω.

Then for any T > 0, there exists a control v ∈ L∞(QT ) such that the respective solution
to (2) satisfies y(T ) = yd, a.e. in Ω.

Proof. Let T > 0.
1. Approximate steering.
Let g := ln(ydy0 )1E . It follows from the assumption (i) that egy0 = yd. Then, in the

case where g ∈ W 2,∞(Ω), we deduce from Lemma 2.1 that for any ε > 0, there exists
0 < T1 < T small enough such that the corresponding solution to (2) controlled with
v1 = g

T verifies
∥y(T1)− yd∥ < ε. (5)

Moreover, in the general case g ∈ L∞(Ω), one can construct a sequence (gk) ⊂W 2,∞(Ω)
which is uniformly bounded in Ω such that gk → g in L2(Ω), as k → +∞. We will
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consider the control v1(x) =
gk
T1

for a suitably selected k ∈ IN (large enough integer).

Let y(t) be the solution of (2) corresponding to v1(x) and to the initial state y(0) = y0.
Finally, let (y0l) ∈ L∞(Ω) such that y0l → y0 in L2(Ω), as l → +∞.
We have the following triangular inequality:

∥y(T1)− egy0∥ ≤ ∥y(T1)− egky0∥+ ∥egky0 − egky0l∥+ ∥egky0l − egy0l∥+ ∥egy0l − egy0∥

≤ ∥y(T1)− egky0∥+ ∥egky0l − egy0l∥+
(
sup
k∈IN

∥egk∥L∞(Ω) + e∥g∥L∞(Ω)
)
∥y0l − y0∥.

Let L ∈ IN be such that(
sup
k∈IN

∥egk∥L∞(Ω) + e∥g∥L∞(Ω)
)
∥y0L − y0∥ <

ϵ

3
,

and for such value of L, we consider K such that

∥egK − eg∥∥y0L∥L∞(Ω) <
ϵ

3
.

Finally, for this value of K, it comes from Lemma 2.1 that there exists T > 0 such that

∥y(T1)− egK y0∥ <
ϵ

3
.

We conclude that
∥y(T1)− egy0∥ < ϵ.

Hence, since egy0 = yd, it comes that (5) holds for some 0 < T1 < T.
2. Exact steering.
Let us consider the following system:

yt = ∆y + v(x, t)y, in Ω× (T1, T ),
y(0, t) = 0, on ∂Ω× (T1, T ),
y(T1) = y(T−

1 ), in Ω·
(6)

Let z = y − yd, where y satisfies (6). Thus z satisfies
zt = ∆z + v(x, t)(z + yd) + ∆yd, in Ω× (T1, T ),
z(0, t) = 0, on ∂Ω× (T1, T ),
z(T1) = y(T−

1 )− yd, in Ω.
(7)

In order to prove Theorem 2.1, it is sufficient to prove that (7) is exact null control-
lable. Let T2 ∈ (T1, T ) be close to T1, so we can assume in the sequel that 0 < T2−T1 < 1.
Then consider the following time-independent control in (T1, T2) :

v2(x) = −∆yd
yd

1Eyd
, a.e., in Ω.

From the definition of v2, we have v2yd + ∆yd = 0, a.e. in Ω. Thus the system (7) can
be reduced to the following one:

zt = ∆z + v2(x)z, in Ω× (T1, T2),
z = 0, on ∂Ω× (T1, T2),
z(T1) = y(T−

1 )− yd, in Ω,
(8)
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whose solution is given by

z(t) = S(t− T1)z(T1) +

∫ t

T1

S(t− s)v2(x)z(s)ds, ∀t ∈ [T1, T2]. (9)

Then, since S(t) is a contraction semigroup,

∥z(t)∥ ≤ ∥z(T1)∥+ ∥v2∥L∞(Ω)

∫ t

T1

∥z(s)∥ds

for all t ∈ [T1, T2]. Gronwall’s inequality gives

∥z(t)∥ ≤ C∥z(T1)∥, ∀t ∈ [T1, T2], C > 0. (10)

Moreover, we know that S(t)(Lp(Ω)) ⊂ L∞(Ω), and for all ξ ∈ Lp(Ω), we have

∥S(t)ξ∥L∞(Ω) ≤ C t−
n
2p ∥ξ∥Lp(Ω),∀t > 0, (11)

where the constant C is independent of ξ. We also have S(t)(L∞(Ω)) ⊂ L∞(Ω), and for
all ξ ∈ L∞(Ω), we have (see [6], p. 44)

∥S(t)ξ∥L∞(Ω) ≤ ∥ξ∥L∞(Ω),∀t ≥ 0.

Using the smooth effect of the heat semigroup S(t), we can take the mild solution z(t)
in the space of continuous function equipped with the supremum norm. Then, by taking
the L∞−norm in (9) and using (11), we get

∥z(t)∥L∞(Ω) ≤ C(t− T1)
− n

2p ∥z(T1)∥L1(Ω) + C∥v2∥L∞(Ω)

∫ t

T1

(t− s)−
n
2p ∥z(s)∥L1(Ω)ds

for all t ∈ [T1, T2], and for some constant C > 0 which is independent of η := T2 − T1.
Then, when using (10), it comes

∥z(t)∥L∞(Ω) ≤ C(t− T1)
− n

2p ∥z(T1)∥L1(Ω) + C∥v2∥L∞(Ω)∥z(T1)∥
∫ t

T1

(t− s)−
n
2p ds

for all t ∈ [T1, T2], and in particular,

∥z(T2)∥L∞(Ω) ≤ Cη−
n
2p ∥z(T1)∥,

where C is a positive constant which is independent of η ∈ (0, 1). Thus (5) implies

∥z(T2)∥L∞(Ω) ≤ Cη−
n
2p ϵ (12)

for some constant C > 0 which is independent of η.
Let us now consider the control v(x, t) = v2(x) + v3(x, t) on [T2, T ], v3 ∈ L∞(Ω ×

(T2, T )) (with v3(t) = 0, t ∈ (T1, T2)). When using this control, the system (7) becomes
zt = ∆z + v2(x)z + v3(x, t)(z + yd), in Ω× (T2, T ),
z = 0, on ∂Ω× (T2, T ),
z(T2) = y(T−

2 )− yd, in Ω.
(13)
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Let us consider the following linear system: ψt = ∆ψ + v2(x)ψ + 1ωu1(x, t), in Ω× (T2, T ),
ψ(0, t) = 0, on ∂Ω× (T2, T ),
ψ(T2) = z(T2), in Ω.

(14)

From Lemma 2.2, there exists a control u1 ∈ L∞(Ω×(T2, T )) such that the corresponding
solution to (14) satisfies ψ(., T ) = 0. Furthermore, the steering control u1 satisfies the
estimate

∥u1∥L∞(Ω×(T2,T )) ≤ C∥ψ(T2)∥L2(Ω) (15)

for some positive constant C which is independent of T2. In other words, for some positive
constant C (depending though on T − T2). Moreover, since T2 is small enough, we can
(according to the Lemma 2.2) choose C only dependent on T .
The solution of (14) is given, for all t ∈ [T2, T ], by

ψ(t) = S(t− T2)ψ(T2) +

∫ t

T2

S(t− s)(v2(x)ψ(s) + u1(·, s))ds. (16)

Since ψ(T2) ∈ L∞(Ω), we have (see [6], p. 44)

∥S(t)ψ(T2)∥L∞(Ω) ≤ ∥ψ(T2)∥L∞(Ω).

Since ψ(T2) ∈ Lp(Ω) and u1 ∈ L∞(Ω× (T2, T )), we can see that ψ(t) ∈ Lp(Ω), T2 ≤ t ≤
T.

Moreover, from (11), we have

∥S(t− s)ψ(s)∥L∞(Ω) ≤ C(t− s)−
n
2p ∥ψ(s)∥Lp(Ω), 0 ≤ s < t,

and

∥S(t− s)1ωu1(·, s)∥L∞(Ω) ≤ C(t− s)−
n
2p ∥u1(·, s)∥Lp(Ω), 0 ≤ s < t·

Thus from (16), we have ψ(t) ∈ L∞(Ω) for all t ∈ (T2, T ], and

∥ψ(t)∥L∞(Ω) ≤ ∥ψ(T2)∥L∞(Ω) + C∥u1∥L∞(Ω×(T2,T )) + C

∫ t

T2

∥ψ(s)∥L∞(Ω)

for some C which is independent of η.
Gronwall’s inequality yields, via (12) and (15),

∥ψ(t)∥L∞(Ω) ≤ C∗η
− n

2p ε, t ∈ [T2, T ],

for η small enough and for some constant C∗ > 0 which is independent of η.
Since |yd| ≥ α > 0 a.e. in ω, we can choose ε and η small enough such that

η > (C∗ϵ
α )

2p
n . Hence

|ψ(x, t) + yd| > 0, a.e ω × (T2, T ).

This enables us to define a control v3 in Ω× (T2, T ) through the following relation:

v3(x, t)(ψ(x, t) + yd) = u1(x, t).



544 M. JIDOU KHAYAR, A. BROURI AND M. OUZAHRA

Since u1 ∈ L∞(Ω× (T2, T )), it follows that v3 ∈ L∞(Ω× (T2, T )).
Using the control v(x, t) = v2(x) + v3(x, t), t ∈ (T2, T ) in the system (13), leads to the
following one:

zt = ∆z + v2(x)z +
u1(x, t)

ψ(x, t) + yd
(z + yd), in Ω× (T2, T ),

z(0, t) = 0, on ∂Ω× (T2, T ),
z(T2) = y(T−

2 )− yd, in Ω,

(17)

which admits ψ as a solution. Hence, by uniqueness, we have z = ψ a.e in Ω× (T2, T ).
Finally, returning to initial system (2), the control is then defined by

v(x, t) =


v1(x), in (0, T1),
v2(x), in (T1, T2),

v2(x) +
u1(x, t)

ψ(x, t) + yd
, in (T2, T ),

so that v ∈ L∞(QT ) and y(T ) = yd.

Remark 2.1 The result of Theorem 2.1 improves the results from the literature in
terms of the steering time which is here independent of the initial and target states (see
for instance [4, 18]).

2.2 Exact controllability of the semilinear system

Presently, the system (1) is considered. The next theorem introduces significant differ-
ences with respect to the literature in terms of the proof techniques. Indeed, the method
used in [5] consists of shifting the points of sign change by making use of a finite sequence
of initial-value pure diffusion problems. In [18], a static control was used to study the ap-
proximate controllability of the truncated part of (1), and the equation at hand becomes
linear so that one can apply the linear semigroup theory. In the context of equation (1),
the central idea of our method is to try to select the bilinear control in such a way that
the corresponding trajectory of (1) can be approximated by the bilinear term v(x, t)y(t)
on a small interval of steering [0, T ]. In other words, the effect of the pure diffusion (i.e.
v = 0 and f = 0) as well as the one of the nonlinearity becomes negligible as T → 0+.

Our exact controllability result for semilinear case is as follows.

Theorem 2.2 Let T > 0. If y0 and yd satisfy the assumptions of Theorem 2.1, then
there exists a control q(·, ·) ∈ L∞(QT ) for which the respective solution to (1) is such
that y(T ) = yd.

Proof. The idea consists in looking for a control that makes the system (1) equivalent
to its bilinear part (2) so that one may apply the results of the previous section.
Let us observe that (at least formally) the system (1) can be written as follows: yt = ∆y + (q(x, t) + f(y)

y 1Ey
)y, in QT ,

y(0, t) = 0, on ΣT ,
y(x, 0) = y0(x), in Ω,

(18)

where Ey = {(x, t) ∈ QT : y(x, t) ̸= 0}. This leads us to consider the following bilinear
system:  φt = ∆φ+ v(x, t)φ, in QT ,

φ(0, t) = 0, on ΣT ,
φ(x, 0) = y0(x), in Ω.

(19)
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According to Theorem 2.1, there exists v ∈ L∞(QT ) for which the solution of the system
(19) is such that φ(T ) = yd.

From the assumptions on f, we deduce that |f(y(x))| ≤ L|y(x)| for a.e x ∈ Ω,

where L is a Lipschitz constant of f . Thus we have
f(φ)

φ
1Eφ

∈ L∞(Ω), where Eφ =

{(x, t) : φ(x, t) ̸= 0}.
Consider the following bilinear system: yt = ∆y +

(
v(x, t)− f(φ)

φ 1Eφ

)
y + f(y), in QT ,

y(0, t) = 0, on ΣT ,
y(x, 0) = y0(x), in Ω,

(20)

and let us set q(x, t) = v(x, t) − f(φ)

φ
1Eφ in (20), where φ is the solution of (19) cor-

responding to the steering control v. It is apparent that φ is a solution of (20). Hence,
by uniqueness, we have that y = φ is the unique solution of (20) corresponding to the

control q(x, t) = v(x, t)− f(φ)

φ
1Eφ . Then the controllability result of the theorem follows

from Theorem 2.1.

Remark 2.2 1. In the case where f(0) ̸= 0, we can use the control q(x, t) =

v(x, t)− f(φ)− f(0)

φ
1Eφ

.

2. The result of Theorem 2.2 extends the results of approximate multiplicative con-
trollability of semilinear systems established in [5] to the case of several dimensions.
Moreover, the result of Theorem 2.2 also holds for a nonlinearity f = f(t, x, y,∇y)
which is globally Lipschitz in y uniformly w.r.t the other parameters (see [13]).

The next result provides a set of states that can be reached with additive controls
through the following semilinear system: yt = ∆y + f(y) + u(x, t), in QT ,

y(0, t) = 0, on ΣT ,
y(x, 0) = y0(x), in Ω.

(21)

Corollary 2.1 Let assumptions of Theorem 2.1 hold. Then for any T > 0, there
exists a control u ∈ L2(0, T ;L2(Ω)) for which the respective solution to (21) satisfies
y(T ) = yd.

Proof. It suffices to take u(x, t) = q(x, t)y(x, t), where q is the steering control of (1)
from y0 to yd at T and y is the corresponding solution of (1).

3 Simulation

In this section, we investigate the exact controllability for the one dimensional version of
system (1). Note that the approximate controllability of such models has been considered
in the bilinear and semilinear context in [4, 5] (see also [14] for different interpretations
of these equations).

Let us consider the system (1) with f(x) = sin(x), x ∈ R. This function constitutes
a prototype of (non trivial) smooth Lipschitz nonlinearities that vanish at the origin,
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which is widely used for illustrative and numerical examples (see for instance [1, 3, 16]).
As initial and final data, let us take y0 = 10−2(x + 10−2)(1.01 − x) and yd = y0e

x in
Ω = (0, 1).

Thus, we have a(x) = 1
T ln yd

y0
= x

T and g(x) = −∆yd
yd

= −1 +
4x

(x+ 10−2)(1.01− x)
.

According to Theorem 2.2, we deduce that for every T > 0, there are positive real
numbers T1 and T2 which are small enough and for which the control

q(x, t) =



x

T1
− sin(φ)

φ
1Eφ

, (0, T1),

−1 +
4x

(x+ 10−2)(1.01− x)
− sin(φ)

φ
1Eφ

, (T1, T2),

−1 +
4x

(x+ 10−2)(1.01− x)
+

u(x, t)

ψ(x, t) + yd
− sin(φ)

φ
1Eφ

, (T2, T ),

(Eφ = {(x, t) : φ(x, t) ̸= 0}) achieves the exact steering of system (1) from y0 to yd at
T, where φ solves (19) with

v(x, t) =


x
T1
, (0, T1),

−1 + 4x
(x+10−2)(1.01−x) , (T1, T2),

−1 + 4x
(x+10−2)(1.01−x) +

u(x,t)
ψ(x,t)+yd

, (T2, T ),

and u(x, t) is the control of null-controllability of the linear system ψt = ∆ψ − ψ + u(x, t), in Ω× (T2, T ),
ψ(0, t) = 0, on ∂Ω× (T2, T ),
ψ(T2) = y(T2)− yd, in Ω,

and ψ is the corresponding solution.
Here we consider a globally distributed control u(x, t), which can be taken time-

independent (see [14], p.57)

u(x, t) = −
∞∑
k=1

(π2k2 + 1)e−(T−T2)(π
2k2+1)

e−(T−T2)(k2π2+1) − 1

( ∫ π

0

(y(ξ, T2)− yd(ξ))φk(ξ)dξ
)
φk(x), (22)

where φk(x) =
√
2 sin(kπx), k ≥ 1, are the eigenfunctions of A associated to the eigen-

values λk = −k2π2.
Now, note that system (1) with control q(x, t) and system (19) with control v(x, t)

have the same state and it suffices to simulate the latter. We will give simulations for
T = 1, T1 = 0.01 and T2 = 0.02, and we will follow the three steps given below.

Step 1. Approximate steering: Solve system (1), controlled on the time interval
(0, T1), by v(x, t) = v1(x) =

1
T1

ln(ydy0 ) = 100x to get y(x, T1).

Step 2. Computation of the additive control u(x, t): Solve (19) on the time interval
(0, T2), by taking the control

v(x, t) = v1(x, t) =


100x, (0, T1),

−1 +
4x

(x+ 10−2)(1.01− x)
, (T1, T2).
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This gives y(ξ, T2), which enables us to compute the control u(x, t) using the formula (22).

Step 3. Exact steering: Consider the solution ψ:

ψ(x, t) = eT2−tS(t− T2)y(x, T2) +

∫ t

T2

e−(t−s)S(t− s)u(x, s)ds

of the equation
ψt = ∆ψ − ψ + u(x, t), t ∈ (T2, T ),

with ψ(T+
2 ) = y(T−

2 ) as the initial state. Then, we use the relation y(x, t) = ψ(x, t) +
yd, t ∈ (T2, T ) to get y(x, T ) = yd. Below are the figures corresponding to the exact
steering with the error function.

Figure 1: The evolution of the state at T .

• Figure 1 reflects the exact steering and shows that the trajectory y(t) becomes very
close to the desirable state at time T .

• Figure 2 describes the variation of the error function defined by E(t) = ∥y(t) −
yd∥, t ∈ [0, T ], and shows that E(t) tends to zero when t becomes close to the time of
steering T .

4 Conclusion

In the present paper, the multiplicative controllability of a semilinear reaction-diffusion
equation is considered in several space dimensions. The approach is constructive and
consists in using a set of three controls applied subsequently in time. First, a static
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Figure 2: The variation of the error.

control is used to achieve the approximate steering in L2 at a small time T1. Then, a
second static control is used in a small time interval [T1, T2] so that the approximate
steering becomes in L∞ sense. Finally, in the remaining time interval [T2, T ], we exploit
a (x, t)−dependent control law that ensures the zero controllability of an appropriate
linear system (with an additive control) to guarantee the exact steering. Furthermore,
the considered methods allow us to achieve the approximate and exact steering (for a
given couple of the initial and desirable states) at arbitrary small control time which can
be fixed in advance.
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Abstract: Blood is a vital component in body health because it distributes oxygen,
food, and hormones in the whole body. However, there are some cases such as the
lack of blood, accidents, or other diseases when humans need blood transfusions,
which depend on the demand and supply of blood in hospitals. In this research,
panel data regression is used to analyse the demand and supply of blood in hospitals
in Surabaya city. There are three models in panel data regression, namely, common
effect (CE), fixed effect (FE), and random effect (RE). In this panel data regression,
the number of demands of blood type O, A, B, and AB is the independent variable.
In contrast, the blood supply is the dependent variable. First, we will determine the
best model, common effect (CE), fixed effect (FE), or random effect (RE), through
the Chow test, Hausman test, and Lagrange Multiplier test. From the result, the
best model of the quantity of blood supply is fixed effect (FE). Then, the fixed effect
(FE) model parameters are tested by using the F-test and T-test for testing the
impact of independent variables on the dependent variable and R-squared for finding
the proportion of effectiveness of independent variables. According to our simulation
results, the R-squared is 0.998, which is very satisfactory.
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1 Introduction

Blood is a vital component in body health because it distributes oxygen, food, and
hormones in the whole body. However, there are some cases such as the lack of blood,
accidents, or other diseases when a human needs blood transfusion which depends on the
demand and supply of blood in hospital [1, 2].

In this research, panel data regression is used to analyse the demand and supply of
blood in hospitals in Surabaya city. Panel data is the data combining time-series data
and cross-section data. Time-series data cover an object for an extended period. Cross-
section data consist of many things such as a company, factory, restaurant, a place with
some attributes. Thus, panel data regression is the regression using panel data. There
are three models in panel data regression, namely, common effect (CE), fixed effect (FE),
and random effect (RE).

From the previous research, the effects of independent variables and dependent vari-
ables have been applied by the correlation method in a Neural Network (NN) [3, 4] and
Adaptive Neuro-Fuzzy Inference System (ANFIS) [5, 6]. There is a work on stability
analysis of stochastic neural networks [7]. Let us also mention the results on control
design using Sliding PID [8] and Linear Quadratic Regulator [9].

In this panel data regression, the number of demands of blood type O, A, B, AB is
the independent variable, while blood supply is the dependent variable.

First, we determine the best model, common effect (CE), fixed effect (FE), or random
effect (RE), through the Chow test for determining a better model between the common
effect (CE) model and the fixed effect (FE) model in the panel data model, the Hausman
test for determining a better model between the random effect (RE) model and the
fixed effect (FE) model in the panel data model, and the Lagrange Multiplier test for
determining a better model between the common effect (CE) model and the random
effect (RE) model in the panel data model. Then, the simulation results are applied by
EViews software.

From the result, the best model of the quantity of blood supply is fixed effect (FE).
The F-test and T-test test the parameters of the fixed effect (FE) model for testing the
impact of independent variables on the dependent variable, and R-squared is used for
finding the proportion of effectiveness of independent variables.

2 Panel Data Modeling

Panel data is the data combining time-series data and cross-section data. Time-series
data cover an object for a long time. Cross-section data consist of many entities (for
example, a company, factory, restaurant, place) with some attributes (for example, cost,
benefit, the volume of production, the number of workers) in one period. Thus, panel
data regression is the regression using panel data.

The regression model of time-series data is as follows:

Yt = α+

P∑
j=1

βjxj
t + εt, t = 1, 2, ..., T,

where T is the number of time-series data and P is the number of independent variables.
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The regression model of cross-section data is as follows:

Yi = α+

P∑
j=1

βjxj
i + εi, i = 1, 2, ..., N,

where N is the number of cross-section data and P is the number of independent variables.
So the regression model of panel data is as follows:

Yit = α+

P∑
j=1

βjxj
it + εit, t = 1, 2, ..., T, i = 1, 2, ..., N,

where N is the number of cross-section data, T is the number of time-series data, and P
is the number of independent variables.

3 Estimation of Panel Data Regression

For estimating the parameters of the panel data model, there are three techniques.

3.1 Common Effect (CE) model (Pooled model)

In this model, time-series data and cross-section data are merged. By joining both of
them, one can use the Ordinal Least Square (OLS) method or the least square technique
to estimate the data panel model. It is assumed that the properties of data of the objects
are similar in the interval of time [10].

However, this assumption deviates from the actual conditions because the charac-
teristics of the objects are very different. Therefore, this model can be constructed as
follows:

Yit = α+

P∑
j=1

βjxj
it + εit, t = 1, 2, ..., T, i = 1, 2, ..., N,

where N is the number of cross-section data, T is the number of time-series data, P is
the number of independent variables, Yit is the dependent variable of the i-th object in
the t-th time, xj

it is the j-th independent variables of the i-th object in the t-th time, βj

is the coefficient (parameter) of the j-th independent variables, α is the intercept, εit is
the error component of the i-th object in the t-th time.

3.2 Fixed Effect (FE) model

This model estimates panel data by adding dummy variables. There are different effects
among objects through the difference of their intercepts. In the fixed effect (FE) model,
an object is an unknown parameter, and it will be estimated by dummy variables. This
model can be constructed as follows [10]:

Yit = α+

P∑
j=1

βjxj
it +

n∑
k=2

αkDk + εit, t = 1, 2, ..., T, i = 1, 2, ..., N,

where Dk is the dummy variable.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (5) (2022) 550–560 553

3.3 Random Effect (RE) model

In this method, the differences in object and time characteristics are formed by the
error from the model. Because two components contribute to the error results, such as
object and time, this method needs to be expanded to become the error from the object
component, the error from the time component, and the combined error. The random
effect (RE) model is as follows [11]:

Yit = α+

P∑
j=1

βjxj
it + εit, t = 1, 2, ..., T, i = 1, 2, ..., N,

where εit = ui + vt + wit, ui is the error from the object component, vt is the error from
the time component, wit is the combined error.

4 The Selection of Best Model

For selecting the best model, the common effect (CE) model, fixed effect (FE) model or
random effect (RE) model, there are some tests such as the Chow test, Hausman test,
and Lagrange Multiplier test.

4.1 Chow test

The Chow test is used for determining a better model between the common effect (CE)
model and the fixed effect (FE) model in the panel data model [12].

The hypothesis used in the Chow test is as follows. The null hypothesis (H0) repre-
sents the common effect (CE) model, whereas the alternative hypothesis (H1) represents
the fixed effect (FE) model. The Chow statistics is given by

(ESS1− ESS2)/(N − 1)

(ESS2)/(NT −N − P )
,

where

ESS1 : Residual Sum Square of the fixed effect (FE) model,
ESS2 : Residual Sum Square of the common effect (CE) model,
N : the number of cross-section data,
T : the number of time-series data,
P : the number of independent variables.

The Chow statistics follows the F-statistics distribution with the degree of freedom
(N − 1, NT − N − P ). If the Chow statistics is larger than the critical value of the
F-statistics distribution or the p-value is less than the significance level α, then H1 is
accepted and H0 is rejected so that the selected model is the fixed effect (FE) model.

4.2 Hausman test

The Hausman test is used for determining a better model between the random effect
(RE) model and the fixed effect (FE) model in the panel data model [12].
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The hypothesis used in the Hausman test is as follows. The null hypothesis (H0) rep-
resents the random effect (RE) model, whereas the alternative hypothesis (H1) represents
the fixed effect (FE) model. The m statistics is given by

m = (β − b)(M0−M1)−1(β − b),

where:

β : Statistics vector of fixed effect (FE) variables,
b : Statistics vector of random effect (RE) variables,
M0 : covariance matrix for the fixed effect (FE) model,
M1 : covariance matrix for the random effect (RE) model.

The m statistics follows the chi-square distribution with the degree of freedom equal
to P . If m statistics is larger than the critical value of the chi-square distribution or the
p-value is less than the significance level α, then H1 is accepted and H0 is rejected so
that the selected model is the fixed effect (FE) model.

4.3 Lagrange Multiplier test

The Lagrange Multiplier test is used to determine a better model between the common
effect (CE) model and the random effect (RE) model in the panel data model [13].

The hypothesis used in the Lagrange Multiplier test is as follows. The null hypothesis
(H0) represents the common effect (CE) model, whereas the alternative hypothesis (H1)
represents the random effect (RE) model. The LM statistics is given by

LM =
NT

2(T − 1)


∑N

i=1

(∑T
t=1 ēit

)2

∑N
i=1

∑T
t=1 e

2
it

− 1

 ,

where

N : the number of cross-section data,
T : the number of time-series data,
eit : residual of the common effect (CE) model.

The LM statistics follows the chi-square distribution with the degree of freedom equal
to P .

If the LM statistics is larger than the critical value of the chi-square distribution or
the p-value is less than the significance level α, then H1 is accepted and H0 is rejected
so that the selected model is the random effect (RE) model.

The Lagrange Multiplier test is not applied when the Chow test and the Hausman
test show a better model is the fixed effect (FE) model [10].

5 Significance Test

After the best model is obtained, it is required to apply the significance test as follows.
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5.1 F-test

The F-test is applied for testing the estimation results on whether the independent vari-
ables have effects on the dependent variable globally [14].

The hypothesis used in the F-test is as follows. The null hypothesis (H0) represents
“independent variables do not affect the dependent variable”, whereas the alternative
hypothesis (H1) represents “independent variables affect the dependent variable”.

The F-statistics is given by

Ftest =
MS(y)

MS(e)
,

where

MS(e) : mean square of regression,
MS(y) : mean square of residual.

The Ftest statistics follows the F-statistics distribution with the degree of freedom
equal to (N +P − 1, NT −N −P ). If the Ftest statistics is larger than the critical value
of the F-statistics distribution or the p-value is less than the significance level α, then
H1 is accepted and H0 is rejected so that the conclusion is that there is the effect of the
independent variables on the dependent variable.

5.2 T-test

The T-test is applied for testing the estimation results on whether the independent
variables have effects on the dependent variable partially [14].

The hypothesis used in the T-test is as follows. The null hypothesis (H0) represents
“independent variables do not affect the dependent variable”, whereas the alternative
hypothesis (H1) represents “independent variables affect the dependent variable”.

The T-statistics is given by

Ttest =
“βk

SE(“βk)
,

where

“βk : the k-th parameter,
SE(“βk) : standard deviation of the k-th parameter.

The Ttest statistics follows the T-statistics distribution with the degree of freedom
equal to (NT − N − P ). If the Ttest statistics is larger than the critical value of the
T-statistics distribution or the p-value is less than the significance level α/2, then H1

is accepted and H0 is rejected so that the conclusion is that there is the effect of the
independent variables on the dependent variable.

5.3 R-squared

The determination coefficient (R2) is used for measuring the fitness rate of panel data
regression. It is a proportion of the contribution of independent variables and dummy
variables to that of the dependent variable [15].
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The coefficient (R2) is determined using

R2 =
ESS

TSS
,

where

ESS : sum of square of regression,
TSS : total of sum of square.

The value of R2 is between 0 and 1. If R2 approaches 1, then in this model, the effect
of independent variables is stronger.

6 Results

This research shows the effects of the demand for blood types O, A, B, AB on the quantity
of blood supply in five hospitals in Surabaya city from January 2015 until December 2017.
In creating panel data regression, the data used are as follows. Cross-section or object
data:

1. Angkatan Laut hospital,

2. Unair hospital,

3. Haji hospital,

4. Adi Husada hospital,

5. Darmo hospital.

The data used are monthly data from January 2015 until December 2017.
In this research, the analysis of demand and supply of blood in some hospitals in

Surabaya city is done by panel data regression using EViews software. There are three
models in panel data regression, such as common effect (CE), fixed effect (FE), and
random effect (RE). In this panel data regression, the number of demands of blood type
O, A, B, AB is an independent variable, while blood supply is the dependent variable.

6.1 The selection of best model

First, we use the Chow test to determine a better model between the common effect
(CE) model and the fixed effect (FE) model in the panel data model.

The Chow test results can be seen in Figure 1. Figure 1 shows the p-value of cross-
section F is 0.0039 < 0.05. Therefore, H1 is accepted and H0 is rejected so that the
selected model is the fixed effect (FE) model.

Second, we use the Hausman test to determine a better model between the random
effect (RE) model and the fixed effect (FE) model in the panel data model.

The Hausman test results can be seen in Figure 2. Figure 2 shows the p-value of
cross-section random is 0.003 < 0.05. Therefore, H1 is accepted and H0 is rejected so
that the selected model is the fixed effect (FE) model.

Because both the Chow and the Hausman test show that the fixed effect (FE) model
is the best model, the Lagrange Multiplier test is not required.
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Figure 1: Chow test result.

Figure 2: Hausman test result.

The fixed effect (FE) panel data regression model for the quantity of blood supply
used is shown in Figure 3. The coefficient of the quantity of blood type O is 0.982566,
the coefficient of the quantity of blood type A is 1.003406, the coefficient of the quantity
of blood type B is 0.976337, the coefficient of the quantity of blood type AB is 0.990383,
the intercept is 1.376641.

Figure 3: Fixed effect (FE) model panel data regression.

6.2 Significance test

In fixed effect (FE) model panel data regression, we will test the impact of independent
variables on the dependent variables using the F-test and T-test. Furthermore, we also
measure the proportion of the independent and dummy variables’ contribution and that
of dependent variables using R-squared.

The F-test is applied for testing the estimation results on whether the independent
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variables have effects on the dependent variables globally. The F-test results can be seen
in Figure 4. Figure 4 shows the p-value of the F-test is 0.000 < 0.05. Therefore, H1 is
accepted and H0 is rejected, i.e., there is an effect of the independent variables on the
dependent variables.

Figure 4: F-test results.

The T-test is applied for testing the estimation results on whether the independent
variables have effects on the dependent variables partially. The T-test results can be
seen in Figure 5. Figure 5 shows the p-value of the T-test on the number of demands of
blood type O is 0.000 < 0.05, the number of requests of blood type A is 0.000 < 0.05,
the number of requests of blood type B is 0.000 < 0.05, the number of demands of blood
type AB is 0.000 < 0.05. Therefore, H1 is accepted and H0 is rejected, i.e., there is an
effect of the independent variables on the dependent variables.

Figure 5: T-test results.

R-squared is used to measure the proportion of the contribution of independent and
dummy variables and that of the dependent variables. The R-squared test can be seen in
Figure 6. Figure 6 shows R-squared is 0.998. It means that the effects of the independent
variables on the dependent variables are 99.8%.

7 Conclusions

There are three models in panel data regression, namely, common effect (CE), fixed effect
(FE), and random effect (RE). In this panel data regression, the number of demands of
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Figure 6: T-test results.

blood type O, A, B, AB is an independent variable, while blood supply is the dependent
variable. First, we determine the best model, common effect (CE), fixed effect (FE),
or random effect (RE), through the Chow test, Hausman test, and Lagrange Multiplier
test. From the result, the best model of the quantity of blood supply is fixed effect (FE).
Then, the parameters of the fixed effect (FE) model are tested by the F-test and T-test for
testing the impact of the independent variables on the dependent variable and R-squared
is used for finding the proportion of effectiveness of the independent variables. In our
simulation, the R-squared is 0.998, which is a very good result. As a future work, we are
planning to employ some machine learning techniques to analyze the demand and supply
of blood. Furthermore, by combining mathematical science and business management,
we strive to provide a feedback for stakeholders before making any decision.
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1 Introduction

Water shortages are a severe shortage in which the rates of water availability do not
meet certain basic requirements specified. Water is one of the most essential natural
renewable resources, and no one, neither humans nor animals, can live without it. Water
comes from numerous sources, including runoff, groundwater, and surface water. The
main contributor to the world growth and development are water supplies [1].

The paper concludes that there is a fixed amount of water on our planet. But so
little of it is at our disposal to use. 70 percent of the earth surface is filled with 1400
million cubic kilometers of water (m km3): 2.5% is freshwater and 97.5% is saltwater,
2.5 percent is groundwater, 0.3 percent are lakes and rivers, 68.9 percent is frozen in
ice caps. One-third of the population of the world currently resides in countries where
the quality of the water is not adequately compromised, but by 2025, it is projected to
increase by two-thirds [2].

The primary objective of this paper is to determine the scarcity of water in selected
Middle East countries. For Iran, Iraq, and Saudi Arabia, the Anomaly Standardized
Precipitation (WASP) index was spatially computed from 1979 to 2017. The water
scarcity situation has been investigated in cities with a population of more than one
million. This was done by using the methodology of the composite index to make water-
related statistics more intelligible. A forecast was created for the years 2020 to 2030 to
show potential improvements in the supply and demand for water in selected Middle East
countries. With rising urbanization, there is a moderate to high water shortage risk for
all countries at present [3]. Water shortage is a common issue in many parts of the world.
Many previous water shortage evaluation strategies only considered the volume of water,
and overlooked the quality of water. Moreover, the Environmental Flow Criterion (EFR)
was not usually considered directly in the evaluation. In this paper, we have developed
an approach to assess water scarcity by considering both water quantity and quality [4].

The formulation of a corruption control model and its analysis using the theory of
differential equations are presented in paper [5]. The equilibria of the model and the
stability of these equilibria are discussed in detail. Yadav, A. et al. [6] propose and
evaluate mathematical models to research the dynamics of smoking activity under the
influence of educational programs and also the willingness of the person to quit smoking.
A nonlinear mathematical model is formulated and analyzed in paper [7] to research the
relationship between the criminal population and non-criminal population by taking into
account the rate of non-monotone incidence. See also [8, 9].

[10] suggested and analyzed a mathematical model using oncolytic virotherapy for
cancer care. The growth of tumor cells is presumed to obey logistic growth and the
interaction between tumor cells and viruses is of saturation type. Several nonlinear
mathematical models are proposed and analyzed in paper [11] to study the spread of
asthma due to inhaled industrial pollutants [12,13] are also referenced.

This paper aims to illustrate the requirements to and the availability of water. As a
result of growing population, rising urbanization, and rapid industrialization, combined
with the need to increase agricultural production, water demand has been found to
increase significantly. Water per capital supply is also slowly declining. More than 2.2
million people are expected to die every year from diseases related to polluted drinking
water and poor sanitation.
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As mentioned above, we have analyzed and proved that water scarcity is one of the
major problems that has been proved statistically and theoretically. We are here giving
a new try to prove the same by using the mathematical model.

Using the principle of an ordinary differential equation, we analyze our model and
record comprehensive results of numerical simulations to support the analytical results.
First, our model is expanded to the model of stochastic differential equations. The out-
comes of deterministic and stochastic models were also compared. The remainder of this
paper is structured as follows, Section 2 explains the model and the presence of equi-
libria and illustrates local stability, global equilibrium stability. Section 3 addresses the
remaining stochastic model. Section 4 displays the effects of simulation for deterministic
and stochastic models. Our results are summarized in Section 5 as a conclusion.

2 The Model and Analysis

We proposed and analyzed a non linear model for water scarcity by dividing into four
different compartments [14], namely, the total usage of water (W ), the human (H),
water scarcity (Ws), water recover (Wr). All variables are time t functions. The transfer
diagram of the model is described in Figure 1. The mathematical model is suggested as
follows, in view of the above considerations:

dW
dt = Λ− α1W − α2WH + δ2Wr,

dH
dt = α2WH − βH − µH − µ1H,

dWs

dt = α1W + βH − δ1Ws,

dWr

dt = δ1Ws − δ2Wr.

(1)

In Table 1, the parameters used in model (1) are defined.

Table 1: Description of parameters.

Parameter Description

Λ Recruitment rate
α1 Water draining rate
α2 The rate of consumption of water by a human
δ1 The recovery rate of water resource
δ2 The rate at which water becomes normal level water
β Rate of human population affected by water scarcity
µ Natural death rate
µ1 Death rate due to water scarcity

2.1 Existence of equilibria

Our model’s equilibrium is calculated by setting the right-hand side of the model to
zero [15]. The system has the following equilibria, namely, the endemic equilibrium (EE)
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W H Ws WrΛ
α2WH βH δ1Ws

α1W (µ+ µ1)H

Figure 1: Transfer Diagram of the Model.

E∗ (W ∗, H∗,W ∗
s ,W

∗
r ), where

W ∗ =
k1
α2

, (2)

H∗ =
Λ

k1 − β
, (3)

W ∗
s =

Λα2β − α1k1β + α1k
2
1

δ1α2(k1 − β)
, (4)

W ∗
r =

Λα2β − α1k1β + α1k
2
1

δ2α2(k1 − β)
, (5)

where k1 = β + µ+ µ1.

2.2 Stability analysis

The system’s variational matrix is given by

M =


−(α1 + α2H) −α2W 0 δ2

α2H α2W − k1 0 0
α1 β −δ1 0
0 0 δ1 −δ2

.

2.2.1 Stability analysis of EE point

The variation matrix M* corresponding to the point E∗ of the endemic equilibrium, is
given by

M∗ =


n11 n12 0 n14

n21 n22 0 0
n31 n32 n33 0
0 0 n43 n44

,

where
n11 = −(α1 + α2H), n12 = −α2W, n14 = δ2
n21 = α2H, n22 = α2W − k1
n31 = α1, n32 = β, n33 = −δ, n43 = δ1, n44 = −δ2.
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The bi-quadratic equation is

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0,

where

a1 = −(n11 + n22 + n33 + n44),
a2 = n11n22 + n22n33 + n33n44 + n11n33 + n11n44 + n22n44 − n12n21,

a3 = −n11n22n33 − n11n22n44 − n11n33n44 − n22n33n44 + n12n21n33

+ n12n21n44 − n14n43n31,
a4 = n11n22n33n44 + n14n22n31n43 − n14n21n32n43 − n12n21n33n44.

E∗ will be locally asymptotically stable by using the Routh-Hurwitz criteria if the
following conditions are satisfied: a1 > 0, a3 > 0, a1a2a3 − a23 − a21a4 > 0, a3 > 0.

If two other inequalities referred to above are satisfied, E∗ is locally asymptotically
stable [16].

2.2.2 Global stability of endemic equilibrium

In order to analyze the global stability of the endemic equilibrium E∗, we adopt the
approach developed by Korobeinikov [8] and successfully applied in [9]. E∗ exists for all
x, y, z, u > ϵ, for some ϵ > 0.

Let k1y = [β+µ+µ1]y = g(x, y, z, u) be positive and monotonic functions in R4
+ (for

more details, see [8, 9]).

V (x, y, z, u) = x−
∫ x

ϵ

g(x∗, y∗, z∗, u∗)

g(η, y∗, z∗, u∗)
dη + y −

∫ y

ϵ

h(x∗, y∗, z∗, u∗)

h(x∗, η, z∗, u∗)
dη

+z −
∫ z

ϵ

h(x∗, y∗, z∗, u∗)

h(x∗, y∗, η, u∗)
dη + u−

∫ w

ϵ

g(x∗, y∗, z∗, u∗)

h(x∗, y∗, z∗, η)
dη. (6)

If g(x, y, z, u) is monotonic with respect to its variables, then the state E is the only
extreme and the global minimum of this function. So, obviously,

∂V

∂x
= 1− g(x∗, y∗, z∗, u∗)

g(x, y∗, z∗, u∗)
,
∂V

∂y
= 1− h(x∗, y∗, z∗, u∗)

h(x∗, y, z∗, u∗)
,

∂V

∂z
= 1− h(x∗, y∗, z∗, u∗)

h(x∗, y∗, z, u∗)
,
∂V

∂u
= 1− g(x∗, y∗, z∗, u∗)

g(x∗, y∗, z∗, u)
. (7)

The functions g(x, y, z, u) and g(x, y, z, u) grow monotonically, then have only one
stationary point. Further, since

∂2V

∂x2
=

g(x∗, y∗, z∗, u∗)

[g(x, y∗, z∗, u∗)]2
.
g(x, y∗, z∗, u∗)

∂x
,

∂2V

∂y2
=

g(x∗, y∗, z∗, u∗)

[g(x∗, y, z∗, u∗)]2
.
g(x∗, y, z∗, u∗)

∂y
,

∂2V

∂z2
=

g(x∗, y∗, z∗, u∗)

[g(x∗, y∗, z, u∗)]2
.
g(x∗, y∗, z, u∗)

∂z
,
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∂2V

∂u2
=

g(x∗, y∗, z∗, u∗)

[g(x∗, y∗, z∗, u)]2
.
g(x∗, y∗, z∗, u)

∂u

are non negative, g(x, y, z, u) and h(x, y, z, u) have minimum. That is,

V (x, y, z, u) ≥ V (x∗, y∗, z∗, u∗)

and hence, V is a Lyapunov function, and its derivative is given by

dV

dt
= x′ − x′ g(x

∗, y∗, z∗, u∗)

g(x, y∗, z∗, u∗)
+ y′ − y′

h(x∗, y∗, z∗, u∗)

g(x∗, y, z∗, u∗)
+ z′ − z′

g(x∗, y∗, z∗, u∗)

g(x∗, y∗, z, u∗)
+

u′ − u′ g(x
∗, y∗, z∗, u∗)

g(x, y∗, z∗, u)

= α1x
∗(1− x

x∗ )

(
1− g(x∗, y∗, z∗, u∗)

g(x, y∗, z∗, u∗)

)
− δ2u

∗(1− u

u∗ )

(
1− g(x∗, y∗, z∗, u∗)

g(x, y∗, z∗, u∗)

)
+k1y

∗(1− y

y∗
)

(
1− h(x∗, y∗, z∗, u∗)

h(x∗, y, z∗, u∗)

)
− α1x

∗(1− x

x∗ )

(
1− h(x∗, y∗, z∗, u∗)

h(x∗, y∗, z, u∗)

)
−βy∗(1− y

y∗
)

(
1− h(x∗, y∗, z∗, u∗)

h(x∗, y∗, z, u∗)

)
+ δ1z

∗(1− z

z∗
)

(
1− h(x∗, y∗, z∗, u∗)

h(x∗, y∗, z, u∗)

)
−δ1z

∗(1− z

z∗
)

(
1− g(x∗, y∗, z∗, u∗)

g(x∗, y∗, z∗, u)

)
+ δ2u

∗(1− u

u∗ )

(
1− g(x∗, y∗, z∗, u∗)

g(x∗, y∗, z∗, u)

)
+g(x∗, y∗, z, u)

(
1− g(x, y, z, u)

g(x∗, y∗, z, u)

)(
1− g(x∗, y∗, z∗, u∗)

g(x, y∗, z∗, u∗)

)
−g(x∗, y∗, z, u)

(
1− g(x, y, z, u)

g(x∗, y∗, z, u)

)(
1− g(x∗, y∗, z∗, u∗)

g(x∗, y, z∗, u∗)

)
. (8)

It is noted here that g(x∗, y∗, z∗, u∗) = h(x∗, y∗, z, u) is explicitly given as g and h in
terms of x, y, z and u.

Since E > 0, the function g(x, y, z, u) is concave with respect to y, z and u and

∂2g(x, y, z, u)

∂y2
≤ 0,

∂2g(x, y, z, u)

∂z2
≤ 0,

then
dV

dt
≤ 0 for all x, y, z, u > 0. Also, the monotonicity of g(x, y, z, u) with respect to

x, y, z and u ensures that

(1− x
x∗ )

(
1− g(x∗,y∗,z∗,u∗)

g(x,y∗,z∗,u∗)

)
≤ 0, (1− y

y∗ )
(
1− h(x∗,y∗,z∗,u∗)

h(x∗,y,z∗,u∗)

)
≤ 0,

(1− z
z∗ )

(
1− h(x∗,y∗,z∗,u∗)

h(x∗,y∗,z,u∗)

)
≤ 0, (1− u

u∗ )
(
1− g(x∗,y∗,z∗,u∗)

g(x∗,y∗,z∗,u)

)
≤ 0

(9)

holds for all x, y, z, u > 0. Thus, we establish the following result.

Theorem 2.1 The endemic equilibrium E∗ of model (1) is globally asymptotically
stable whenever conditions outlined in Eq. (9) are satisfied [17].
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3 Stochastic Model

We are expanding our deterministic model to stochastic systems here, as stochastic mod-
els are more able to capture random variations of the biological dynamics of the prob-
lem. The derivation of an SDE model is based on the method developed by Yuan et
al. [18]. Let X(t) = (X1(t), X2(t), X3(t), X4(t))

T be a continuous random variable for
(W (t), H(t),Ws(t),Wr(t))

T and T denote the transpose of a matrix.

Let ∆X = X(t+∆t)−X(t) = (∆X1,∆X2,∆X3,∆X4)
T denote the random vector for

the change in random variables during the time interval ∆t. Here, we’ll write transition
maps that define all possible changes in the SDE model between states. Based on our
ODE model system (1), here we see that within a small time interval ∆t, there are
9 possible changes between states. Changes in the state and their probabilities are
discussed in Table 2. In the case, the state change ∆X is denoted by ∆X = (−1, 1, 0, 0).
The probability of this change is determined by

Prob (∆X1,∆X2,∆X3,∆X4) = (−1, 1, 0, 0)|(X1, X2, X3, X4) = P3 = α2X1X2 + o(∆t)
by neglecting terms higher than o(∆ t), the following expectation change E(∆X) and
its covariance matrix V (∆X) associated with ∆X, can be identified. The expectation of
∆X is

E(∆X) =

8∑
i=1

Pi(∆X)i∆t =


Λ− α1X1 − α2X1X2 + δ2X4

α2X1X2 − βX2 − µX2 − µ1X2

α1X1 + βX2 − δ1X3

δ1X3 − δ2X4

∆t

= f(X1, X2, X3, X4)∆t.

Table 2: Possible changes of states and their probabilities.

Possible stage change Probability of state changes
(∆x)1 = (1, 0, 0, 0)T P1 = Λ∆t+ o(∆t)
(∆x)2 = (−1, 0, 1, 0)T P2 = α1X1∆t+ o(∆t)
(∆x)3 = (−1, 1, 0, 0)T P3 = α2X1X2∆t+ o(∆t)
(∆x)4 = (1, 0, 0,−1)T P4 = δ2X4∆t+ o(∆t)
(∆x)5 = (0,−1, 1, 0)T P5 = βX2∆t+ o(∆t)
(∆x)6 = (0,−1, 0, 0)T P6 = µX2∆t+ o(∆t)
(∆x)7 = (0,−1, 0, 0)T P7 = µ1X2∆t+ o(∆t)
(∆x)8 = (0, 0,−1, 1)T P8 = δ1X3∆t+ o(∆t)

(∆x)9 = (0, 0, 0, 0)T P9 = (1−
∑8

i=1 Pi) + o(∆t)

It can be noted here that the expectation vector and also the function f are in the
same form as those of the ODE system (1).

Since the covariance matrix V (∆X) = E((∆X)(∆X)T ) − E(∆X)(E(∆X)T ) and
E((∆X)(∆X)T ) = f(X)(f(X)T )∆t, it can be approximated with the diffusion matrix
Ω times ∆t by neglecting the term of (∆t)2 so that V (∆X) ≈ E((∆X)(∆X)T ). That is,
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E((∆X)(∆X)T ) =

8∑
i=1

Pi(∆X)i(∆X)Ti ∆t =


V11 V12 V13 V14

V21 V22 V23 0
V31 V32 V33 V34

V41 0 V43 V44

.∆t = Ω.∆t,

where each component of the diffusion matrix of 4×4 is symmetric, positive-definite, and
can be obtained by

V11 = P1 + P2 + P3 + P4 = Λ+ α1X1 + α2X1X2 + δ2X4,

V22 = P3 + P5 + P6 + P7 = α2X1X2 + βX2 + µX2 + µ1X2,

V33 = P2 + P5 + P8 = α1X1 + βX2 + δ1X3,

V44 = P4 + P8 = δ2X4 + δ1X3,

V12 = V21 = −P3 = −α2X1X2,

V34 = V43 = −P4 = −δ1X3,

V14 = V41 = −P4 = −δ2X4,

V13 = V31 = −P2 = −α1X1,

V23 = V32 = −P5 = −βX2.

A matrix D square root of the symmetric, positive-definite diffusion matrix Ω is such
that K = Ω1/2. Use an equivalent matrix K such that Ω = KKT , where K has the
dimension of a 4×7 matrix.

K =


√
Λ −

√
α1X1 −

√
α2X1X2

√
δ2X4 0 0 0

0 0
√
α2X1X2 0 −

√
βX2 −

√
(µ+ µ1)X2 0

0
√
α1X1 0 0

√
βX2 0 −

√
δ1X3

0 0 0 −
√
δ2X4 0 0

√
δ1X3

.

Then, the Ito stochastic differential model has the following form:

dX(t) = f(X1, X2, X3, X4)dt+K.dW (t)

with the initial condition X(0) = (X1(0), X2(0), X3(0), X4(0))
T and a Wiener process,

W (t) = (W1(t),W2(t),W3(t),W4(t),W5(t),W6(t),W7(t))
T . We get the stochastic differ-

ential equation model as follows:

dW = [Λ− α1W − α2WH + δ2Wr]dt+
√
ΛdW1 −

√
α1WdW2 −

√
α2WHdW3 +

√
δ2WrdW4,

dH = [α2WH − βH − µH − µ1H]dt+
√
α2WHdW3 −

√
βHdW5 −

√
(µ+ µ1)HdW6,

dWs = [α1W + βH − δWs]dt+
√
α1WdW2 +

√
βHdW5 −

√
δ1WsdW7,

dWr = [δ1Ws − δ2Wr]dt−
√
δ2WrdW4 +

√
δ1WsdW7.

(10)

4 Numerical Simulation

Here, we simulate both deterministic and stochastic models for the following set of pa-
rameters: Λ = 200, α1 = 0.02, α2 = 0.04, µ = 0.0143, µ1 = 0.08, β = 0.093, δ1 = 0.02,
δ2 = 0.0001.

The system (1) is simulated for various sets of parameters satisfying the condition
of local and globally asymptotic stability of equilibrium E∗. For both deterministic and
stochastic models, the simulation results are shown in Fig. 2. The stochastic model
(SDE model) is simulated by the method of Euler-Maruyama, and Fig. 2 plots the mean
of the 100 runs. Here, the results of the stochastic model seem better than those of
the deterministic model as the curve corresponding to scarcity lies below the one that
corresponds to the deterministic model Λ = 100, α1 = 0.00002, α2 = 0.004, µ = 0.0143,
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µ1 = 0.08, β = 0.093, δ1 = 0.02, δ2 = 0.9. The system (1) is simulated for different
sets of parameters satisfying the condition of local and globally asymptotic stability of
equilibrium E∗ (see Fig. 3).

Figs. 4 – 7 demonstrate the impact of various parameters on the equilibrium level of
water scarcity and recovery.

Figure 2: Variation of all compartments of the model showing the effect of stochastic
and deterministic models.

Figure 3: Variation of all compartments of the model showing the stability.
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Figure 4: Effect of α1 on the variation of all compartments of the model.

Figure 5: Effect of α2 on the variation of all compartments of the model.

Figure 6: Effect of β on the variation of all compartments of the model.
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Figure 7: Effect of δ1 on the variation of all compartments of the model.

5 Result of Discussion and Conclusion

In this paper, a deterministic mathematical model on water resource-related wa-
ter scarcity problems was proposed and analyzed. We calculate the equilibrium of the
proposed model and analyze in detail the local stability and global stability of endemic
equilibria.

Further, we extended the deterministic model to a stochastic model and compared
numerical simulation results of both models. The resuls of the stochastic model showed
that the water scarcity decreased comparatively to the deterministic model. The im-
pact of various parameters on the equilibrium point of water scarcity and recovery is
demonstrated. As a society, we have a social responsibility to reduce the scarcity of
water. Therefore, we have developed a model of possible strategies to predict better re-
sults. Simulations using this model showed the effectiveness of progressing from human
to water scarcity.

When the value β (the rate of human population affected by water scarcity) increases
in time, the stable point is differed in all compartment (see Fig. 6). Figs. 4 and 5
depict if the values α1 and α2 increase or decrease, there is no major difference in all
compartments. Fig. 7 depicts if the parameter δ1 (the rate of water recovery) is increasing
in time, the water scarcity is decreased and the recovery is increased.
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Abstract: In this paper, we study a contact problem between a deformable vis-
coelastic body and a rigid foundation. Thermal effects, wear and friction between
surfaces are taken into account. We model the material’s behavior by a nonlinear
thermo-viscoelastic law with the internal state variable. The problem is formulated
as a coupled system of an elliptic variational inequality for the displacement and the
heat equation for the temperature. Our proof is based on nonlinear evolution equa-
tions with monotone operators, differential equations and fixed point arguments.
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1 Introduction

During the last decades, the analysis of mathematical models in Contact Mechanics
is rapidly growing. These models are suggested for different materials using different
boundary conditions modelling friction, lubrication, adhesion, wear, damage, etc.

The aim of this paper is to model and establish the variational analysis of a contact
problem for viscoelastic materials within the infinitesimal strain theory. The process
is supposed to be subject to thermal effects, friction and wear of contacting surfaces.
Mathematical models in Contact Mechanics can be found in [3, 4, 9, 11,13].

Wear of surfaces is the degradation phenomenon of the superficial layer caused by
many factors such as pressure, lubrication, friction and corrosion. Moreover, wear is a
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loss of use as a result of plastic deformations, material removal or fractures. Analysis of
contact problems with wear can be found in [6, 7, 12,16].

The constitutive laws with k internal variables have been used in various publications
in order to model the effect of internal variables in the behavior of real bodies like metals,
rocks, polymers and so on, for which the rate of deformation depends on the internal
variables. Some of the internal state variables considered by many authors are the spa-
tial display of dislocation, the work-hardening of materials. Here, we consider a general
model for the dynamic process of a bilateral frictional contact between a deformable
body and an obstacle which results in the wear of the contacting surface. Recent mod-
els of frictional contact problems can be found in [2, 11, 14, 15]. The material obeys a
viscoelastic constitutive law with thermal effects. Models taking into account thermal
effects can be found in [5,12]. We derive a variational formulation of the problem which
includes a variational second order evolution inequality. We establish the existence and
the uniqueness of a weak solution of the problem. The idea is to reduce the second order
evolution nonlinear inequality of the system to the first order evolution inequality. After
this, we use classical results on first order evolution nonlinear inequalities, a parabolic
variational inequality and equations and the fixed point arguments. The novelty of this
paper consists in the coupling of k internal state variable, the thermal effect and wear.

The paper is structured as follows. In Section 2, we present the thermo-viscoelastic
contact model with friction and provide comments on the contact boundary conditions.
In Section 3, we list the assumptions on the data and derive the variational formulation.
In Section 4, we present our main results on existence and uniqueness which state the
unique weak solvability.

2 Problem Statement

The physical setting is the following. A viscoelastic body occupies a bounded domain
Ω ⊂ Rd (d = 2, 3) with a smooth Γ. The body is acted upon by body forces of density
f0. It is also constrained mechanically on the boundary. We consider a partition of Γ
into three disjoint measurable parts Γ1, Γ2 and Γ3, such that meas(Γ1) > 0. Let T > 0
and let [0, T ] be the time interval of interest. We assume that the body is fixed on
Γ1, surface traction of density f2 acts on Γ2 and a body force of density f0 acts in
Ω. Moreover, the process is dynamic, and thus the inertial terms are included in the
equation of motion. Then, the classical formulation of the mechanical contact problem
of a thermo-visco-elastic material with an internal state variable is as follows.

Problem P. Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ : Ω ×
[0, T ] → Sd, an internal state variable field k : Ω × [0, T ] → Rm, a temperature field
θ : Ω× [0, T ] → R+ and the wear ω : Γ3 × [0, T ] → R+ such that

σ(t) = A(ε(u̇(t))) + F(ε(u(t))) +

t∫
0

B(t− s)ε(u(s))ds− θ(t)M, in Ω× [0, T ] (1)

.

k (t) = ϕ
(
σ (t)−Aε

( .
u (t)

)
, ε (u (t)) , k (t)

)
, (2)
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θ̇ − div (Kc∇θ) = −M∇u̇+ q, (3)

Div σ + f0 = ρü in Ω× (0, T ), (4)

u = 0 on Γ1 × (0, T ), (5)

σν = f2 on Γ2 × (0, T ), (6){
σν = −α

∣∣ .uν

∣∣ , |στ | = −µσν ,
στ = −λ

( .
uτ − v∗

)
, λ ≥ 0,

.
ω = −kυ∗σν , k > 0,

on Γ3 × [0, T ] , (7)

−kij
∂θ

∂xi
υj = ke (θ − θR) − hΓ

(∣∣ .
uΓ

∣∣) on Γ3 × (0, T ), (8)

θ = 0 on Γ1 ∪ Γ2 × (0, T ), (9)

u(0) = u0, u̇(0) = v0, k(0) = k0, θ (0) = θ0 in Ω, (10)

ω(0) = ω0 on Γ3. (11)

First, (1) represents the thermal viscoelastic constitutive law with long-term memory, θ
represents the temperature, M := (mij) represents the thermal expansion tensor. We
denote by ε(u) (respectively, by A, F , B) the linearized strain tensor (respectively, the
viscosity nonlinear tensor, the elasticity operator, the relaxation function), ϕ is also a
nonlinear constitutive function which depends on k. There is a variety of choices for the
internal state variables, for reference in the field, see [8, 10]. Equation (3) describes the
evolution of the temperature field, where Kc := (kij) represents the thermal conductivity
tensor, q is the density of volume heat sources. (4) represents the equation of motion,
where ρ represents the mass density; we mention that Div is the divergence operator. (5)
- (6) are the displacement and the traction boundary condition, respectively. (7) describes
the frictional bilateral contact with wear described above on the potential contact surface.
(8) represents the associated temperature boundary condition on Γ3, where θR is the
temperature of the foundation, and ke is the exchange coefficient between the body and
the obstacle. The equation (9) means that the temperature vanishes on Γ1 ∪Γ2 × (0, T ).
In (10), u0 is the initial displacement, v0 is the initial velocity, k0 is the initial internal
state variable and θ0 is the initial temperature. In (11), ω0 is the initial wear.

3 Variational Formulation and Preliminaries

For a weak formulation of the problem, first, we introduce some notations. The indices i,
j, k, l range from 1 to d and summation over the repeated indices is implied. The index
that follows the comma represents the partial derivative with respect to the corresponding
component of the spatial variable, e.g., ui.j = ∂ui

∂xj
. We also use the following notations:

H = L2(Ω)d,H = {σ = (σij)/σij = σji ∈ L2(Ω)},
H1 = {u = (ui)/ε(u) ∈ H},H1 = {σ ∈ H/Divσ ∈ H}.

The operators of deformation ε and divergence Div are defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Divσ = (σij,j).

The spaces H,H, H1, and H1 are real Hilbert spaces endowed with the canonical inner
products given by
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(u, v)H =
∫
Ω
uividx,∀u, v ∈ H, (σ, τ)H =

∫
Ω
σijτijdx,∀σ, τ ∈ H,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H,∀u, v ∈ H1, (σ, τ)H1

= (σ, τ)H + (Divσ,Divτ)H ,
σ, τ ∈ H1.

We denote by |.|
H

(respectively, by |.|
H

, |.|
H1

, and |.|
H1

) the associated norm on the

space H ( respectively, H, H1, and H1).
The following Green’s formula holds:

(σ, ε(v))H + (Div(σ), v)H =
∫
Γ
σν · vda ∀v ∈ H1(Ω)d,

and for the displacement field, we need the closed subspace of H1 defined by

V = {v ∈ H1(Ω) : v = 0 on Γ1}.

The set of admissible internal state variables is given by

Y = {α = (αi) /αi ∈ L2 (Ω) , 1 ≤ i ≤ m}.
Let us define

E = {η ∈ H1(Ω) : η = 0 on Γ1 ∪ Γ2}.
Since meas(Γ1) > 0, Korn’s inequality holds, i.e., there exists a positive constant Ck,
which depends only on Ω, Γ1, such that

|ε(v)|H ≥ Ck |v|H1(Ω)d , ∀v ∈ V.

On the space V , we consider the inner product and the associated norm given by

(u, v)V = (ε(u), ε(v))H, |v|V = |ε(v)|H ∀u, v ∈ V. (12)

It follows that |.|H1
and |.|V are equivalent norms on V . Therefore (V, |.|V ) is a real

Hilbert space. Moreover, by the Sobolev trace theorem and Korn’s inequality, there
exists a positive constant C0 which depends only on Ω, Γ1 and Γ3 such that

|v|
L2(Γ3)d

≤ C0 |v|V ∀v ∈ V. (13)

In the study of the mechanical problem (1)−(11), we make the following assumptions
that the viscosity operator A : Ω× Sd → Sd satisfies:

a) ∃ LA > 0 : |A (x, ε1)−A (x, ε2)| ≤ LA |ε1 − ε2| ,∀ε1, ε2 ∈ Sd, p.p. x ∈ Ω,

b) ∃ mG > 0 : (A (x, ε1)−A (x, ε2) , ε1 − ε2) ≥ mA |ε1 − ε2|2 ,∀ε1, ε2 ∈ Sd,
c) The mapping x → A (x, ε) is Lebesgue measurable on Ω, ∀ε ∈ Sd,
d) The mapping x 7→ A(x, 0) ∈ H.

(14)
The elasticity operator F : Ω× Sd → Sd satisfies

a) There exists a constant LF > 0 such that
|F (x, ε1)−F (x, ε2)| ≤ LF (|ε1 − ε2|)
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

b) The mapping x → F (x, ε) is Lebesgue measurable
on Ω, for any ε ∈ Sd.

c) The mapping x 7→ F(x, 0) is in H.

(15)
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The relaxation function B : [0, T ]× Ω× Sd → Sd satisfies{
a) Bijkh ∈ W 1.∞(0, T ;L∞(Ω)),
b) B (t)σ · τ = σ · B (t) τ,∀σ, τ ∈ Sd, p.p.t ∈ [0, T ] , p.p.on Ω.

(16)

The function ϕ : Ω× Sd × Sd × Rm → Rm satisfies
a) There exists a constant Lϕ > 0 such that

|ϕ (x, σ1, ξ1, k1)− ϕ (x, σ2, ξ2, k2) | ≤ Lϕ (|σ1 − σ2|+ |ξ1 − ξ2|+ |k1 − k2|) ,
∀σ1, σ2,ε1, ε2 ∈ Sd and k1, k2 ∈ Rm, a.e. x ∈ Ω.

b) For any σ, ε ∈ Sd and k ∈ Rm, x → ϕ(x, σ, ε, k) is Lebesgue measurable on Ω.
c) The mapping x 7→ ϕ(x, 0, 0, 0) is in L2(Ω)m.

(17)
The function hτ : Γ3 × R+ → R+ satisfies a ) There exists a constant Lτ > 0 such that

|hτ (x, r1)− hτ (x, r2)| ≤ Lh |r1 − r2| ∀r1, r2 ∈ R+ , a.e. x ∈ Γ3.
b) x 7→ pτ (., 0) is Lebesgue measurable on Γ3, ∀r ∈ R+.

(18)

For the temperature, we use the following Green’s formula:∫
Ω

θ̇τdx−
∫
Ω

div (Kc∇θ) =

∫
Ω

− (Me∇u̇) τdx+

∫
Ω

qτdx ∀τ ∈ E. (19)

The mass density satisfies

ρ ∈ L∞(Ω), there exists ρ∗ > 0 such that ρ ≥ ρ∗ a.e. x ∈ Ω. (20)

We also suppose that the forces, the tractions, the volume, the surface free charges
densities and the functions α and µ have the regularity f0 ∈ L2(0, T ;H), f2 ∈ L2(0, T ;L2(Γ2)

d),
α ∈ L∞(Γ3) α(x) ≥ α∗ > 0, p.p.on Γ3,
µ ∈ L∞(Γ3), µ(x) > 0, p.p.on Γ3,

(21)

q ∈ W 1,2(0, T ;L2(Ω)), θR ∈ W 1,2(0, T ;L2(Γ3)), ke ∈ L∞(Ω,R+) , (22){
Kc = (kij) , (kij = kji ∈ L∞ (Ω) ,
∀ck ≥ 0, ζi ∈ Rd, kijζiζj ≥ ckζiζj ,

(23)

M = (mij) ,mij = mji ∈ L∞ (Ω) . (24)

The initial data satisfy

u0 ∈ V, v0 ∈ H, θ0 ∈ E, k0 ∈ Y, ω0 ∈ L∞ (Γ3) . (25)

We will use a modified inner product on the Hilbert space, given by

((u, v))H = (ρu, v)H ∀ u, v ∈ H, (26)

and we let ∥.∥H be the associated norm given by

∥v∥H = (ρv, v)
1
2 ∀v ∈ H. (27)
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It follows from assumption (20) that ∥ . ∥H and | · |H are equivalent norms on H, and also
the inclusion mapping of (V, | · |V ) into (H, ∥.∥H) is continuous and dense. We denote by
V ′ the dual space of V . Identifying H with its own dual, we can write the Gelfand triple

V ⊂ H ⊂ V ′.

We use the notation (., .)V ′×V to represent the duality pairing between V ′ and V , recall
that

(u, v)V ′×V = ((u, v))H ∀u ∈ H,∀v ∈ V. (28)

Let f : [0, T ] → V ′ be the function defined by

(f(t), v)V ′×V =

∫
Ω

f0(t).vdx+

∫
Γ2

f2(t).vda ∀ v ∈ V. (29)

Next, we denote by j : L2(Γ3)× V × V → R

j(u, v) =

∫
Γ3

α |uν | (µ |vτ − v∗|) da . (30)

Let φ : V × V → R be the function defined by

φ(u, v) =

∫
Γ3

α |uν | |vν | da, ∀v ∈ V. (31)

Let us introduce the operator A : V → V ′

(Au, v)V ′×V = (A(ε(u)), ε(v))H

for all u, v ∈ V and t ∈ [0, T ]. Note that

f ∈ L2(0, T ;V ′). (32)

Using standard arguments based on Green’s formulas we can derive the following varia-
tional formulation of problem P.

Problem PV. Find a displacement field u : [0, T ] → V , a stress field σ : [0, T ] → H,
an internal state variable field k : [0, T ] → Y , a temperature field θ : Ω × [0, T ] → R+

and the wear ω : Γ3 × [0, T ] → R+ such that

σ(t) = A(ε(u̇(t))) + F(ε(u(t))) +

t∫
0

B(t− s)ε(u(s))ds− θ(t)M, in Ω× [0, T ] , (33)

.

k (t) = ϕ
(
σ (t)−Aε

( .
u (t)

)
, ε (u (t)) , k (t)

)
, (34)

(ü(t), w − u̇(t))V ′×V + (σ(t), ε(w − .
u(t)))H + j(

.
u,w)− j(

.
u,

.
u(t)) + φ(

.
u,w)− φ(

.
u,

.
u(t))

≥
(
f(t), w − .

u(t)
)
, ∀u,w ∈ V,

(35)

θ̇ (t) +Kθ (t) = R
.
u (t) +Q (t) t ∈ (0, T ), (36)

.
ω = −kυ∗σν , (37)

u(0) = u0, u̇(0) = v0, k(0) = k0, θ (0) = θ0, (38)
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where Q : [0, T ] → E′,K : E → E′, R : V → E′ are given by

(Q(t), µ)
E′×E

=

∫
Γ3

keθR (t)µda+

∫
Ω

q (t)µdx, (39)

(Kτ, µ)E′×E =

d∑
i,j=1

∫
Ω

kij
∂τ

∂xj

∂µ

∂xi
dx+

∫
Γ3

keτµda, (40)

(Rv, µ)
E′×E

=

∫
Γ3

hτ (|vτ |)µda−
∫
Ω

(M∇v) dx (41)

for all v ∈ V, µ, τ ∈ E.
The proof of the existence and uniqueness of solution to problem PV will be given in

the next section.

4 Existence and Uniqueness Result

Now, we propose our existence and uniqueness result.

Theorem 4.1 Let the assumptions (14)−(25) hold. Then the problem has a unique
solution {u, σ, k, ω, θ} satisfying

u ∈ C1 (0, T ;H) ∩W 1.2 (0, T ;V ) ∩W 2.2 (0, T ;V ′) (42)

σ ∈ L2(0, T ;H), Divσ ∈ L2(0, T ;V ′), (43)

k ∈ W 1,2(0, T ;Y ), (44)

ω ∈ C1(0, T ;L2(Γ3)), (45)

θ ∈ W 1,2(0, T ;E′) ∩ L2(0, T ;E) ∩ C(0, T ;L2 (Ω)). (46)

We conclude that under the assumptions (14)−(25), the mechanical problem (1)-(11)
has a unique weak solution with the regularity (42)-(46).

The proof of this theorem will be carried out in several steps.
The first step: let g ∈ L2(0, T ;V ) and η =

(
η1, η2

)
∈ L2 (0, T ;V ′ × Y ) be given,

and prove that there exists a unique solution ugη of the following intermediate problem.
Problem PVgη. Find the displacement field ugη : [0, T ] → V such that for a.e.

t ∈ (0, T ) ,

{
(ügη(t), w − u̇gη(t))V ′×V + (Aε(u̇gη(t)), ε(w − .

ugη(t)))H+(
η1, w − .

ugη(t)
)
V ′×V

+ j(g, w)− j(g,
.

ugη(t)) ≥
(
fgη(t), w − .

ugη(t)
)
, ∀w ∈ V,

(47)

ugη(0) = u0, u̇gη(0) = v0. (48)

We define fgη(t) ∈ V for a.e.t ∈ [0.T ] by

(fgη(t), w)V ′×V =
(
f(t)− η1 (t) , w

)
V ′×V

, ∀w ∈ V. (49)

From (29), we deduce that
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fη ∈ L2(0, T ;V ′). (50)

Let now uη : [0.T ] → V be the function defined by

uη (t) =

∫ t

0

vη (s) ds+ u0,∀t ∈ [0, T ] . (51)

Concerning Problem PVgη, we have the following result.

Lemma 4.1 There exists a unique solution to problem PVgη with the regularity.

vη ∈ L2(0, T ;V ) and v̇η ∈ L2(0, T ;V ′). (52)

Proof. The proof by nonlinear first order evolution inequalities is given in [9].

The second step: we use the displacement ugη to consider the following variational
problem.

Let us consider now the operator Λη (g) : L2(0, T ;V ) → L2(0, T ;V ) defined by

Λη (g) = vgη . (53)

We have the following lemma.

Lemma 4.2 The operator Λη has a unique fixed point g∗η ∈ L2(0, T ;V ).

Proof. Let g1, g2 ∈ L2(0, T ;V ) and let η =
(
η1, η2

)
∈ L2 (0, T ;V ′ × Y ). Using

similar arguments as in (47), (51), we find

(
.
v1 (t)−

.
v2 (t) , v1 (t)− v2 (t)) + (Aε (v1 (t))−Aε (v2 (t)) , ε (v1 (t))− ε (v2 (t)))+

+j(g1, v1 (t))− j(g1, v2 (t))− j(g2, v1 (t)) + j(g2, v2 (t)) ≤ 0.
(54)

From the definition of the functional j given by (30), we have

j(g1, v2 (t))− j(g1, v1 (t))− j(g2, v2 (t)) + j(g2, v1 (t)) =
∫
Γ3

(α |g1ν | − α |g2ν |)
(µ |v1τ − v∗| − µ |v2τ − v∗|) da. (55)

From (13), (21) we find

j(g1, v2 (t))− j(g1, v1 (t))− j(g2, v2 (t)) + j(g2, v1 (t)) ≤ C |g1 − g2|V |v1 − v2|V . (56)

Integrating the inequality (54) with respect to time, using the initial conditions v2 (0) =
v1 (0) = v0, using (14) , (56) and the inequality

2ab ≤ C

mA
a2 +

mA

C
b2,

we find

|v2 (t)− v1 (t)|2V ≤ C

∫ t

0

|g2 (s)− g1 (s)|2V ds. (57)

From (53) and (57), we find that

|Ληg2 (t)− Ληg1 (t)|2V ≤ C

∫ t

0

|g2 (s)− g1 (s)|2V ds.
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Reiterating this inequality m times, we obtain∣∣Λm
η g2 (t)− Λm

η g1 (t)
∣∣
L2(0,T ;V )

≤ CmTm

m!
|g2 (t)− g1|L2(0,T ;V ) . (58)

Since lim
m→+∞

CmTm

m! = 0, it follows that exists a positive integerm such that CmTm

m! < 1

and, therefore, (58) shows that Λm
η is a contraction on the Banach space L2(0, T ;V ).

Thus, from Banach’s fixed point theorem, the operator Λη has a unique fixed point g∗η ∈
L2(0, T ;V ).

Lemma 4.3 Now, define kη ∈ W 1,2(0, T ;Y ) by

kη (t) = k0 +

∫ t

0

η2 (s) ds. (59)

Then there exists C > 0 such that

|k1 (s)− k2 (s)|2
Y
≤ C

∫ t

0

∣∣η21 (s)− η22 (s)
∣∣2
Y ′ ds. (60)

In the third step, we use the displacement field uη obtained in Lemma 4.1 and kη defined
in (59) to consider the following variational problem for the temperature field.

Problem PVθ. Find θη : [0, T ] → E′ satisfying for a.e. t ∈ (0, T ),

θ̇η(t) +Kθη (t) = Ru̇η (t) +Q (t) t ∈ (0, T ), in E′, (61)

θη (0) = θ0. (62)

Lemma 4.4 Problem PVθ has a unique solution

θη ∈ W 1,2(0;T ;E
′
) ∩ L2(0;T ;E) ∩ C(0;T ;L2(Ω)), ∀η ∈ L2(0, T ;V ′),

satisfying

|θη1 (t)− θη2 (t) |2L2(Ω) ≤ C

∫ t

0

|υ1(s)− υ2(s)|2V ds ∀ t ∈ (0, T ). (63)

Proof. The existence and uniqueness result verifying (61) follows from the classical

result on the first order evolution equation, applied to the Gelfand evolution triple

E ⊂ F ≡ F
′
⊂ E

′
.

We verify that the operator K is linear continuous and strongly monotone. Now
from the expression of the operator R, vη ∈ W 1,2(0, T ;V ) ⇒ Rvη ∈ W 1,2(0, T ;F ), as
Q ∈ W 1,2(0, T ;E), then Rvη +Q ∈ W 1,2(0, T ;E), we deduce (63), (See [1]).

Finally, as a consequence of these results, and using the properties of F , E , G, ϕ, and
j for t ∈ [0, T ], we consider the element

Λη (t) =
(
Λ1η (t) ,Λ2η (t)

)
∈ V ′ × Y, (64)(

Λ1(η), w
)
V ′×V

= (F(ε(uη(t)), w)V +

+(
t∫
0

B(t− s)ε(uη(s))ds, w)V − (θη(t)M,ε(w))H +φ(
.
u,w) ∀w ∈ V,

(65)

Λ2η (t) = ϕ (ση (t) , ε (uη (t)) , kη (t)) . (66)
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Here, for every η ∈ L2(0, T ;V ′ × Y ), uη, θη represent the displacement field and the
temperature field obtained in Lemmas 4.1, 4.4, respectively, and kη is the internal state
variable given by (59). We have the following result.

Lemma 4.5 The operator Λ has a unique fixed point η∗ ∈ L2(0, T ;V ′ × Y ).

Proof. Let η1, η2 ∈ L2(0, T ;V ′ × Y ). Write for i = 1.2, uηi = ui, u̇ηi = vηi = vi,
σηi = σi, kηi = ki, θηi = θi. Using (12), (15), (16), (24), (31), we have∣∣Λ1η1 (t)− Λ1η2 (t)

∣∣2
V ′ ≤ C(|u1 (t)− u2 (t)|2V +

∫ t

0
|u1 (s)− u2 (s)|2V ds+

|θ1 (t)− θ2 (t)|2L2(Ω + |v1 (t)− v2 (t)|2V ).
(67)

By similar arguments, from (66), (33) and (17), it follows that∣∣Λ2η1 (t)− Λ2η2 (t)
∣∣2
Y
≤ C(|σ1 (t)− σ2 (t)|2H + |u1 (t)− u2 (t)|2V + |k1 (t)− k2 (t)|2

Y
).
(68)

Taking into account that

σi(t) = A(ε(
.
ui(t))) + η1i (t) , ∀t ∈ [0, T ], (69)

by (14), and using (69), we find

|σ1 (t)− σ2 (t)|2H1
≤ C

(
|v1 (t)− v2 (t)|2V +

∣∣η11 (t)− η12 (t)
∣∣2
V ′

)
. (70)

So∣∣Λ2η1 (t)− Λ2η2 (t)
∣∣2
Y

≤ C(|v1 (t)− v2 (t)|2V +
∣∣η11 − η12

∣∣2
V ′ + |u1 (t)− u2 (t)|2V

+ |k1 (t)− k2 (t)|2
Y
). (71)

Consequently,

|Λη1 (t)− Λη2 (t)|2V ′×Y ≤ C(|u1 (t)− u2 (t)|2V + |k1 (t)− k2 (t)|2
Y
+

∣∣η11 (t)− η12 (t)
∣∣2
V ′

+ |θ1 (t)− θ2 (t)|2L2(Ω + |v1 (t)− v2 (t)|2V +
∫ t

0
|u1 (s)− u2 (s)|2V ds.

(72)
Since u1 and u2 have the same initial value, we get

|u1 (t)− u2 (t)|2V ≤ C

∫ t

0

|v1 (s)− v2 (s)|2V ds.

From this inequality, (72) and (63), we obtain

|Λη1 (t)− Λη2 (t)|2V ′×Y ≤ C(
∫ t

0
|v1 (s)− v2 (s)|2V ds+ |v1 (t)− v2 (t)|2V +

|k1 (t)− k2 (t)|2
Y
+
∣∣η11 (t)− η12 (t)

∣∣2
V ′),∀t ∈ [0, T ] .

Moreover, from (54), we obtain( .
v1 (t)−

.
v2 (t) , v1 (t)− v2 (t)

)
+ (Aε (v1 (t))−Aε (v2 (t)) , ε (v1 (t))− ε (v2 (t)))+

+ (η1 (t)− η2 (t) , v1 (t)− v2 (t)) ≤ j(v1 (t) , v2 (t))− j(v1 (t) , v1 (t))
−j(v2 (t) , v2 (t)) + j(v2 (t) , v1 (t)).

(73)
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From the definition of the functional j given by (30), and using (13),(23), we get

j(v1 (t) , v2 (t))−j(v1 (t) , v1 (t))−j(v2 (t) , v2 (t)) + j(v2 (t) , v1 (t)) ≤ C |v1 (t)− v2 (t)|2V .
(74)

Integrating the inequality(73) with respect to time, using the initial conditions v2(0) =
v1(0) = v0, using (14),(74) and using the Cauchy-Schwartz inequality and the inequality

2ab ≤ mAa
2 +

1

mA
b2,

we find ∫ t

0

|v1 (s)− v2 (s)|2V ds ≤ C

∫ t

0

∣∣η11 (s)− η12 (s)
∣∣2
V ′ ds. (75)

It follows now from (59),(63) and (75) that

|Λη1 (t)− Λη2 (t)|2V ′×Y ≤ C

∫ t

0

|η1 (s)− η2 (s)|2V ′×Y ′ ds.

Reiterating the previous inequality n times, we find that

|Λnη1 − Λnη2|2L2(0,T ; V ′×Y ) ≤
CnTn

n!

∫ t

0
|η1 (s)− η2 (s)|2V ′×Y ds.

This inequality shows that for n large enough, the operator Λn is a contraction on the
Banach space L2 (0, T ; V ′ × Y ) , and so Λ has a unique fixed point. Next, we consider
the operator L : C(0, T ;L2(Γ3)) → C(0, T ;L2(Γ3)) defined by

Lω (t) = −kυ∗
∫ t

0

σν (s) ds,∀t ∈ [0, T ]. (76)

Lemma 4.6 The operator L : C(0, T ;L2(Γ3)) → C(0, T ;L2(Γ3)) has a unique point
element ω∗ ∈ C(0, T ;L2(Γ3)) such that Lω∗ = ω∗.

Proof. Using ω1, ω2 ∈ C(0, T ;L2(Γ3)), we have

|Lω1 (t)− Lω2 (t)|2L2(Γ3)
≤ kυ∗

∫ t

0

|σ1 (s)− σ2 (s)|2 ds.

From (12) and using (14)-(16), we find

|σ1 (t)− σ2 (t)|2H1
≤ C(|u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V +∫ t

0
|u1 (s)− u2 (s)|2V ds+ |θ1 (t)− θ2 (t)|2H1(Ω)).

(77)

Using (63), we obtain

|σ1 (t)− σ2 (t)|2H1
≤ C(

∫ t

0
|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V +

|v1 (t)− v2 (t)|2V +
∫ t

0
|v1 (s)− v2 (s)|2V ds.

(78)

From (51), we have∫ t

0
|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V ≤

C
∫ t

0
|v1 (s)− v2 (s)|2V ds.
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So ∫ t

0
|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V ≤

C(
∫ t

0
|v1 (s)− v2 (s)|2V ds+ |ω1 (t)− ω2 (t)|2L2(Γ3)

).
(79)

By Gronwall’s inequality, we find∫ t

0

|u1 (s)− u2 (s)|2V ds+ |u1 (t)− u2 (t)|2V + |v1 (t)− v2 (t)|2V ≤ C |ω1 (t)− ω2 (t)|2L2(Γ3)
.

So, we have

|σ1 (t)− σ2 (t)|2H1
≤ C

∫ t

0

|ω1 (s)− ω2 (s)|2L2(Γ3)
ds. (80)

Using (80), we find

|Lω1 (t)− Lω2 (t)|L2(Γ3)
≤ C

∫ t

0

|ω1 (s)− ω2 (s)|L2(Γ3)
ds.

Reiterating the previous inequality p times, we find that

|Lω1 (t)− Lω2 (t)|L2(Γ3)
≤ (Ct)

p

p!
|ω1 (t)− ω2 (t)|L2(Γ3)

.

This inequality shows that for p large enough, the operator Lp is a contraction on the
Banach space C(0, T ;L2(Γ3)), and so L has a unique fixed point ω∗ ∈ C(0, T ;L2(Γ3)).

Now we have all the ingredients to prove Theorem 4.1.

Existence. Let g∗ = g∗η∗ be the fixed point of Λη∗ defined by Lemma 4.2, let

η∗ =
(
η1∗, η

2
∗
)
∈ L2 (0, T ;V ′ × Y ) be the fixed point of Λ defined by (65) and (66),

kη∗ (t) = k0 +
∫ t

0
η2∗ (s) ds, and let ω∗ ∈ C(0, T ;L2(Γ3)) be the fixed point L defined

by (76) and let (uη∗ , θη∗) be the solution to Problems PVgη, PVθ for η = η∗, that is,
u = uη∗ , k = kη∗ , θ = θη∗ , and

σ(t) = A(ε(u̇(t))) + F(ε(u(t))) +

t∫
0

B(t− s)ε(u(s))ds− θ(t)M.

It results from (65) and (66), for Λ1(η∗) = η1 and Λ2(η∗) = η2, that (u, σ, k, θ, ω) is a
solution of Problem PV. The regularities (42)-(46) follow from Lemmas 4.1, 4.3, 4.4 and
4.6.

Uniqueness. The uniqueness of the solution follows from the uniqueness of the fixed
point of the operators Λη, Λ and L.

5 Concluding Remark

Scientific research and recent papers in mechanics are articulated around two main com-
ponents, one devoted to the laws of behavior and the other devoted to the boundary
conditions imposed on the body.

The constitutive laws with internal variables have been used in various publications
in order to model the effect of internal variables on the behavior of real bodies like
metals, rocks, polymers and so on, for which the rate of deformation depends on the
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internal variables. Some of the internal state variables considered by many authors are
the spatial display of dislocation, the work-hardening of materials. Our model is obtained
by combining the thermoviscoelastic constitutive law with a long memory term, wear,
friction and the internal state variable k. The model is developed to describe the self-
heating and stress-strain behavior of thermoviscoelastic polymers under tensile loading
when the rate of deformation depends on the internal variable k.

Mathematically, the idea is to reduce the second order nonlinear evolution inequality
of the system to the first order evolution inequality. After this, we use classical results on
first order evolution nonlinear inequalities, parabolic inequalities, differential equations
and fixed point arguments.
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Sweden, 1995.



Nonlinear Dynamics and Systems Theory, 22 (5) (2022) 586–589

Contents of Volume 22, 2022

Volume 22 Number 1 2022

Capacity and Anisotropic Sobolev Spaces with Zero Boundary Values . . . . . . . . . . . . . . . 1
Y. Akdim, R. Elharch, M. C. Hassib and S. Lalaoui Rhali

First Integral of a Class of Two Dimensional Kolmogorov Systems . . . . . . . . . . . . . . . . . 13
R. Boukoucha

Comprehensive Description of Solutions to Semilinear Sectorial Equations:
an Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Radoslaw Czaja and Tomasz Dlotko

A Geometric Study of Relative Operator Entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A. El Hilali, B. El Wahbi and M. Chergui

On the Equivalence of Lorenz System and Li System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Lotfi Meddour and Kheireddine Belakroum

Similarities between the Lorenz Related Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
C. Morel, R. C. Vlad and J.-Y. Morel

A Mathematical Study of Wuhan Novel Coronavirus Epidemic Model . . . . . . . . . . . . . . 82
Sayed Sayari

Finite Element Solution to the Strongly Reaction-Diffusion System . . . . . . . . . . . . . . . . . 97
Muhannad A. Shallal, Adham A. Ali and Ali M. Jasim

Global Stability and Optimal Harvesting of Predator-Prey Model with Holling
Response Function of Type II and Harvesting in Free Area of Capture . . . . . . . . . . . . 105

Syamsuddin Toaha, Firman and Agustinus Ribal

Volume 22 Number 2 2022

The Geometry of Mass Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
S.B. Davis

Lyapunov-Type Inequalities for a Fractional Boundary Value Problem with a
Fractional Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

S. Dhar and J. T. Neugebauer

© 2022 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua586

http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22(5) (2022) 586–589 587

Performance Comparison of Some Two-Dimensional Chaotic Maps for Global
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A. Djaout, T. Hamaizia and F. Derouiche

Existence and Uniqueness of Solutions for a Semilinear Functional Dynamic
Equation with Infinite Delay and Impulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C. Duque, H. Leiva and A. Tridane

Modification of the Trajectory Following Method for Asymptotic Stability in a
System Nonlinear Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Firman, Syamsuddin Toaha, Kasbawati

Direct Torque Control of Three-Phase Induction Motor Powered by Three-Level
Indirect Matrix Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Ameur Khaldi, El Madjid Berkouk, Mohand Oulhadj Mahmoudi
and Abdellah Kouzou

On the Existence of Periodic Solutions of a Degenerate Parabolic
Reaction-Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Amer Mesbahi and Salim Mesbahi

Active Fault Tolerant Synchronization of Two Hyper Chaos Lu Systems with
Disturbance Input and Parametric Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Alireza Sabaghian and Saeed Balochian

Type-II Left Censoring of Some Finite Support Family Lifetime Distributions . . . . . 218
Mahmoud M. Smadi

Volume 22 Number 3 2022

The Solution of the Second Part of the 16th Hilbert Problem for a Class of
Piecewise Linear Hamiltonian Saddles Separated by Conics . . . . . . . . . . . . . . . . . . . . . . . 231

R. Benterki, L. Damene and L. Baymout

Asymptotic Analysis of a Nonlinear Elliptic Equation with a Gradient Term . . . . . . 243
A. Bouzelmate and M. EL Hathout

Existence, Uniqueness of Weak Solution to the Thermoelastic Plates . . . . . . . . . . . . . . 263
B.El-Aqqad, J. Oudaani and A.El Mouatasim

The Effects of Pesticide as Optimal Control of Agriculture Pest Growth
Dynamical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

T. Herlambang, A.Y.P. Asih, D. Rahmalia, D. Adzkiya and N. Aini

Solvability of Equations with Time-Dependent Potentials . . . . . . . . . . . . . . . . . . . . . . . . . 291
M. Mardiyana, S. Sutrima, R. Setiyowati and R. Respatiwulan

Weighted Performance Measure and Generalized H∞ Control Problem for Linear
Descriptor Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

A.G. Mazko

PI-Fuzzy Control Applied to the Hybrid PV / Wind Pumping System with
Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319



588 NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22(5) (2022) 586–589

Ahmed Medjber, Abdelhafidh Moualdia and Abdelkader Morsli

Some Results on Controllability for a Class of Non-Integer Order Differential
Equations with Impulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

A. Raheem and M. Kumar

Equivalent Conditions and Persistence for Uniformly Exponential Dichotomy . . . . . 341

Sutrima Sutrima and Ririn Setiyowati

Volume 22 Number 4 2022

Functional Differential Inclusions with Unbounded Right-Hand Side in Banach
Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

H. Chouial and M. F. Yarou

SOFC-PV System with Storage Battery Based on Cuckoo Search Algorithm . . . . . . 367

Hamidia Fethia and Abbadi Amel

Application of Accretive Operators Theory to Linear SIR Model . . . . . . . . . . . . . . . . . . 379

Mariam El Hassnaoui, Said Melliani and Mohamed Oukessou

Design of Navigation and Guidance Control System of Mobile Robot with
Position Estimation Using Ensemble Kalman Filter (EnKF) and Square Root
Ensemble Kalman Filter (SR-EnKF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

T. Herlambang, F.A. Susanto, D. Adzkiya, A. Suryowinoto and

K. Oktafianto

On the Dynamics of a Class of Planar Differential Systems . . . . . . . . . . . . . . . . . . . . . . . . 400

A. Kina and A. Bendjeddou

Chaos Synchronization between Fractional-Order Lesser Date Moth Chaotic
System and Integer-Order Chaotic System via Active Control . . . . . . . . . . . . . . . . . . . . . 407

M. Labid and N. Hamri

New Design of Stability Study for Linear and Nonlinear Feedback Control of
Chaotic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

W. Laouira and N. Hamri

Control of a Shunt Active Power Filter by the Synchronous Referential Method
Connected with a Photovoltaic Solar Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

A. Morsli, A. Tlemcani and H. Nouri

A Neural Network Approximation for a Model of Micromagnetism . . . . . . . . . . . . . . . . 432

M. Moumni and M. Tilioua

A New Fractional-Order Three-Dimensional Chaotic Flows with Identical
Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

S.Rouar and O. Zehrour

Estimation of Closed Hotels and Restaurants in Jakarta as Impact of Corona
Virus Disease (Covid-19) Spread Using Backpropagation Neural Network . . . . . . . . . 457

F.A. Susanto, M.Y. Anshori, D. Rahmalia, K. Oktafianto, D. Adzkiya,

P. Katias and T. Herlambang



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22(5) (2022) 586–589 589

Stabilization of Chaotic h-Difference Systems with Fractional Order . . . . . . . . . . . . . . . 468
Hasna Yousfi, Ahlem Gasri and Adel Ouannas

Volume 22 Number 5 2022

Analysis of an Antiplane Thermo-Electro-Viscoelastic Contact Problem with
Long-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

L. Benziane and N. Lebri

Controllability of Dynamic Equations with Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Martin Bohner, Cosme Duque and Hugo Leiva

A Dynamic Contact Problem for Piezo-Thermo-Elastic-Viscoplastic Materials with
Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

L. Debbacha and N. Lebri

A Dynamic Contact Problem between Viscoelastic Piezoelectric Bodies with
Friction and Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

M. L. Gossa, T. Hadj Ammar and K. Saoudi

Exact Controllability of the Reaction-Diffusion Equation under Bilinear Control . . . 538
M. Jidou Khayar, A. Brouri and M. Ouzahra

The Analysis of Demand and Supply of Blood in Hospital in Surabaya City
Using Panel Data Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

A. Muhith, I. H. Susanto, D. Rahmalia, D. Adzkiya and T. Herlambang

Effect of Water Scarcity in the Society: A Mathematical Model . . . . . . . . . . . . . . . . . . . 561
K. Siva and S. Athithan

Frictional Contact Problem for Thermoviscoelastic Materials with Internal State
Variable and Wear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

S. Smata and N. Lebri

Contents of Volume 22, 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586



CAMBRIDGE SCIENTIFIC PUBLISHERS 
 

AN INTERNATIONAL BOOK SERIES 
STABILITY OSCILLATIONS AND OPTIMIZATION OF SYSTEMS 

 

Advances in Stability and Control Theory for Uncertain Dynamical Systems  
Stability, Oscillations and Optimization of Systems: Volume 11 

317+xxii pp., 2021   ISBN 978-1-908106-73-5    £60/$80/€67 
 

C. Cruz-Hernández  (Ed.) 
Department of Electronics and Telecommunications, Scientific Research and Advanced 

Studies Center of Ensenada (CICESE), Ensenada, México. 

A.A. Martynyuk  (Ed.) 
Institute of Mechanics, National Academy of Sciences of Ukraine, Kyiv, Ukraine 

A.G. Mazko  (Ed.) 
Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine 
 

This volume presents the latest investigations in stability and control theory for uncertain 

dynamical systems, incorporating the main engineering applications. The volume consists of 16 

chapters containing the results of theoretical research and engineering applications of some 

uncertain systems and provides new trends for future promising researches. Some issues covered 

in the volume include: 

 stability and control in uncertain systems: optimal design of robust control, generalization of 

direct Lyapunov method, robust output feedback stabilization and optimization of control 

systems, optimal control of nonlinear systems over an infinite horizon; 

 stability and stabilization in discrete-time systems: stability conditions for discrete-time 

positive switched systems with delay, quadratic stabilization for nonlinear perturbed discrete 

time-delay systems, robust output feedback stabilization and optimization of discrete-time 

control systems, stability of singularly perturbed nonlinear Lur’e discrete-time systems; 

 synchronization in dynamical systems: function projective dual synchronization of chaotic 

systems with uncertain parameters, anti-synchronization and hybrid synchronization of 3D 

discrete generalized Hénon map, adaptive hybrid function projective synchronization; 

 engineering applications: attitude stabilization of a rigid body, adaptive control of continuous 

bioreactors, wavelet adaptive tracking control, adaptive fuzzy control of nonlinear systems, 

robust active control for structural systems with structured uncertainties. 
 

The Advances in Stability and Control Theory for Uncertain Dynamical Systems may be 

useful for graduate students and researchers in applied mathematics and physics, control, 

nonlinear science, and engineering. 
 

CONTENTS: Introduction to the series • Preface • Contributors • An Overview • Stability 

and Control in Uncertain Systems • Stability and Stabilization in Discrete-Time Systems • 

Synchronization in Dynamical Systems • Engineering applications • Index 
 

Please send order form to:  

Cambridge Scientific Publishers 

45 Margett Street, Cottenham, Cambridge CB24 8QY, UK 

Telephone: +44 (0) 1954 251283;  Fax: +44 (0) 1954 252517  

Email: janie.wardle@cambridgescientificpublishers.com 

Or buy direct from our secure website: www.cambridgescientificpublishers.com 
 


	COV-V22N5_web
	Страница 1
	Страница 2

	V22N5_print
	 Introduction
	Mathematical Model
	Variational Formulation and Main Result
	An Abstract Existence and Uniqueness Result
	Conclusion
	Introduction
	Preliminaries
	Existence and Uniqueness
	Controllability of the Linear Equation
	Approximate Controllability of the Nonlinear System
	Approximate Controllability on Free Time
	Examples
	Conclusion and Final Remark
	Introduction
	The Model
	Variational Formulation
	Notations and preliminaries.
	Assumptions on the data

	Existence and Uniqueness of the Solution
	Conclusion
	Introduction
	Problem Statement and Variational Formulation
	Main Existence and Uniqueness Result
	Introduction
	The Main Results 
	Exact controllability of the bilinear equation
	Exact controllability of the semilinear system

	Simulation
	Conclusion
	Introduction
	Panel Data Modeling
	Estimation of Panel Data Regression
	Common Effect (CE) model (Pooled model)
	Fixed Effect (FE) model
	Random Effect (RE) model

	The Selection of Best Model
	Chow test
	Hausman test
	Lagrange Multiplier test

	Significance Test
	F-test
	T-test
	R-squared

	Results
	The selection of best model
	Significance test

	Conclusions
	Introduction
	The Model and Analysis
	Existence of equilibria
	Stability analysis
	Stability analysis of EE point
	Global stability of endemic equilibrium


	Stochastic Model
	Numerical Simulation
	Result of Discussion and Conclusion
	Introduction
	Problem Statement
	Variational Formulation and Preliminaries
	Existence and Uniqueness Result
	Concluding Remark




