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Abstract: This paper deals with the dynamics of prey and predator populations
in the permitted and prohibited areas of harvesting with a Crowley-Martin response
function. The predator can migrate easily into both areas. The prey and predator
populations in the permitted area are harvested with constant efforts. The existence
and stability of the interior equilibrium point are studied. The stable interior equilib-
rium point is connected with maximum profit. The stability of the interior equilibrium
point is analysed locally using the linearization method and eigenvalues. Due to the
complexity, the simulation is carried out using the relevant parameter values to de-
termine the existence of a stable interior equilibrium point and profit function. From
simulation, there exists an ordered pair of harvesting efforts that gives a stable in-
terior equilibrium point and also maximizes the profit function. Harvesting in prey
and predator populations in the permitted area can prevent the populations from
extinction and also provide maximum sustainable profit. The trajectories of prey and
predator populations are plotted to visualize the dynamical behaviour for a given
span of time. The surface of profit function is also plotted to view the maximum
profit.
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1 Introduction

Mathematical modelling has been applied in various fields of studies including biology,
ecology, epidemiology, economics, and many other fields, see [1], [2], [3], [4]. The model
aims to explain the real phenomena from the mathematical aspect [5] and is also used
to make prediction for the future, see [6]. A dynamical population is one of the research
objects in the modelling. The growth rates of populations and their interaction are still
a concern of researchers, including the dynamics of prey-predator populations living at
the same area. The dynamics of populations were not only affected by their growth rate
and interaction but also by some other factors like the death rate, competition, preda-
tion response, harvesting, and migration, see [7]. The dynamical population analysis not
only studies and predicts sustainability but also considers social and economic aspects,
see [8].

In the prey-predator model, one thing that is very important is the form of inter-
action between the prey and the predator, known as the predation function. Some
of the predation functions often used in prey-predator models are of the Holling type,
Holling-Tanner type, Mechaelis-Menten type, and Leslie-Gower type, see [5], [9]. The
Beddington-DeAngelis type as another type of functional response is used as a control
to stabilize the interaction of the prey and the predator, see [10]. The use of these types
of functional response is dependent on the characteristic of the prey and the predator.
The Crowley-Martin response function is influenced by the predator density, catch rate,
handling time, and the magnitude of disturbance among predators, see [11]. The prey-
predator model with the Crowley-Martin response function has been applied for many
purposes, see [12].

The Crowley-Martin response function was also applied to predict the dynamics of a
phytoplankton-zooplankton system [13]. There are prey-predator models which consider
two identical areas and populations can migrate to these areas. Some of the population
models are useful, for example, a fish population model in fisheries management, when
the populations are harvested in various ways and policies. There is a policy in the fish-
eries management where the population in an area is prohibited from being harvested
while in the other area it is permitted. Several policies in harvesting include selective
harvesting, harvesting with constant quotas, harvesting with constant effort. Harvesting
activities in population dynamics have economic consequences. The populations are not
only managed to be sustainable but also strived to provide the maximum benefit. In
some prey-predator models, only the prey populations are harvested or only the preda-
tor populations are harvested, see [14]. There are also other researchers who considered
both prey and predator populations to be harvested, see [15].

In this paper, we consider a prey-predator model with the Crowley-Martin response
function in an ecosystem which is divided into two areas, namely, an area where fishing is
permitted and other area where fishing is prohibited. The prey population can migrate
into both areas. The modeled populations are the population of butini fish (Glossogobius
matanensis) as the prey and the population of nila fish (Oreochromis nilotichus) as the
predator. The butini is an endemic and native fish found in several lakes of East Luwu
district, South Sulawesi province, Indonesia, see [16]. In this model, the nila fish as the
predator is divided into two compartments according to where the fish is located. Both
populations are allowed to be harvested in the permitted area. The model formed is a
system of nonlinear differential equations and the constant harvesting efforts are used for
both populations. The local stability is analyzed using the linearization method. Max-
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imum profit is evaluated over a certain range of effort values. The surface of the profit
function is given to visualize the maximum profit.

2 Material and Method

This research involves a prey-predator population model following the Crowley-Martin
response function. The populations considered in this study are butini fish and nila fish
that live in several lakes in East Luwu district. Both sets of fish can only be harvested in
the permitted area. The location of the two sets of fish is divided into the permitted and
prohibited areas for fishing, where the nila fish population can migrate into the two areas.
The populations are divided into three compartments, namely, butini fish, nila fish that
live in the prohibited area to be harvested, and the nila fish that live in the permitted
area to be harvested. The growth models of the three compartments are expressed in
the form of an autonomous system of nonlinear differential equations.

The interior equilibrium point of the model is confirmed and then stability analysis is
carried out using the linearization method and checking the eigenvalues of the Jacobian
matrix resulting from the linearized model around the interior equilibrium point. The
butini fish and nila fish are harvested in the permitted area with constant harvesting
efforts. In order to get the profit function which is the consequence of fishing activity,
the cost function and revenue function should be defined. The profit function (π) is given
by π = TR − TC, based on the total revenue function (TR), TR = p1E1B

∗ + p2E2M
∗

and the total cost function (TC), TC = c1E1 + c2E2. The parameter Ei represents the
harvesting efforts, pi represents the price of fish catch per unit, and ci represents the cost
of fishing activities, where i = 1, 2.

The prey-predator population model is a nonlinear system and the interior equilib-
rium point cannot be stated explicitly. In order to perform the analysis, the parameter
values of the model were used being partially obtained from data collection for the fish
populations. Some of the relevant parameter values are obtained from various references
and some other are assumed. The various ordered pairs of the harvesting efforts are taken
within a range of values to get the interior equilibrium points. Therefore, stability of the
equilibrium points and profit value are determined. From the simulation, we determine
the ordered pair of efforts that gives the stable interior equilibrium point and maximize
the profit.

3 Results and Discussion

3.1 Predator-prey population model

The dynamics of the predator and prey population with the Crowley-Martin response
function is expressed in the form of a system of nonlinear differential equations. The
environment in which the population lives is divided into two areas, the permitted and
prohibited areas for harvesting. The predator population is divided into two compart-
ments, depending on where the predator live. The predator can migrate between the two
areas. The prey population is assumed to follow logistic growth. The predator and prey
populations are harvested in the permitted area with constant harvesting efforts. The
interaction between the prey and predator populations is shown in the following Figure
1. The growth rates of the prey-predator population with their interaction are stated in
the system of nonlinear differential equations.
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Figure 1: Interaction Diagram for the Prey and Predator Populations.

dB

dt
= rB(1− B

K
)− αNB

(1 + ηB)(1 + µN)
− βMB − q1E1B, (1)

dN

dt
=

δαNB

(1 + ηB)(1 + µN)
− bN − σN + θM, (2)

dM

dt
= ϑMB − cM + σN − θM − q2E2M. (3)

The symbol B is the size of the butini fish population as the prey, N and M state the size
of the predator population in the permitted and prohibited area at time t, respectively.
All parameters of the model are assumed to be positive. The description, meaning, and
units of the parameters can be found in the related references, see [5]. For simplicity, we
take q1 = q2 = 1, r1 = r−E1, r2 = b+ σ, and r3 = c+ θ+E2. Thus, the model (1, 2, 3)
is rewritten as

dB

dt
= r1B(1− B

K
)− αNB

(1 + ηB)(1 + µN)
− βMB, (4)

dN

dt
=

δαNB

(1 + ηB)(1 + µN)
− r2N + θM, (5)

dM

dt
= ϑMB − r3M + σN. (6)

3.2 Equilibrium points and stability analysis

The possible non negative equilibrium points for the model (4, 5, 6) are T1 =
(0, 0, 0), T2 = (K, 0, 0), T3 = (ω, ωα1+α2

µβ1α2
,σωα1−α2

µβ1β2α2
), where ω are the roots of the

equation δηµr1r2ϑZ
5 + (−Kδηµr1r2ϑ

2 + σδηµr1θϑ − 2δηµr1r2r3ϑ + δµr1r2ϑ
2)Z4 +

(−Kσδηµr1θϑ + 2Kδηµr1r2r3ϑ − Kαβσδ2ϑ + Kβσδηr2 − Kδµr1r2ϑ
2 − σδηµr1r3ϑ +

δηµr1r2r
2
3 − 2δµr1r2r3ϑ)Z

3 + (Kσδηµr1r3θ − Kδηµr1r2r
2
3 + Kαβδ2r3 − Kβσ2δηθ −

Kβσδηr1r2−Kδµr1r2r
2
3+δµr1r2r

2
3−Kr23ϑ

2)Z2+(Kσδµr1r3θ−Kδµr1r2r
2
3−Kασδr3θ+

Kαδr23r2 + Kβσ2δθ − Kβσδr2r3 − Kσ2ηθ2 + 2Kσηµr2r3θ − Kηr22r
2
3 − 2Kδr2θϑ +

2Kr22r3ϑ)Z − Kδ2θ2 + 2Kδr2r3θ − Kr22r
2
3, α1 = ωηr2ϑ − ωαδϑ − αδr3 + σηθ − ηr2r3,

α2 = ωr2ϑ+ σθ − r2r3, β1 = ηω + 1, and β2 = ωϑ− r3.
We focus to analyze the equilibrium point T3 which is located in the first octant when

ω > 0, α1 + α2 > 0, and σωα1 > α2 > 0. Because of the complexity of the system, we
just consider the local stability of the interior equilibrium point.
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3.3 Bionomic equilibrium and maximum profit

The bionomic equilibrium point is a condition where dB
dt = dM

dt = dN
dt = 0 and π = 0.

The only interior equilibrium point satisfies the condition T3 = (ω, ωα1+α2

µβ1α2
, σωα1−α2

µβ1β2α2
)

which can be written in terms of E1 and E2 so that it becomes T3 = (B∗, N∗,M∗) =

(ω(r − E1),
ωα1+α2(b+σ)

µβ1α2
, σωα1−α2(c+θ+E2)

µβ1β2α2
). The total revenue function (TR) obtained

from harvesting of the populations B and M evaluated at the equilibrium point T3 is
given by TR(B∗, N∗,M∗) = TR(B∗)+TR(M∗) = p1E1B

∗+p2E2M
∗. After substituting

the values of B∗ and M∗ in the state of equilibrium, we get

TR = p1ωrE1 − p1ωE
2
1 + p2(σωα1−α2)(c+θ)E2

µβ1β2α2
+

p2(σωα1−α2)E
2
2

µβ1β2α2
.

The total cost function (TC) can be expressed as C = c1E1 + c2E2. Furthermore, the
profit function (π) is given as

π = (p1ωr−c1)E1−p1ωE
2
1+

(p2(σωα1 − α2)(c+ θ)− µβ1β2α2c3)E2

µβ1β2α2
+
p2(σωα1 − α2)E

2
2

µβ1β2α2
.

(7)
The profit function (7) now depends on the efforts E1, E2, and the parameter ω

which is a positive root of the polynomial of degree five and cannot be written explicitly.
The value of ω also depends on the efforts E1 and E2. As a standard procedure to get
the maximum value of profit, we need to get the stationary points via the first partial
derivative with respect to E1 and E2. Since ω cannot be stated in terms of E1 and E2,
we evaluate the value of profit by taking various values of ordered pairs (E1, E2) and
determine the interior equilibrium point T3 and its stability by showing the eigenvalues.
The eigenvalues are related to the Jacobian matrix evaluated at the equilibrium point
T3. Furthermore, the profit function at each value of ordered pairs (E1, E2) can be
determined. In this study, we restrict the value of efforts as 0 ≤ E1, E2 ≤ Emax, and
Emax = 1. The ordered pair (E1, E2) to be considered is the ordered pair that gives the
interior equilibrium point T3 and is stable.

3.4 Simulation

In order to simulate the profil function, we set the values of parameters for the model
equations (4), (5, (6) as follows: K = 100, r = 0.7, α = 0.3, η = 0.01, µ = 0.01, β =
0.1, ϑ = 0.01, δ = 0.03, σ = 0.25, θ = 0.25, b = 0.2, and c = 0.1, see [5, 17]. The values of
these parameters are partly based on data collection. The interior equilibrium point T3

with various ordered pairs of (E1, E2) are given in Table 1.

The various ordered pairs of the efforts (E1, E2) give the interior equilibrium point
T3 and the stability is determined by inspection of the real part of eigenvalues. The
equilibrium point is asymptoticaly stable when the real parts of eigenvalues are negative.
The ordered pairs of efforts and eigenvalues of the interior equilibrium point T3 are given
in Table 2.

In order to simulate and determine the profit, we set the values of parameters related
to the total revenue and total cost, namely, p1 = 3.5, p2 = 1.3, c1 = 0.5 and c2 =
0.3 in appropriate units. Together with the various values of ordered pairs of efforts,
we determine the profit evaluated at the equilibrium point T3 following the formula
π(E1, E2) = p1B

∗E1 + p2M
∗E2 − (c1E1 + c2E2). The ordered pairs of efforts and profit

are given in Table 3.
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Table 1: Ordered Pairs of Efforts and Interior Equilibrium Point T3.

E1/E2 0 0.1 0.2 0.3
0 15.94, 1.52, 1.99 23.01, 1.52, 1.73 29.69, 1.51, 1.48 35.97, 1.47, 1.27
0.1 15.93, 1.26, 1.65 22.98, 1.23, 1.40 29.65, 1.19, 1.18 35.91, 1.14, 0.98
0.2 15.92, 1.00, 1.31 22.95, 0.95, 1.08 29.61, 0.89, 0.87 35.85, 0.81, 0.70
0.23 15.91, 0.92, 1.21 22.95, 0.87, 0.98 29.60, 0.80, 0.78 35.83, 0.72, 0.61
0.235 15.91, 0.91, 1.19 22.94, 0.85, 0.97 29.59, 0.78, 0.77 35.82, 0.70, 0.60
0.3 15.91, 0.74, 0.97 22.93, 0.67, 0.76 29.57, 0.58, 0.57 35.78, 0.48, 0.42
0.4 15.89, 0.48, 0.63 22.91, 0.39, 0.44 29.53, 0.28, 0.27 35.72, 0.16, 0.14
0.5 15.88, 0.22, 0.29 22.88, 0.11, 0.12 - -

E1/E2 0.4 0.5 0.6 0.7
0 41.81, 1.43, 1.08 47.21, 1.38, 0.91 52.11, 1.32, 0.77 56.54, 1.26, 0.65
0.1 41.72, 1.08, 0.81 47.07, 1.01, 0.66 51.94, 0.93, 0.54 56.33, 0.85, 0.43
0.2 41.63, 0.73, 0.54 46.95, 0.63, 0.41 51.78, 0.54, 0.31 56.12, 0.44, 0.23
0.23 41.61, 0.62, 0.46 46.91, 0.52, 0.34 51.73, 0.42, 0.24 56.06, 0.32, 0.16
0.235 41.60, 0.61, 0.45 46.90, 0.51, 0.33 51.72, 0.40, 0.23 56.05, 0.29, 0.15
0.3 41.54, 0.38, 0.28 46.83, 0.26, 0.17 51.61, 0.15, 0.08 55.92, 0.03, 0.01
0.4 41.45, 0.03, 0.02 - - -

E1/E2 0.8 0.9 1
0 60.51, 1.19, 0.55 64.05, 1.13, 0.46 67.18, 1.07, 0.39
0.1 60.25, 0.76, 0.35 63.74, 0.69, 0.28 66.82, 0.61, 0.22
0.2 60.01, 0.34, 0.15 63.44, 0.24, 0.10 66.47, 0.16, 0.05
0.23 59.92, 0.21, 0.09 63.34, 0.12, 0.04 66.36, 0.02, 0.009
0.235 59.91, 0.19, 0.08 63.33, 0.09, 0.03 66.34, 0.002, 0.0009

Table 2: Ordered Pairs of Efforts and Eigenvalues of Interior Equilibrium Point T3.
E1/E2 0 0.1 0.2 0.3

0 -0.02 ± 0.28I, -0.53 -0.03 ± 0.31I, -0.52 -0.05 ± 0.32I, -0.52 -0.07 ± 0.31I, -0.52
0.1 -0.02 ± 0.25I, -0.53 -0.04 ± 0.27I, -0.52 -0.06 ± 0.28I, -0.52 -0.08 ± 0.27I, -0.52
0.2 -0.03 ± 0.22I, -0.53 -0.05 ± 0.24I, -0.51 -0.07 ± 0.24I, -0.51 -0.09 ± 0.22I, -0.52
0.23 -0.03 ± 0.21I, -0.51 -0.05 ± 0.23I, -0.51 -0.07 ± 0.22I, -0.51 -0.09 ± 0.21I, -0.52
0.235 -0.03±0.21I, -0.53 -0.05±0.22I, -0.51 -0.07±0.22I, -0.51 -0.09±0.21I, -0.52
0.3 -0.03±0.19I, -0.52 -0.05± 0.21I, -0.52 -0.08± 0.18I, -0.51 -0.08±0.18I, -0.51
0.4 -0.04±0.15I, -0.52 -0.06±0.14I, -0.51 -0.09±0.11I, -0.51 -0.15, -0.08, -0.51
0.5 -0.05±0.09I, -0.52 -0.07±0.04I, -0.51 - -

Table 3 shows that maximum profit is reached when the efforts (E1, E2) = (0.235, 1)
with πmax = 217.05. The profit becomes maximum when the predator population in the
permitted area is harvested at the maximum level of efforts and the prey population is
harvested at the level 0.235. The maximum profit occurs at the top of the surface of the
profit function, as shown in Figure 2.

For the model without harvesting, we get an interior equilibrium point at the level
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E1/E2 0.4 0.5 0.6 0.7

0 -0.09±0.31I, -0.54 -0.11±0.29I, -0.56 -0.13±0.27I, -0.58 -0.15±0.24I, -0.61

0.1 -0.11±0.26I, -0.53 -0.12±0.23I, -0.55 -0.14±0.21I, -0.58 -0.16±0.17I, -0.61

0.2 -0.07±0.24I, -0.51 -0.14±0.16I, -0.55 -0.16±0.11I, -0.58 -0.23, -0.12, -0.61

0.23 -0.12±0.17I, -0.53 -0.14±0.13I, -0.55 -0.01±0.05I, -0.58 -0.29, -0.07, -0.61

0.235 -0.12±0.17I, -0.53 -0.14±0.12I, -0.55 -0.16±0.03I, -0.58 -0.31, -0.06, -0.61

0.3 -0.13±0.11I, -0.52 -0.21, -0.09, -0.54 -0.31, -0.03, -0.57 -0.38, -0.006, -0.6

0.4 -0.27, -0.009, -0.52 - - -

E1/E2 0.8 0.9 1
0 -0.17±0.21I, -0.65, -0.19±0.18I, -0.71, -0.21±0.14I, -0.75
0.1 -0.18±0.12I, -0.65, -0.20±0.04I, -0.70, -0.32, -0.11, -0.76
0.2 -0.33, -0.06, -0.66 -0.39, -0.04, -0.71 -0.43, -0.02, -0.77
0.23 -0.36, -0.04, -0.66 -0.42, -0.02, -0.71 -0.45, -0.003, -0.77
0.235 -0.37, -0.03, -0.66 -0.42, -0.01, -0.72 -0.46, -0.0003, -0.77

Table 3: Ordered Pairs of Efforts and Profit.
E1/E2 0 0.2 0.4 0.6 0.8 1

0 0 54.62 103.91 142.36 171.36 193.88
0.1 3.29 60.67 112.26 152.66 183.20 206.97
0.2 5.472 64.64 117.70 159.27 190.74 215.27
0.23 5.907 65.43 118.79 160.54 191.96 216.84
0.235 5.971 65.55 118.94 160.72 192.01 217.05
0.3 6.532 66.53 120.21 162.23 - -
0.4 6.476 66.362 119.82 - - -
0.5 5.308 - - - - -

Figure 2: Surface of the Profit Function.

(15.94, 1.52, 1.99) and the related eigenvalues -0.02±0.28I, -0.53. This means that the
prey (B) and the predators (M and N) will live sustainably. From Tables 1, 2 and 3, as
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the efforts of harvesting increase, the equilibrium points are still in the first octant and
also remain stable but there are changes in the type of stability of the equilibrium point
which are indicated by all the eigenvalues having negative real values. In addition, the
value of the profit function also increases. When the prey and the predator are harvested
at the level (E1, E2) = (0.23, 1), the ordered pair of efforts gives an interior equilibrium
point at the level (66.36, 0.02, 0.009), the eigenvalues -0.46, -0.0003, -0.77, and the profit
at the level 216.84. The dynamics of the solution curve of the prey (B) and the predators
(M and N) with the initial population B(0) = 66.36, N(0) = 0.02, and M(0) = 0.009
are shown in Figures 3, 4, 5.

Figures 3, 4, 5 show that with a given initial value of the prey and the predator

Figure 3: Solution Curve of Prey Population (B) with t ∈ [0, 1000].

Figure 4: Solution Curve of Predator Population (N) with t ∈ [0, 1000].

populations, there is initially little oscillatory motion. This is caused by the nonlinear
term in the model and then the trajectories of the populations move monotonously toward
the equilibrium point. It takes a long time to reach the equilibrium state. The ordered
pair of efforts provides a stable interior equilibrium point and also almost maximizes the
profit, the maximum profit is at the level 217.05.
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Figure 5: Solution Curve of Predator Population (M) with t ∈ [0, 1000].

4 Conclusion

The model for growth of butini fish as the prey and nila fish as the predator in the
permitted and prohibited areas for harvesting with the Crowley-Martin type response
function and migration possibly has an interior equilibrium point. The prey and predator
populations in the permitted area are harvested with constant efforts. The interior
equilibrium point cannot be stated explicitly because of complexity of the nonlinear
model. In order to get the maximum value of the profit function, several ordered pairs of
harvesting efforts are evaluated to obtain a stable interior equilibrium point. Using the
suitable parameter values and harvesting efforts, we get an ordered pairs of efforts that
give a stable interior equilibrium point and maximize the profit.

The analysis and simulation show that if the level of harvesting effort for the prey
population is increased, the equilibrium state for the prey and predator populations will
decrease. This is because of the more prey populations are harvested, the lower number
of prey populations exists. This has a consequence for predators having difficulty to get
food, which results in the number of predator also decreasing. On the other hand, if the
level of harvesting effort in the predator population is increased, this condition will result
in a decrease in the number of predator population both in the permitted and prohibited
areas for harvesting. This causes the prey population tending to increase because the
number of predator population decreases. Harvesting with constant efforts for the prey
and predator populations in the permitted area can obviously increase the number of the
prey population, give maximum profit, and the populations also remain sustainable.
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