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Abstract: In this work, we propose a non-linear system of differential equations that
models the dynamics of transmission of dengue fever. Then, we perform a stability
analysis of this model. In particular, we prove that when the threshold of the model
called the basic reproduction ratio is less than unity, the disease-free equilibrium is
globally asymptotically stable. Furthermore, when this value is greater than unity,
under suitable conditions, the endemic equilibrium is globally asymptotically stable.
Some numerical simulations are provided to illustrate the obtained theoretical results.
We also propose a global sensitivity analysis of the basic reproduction ratio.
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1 Introduction

Mathematical modelling and numerical simulation are important decision tools that can
be used to study and control human and animal diseases [1, 2]. However, to tackle
real situations, the resulting models need to be adapted to each specific disease and its
biological characteristics [3].

From a general point of view, mathematical models are used to predict the behaviour
of a disease in a particular population [4, 5]. In particular, they help to determine if the
disease under consideration will be endemic (i.e., it remains active in the population)
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or not (i.e., it disappears). In this work, we introduce and study a particular mathe-
matical model to estimate the dynamic of the so-called dengue fever disease in a human
population.

Dengue disease is a common arboviral disease in tropical regions and the mediter-
ranean. It is transmitted to humans by the bite of Aedes mosquitoes. Four serotypes
have been recognized, they are denoted by DEN-I, DEN-II, DEN-III, and DEN-IV. These
viruses are carried by two kinds of mosquitoes referred to as Aedes aegypti and Aedes
albopictus which spread the disease through their bite. However, Aedes aegypti has been
the principal vector of dengue virus transmission. Another interesting fact is the shift of
patients phenomena when dengue fever previously attacked children of primary school
age, but now everybody is vulnerable to the fever [6]. Dengue viruses can infect only
a restricted number of vertebrates but it is an essentially human disease. Infection for
any dengue serotype produces permanent immunity to it, but apparently only temporary
cross immunity to other serotypes. Therefore, individuals that live in dengue endemic
areas can have more than one infection of dengue disease. It is considered that human
population growth and the dramatic redistribution of the human population in the urban
centers of developing countries have contributed to the introduction and enhancement of
dengue fever [7].

Mathematical models and methods of non-linear dynamic are used in comparing,
planning, implementing, evaluating and optimizing various detection, prevention, therapy
and control programmes [8, 9]. Thus, mathematical models are a useful tool to better
understand the mechanisms that allow the spread of a dengue epidemic and then to
increase the efficiency of the vector control strategy. There are a number of mathematical
expert models for dengue fever which involve differential equations. In general, they use
compartmental dynamic such as susceptible, infected, removed (SIR) and susceptible,
exposed, infected, removed (SEIR). In [10], the authors formulated stochastic models for
dengue in the presence of Wolbachia. This research aims to measure the effectiveness of
the Wolbachia intervention to reduce dengue transmission. It determines the proportion
of reduction in the basic reproduction number and also the probability of extinction.
Putri et al. (see [11]) proposed the study where the aim is to forecast and analyze the
spread of COVID-19 outbreak in Indonesia by applying machine learning and hybrid
approaches. Abdelhamid Zaghdani (see [9]) formulated a modified SEIR mathematical
model for the coronavirus infected disease-2019 (COVID-19). The author computed the
basic reproduction number (R0) and proposed a qualitative analysis of the local and
global stability of the equilibrium points.

In this paper, our aim is to study the dengue epidemic model presented and studied
in [5] by J. J. Tewa et al. with the law of mass action as the incidence functions. The
similar model was presented and studied in [12]. It appears that the incidence function
form is determinative in the study of the model system. Then, changing the form of
the incidence function can potentially change the behaviour of the system. In this work,
we study a coupling model (Humans and Vectors) with two general incidence functions
given by f , g. From the analysis of the global stability of the equilibrium points, we used
the same technique as in Guiro et al. [13]. We find conditions on the incidence function
to get the stability of the model.

This paper is organized as follows. In Section 2, we describe the mathematical model
which is studied in the paper. In Section 3, we give the equilibrium points, the basic
reproduction number, we define also a positive invariant and attractive set, which will
be used in the studies of the stability of equilibrium points. In Section 4, we study the
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stability of equilibrium points. Section 6 contains the numerical result and comments.
Section 7 is devoted to the analysis of global sensitivity of the parameters in the basic
reproduction number R0. We end by the conclusion.

2 Description of the Model

In this section, we recall the model studied in [5] by J. J. Tewa et al., which is given
with a particular incidence function as follows:

ṠH = µHNH − βHb

NH +m
SHIV − µHSH ,

İH =
βHb

NH +m
SHIV − (µH + γH)IH ,

ṘH = γHIH − µHRH ,

ṠV = A− βV b

NH +m
SV IH − µV SV ,

İV =
βV b

NH +m
SV IH − µV IV .

(1)

The model above is described as follows: the human and vector populations are divided
into classes or states containing susceptible, infective and immune individuals. At time
t, there are the susceptible humans (SH) and the infectious humans (IH), we assume
that the infectious humans recover (or get treated) at a constant rate γH , µH + γH
is the total exit of the infectious humans, RH are the immune humans, SV are the
susceptible mosquitoes and IV are the infectious mosquitoes. The mosquito population
does not have an immune class since their infectious period ends with their death. Let
NH = SH + IH + RH and NV = SV + IV be, respectively, the total human and vector
population at time t. Total death in the mosquito population occurs at a rate µVNV ,
where µV is the per capita mortality rate of mosquitoes. In this model, it is assumed that
the human population has constant size with the birth and death rate constant number
equal to µH . Also, for the mosquito population, it is assumed a constant recruitment
rate A, independent of the actual number of adult mosquitoes. It is admitted that the
flow from the susceptible to the infectious class, for each species, depends on the biting
rate of the mosquitoes, the transmission probabilities, as well as the number of infectious
and susceptible of each species.

Let b denote the biting rate of mosquitoes, which is the average number of bites per
mosquito per day. m denotes the number of alternative hosts available as blood sources,
then the probability that a mosquito chooses a human individual as a host is given by
NH

NH +m
. Thus, it is admitted that a human receives b

NV

NH

NH

NH +m
bites per unit of

time, and a mosquito takes
bNH

NH +m
human blood meals per unit of time. Then, the

infection rates per susceptible human and susceptible vector are given by

βHb
NV

NH

NH

NH +m

IV
NV

=
βHb

NH +m
IV ,

βV b
NH

NH +m

IH
NH

=
βV b

NH +m
IH ,
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respectively. Here βH is the transmission probability from a vector to a human and βV
is the transmission probability from a human to a vector.

The aim of our work is to generalize the model (1) with the incidence function as the
general incidence functions f and g. The interaction between the human population and
the vector population is given by the following diagram, see Figure 1:

SH IH RH

IV SV

Humans

Vectors

Λ̃

A

f
(S

H
, I

V
)

g(
S V
, I

H
)

µH µHµH+γH

µV µV

Figure 1: Transfer diagram for the mathematical model of dengue.

Then, according to Figure 1, we have the following system of five differential equa-
tions: 

ṠH = Λ̃− f(SH , IV )− µHSH ,

İH = f(SH , IV )− (µH + γH)IH ,

ṘH = γHIH − µHRH ,

ṠV = A− g(SV , IH)− µV SV ,

İV = g(SV , IH)− µV IV .

(2)

In the system (2), we use the same constant and the same subdivision of the human
population and the vector population as described in the system (1).

SinceRH does not appear in the first and second equations of system (2), it is sufficient
to analyse the behavior of solutions of the following system:

ṠH = Λ̃− f(SH , IV )− µHSH ,

İH = f(SH , IV )− (µH + γH)IH ,

ṠV = A− g(SV , IH)− µV SV ,

İV = g(SV , IH)− µV IV .

(3)

We assume that the functions f and g satisfy the following hypotheses:

H1 f and g are non-negative C1 functions in the non-negative orthant.

H2 For all (SH , IH , RH , SV , IV ) ∈ R5
+, f(S, 0) = f(0, I) = 0 and g(S, 0) = g(0, I) = 0.

Also, we denote by f1, g1 and f2, g2 the partial derivative of f and g with respect to S
and I.
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Remark 2.1 f and g are two incidence functions which explain the contact between
two species. Therefore, H2 is a natural assumption which means that if there is no
infected in the human and vector populations, then the incidence functions are equal to
zero. The incidence functions are also equal to zero when there is no susceptible in the
human and vector populations.

3 Basic Properties and Basic Reproduction number

In this section, we study the basic properties of the solution of system (3) and also, we
compute the basic reproduction number associated to the system (3).

Proposition 3.1 The positive orthant

{(SH , IH , SV , IV ) ∈ R4, SH ≥ 0, IH ≥ 0, SV ≥ 0, IV ≥ 0}

is positively invariant for system (3).

To prove Proposition 3.1, we need the following lemma.

Lemma 3.1 [14]: Let L : Rn −→ R be a differentiable function, and let a ∈ R. Let
X(x) be the vector field, and let G be the closed set G = {x ∈ Rn : L(x) ≤ a} such that
∇L(x) ̸= 0 for all x ∈ L−1(a) = {x ∈ Rn, L(x) = a}. If < X(x),∇L(x) >≤ 0 for all
x ∈ L−1(a), then the set G is positively invariant.

Proof of Proposition 3.1 Let x = (SH , IH , SV , IV ). Now, we have to prove that
{SH ≥ 0} is positively invariant.

Let L(x) = −SH . L is differentiable and ∇L(x) = (−1, 0, 0, 0) ̸= 0R5 for all x ∈
L(x)−1(0) = {x ∈ R4/L(x) = 0}. The vector field on {SH = 0} is

X(x) =


Λ̃

−(µH + γH)IH

A− g(SV , IH)− µV SV

g(SV , IH)− µV IV

 .

Then < X(x),∇L(x) >= −Λ̃ < 0. This proves that {SH ≥ 0} is positively invariant.
Similarly, we prove that {IH ≥ 0}, {RH ≥ 0}, {SV ≥ 0}, {IV ≥ 0} are positively
invariant. Then {(SH , IH , SV , IV ) ∈ R5, SH ≥ 0, IH ≥ 0, SV ≥ 0, IV ≥ 0} is positively
invariant for system (3). □

Therefore, the model is mathematically well posed and epidemiologically reasonable
since all the variables remain non-negative for all t > 0.

Proposition 3.2 Let (SH , IH , SV , IV ) be the solution of system (3) with the initial
condition (S0H , I0H , S0V , I0V ) and the compact set

D =

{
(SH , IH , SV , IV ) ∈ R4

+,W1 ≤ NH + ϵ,W2 ≤ A

µV
+ ϵ, for ϵ > 0

}
(4)

with W1 = SH + IH and W2 = SV + IV . Then, under the flow described by (3), D is
a positively invariant set that attracts all solutions in R4

+.



84 HAROUNA OUEDRAOGO AND ABOUDRAMANE GUIRO

Proof. By adding the first two equations of system (3), we have

dSH

dt
+
dIH
dt

= Λ̃− µHSH − (µH + γH)IH ,

d(SH + IH)

dt
≤ Λ̃− µH(SH + IH),

dW1

dt
≤ Λ̃− µHW1,

dW1

dt
+ µHW1 ≤ Λ̃ + ϵ. (5)

According to [15], from inequation (5), we have

W1(t) ≤
Λ̃

µH
+

ϵ

µH
+ (W1(0)−

Λ̃

µH
− ϵ

µH
)e−µHt, (6)

whereW1(0) = S0H+I0H . Thus, when t −→ +∞,W1(t) ≤
Λ̃

µH
+

ϵ

µH
. Similarly, we prove

thatW2(t) ≤
A

µV
+

ϵ

µV
, whereW1(0) andW2(0) are, respectively, the initial conditions of

W1(t) andW2(t). Thus, as t −→ ∞, 0 ≤ (W1(t),W2(t)) ≤ (NH+
ϵ

µH
,
A

µV
+

ϵ

µV
) and one

can conclude that D is an attractive set. □
Let E = (SH , IH , SV , IV ) be an equilibrium point of (3). Thus, we have

Λ̃− f(SH , IV )− µHSH = 0,

f(SH , IV )− (µH + γH)IH = 0,

A− g(SV , IH)− µV SV = 0,

g(SV , IH)− µV IV = 0.

(7)

By adding the first two and the last two equations (7), we get

SH =
Λ̃− (µH + γH)IH

µH
, SV =

A− µV IV
µV

,

and

E =

(
Λ̃− (µH + γH)IH

µH
, IH ,

A− µV IV
µV

, IV

)
.

Hence, the disease-free equilibrium and the endemic equilibrium of (3) are given by

E0 = (S0
H , I

0
H , S

0
V , I

0
V ) = (

Λ̃

µH
, 0,

A

µV
, 0)

and

E∗ = (S∗
H , I

∗
H , S

∗
V , I

∗
V ) =

(
Λ̃− (µH + γH)I∗H

µH
, I∗H ,

A− µV I
∗
V

µV
, I∗V

)
.

Here, I∗H and I∗V are the design infected human and infected mosquito at endemic period.
The reproduction number of model (3) is obtained by creating the next generation

matrix and funding the maximum eigenvalues of that matrix [16]. The reproduction
number of that model is given by

R0 =

√
f2(S

0
H , 0)g2(S

0
V , 0)

µV (µH + γH)
.
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Theorem 3.1 If R0 > 1, then the model (3) has only a unique endemic equilibrium
E∗.

Proof. Let us define the function ψ(IH , IV ) = (ψ1(IH , IV );ψ2(IH , IV )), where

ψ1(IH , IV ) = f(S0
H − IH , IV )− (µH + γH)IH

and

ψ2(IH , IV ) = g(S0
V − IV , IH)− µV IV .

Hence, it follows that any solution of the equation ψ = 0 in the set (0, S0
H)× (0, S0

V )
corresponds to an equilibrium, with SH , IH , SV , IV > 0. Since H2 holds, one has
ψ(0, 0) = 0 and ψ(S0

H , S
0
V ) ≤ 0. Then the sufficient condition for the equation ψ = 0

to have a solution in (0, S0
H)× (0, S0

V ) is that ψ is increasing at 0. This implies that an
endemic equilibrium exits if

∇ψ(0, 0) > 0, (8)

where

∇ψ(0, 0) = (∇ψ1(0, 0),∇ψ2(0, 0))

= (−f1(H0
s , 0)− µH + γH + f2(S

0
H , 0),−g1(S0

V , 0)− µV + g2(S
0
s , 0)).

Note that f1(S
0
H , 0) = g1(S

0
V , 0) = 0. Then inequality (8) is equivalent to

f2(S
0
H , 0) > µH + γH , and g2(S

0
V , 0) > µV ,

which give

αγf2(S
0
H , 0)g2(S

0
V , 0) > (µH + γH)µV .

That is,

R0 =
f2(S

0
H , 0)g2(S

0
V , 0)

(µH + γH)µV
> 1.

Then system (3) has a unique endemic equilibrium given by

E∗ =

(
Λ̃− (µH + γH)I∗H

µH
, I∗H ,

A− µV I
∗
V

µV
, I∗V

)
. The proof is completed. □

4 Stability of Equilibrium

In this section, we analyze the stability of the diseases-free equilibrium E0 and the en-
demic equilibrium E∗.
H3 For all (SH , IH , SV , IV ) ∈ R4

+,

f(SH , IV ) ≤ f2(S
0
H , 0)IV and g(SV , IH) ≤ g2(S

0
V , 0)IH .

H4 1 <
f2(S

0
H , 0)

µH + γH
and 1 <

g2(S
0
V , 0)

µV
.

Remark 4.1 The assumptions H3 and H4 are the technical assumptions which are
also used to have the global stability of the diseases-free equilibrium E0. Biologically,
the assumption H3 allows for the control of the infection speed.
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Theorem 4.1 Assume that H3 and H4 hold, then if R0 ≤ 1, the diseases-free equi-
librium E0 is globally asymptotically stable on D.

Proof. Let us consider the candidate Lyapunov function

V = µV IH + (µH + γH)IV .

By differentiating V with respect to time, we have

V̇ = µV İH + (µH + γH)İV

= µV f(SH , IV )− µV (µH + γH)IH + (µH + γH)g(SV , IH)− µV (µH + γH)IV

= µV f(SH , IV ) + (µH + γH)g(SV , IH)− µV (µH + γH)(IH + IV ).

By using the assumption H3, we get

V̇ ≤ f2(S
0
H , 0)µV IV + g2(S

0
V , 0)(µH + γH)IH − µV (µH + γH)(IH + IV ).

By adding and subtracting f2(S
0
H , 0)g2(S

0
V , 0)(IH + IV ) in the inequality above, we have

V̇ ≤ f2(S
0
H , 0)g2(S

0
V , 0)(IH + IV ) + f2(S

0
H , 0)IV [µV − g2(S

0
V , 0)]

+g2(S
0
V , 0)IH [(µH + γH)− f2(S

0
H , 0)]− µV (µH + γH)(IH + IV ).

By using the assumption H4, we obtain

V̇ ≤ µV (µH + γ)(IH + IV )

(
f2(S

0
H , 0)g2(S

0
V , 0)

µV (µH + γ)
− 1

)
≤ µV (µH + γH)(IH + IV )(R2

0 − 1).

Since R0 ≤ 1, we have V̇ ≤ 0, with equality only if IH = 0 and IV = 0. According to
LaSalle’s extension to Lyapunov method’s [17], the limit set of each solution is contained
in the largest invariant set, for which IH = 0 and IV = 0, which is the singleton {E0}.
Thus, the unique disease-free equilibrium E0 is globally asymptotically stable on D. □

We assume that the functions f and g satisfy the following assumptions:

H5 For all (SH , IH , SV , IV ) ∈ R4
+, 1 ≤ f(SH , IV )

f(SH , I∗V )
≤ IV
I∗V

and 1 ≤ g(SV , IH)

g(SV , I∗H)
≤ IH
I∗H

.

H6 For all (SH , SV ) ∈ R2
+, Sign(SH − S∗

H) = Sign(f(SH , I
∗
V )− f(S∗

H , I
∗
V ))

and Sign(SV − S∗
V ) = Sign(g(SV , I

∗
H)− g(S∗

V , I
∗
H)).

Remark 4.2 The assumptions H5 and H6 are the technical assumptions which are
used in the proof of the global stability of the endemic equilibrium.

Theorem 4.2 When R0 > 1, then the endemic equilibrium E∗ of system (3) exists
and is globally asymptotically stable on D.

Proof. At the endemic equilibrium E∗ and from the system (3), we have
Λ̃ = f(S∗

H , I
∗
V ) + µHS

∗
H ,

f(S∗
H , I

∗
V ) = (µH + γH)I∗H ,

A = g(S∗
V , I

∗
H) + µV S

∗
V ,

g(S∗
V , I

∗
H) = µV I

∗
V .

(9)
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Let us define the function h on R+ by h(x) = x−1− lnx. The function h is non-negative
for all x ∈ R+. Let us consider the candidate Lyapunov function U defined by

U(t) = UH(t) + UV (t) where UH(t) = USH
(t) + UIH (t) and UV (t) = USV

(t) + UIV (t)

with

USH
= SH − S∗

H −
∫ SH

S∗
H

f(S∗
H , I

∗
V )

f(χ, I∗V )
dχ, UIH = I∗Hh

(
IH
I∗H

)
,

USV
= SV − S∗

V −
∫ SV

S∗
V

g(S∗
V , I

∗
H)

g(χ, I∗H)
dχ, UIV = I∗V h

(
IV
I∗V

)
.

Now, we have to differentiate the function U with respect to time.

U̇SH
=

(
1− f(S∗

H , I
∗
V )

f(SH , I∗V )

)
ṠH

=

(
1− f(S∗

H , I
∗
V )

f(SH , I∗V )

)
(Λ̃− f(SH , IV )− µHSH).

By using the first equation of system (9), we have

U̇SH
= −µH(SH − S∗

H)

(
1− f(S∗

H , I
∗
V )

f(SH , I∗V )

)
+f(S∗

H , I
∗
V )

[
1− f(SH , IV )

f(S∗
H , I

∗
V )

− f(S∗
H , I

∗
V )

f(SH , I∗V )
+
f(SH , IV )

f(SH , I∗V )

]
.

Let us calculate U̇IH :

U̇IH =

(
1− I∗H

IH

)
İH

=

(
1− I∗H

IH

)
(f(SH , IV )− (µH + γH)I∗H

IH
I∗H

).

By using the second equation of system (9), we get

U̇IH =

(
1− I∗H

IH

)
(f(SH , IV )− f(S∗

H , I
∗
V )
IH
I∗H

)

= f(S∗
H , I

∗
V )

(
1− I∗H

IH

)(
f(SH , IV )

f(S∗
H , I

∗
V )

− IH
I∗H

)
= f(S∗

H , I
∗
V )

(
f(SH , IV )

f(S∗
H , I

∗
V )

− IH
I∗H

− I∗H
IH

f(SH , IV )

f(S∗
H , I

∗
V )

+ 1

)
.

Let us now evaluate U̇H :

U̇H = U̇SH
+ U̇IH

= −µH(SH − S∗
H)

(
1− f(S∗

H , I
∗
V )

f(SH , I∗V )

)
+ f(S∗

H , I
∗
V )Q(SH , IV ),



88 HAROUNA OUEDRAOGO AND ABOUDRAMANE GUIRO

where Q(SH , IV ) = 2− f(S∗
H , I

∗
V )

f(SH , I∗V )
+
f(SH , IV )

f(SH , I∗V )
− IH
I∗H

− I∗H
IH

f(SH , IV )

f(S∗
H , I

∗
V )

.

By adding and subtracting 1+ln
f(S∗

H , I
∗
V )

f(SH , I∗V )
+ln

f(SH , IV )

f(SH , I∗V )
+ln

IH
I∗H

to and fromQ(SH , IV ),

we get

Q(SH , IV ) =

(
− f(S∗

H , I
∗
V )

f(SH , I∗V )
+ 1 + ln

f(S∗
H , I

∗
V )

f(SH , I∗V )

)
+

(
− IH
I∗H

+ 1 + ln
IH
I∗H

)
+

(
f(SH , IV )

f(SH , I∗V )
− 1− ln

f(SH , IV )

f(SH , I∗V )

)(
− I∗H
IH

f(SH , IV )

f(S∗
H , I

∗
V )

+1+ln
I∗H
IH

f(SH , IV )

f(S∗
H , I

∗
V )

)
= −h

(
f(S∗

H , I
∗
V )

f(SH , I∗V )

)
− h

(
IH
I∗H

)
+ h

(
f(SH , IV )

f(SH , I∗V )

)
− h

(
I∗H
IH

f(SH , IV )

f(S∗
H , I

∗
V )

)
.

Let us calculate U̇SV
:

U̇SV
=

(
1− g(S∗

V , I
∗
H)

g(SV , I∗H)

)
ṠV

=

(
1− g(S∗

V , I
∗
H)

g(SV , I∗H)

)
(A− g(SV , IH)− µV SV ).

By using the third equation of system (9), we obtain

U̇SV
= −µV (SV − S∗

V )

(
1− g(S∗

V , I
∗
H)

g(SV , I∗H)

)
+g(S∗

V , I
∗
H)

(
1− g(SV , IH)

g(S∗
V , I

∗
H)

− g(S∗
V , I

∗
H)

g(SV , I∗H)
+
g(SV , IH)

g(SV , I∗H)

)
.

Let us calculate U̇IV :

U̇IV =

(
1− I∗V

IV

)
İV

= g(S∗
V , I

∗
H)

(
1 +

g(SV , IH)

g(S∗
V , I

∗
H)

− IV
I∗V

− I∗V
IV

g(SV , IH)

g(S∗
V , I

∗
H)

)
.

Let us now evaluate U̇V :

U̇V = U̇SV
+ U̇IV

= −µV (SV − S∗
V )

(
1− g(S∗

V , I
∗
H)

g(SV , I∗H)

)
+ g(S∗

V , I
∗
H)Ψ(SV , IH),

where Ψ(SV , IH) = 2− g(S∗
V , I

∗
H)

g(SV , I∗H)
+
g(SV , IH)

g(SV , I∗H)
− IV
I∗V

− I∗V
IV

g(SV , IH)

g(S∗
V , I

∗
H)
.

By adding and subtracting 1 + ln
g(S∗

V , I
∗
H)

g(SV , I∗H)
+ ln

g(SV , IH)

g(SV , I∗H)
+ ln

IV
I∗V

to and from



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (1) (2023) 79–94 89

Ψ(SV , IH), we have

Ψ(SV , IH) =

(
− g(S∗

V , I
∗
H)

g(SV , I∗H)
+ 1 + ln

g(S∗
V , I

∗
H)

g(SV , I∗H)

)
+

(
− IV
I∗V

+ 1 + ln
IV
I∗V

)
+

(
g(SV , IH)

g(SV , I∗H)
− 1− ln

g(SV , IH)

g(SV , I∗H)

)
+

(
− I∗V
IV

g(SV , IH)

g(S∗
V , I

∗
H)

+ 1 + ln
I∗V
IV

g(SV , IH)

g(S∗
V , I

∗
H)

)
= −h

(
g(S∗

V , I
∗
H)

g(SV , I∗H)

)
− h

(
IV
I∗V

)
+ h

(
g(SV , IH)

g(SV , I∗H)

)
− h

(
I∗V
IV

g(SV , IH)

g(S∗
V , I

∗
H)

)
.

Let ζ = max{f(S∗
H , I

∗
V ); g(S

∗
V , I

∗
H)},

U̇ ≤ −µH(SH − S∗
H)

(
1− f(S∗

H , I
∗
V )

f(SH , I∗V )

)
− µV (SV − S∗

V )

(
1− g(S∗

V , I
∗
H)

g(SV , I∗H)

)
+ζ(Q(SH , IV ) + Ψ(SV , IH)).

By using the assumption H5, we have

h

(
f(SH , IV )

f(SH , I∗V )

)
≤ h

(
IV
I∗V

)
and h

(
g(SV , IH)

g(SV , I∗H)

)
≤ h

(
IH
I∗H

)
,

thus, from the assumption H6, we can see that U̇ ≤ 0. In addition, we can see that
U > 0 for all SH , IH , SV , IV ∈ R+ and U = 0 for SH = S∗

H , IH = I∗H , SV = S∗
V and

IV = I∗V . Then the equilibrium state E∗ is the only positively invariant set of the system
(3) contained in {(SH , IH , SV , IV ) ∈ R4

+;SH = S∗
H , IH = I∗H , SV = S∗

V and IV = I∗V }
and hence, by the asymptotic stability theorem [17], the unique endemic equilibrium
state E∗ is globally asymptotically stable on D. □

5 Examples of Incidence Functions

In this section, we give the examples of incidence functions for which the required hy-
potheses are satisfied.

1. Mass action incidence. These incidence functions are defined by f(SH , IV ) =
α1SHIV and g(SV , IH) = α2SV IH , where α1 is the positive contact rate between a
susceptible human and an infectious mosquito and α2 designs the positive contact
rate between a susceptible mosquito and an infectious human. Then hypotheses
(H1)− (H6) are satisfied and so the global dynamics are determined by the mag-
nitude of the basic reproduction number R0.

2. Saturating incidence. Let f(SH , IV ) = SH
IV

1 + c1IV
and g(SV , IH) =

SV
IH

1 + c2IH
, where c1 and c2 are non-negative constant. Then hypotheses

(H1)− (H6) are satisfied and so the global dynamics are determined by the value
of R0.

3. Standard incidence. These functions are given by f(SH , IV ) =
SHIV
SH + IH

and

g(SV , IH) =
SV IH
SV + IV

. Then the assumptions (H1)− (H6) are satisfied and so the

global dynamics are given by the value of the basic reproduction number R0.
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In the following paragraph, we carry out the numerical simulation taking the mass action
law as the incidence function. But we specify that the dynamics remains the same as
with the other incidence functions.

6 Simulation and Comments

In this section, we carry out the computation work that supports our study. In our
simulation, we used the mass action as the incidence functions which are defined by
f(SH , IV ) = α1SHIV and g(SV , IH) = α2SV IH , where α1 and α2 are positives constants.
We present the graphics which illustrate the evolution of the different classes in two cases:
when R0 ≤ 1 and R0 > 1. The parameter values used in our simulation are: Λ̃ = 200;
µH = 0.3; µV = 0.2; γH = 0.4; α1 = 0.0005; α2 = 0.0021; A = 100. From these
values, we have R0 = 0.87. When we change the values of α1 and α2 to α1 = 0.001 and
α2 = 0.21, we get R0 = 12.25. The software used for the simulation is scilab.

(a) human population, R0 < 1. (b) human population, R0 > 1.

Figure 2: Dynamics of the human population for different magnitudes of R0. Figure 2a
give the dynamic of susceptible, infectious and remove, in model (2). These curves also
indicate that the disease tends to disappear. Figure 2b presents the dynamic of the same
classes, these curves show us that the disease persists in the population.

7 Global Sensitivity Analysis for R0

In this paragraph, we use the notion of sensitivity analysis to show the importance of
different parameters in the basic reproduction number R0. In Subsection 7.1, we define
the notion of sensitivity of some parameter p of the model (2). Subsection 7.2 is devoted
to the calculations of the analytical expressions of the sensitivity indices of different
parameters in the basic reproduction number. In Subsection 7.3, we give a numerical
representation and comments for different sensitivity indice.
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(a) Vector population, R0 < 1. (b) Vector population, R0 > 1.

Figure 3: Dynamics of the vector population for different values of R0. Figure 3a designs
the dynamic of susceptible and infectious mosquitoes, in model (2). The graphs together
also show that the disease tends to disappear. Figure 3b shows the dynamic of the vector
population, these curves indicate that the disease will persist in the population.

7.1 Definition

Let p be a parameter of the mathematical model (2). The parameter p is said to be
sensitive if any small alteration of p causes a significant change in the solution. It is
worthy to note that the parameter p is termed to be locally sensitive if the change in
the value of the parameter p influences the output of the model. In the same way, global
sensitivity takes into account the overall change in the model output as a result of the
change in all parameter values within their respective range [18].

In computing the normalized sensitivity index (℘R0
p ) for the basic reproduction num-

ber R0 for each parameter p, we use the relation given by

℘R0
p =

∂R0

∂p
× p

R0
. (10)

7.2 Analytic representation of the elasticity

We use the law of mass action as an incidence function. The general incidence functions
f and g are defined by the relations f(SH , IV ) = β̃SHIV and g(SV , IH) = ϵSV IH . In
this case, the expression of the basic reproduction number R0 is given by the relation

R0 =

√
β̃ϵΛ̃A

µHµ2
V (µH + γH)

.

The sensitivity indices of different parameters are given as follows.
Using the principle given by (10), we obtain

℘R0

β̃
=

1

2
, ℘R0

ϵ =
1

2
, ℘R0

Λ̃
=

1

2
, ℘R0

A =
1

2
,
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℘R0
γH

= −1

2

γH
µH + γH

, ℘R0
µV

= −1, ℘R0
µH

= −2µH + γH
2

.

Table 1: Parameter description and elasticity value.

Parameter Description Elasticity index

Λ̃ Humans recruitment rate 0.5

β̃ Positive contact rate between IV and SH 0.5
ϵ Positive contact rate between IH and SV 0.5
A Mosquito recruitment rate 0.5
γH Infectious humans who pass in RH -0.28
µV Natural death of mosquito -1
µH Natural death of humans -0.5

7.3 Numerical representation and comments

In this subsection, we give some numerical representation and comments for different
sensitivity indices while the analytical expressions and values are obtained in Subsection
7.2. For the numerical representation, we use the R software and the graph is given in
Figure 4.

Figure 4: Global sensitivity plot.

Parameters with a positive sensitivity index indicate an increase in the transmission of
dengue in the population for an increase in these values. On the other hand, parameters
with a negative sensitivity index mean that an increase in these values leads to a decrease
in the transmission of dengue in the population. For example, the sensitivity index of Λ̃
in R0 is 0.5. This implies that an increase of 1% in the value of Λ̃ leads to an increase
of 0.5% in the value of R0. The sensitivity indices of Λ̃, β̃, ϵ and A are the same, which
means that these parameters have the same impact on the secondary infection rate. In
the same way, the elasticity of µV in R0 is −1 meaning that the increase of 1% in the
value of mosquito mortality implies the decrease of 1% in the value of R0. The fact that
℘R0
µH

= −0.28 means that 1% increase in µV will produce 0.28% decrease in R0. Also,
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the fact that ℘R0
γH

= −0.5 implies that 1% increase in γH will produce 0.5% decrease in
the value of the basic reproduction number.

Thus, we find that the parameter µV , which denotes the mosquito mortality rate, is
a good parameter for controlling the dynamics of dengue transmission. As it increases,
the basic reproduction number R0 decreases more rapidly. However, it is not the only
parameter whose growth leads to a decrease in the basic reproduction number.

8 Conclusion

In this paper, we have studied the dengue disease transmission model, which includes the
human and vector populations with general admission incidence functions. We proved the
existence of the equilibrium and its stability. When the value of the basic reproduction
number R0 is less than unity, the disease-free equilibrium is globally asymptotically
stable, in this case the disease will disappear. When R0 > 1, the endemic equilibrium
exists and it is globally asymptotically stable, in this case the disease will persist in the
population. We used the Lyapunov function to study the stability of our equilibrium
points. We have also presented the numerical simulations, and the evolution of our
curves corroborate with the theoretical results. We carried out a sensitivity study of the
parameters in order to determine the influence of different parameters on the transmission
of the disease. We notice that the parameter µV , which denotes the mortality rate of
the mosquitoes, allows to better control the dynamics of dengue disease transmission. In
our future work we will integrate the spatial distribution of the disease.
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