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Abstract: The jump phenomenon, present in the forced asymmetric Duffing oscil-
lator, is studied using the known steady-state asymptotic solution. The main result
consists in construction of a new mathematical object – a jump manifold – encoding
global information about all possible jumps. The jump manifold is computed for the
forced asymmetric Duffing oscillator, and several examples of jumps are calculated,
showing the advantages of the method.
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1 Introduction

In this work, we study steady-state dynamics of the forced asymmetric Duffing oscillator
governed by the equation

ÿ + 2ζẏ + γy3 = F0 + F cos (Ωt) , (1)

which has a single equilibrium position and a corresponding one-well potential [1], where
ζ, γ, F0, F are parameters and Ω is the angular frequency of the periodic force. This
dynamical system in particular and Duffing-type equations in general, which can be used
to describe pendulums, vibration absorbers, beams, cables, micromechanical structures,
and electrical circuits, have a long history [2]. The equation of motion (1) can describe
several nonlinear phenomena such as various nonlinear resonances, symmetry breaking,
chaotic dynamics, period-doubling route to chaos, multistability and fractal dependence
on initial conditions, and jumps [1–6].
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Our work aims to research the jump phenomenon using the implicit function machin-
ery. Kovacic and Brennan described and investigated jumps for the system (1) in their
interesting study [1]. Recently, Kalmár-Nagy and Balachandran [6] applied a differential
condition to detect vertical tangents, characteristic of the jump phenomenon.

A standard approach to nonlinear equations of the form (1) is based on asymptotic
methods [7, 8]. More exactly, in the case of Eq.(1), approximate nonlinear resonances
1 : 1 are computed in the form

y (t) = A0 +A1 cos (Ωt+ θ) , (2a)

fi (A0, A1, Ω; c) = 0, i = 1, 2, 3, (2b)

where A0, A1 and Ω fulfill nonlinear implicit amplitude-frequency response algebraic
equations (2b) and c = (γ, ζ, F, F0) [1, 5, 9].

We have proposed in our earlier papers an analysis of differential properties of so-
lutions of the implicit amplitude-frequency response equations, see [10] and references
therein. It turns out that bifurcations of dynamics, such as hysteresis and jump phe-
nomenon, are related to the appearance/disappearance of branches of solutions, as well
as more complicated bifurcations such as, for example, the creation/destruction of solu-
tions follow from the changes of differential properties of solutions of the equations (2b),
induced by a change of the parameters c. Analytical methods, permitting the prediction
of metamorphoses of solutions, are of great help in numerical simulation. Our formalism
applies also to several models of coupled oscillators [11,12], see also [13].

The novelty of this work consists in defining, in the differential geometry formulation,
the jump manifold encoding global information about all possible jumps. Our formal-
ism generalizes the differential condition of Kalmár-Nagy and Balachandran [6] for an
arbitrary implicit amplitude-frequency response function.

In the next section, we describe the steady-state solution (2a) [1,5,9], given by implicit
equations (2b). Working in the framework developed in our earlier papers, see [10] and
references therein, we compute the jump manifold in Section 3 (see Eq.(9a) and Table
2) which contains information about all possible jumps – this is the main achievement
of this work. In Section 4, we compare the analytical predictions with the numerical
solutions of Eq.(1). We summarize our results in the last Section 5.

2 The Steady-State Solution

The steady-state solution of Eq.(1) of the form (2a) was computed in Refs. [1, 5, 9] with
the following implicit amplitude-frequency response equations (2b):

−A1Ω
2 + 3γA2

0A1 +
3

4
γA3

1 − F cos θ = 0, (3a)

−2ζA1Ω− F sin θ = 0, (3b)

γA3
0 +

3

2
γA0A

2
1 − F0 = 0. (3c)

Eliminating θ from Eqs.(3a), (3b), we get two implicit equations for A0, A1, and Ω:

A2
1

(
−Ω2 + 3γA2

0 +
3

4
γA2

1

)2

+ 4Ω2ζ2A2
1 = F 2, (4a)

γA3
0 +

3

2
γA2

1A0 − F0 = 0. (4b)
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Computing A2
1 from Eq.(4b) and substituting into (4a), we obtain finally one implicit

equation for A0, Ω:

f (Ω, A0; γ, ζ, F, F0) =
∑9

k=0
ckA

k
0 = 0, (5)

where the coefficients ck are given in Table 1.

Table 1: Coefficients ck of the polynomial (5).

c9 = 25γ3 c4 = 16Ω2γF0

c8 = 0 c3 = −9γF 2
0 + 6γF 2

c7 = −20Ω2γ2 c2 = −4F0Ω
4 − 16ζ2Ω2F0

c6 = −15γ2F0 c1 = 4Ω2F 2
0

c5 = −15γ2F0 c0 = −F 3
0

We can also obtain an implicit equation for A1, Ω. We solve the cubic equation (4b)
for A0 computing the only one real root:

A0 = −A2
1

2Y
+ Y, Y ≡ 3

√√
1

8
A6

1 +
1

4γ2
F 2
0 +

1

2γ
F0. (6)

Two other roots are indeed complex since the discriminant of Eq.(4b), D = −4p3−27q2,
p = 3

2A
2
1,q = −F0

γ , γ ̸= 0, is negative.

Then we substitute A0, Y from Eq.(6) into Eq.(4a), obtaining finally a complicated
but useful implicit equation for A1, Ω:

g (Ω, A1; γ, ζ, F, F0) = A2
1

(
3γA2

0 +
3
4γA

2
1 − Ω2

)2
+ 4Ω2ζ2A2

1 − F 2 = 0, (7)

where A0 and Y are defined in (6).

3 Jump Phenomenon

3.1 Jump conditions and jump manifold

Jump conditions in the implicit function setting read [10]

f (Ω, A0; γ, ζ, F, F0) = 0, (8a)

∂f (Ω, A0; γ, ζ, F, F0)

∂A0
= 0, (8b)

where equation (8b) is the condition for a vertical tangency.
Solving equations (8), we obtain

J (A0; γ, ζ, F, F0) =
∑21

k=0
akA

k
0 = 0, (9a)

Ω2 =
(−50γ4)A12

0 +95γ3F0A
9
0+(6F

2γ2−39γ2F 2
0 )A

6
0+(3F

2γF0−7γF 3
0 )A

3
0+F 4

0

2A0(F0−10γA3
0)(F0−γA3

0)
2 , (9b)

the non-zero coefficients ak of the polynomial J (A0) are given in Table 2.
The polynomial J (A0), complicated as it is, encodes global information about all

possible jumps. We shall thus refer to equation (9a), which defines an implicit function
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Table 2: Non-zero coefficients of polynomial (9a).

a21 = 4000γ7ζ2 a9 = 3248γ3ζ2F 4
0 − 72F 2γ3ζ2F 2

0

a18 = −16 000γ6ζ2F0 a8 = 36F 4γ3F0 − 978F 2γ3F 3
0

a17 = 600F 2γ6 a6 = 528γ2ζ2F 5
0 − 240F 2γ2ζ2F 3

0

a15 = 23 880γ5ζ2F 2
0 − 480F 2γ5ζ2 a5 = 9F 4γ2F 2

0 + 138F 2γ2F 4
0

a14 = −1920F 2γ5F0 a3 = 24F 2γζ2F 4
0 − 152γζ2F 6

0

a12 = 768F 2γ4ζ2F0 − 15 512γ4ζ2F 3
0 a2 = −6F 2γF 5

0

a11 = 36F 4γ4 + 2166F 2γ4F 2
0 a0 = 8ζ2F 7

0

of variables A0, γ, ζ, F , F0, as a jump manifold equation. Thus, the jump manifold
J (A0, γ, ζ, F, F0):

J (A0; γ, ζ, F, F0) = {(A0, γ, ζ, F, F0) : J (A0; γ, ζ, F, F0) = 0} , (10)

belongs to a 5D space. It is purposeful to introduce the projection of the jump manifold
onto the parameter space:

J⊥ = {(γ, ζ, F, F0) : there is a real A0 such that J (A0; γ, ζ, F, F0) = 0} . (11)

In other words, for any set of parameters γ, ζ, F, F0 belonging to J⊥, there is a jump in
the dynamical system (1) and all jumps occur for the parameters belonging to J⊥.

We shall consider 2D and 3D projections, plotting J (A0; γ∗, ζ∗, F∗, F0) and
J (A0; γ∗, ζ∗, F, F0), respectively, where the parameters γ∗, ζ∗, F∗ or γ∗, ζ∗ are fixed.

3.1.1 2D projection, J (A0; γ∗, ζ∗, F∗, F0) = 0

The global picture of the jump manifold J (A0; γ∗, ζ∗, F∗, F0), where γ∗ = 0.0783, ζ∗ =
0.025, F∗ = 0.1 and A0, F0 are variable, is shown in Fig.1. We have chosen the values of
γ, ζ, F such as in [1] for the sake of comparison.

All points lying on the blue curve (jump manifold) correspond to jumps (vertical
tangents). Moreover, there are four critical points dividing Fig.1 into parts and referred

to as the border points: F
(1)
0 = 0, F

(2)
0 = 0.0920, F

(3)
0 = 0.7385, F

(4)
0 = 6. 5321,

where the number of jumps changes, it is defined and computed in Subsection 3.2. More
precisely, these critical points are where the red dashed vertical lines are tangent to the
blue jump manifold.

Indeed, for F0 ∈
(
F

(1)
0 , F

(2)
0

)
, there are two jumps; for F0 ∈

(
F

(2)
0 , F

(3)
0

)
, there are

four; for F0 ∈
(
F

(3)
0 , F

(4)
0

)
, there are two, and there are no jumps for F0 > F

(4)
0 .

For example, in Fig.2 below, the case F0 = 0.4 is shown. More exactly, the implicit
function A1 (Ω), computed with the help of Eq.(7), is plotted for γ = 0.0783, ζ = 0.025,
F = 0.1, and F0 = 0.4. The red dots, denoting vertical tangents, correspond to the red
dots in Fig.1. These points can be easily computed from Eqs.(8), (4).

Indeed, solving equations (8) for γ = 0.0783, ζ = 0.025, F = 0.1, F0 = 0.4, we
get four real solutions Ω, A0 shown in the first two columns in Table 3. Then, for the
above values of Ω, we solve equations (4) obtaining the same four values of A0 and the
corresponding values of A1 listed in the third column of Table 3.

In Fig.3, the bifurcation diagram is shown for the set of parameters listed in Fig.2,
where y is a numerical solution of Eq.(1). Note that branches a-b, c-d, e-f in Fig.3
correspond to analogous branches in Fig.2.
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Figure 1: Jump manifold J (A0; γ∗, ζ∗, F∗, F0), γ∗ = 0.0783, ζ∗ = 0.025, F∗ = 0.1 (blue) and
four border points (purple dots) – points of contact between J and the vertical red lines.

Table 3: Solutions of Eqs.(8) and (4).

Ω A0 A1

0.576 122 891 0.846 633 527 1. 882 759 746
0.643 209 846 0.755 260 872 2. 032 001 367
0.690 545 624 1. 583 776 750 0.691 474 188
0.711 882 658 0.425 889 574 2. 806 379 023
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Figure 2: Amplitude-frequency response curve A1 (Ω), γ = 0.0783, ζ = 0.025, F = 0.1,
F0 = 0.4. Stable branches: a-b, c-d, e-f.
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Figure 3: Bifurcation diagram, γ = 0.0783, ζ = 0.025, F = 0.1, F0 = 0.4.

3.1.2 3D projection, J (A0; γ∗, ζ∗, F, F0) = 0

We now fix two parameters only, for example, γ∗ = 0.0783, δ∗ = 0.025, and plot the
jump manifold J (A0; γ∗, ζ∗, F, F0) as a 3D surface, see Fig.4.
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Figure 4: Jump manifold J (A0; γ∗, ζ∗, F, F0), γ∗ = 0.0783, ζ∗ = 0.025.

Next, we compute one border point. For the sake of example, we choose F0 = 0.5
(γ∗ = 0.0783, δ∗ = 0.025) and compute the corresponding border point as F = 0.544 860,
A0 = 1. 238 340 as explained in the next subsection.

The blue vertical line, (0.544 860, 0.5, A0) with A0 variable, touches the upper lobe
of the jump manifold exactly at the border point (0.544 860, 0.5, 1. 238 340).
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3.2 Border sets

We shall now determine the condition for the border set: the set of points in the parameter
space (γ, ζ, F0, F ) is such that the number of vertical tangents changes at these points.
The mathematical condition for the border set is that the polynomial J (A0) given in
Eq.(9a) and Table 2 has multiple roots.

The qualitative behavior of the polynomial equation J (A0) can be seen in Figs.1 and
4, where 2D and 3D projections of the implicit function J (A0; γ, ζ, F, F0) = 0 are shown.
To find the parameter values for which the polynomial J (A0; γ, ζ, F, F0) has multiple
roots, we demand that the resultant of J (A0) and its derivative J ′ (A0) =

d
dA0

J (A0) is
zero [15]:

R (J, J ′; γ, ζ, F, F0) = 0. (12)

The resultant of the polynomial J (A0) and its derivative J ′ (A0) =
∑20

k=0 bkA
k
0 is a

determinant of the (m+ n)× (m+ n) Sylvester matrix, n = 21, m = 20,

R (J, J ′; γ, ζ, F, F0) = det



an an−1 an−2 . . . 0 0 0
0 an an−1 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . a1 a0 0
0 0 0 . . . a2 a1 a0
bm bm−1 bm−2 . . . 0 0 0
0 bm bm−1 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . b1 b0 0
0 0 0 . . . b2 b1 b0


(13)

and is an enormously complicated polynomial in variables γ, ζ, F, F0. However, if we
fix three parameters, say γ, ζ, F , then the equation R (J, J ′;F0) = 0 can be solved
numerically and thus the critical values of F0 can be computed.

For example, we have solved equation (12), R (J, J ′; γ∗, ζ∗, F∗, F0) = 0, for γ∗ =

0.0783, ζ∗ = 0.025, F∗ = 0.1, obtaining the following real positive solutions: F
(1)
0 = 0,

F
(2)
0 = 0.092 075, F

(3)
0 = 0.738 510, F

(4)
0 = 6. 532 092. In Figs.5, the border amplitudes

A1 (Ω) are shown for γ = 0.0783, ζ = 0.025, F = 0.1 and F
(2)
0 , F

(3)
0 , F

(4)
0 , with critical

points marked with blue crosses. At these points, jumps just appear/disappear – there is a
metamorphosis of the amplitude-frequency response function. For example, the function
A1 (Ω) has no jumps for F0 > 6. 532 092, and two jumps appear for F0 < 6. 532 092, see
Fig.8.4e plotted for F0 = 0.95 in [1]. Vertical tangents at these points are also plotted
with dashed lines. Blue dots denote extant points of jumps.

We have also solved equation (12), R (J, J ′; γ∗, ζ∗, F, F0∗) = 0, for γ∗ = 0.0783, ζ∗ =
0.025, F0∗ = 0.5, obtaining real positive solutions: F (1) = 0, F (2) = 0.026 998 9, F (3) =
0.077 925 6, F (4) = 0.544 859 5. Next, for γ = 0.0783, ζ = 0.025, F0 = 0.5, and F =
0.544 859 5, we have computed from Eqs.(8) the border value A0 = 1. 238 340, see the
blue vertical line in Fig.4.

3.3 Number of solutions of Eq.(5) for a given value of Ω

There are also other qualitative changes in the amplitudes A1 (Ω) controlled by the
parameters. For example, the number of solutions of Eq.(5) for a given value of Ω may
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Figure 5: Amplitude-frequency response curves: γ = 0.0783, ζ = 0.025, F = 0.1, F
(2)
0 = 0.092

(top left), F
(3)
0 = 0.7385 (top right), F

(4)
0 = 6.532 (bottom).

change. This happens when two vertical tangents appear at the same value of Ω.

To find a value of F0 for which this occurs, we have to find a double root Ω of
equations (8). For example, let γ = 0.0783, ζ = 0.025, F = 0.1. Now, solving Eqs.(8)
numerically for several values of F0, we easily find that for F0 = 0.301 007, there is
indeed a double root: Ω = 0.597 114, A0 = 0.679 284 and Ω = 0.597 114, A0 = 1. 411 787.
There is another similar case: for F0 = 0.429 166, there is a double root: Ω = 0.714 419,
A0 = 0.459 118 and Ω = 0.714 419, A0 = 1. 628 271, see Fig.6 as well as the related Fig.9.
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Figure 6: Amplitude-frequency response curves A1 (Ω): γ = 0.0783, ζ = 0.025, F = 0.1,
F0 = 0.301 (left), F0 = 0.429 (right). Stable branches: a-b, c-d, e-f.

Therefore, for F0 ∈ (0.301, 0.429) , equation (5) has five solutions for some values of
Ω (three stable, two unstable), see, for example, Figs.2, 3, where F0 = 0.4.
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4 Numerical Verification and Analysis of the Results

We start with the verification of our results for the border sets obtained in Section 3,
comparing them with numerical computations carried out for the equation (1). Consider,
for example, the top right figure in Fig.5. In Fig.7, we show magnification of this critical
curve with a vertical tangency on the red curve and two curves: just before (green) and
just after (blue) the formation of the vertical tangency.

0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0 A

Ω

1
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b

c

d = e

f

Figure 7: Implicit curves A1 (Ω): γ = 0.0783 , ζ = 0.025, F0 = 0.738 510 and F = 0.095
(green), F = 0.1 (red), F = 0.105 (blue). Critical vertical tangency on the red curve is at
(Ω, A1) = (0.761, 2.558) (light blue-green dot).

Recall that we have solved equation (12) for γ = 0.0783 , ζ = 0.025, F = 0.1,

obtaining four real positive solutions: F
(1)
0 = 0, F

(2)
0 = 0.092 075, F

(3)
0 = 0.738 510,

F
(4)
0 = 6. 532 092. Curves in Fig.7 have been plotted for γ = 0.0783, ζ = 0.025, F

(3)
0 =

0.738 510 and F = 0.095 (green), F = 0.1 (red), F = 0.105 (blue). We have decided to
plot curves A1 (Ω) for the variable F since the shapes of these curves are very sensitive
to this parameter.

When we pass from the green to the red curve, we note the formation of vertical
tangency on the red curve. Stable branches on the red curve are: a-b, c-d=e, and d=e-f.

In Fig.8, we show the bifurcation diagrams computed by solving numerically Eq.(1)
for the values of the parameters γ, ζ, F0 such as in Fig.7 and F = 0.114 (green), F = 0.116
(blue), respectively.

These two bifurcation diagrams correspond qualitatively to the green and blue curves
A1 (Ω) in Fig.7. The main difference between these two plots is a discontinuity of the
blue curve corresponding to the creation of the jump phenomenon at Ω = 0.785.

Note that the discontinuity appears in the interval F ∈ (0.114, 0.116) while the
analytically predicted value is F = 0.1. This discrepancy can be attributed to the error
of the asymptotic method used to compute the solution (2a).

We now discuss the results obtained in Subsection 3.3. In Fig.9, two bifurcation
diagrams are shown, corresponding to the amplitude-frequency curves shown in Fig.6.
Two Figures 6 were computed for γ = 0.0783, ζ = 0.025, F = 0.1 and F0 = 0.301 and
F0 = 0.429 can be set together with Figures 8.4b, 8.4c, 8.4d from Ref. [1], computed
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Figure 8: Bifurcation diagrams: F = 0.114 (green), F = 0.116 (blue), the values of the
parameters γ, ζ, F0 are the same as in Fig.7. Discontinuity is at Ω = 0.785.

for the same values of γ, ζ, F and for F0 = 0.2, F0 = 0.4, F0 = 0.5, respectively. The
sequence of the amplitude-frequency curves plotted for F0 = 0.2, 0.301, 0.4, 0.429, 0.5
shows the metamorphoses of these curves.

In Figures 6, there are two different jumps for the same value of Ω. Indeed, in the
bifurcation diagrams shown in Fig.9, two different branches of the solution of Eq.(1) end
or begin at the same value of Ω (these places are denoted in Fig.6 and Fig.9 as ”b” and
”e”).

It follows that three stable solutions of Eq.(1) are in the interval F0 ∈ (0.284, 0.395),
γ = 0.0783, ζ = 0.025, F = 0.1, while analytical prediction was F0 ∈ (0.301, 0.429) (see
the end of Subsection 3.3). This discrepancy is again due to the unavoidable errors of
the asymptotic method.
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0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
­1

0

1

2

3 y

Ω

a

bc

d

e

f

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
­1

0

1

2

3 y

Ω

a

b
c

d

e

f

Figure 9: Bifurcation diagrams: γ = 0.0783, ζ = 0.025, F = 0.1, F0 = 0.284 (top), F0 = 0.395
(bottom).

5 Summary

Working in the implicit function framework [10], we have computed the jump manifold,
cf. (10) and Table 2, including information about all jumps in the dynamical system (1).

Our work on the asymmetric Duffing oscillator is a supplementation and amplification
of the results obtained by Kovacic and Brennan [1]. The sequence of Figures 8.4 (a) –(e),
computed in [1] for γ = 0.0783, ζ = 0.025, F = 0.1, and F0 = 0.01, 0.2, 0.4, 0.5, 0.95,
respectively, can be appended with Figs.5 and 6 computed for F0 = 0.092, 0.7385, 6.532,
and F0 = 0.301, 0.429. The sequence of metamorphoses of the curve A1 (Ω) consists of
the plots computed for F0 = 0.01, 0.092, 0.2, 0.301, 0.4, 0.429, 0.5, 0.7385, 0.95, 6.532,
where the numbers highlighted in bold correspond to Figs.8.4 (a)–(e) plotted in [1].

We show in Section 4 how a jump phenomenon arises in the dynamical system (1)
and how it can be predicted based on a solution of Eq.(3), see Figs.7, 8. In short, the
dynamical signature of the appearance of the jump phenomenon consists in a rupture of
a stable branch, see Fig.8. Jumps are created at a border set, see Eqs.(12), (13). We
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have computed the values of parameter F0, at which a change of multi-stability occurs.
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