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1 Introduction

The study of nonlinear elliptic system of equations

∆uj + gj(uj+1) = 0 in Ω,

uj = 0 on ∂Ω,

}
(1)

where j ∈ {1, 2, 3, · · ·, ℓ}, u1 = uℓ+1, and Ω is a bounded domain in RN , has an important
applications in population dynamics, combustion theory and chemical reactor theory. For
the recent literature on the existence, multiplicity and uniqueness of positive solutions
for (1), see [3–5,8, 9, 11,12] and references therein.

In [2], Akdim, Rhoudaf and Salmani established the existence of entropy solutions
for anisotropic elliptic equations of the form

Au+

n∑
i=1

gi(x, u,∇u) = f,

where Au is a Leray-Lions anisotropic operator. In [1], Aberqi, Bennouna and Elmassoudi
established the existence results for the following nonlinear elliptic equations with some
measure data in Musielak-Orlicz spaces:

Au+ K(x, u,∇u) = µ.

In [6], Dong and Wei established the existence of radial solutions for the following non-
linear elliptic equations with gradient terms in annular domains:

−∆u = g
(
|x|, u, x

|x|
· ∇u

)
in Ωb

a,

u = 0 on ∂Ωb
a,

by using Schauder’s fixed point theorem and the contraction mapping theorem. In [10], R.
Kajikiya and E. Ko established the existence of positive radial solutions for a semipositone
elliptic equation of the form

−∆u = λg(u) in Ω,

u = 0 on ∂Ω,

where Ω is a ball or an annulus in RN . Recently, Son and Wang [13] have studied positive
radial solutions for the nonlinear elliptic systems of the form

∆uj + λKj(|x|)gj(uj+1) = 0 in ΩE,

uj = 0 on |x| = r0,

uj → 0 as |x| → +∞,

where j ∈ {1, 2, 3, · · ·, ℓ}, u1 = uℓ+1, λ > 0, N > 2, r0 > 0, and ΩE is an exterior of a ball,
and established existence, multiplicity and uniqueness results for various nonlinearities
in gj. Inspired by the aforementioned works, in this paper, we apply Krasnoselskii’s fixed
point theorem to derive necessary conditions for the existence of denumerably many
positive radial solutions of the following iterative system of nonlinear elliptic equations
in the exterior of a ball:

∆uj + P(|x|)gj(uj+1) = 0 in RN\Br0 ,

uj = 0 on |x| = r0,

uj → 0 as |x| → +∞,

 (2)
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where j ∈ {1, 2, 3, ···, ℓ}, u1 = uℓ+1, ∆u = div(∇u), N > 2, r0 > 0, Br0 = {u ∈ RN | |u| <
r0}, P =

∏n
i=1 Pi, each Pi : (r0,+∞) → (0,+∞) is continuous, rN−1P is integrable and

may have singularities, and gj : [0,+∞) → R is continuous.
The study of positive radial solutions to (2) reduces to the study of positive solutions

to the following iterative system of two-point boundary value problems:

u′′j (τ) + Q(τ)gj
(
uj+1(τ)

)
= 0, τ ∈ (0, 1),

uj(0) = 0, uj(1) = 0,

}
(3)

where j ∈ {1, 2, 3, · · ·, ℓ}, u1 = uℓ+1, and Q(τ) =
r20

(N−2)2 τ
2(N−1)
2−N

∏n
i=1 Qi(τ), Qi(τ) =

Pi(r0τ
1

2−N ) by a Kelvin type transformation through the change of variables r = |x| and

τ =
(

r
r0

)2−N

. Here, Qi may have singularities on [0, 1]. Thus, for each i ∈ {1, 2, 3, · · ·, n},
we assume that the following conditions hold throughout the paper:

(H1) Qi ∈ Lpi [0, 1], (pi ≥ 1) and may have denumerably many singularities on (0, 1/2).

(H2) There exists a sequence {τk}∞k=1 such that 0 < τk+1 < τk <
1

2
, k ∈ N,

lim
k→∞

τk = τ∗ <
1

2
, lim

τ→τk

Qi(τ) = +∞, k ∈ N, i = 1, 2, 3, · · · , n,

and each Qi(τ) does not vanish identically on any subinterval of [0, 1]. Moreover,
there exists Q∗i > 0 such that

Q∗i < Qi(τ) < ∞ a.e. on [0, 1].

The rest of the paper is organized in the following fashion. In Section 2, we convert
the boundary value problem (3) into the equivalent integral equation which involves the
kernel. Also, we estimate bounds for the kernel which are useful in our main results. In
Section 3, we develop a criteria for the existence of denumerably many positive radial
solutions for (2) by applying Krasnoselskii’s cone fixed point theorem in a Banach space.
Finally, as an application, an example is given to demonstrate our results.

2 Kernel and Its Bounds

In this section, we constructed a kernel to the homogeneous boundary value problem
corresponding to (3) and established certain lemmas for the bounds of the kernel.

Lemma 2.1 Let y ∈ C[0, 1]. Then the boundary value problem

u′′1(τ) + Q(τ)y(τ) = 0, τ ∈ (0, 1),

u1(0) = 0, u1(1) = 0,

}
(4)

has a unique solution

u1(τ) =

∫ 1

0

ℵ(τ, s)Q(s)y(s)ds, (5)

where

ℵ(τ, s) =

{
s(1− τ), 0 ≤ s ≤ τ ≤ 1,

τ(1− s), 0 ≤ τ ≤ s ≤ 1.
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Lemma 2.2 The kernel ℵ(τ, s) has the following properties:

(i) ℵ(τ, s) is nonnegative and continuous on [0, 1]× [0, 1],

(ii) ℵ(τ, s) ≤ ℵ(s, s) for t, τ ∈ [0, 1],

(iii) there exists β ∈ (0, 1
2 ) such that βℵ(s, s) ≤ ℵ(τ, s) for τ ∈ [β, 1− β], s ∈ [0, 1].

Proof. From the definition of kernel ℵ(τ, s), it is clear that (i) and (ii) hold. To
prove (iii), let τ ∈ [β, 1− β] and s ≤ τ, then

ℵ(τ, s)
ℵ(s, s)

=
s(1− τ)

s(1− s)
≥ 1− τ ≥ β,

and for τ ≤ s, we have
ℵ(τ, s)
ℵ(s, s)

=
τ(1− s)

s(1− s)
≥ τ ≥ β.

This completes the proof.
From Lemma 2.1, we note that an ℓ-tuple (u1, u2, · · ·, uℓ) is a solution of the boundary

value problem (3) if and only if

u1(τ) =

∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1.

In general,

uj(τ) =

∫ 1

0

ℵ(τ, s)Q(s)gj
(
uj+1(s)

)
ds, j = 1, 2, 3, · · · , ℓ,

u1(τ) = uℓ+1(τ).

We denote the Banach space C([0, 1],R) by B with the norm ∥u∥ = max
τ∈[0,1]

|u(τ)|. For

β ∈ (0, 1/2), the cone Pβ ⊂ B is defined by

Pβ =
{
u ∈ B : u(τ) ≥ 0, min

τ∈[β, 1−β]
u(τ) ≥ β∥u∥

}
.

For any u1 ∈ Pβ, define an operator Ω : Pβ → B by

(Ωu1)(τ) =

∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1.

Lemma 2.3 For each β ∈ (0, 1/2), Ω(Pβ) ⊂ Pβ and Ω : Pβ → Pβ is completely
continuous.
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Proof. Let β ∈ (0, 1/2). Since gj(uj+1(τ)) is nonnegative for τ ∈ [0, 1], u1 ∈ Pβ.
Since ℵ(τ, s) is nonnegative for all τ, s ∈ [0, 1], it follows that Ω(u1(τ)) ≥ 0 for all
τ ∈ [0, 1], u1 ∈ Pβ. Now, by Lemmas 2.1 and 2.2, we have

min
τ∈[β,1−β]

(Ωu1)(τ)

= min
τ∈[β,1−β]

{∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1

}

≥ β

∫ 1

0

ℵ(s1, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1

≥ β

{∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1

}
≥ β max

τ∈[0,1]
|Ωu1(τ)|.

Thus Ω(Pβ) ⊂ Pβ. Therefore, the operator Ω is completely continuous by standard
methods and by the Arzela-Ascoli theorem.

3 Denumerably Many Positive Radial Solutions

In this section, we establish the existence of denumerably many positive radial solutions
for the system (2) by utilizing the following theorems.

Theorem 3.1 [7] Let E be a cone in a Banach space X and Λ1, Λ2 be open sets
with 0 ∈ Λ1,Λ1 ⊂ Λ2. Let T : E ∩ (Λ2\Λ1) → E be a completely continuous operator such
that

(a) ∥T u∥ ≤ ∥u∥, u ∈ E ∩ ∂Λ1, and ∥T u∥ ≥ ∥u∥, u ∈ E ∩ ∂Λ2, or

(b) ∥T u∥ ≥ ∥u∥, u ∈ E ∩ ∂Λ1, and ∥T u∥ ≤ ∥u∥, u ∈ E ∩ ∂Λ2.

Then T has a fixed point in E ∩ (Λ2\Λ1).

Theorem 3.2 (Hölder’s) Let f ∈ Lpi [0, 1] with pi > 1, for i = 1, 2, · · · , n and
n∑

i=1

1

pi
= 1. Then

n∏
i=1

fi ∈ L1[0, 1] and ∥
∏n

i=1 fi∥1 ≤
∏n

i=1 ∥fi∥pi . Further, if f ∈ L1[0, 1]

and g ∈ L∞[0, 1], then fg ∈ L1[0, 1] and ∥fg∥1 ≤ ∥f∥1∥g∥∞.

Consider the following three possible cases for Pj ∈ Lpi [0, 1] :

n∑
i=1

1

pi
< 1,

n∑
i=1

1

pi
= 1,

n∑
i=1

1

pi
> 1.
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Firstly, we seek denumerably many positive radial solutions for the case

n∑
i=1

1

pi
< 1.

Theorem 3.3 Suppose (H1) − (H2) hold, let {βk}∞k=1 be a sequence with τk+1 <
βk < τk. Let {Rk}∞k=1 and {Sk}∞k=1 be such that

Rk+1 < βkSk < Sk < NSk < Rk, k ∈ N,

where

N = max

{[
β1

r20
(N − 2)2

n∏
i=1

Q∗i

∫ 1−β1

β1

ℵ(s, s)s
2(N−1)
2−N ds

]−1

, 1

}
.

Further, assume that gj satisfies

(A1) gj(u(τ)) ≤ M1Rk for all τ ∈ [0, 1], 0 ≤ u ≤ Rk,
where

M1 <

[
r20

(N − 2)2
∥ℵ∥q

n∏
i=1

∥Qi∥pi

]−1

, ℵ(s) = ℵ(s, s)s
2(N−1)
2−N ,

(A2) gj(u(τ)) ≥ NSk for all τ ∈ [βk, 1− βk], βkSk ≤ u ≤ Sk.

The iterative system (2) has denumerably many radial solutions {(u[k]1 , u
[k]
2 , · · ·, u[k]ℓ )}∞k=1

such that u
[k]
j (τ) ≥ 0 on (0, 1), j = 1, 2, · · ·, ℓ and k ∈ N.

Proof. Consider the sequences {Λ1,k}∞k=1 and {Λ2,k}∞k=1 of the open subsets of B
defined by

Λ1,k = {u ∈ B : ∥u∥ < Rk}, Λ2,k = {u ∈ B : ∥u∥ < Sk}.

Let {βk}∞k=1 be as in the hypothesis and note that τ∗ < τk+1 < βk < τk < 1
2 for all

k ∈ N. For each k ∈ N, define the cone Pβk
by

Pβk
=

{
u ∈ B : u(τ) ≥ 0 and min

τ∈[βk, 1−βk]
u(t) ≥ βk∥u(τ)∥

}
.

Let u1 ∈ Pβk
∩∂Λ1,k. Then u1(s) ≤ Rk = ∥u1∥ for all s ∈ [0, 1]. By (A1) and 0 < sℓ−1 < 1,

we have∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ ≤

∫ 1

0

ℵ(sℓ, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

≤ M1Rk

∫ 1

0

ℵ(sℓ, sℓ)Q(sℓ)dsℓ

≤ M1Rk
r20

(N − 2)2

∫ 1

0

ℵ(sℓ, sℓ)s
2(N−1)
2−N

ℓ

n∏
i=1

Qi(sℓ)dsℓ.

There exists a q > 1 such that

n∑
i=1

1

pi
+

1

q
= 1. By the first part of Theorem 3.2, we have

∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ ≤ M1Rk

r20
(N − 2)2

∥ℵ∥q
n∏

i=1

∥Qi∥pi

≤ Rk.
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It follows, in a similar manner, for 0 < sℓ−2 < 1,

∫ 1

0

ℵ(sℓ−2, sℓ−1)Q(sℓ−1)gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
dsℓ−1

≤
∫ 1

0

ℵ(sℓ−1, sℓ−1)Q(sℓ−1)gℓ−1(Rk)dsℓ−1

≤ M1Rk

∫ 1

0

ℵ(sℓ−1, sℓ−1)Q(sℓ−1)dsℓ−1

≤ M1Rk
r20

(N − 2)2
∥ℵ∥q

n∏
i=1

∥Qi∥pi

≤ Rk.

Continuing with this bootstrapping argument, we get

(Ωu1)(t) =

∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1

≤Rk.

Since Rk = ∥u1∥ for u1 ∈ Pβk
∩ ∂Λ1,k, we get

∥Ωu1∥ ≤ ∥u1∥. (6)

Let τ ∈ [βk, 1− βk]. Then Sk = ∥u1∥ ≥ u1(t) ≥ min
τ∈[βk,1−βk]

u1(t) ≥ βk ∥u1∥ ≥ βkSk. By

(A2) and for sℓ−1 ∈ [βk, 1− βk], we have

∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ ≥

∫ 1−βk

βk

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

≥ NSk

∫ 1−βk

βk

ℵ(sℓ−1, sℓ)Q(sℓ)dsℓ

≥ NSkβ1

∫ 1−β1

β1

ℵ(sℓ, sℓ)Q(sℓ)dsℓ

≥ NSkβ1
r20

(N − 2)2

∫ 1−β1

β1

ℵ(sℓ, sℓ)s
2(N−1)
2−N

ℓ

n∏
i=1

Qi(sℓ)dsℓ

≥ NSkβ1
r20

(N − 2)2

n∏
i=1

Q∗i

∫ 1−β1

β1

ℵ(sℓ, sℓ)s
2(N−1)
2−N

ℓ dsℓ

≥ Sk.
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Continuing with the bootstrapping argument, we get

(Ωu1)(τ) =

∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1

≥ Sk.

Thus, if u1 ∈ Pβk
∩ ∂Λ2,k, then

∥Ωu1∥ ≥ ∥u1∥. (7)

It is evident that 0 ∈ Λ2,k ⊂ Λ2,k ⊂ Λ1,k. From (6),(7), it follows from Theorem 3.1 that

the operator Ω has a fixed point u
[k]
1 ∈ Pβk

∩
(
Λ1,k\Λ2,k

)
such that u

[k]
1 (t) ≥ 0 on (0, 1),

and k ∈ N. Next, setting uℓ+1 = u1, we obtain denumerably many positive solutions

{(u[k]1 , u
[k]
2 , · · ·, u[k]ℓ )}∞k=1 of (3) given iteratively by

uj(τ) =

∫ 1

0

ℵ(τ, s)Q(s)gj(uj+1(s))ds, j = 1, 2, · · · , ℓ− 1, ℓ,

uℓ+1(τ) = u1(τ).

The proof is completed.
For

∑n
i=1 pi = 1, we have the following theorem.

Theorem 3.4 Suppose (H1) − (H2) hold, let {βk}∞k=1 be a sequence with τk+1 <
βk < τk. Let {Rk}∞k=1 and {Sk}∞k=1 be such that

Rk+1 < βkSk < Sk < NSk < Rk, k ∈ N.

Further, assume that gj satisfies (A2) and
(A3) gι(u(τ)) ≤ M2Rk for all 0 ≤ u(τ) ≤ Rk, τ ∈ [0, 1], where

M2 < min

{[
r20

(N − 2)2
∥ℵ∥∞

n∏
i=1

∥Qi∥pi

]−1

, N

}
.

The iterative system (2) has denumerably many radial solutions {(u[k]1 , u
[k]
2 , · · ·, u[k]ℓ )}∞k=1

such that u
[k]
j (τ) ≥ 0 on (0, 1), j = 1, 2, · · ·, ℓ and k ∈ N.

Proof. Let Λ1,k be as in the proof of Theorem 3.3 and let u1 ∈ Pβk
∩ ∂Λ2,k. Again,

u1(τ) ≤ Rk = ∥u1∥ for all τ1 ∈ [0, 1]. By (A3) and 0 < τℓ−1 < 1, we have∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ ≤

∫ 1

0

ℵ(sℓ, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

≤ M1Rk

∫ 1

0

ℵ(sℓ, sℓ)Q(sℓ)dsℓ

≤ M1Rk
r20

(N − 2)2

∫ 1

0

ℵ(sℓ, sℓ)s
2(N−1)
2−N

ℓ

n∏
i=1

Qi(sℓ)dsℓ

≤ M1Rk
r20

(N − 2)2
∥ℵ∥∞

n∏
i=1

∥Qi∥pi

≤ Rk.
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Continuing with this bootstrapping argument, we get

(Ωu1)(t) =

∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1

≤Rk.

Thus, ∥Ωu1∥ ≤ ∥u1∥ for u1 ∈ Pβk
∩ ∂Λ1,k. Now define Λ2,k = {u ∈ B : ∥u∥ < Sk}. Let

u1 ∈ PΩk
∩ ∂Λ2,k and let sℓ−1 ∈ [βk, 1 − βk]. Then the argument leading to (7) can be

applied to the present case. Hence, the theorem is proved.

Finally, we deal with the case
∑n

i=1 pi > 1.

Theorem 3.5 Suppose (H1) − (H2) hold, let {βk}∞k=1 be a sequence with τk+1 <
βk < τk. Let {Rk}∞k=1 and {Sk}∞k=1 be such that

Rk+1 < βkSk < Sk < NSk < Rk, k ∈ N.

Further, assume that gj satisfies (A2) and
(A4) gι(u(τ)) ≤ M3Rk for all 0 ≤ u(τ) ≤ Rk, τ ∈ [0, 1], where

M3 < min

{[
r20

(N − 2)2
∥ℵ∥∞

n∏
i=1

∥Qi∥1

]−1

, N

}
.

The iterative system (2) has denumerably many radial solutions {(u[k]1 , u
[k]
2 , · · ·, u[k]ℓ )}∞k=1

such that u
[k]
j (τ) ≥ 0 on (0, 1), j = 1, 2, · · ·, ℓ and k ∈ N.

Proof. The proof is similar to the proof of Theorem 3.3.

4 Applications

Example 4.1 Consider the following fractional order boundary value problem:

∆uj + P(|x|)gj(uj+1) = 0 in R3\B1,

uj = 0 on |x| = 1,

uj → 0 as |x| → +∞,

 (8)

where j ∈ {1, 2}, u3 = u1, Q(τ) =
1
τ4

∏2
i=1 Qi(τ), Qi(τ) = Pi(

1
τ
), in which

P1(t) =
1

|t− 4| 12
and P2(t) =

1

|t− 3| 12
,
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gj(u) =



5× 10−14, u ∈ (10−4,+∞),

30×10−(4k+2)−5×10−4k−10

10−(4k+2)−10−4k (u− 10−4k) + 5× 10−4k−10,

u ∈
[
10−(4k+2), 10−4k

]
,

30× 10−(4k+2), u ∈
(

1
5
× 10−(4k+2), 10−(4k+2)

)
,

30×10−(4k+2)−5×10−(4k+14)

1
5
×10−(4k+2)−10−(4k+4) (u− 10−(4k+4)) + 5× 10−(4k+14),

u ∈
(
10−(4k+4), 1

5
× 10−(4k+2)

]
,

j = 1, 2. Let

τk =
31

64
−

k∑
r=1

1

4(r + 1)4
, βk =

1

2
(τk + τk+1), k = 1, 2, 3, · · · ,

then

β1 =
15

32
− 1

648
<

15

32

and

τk+1 < βk < τk, βk >
1

5
.

It is easy to see

τ1 =
15

32
<

1

2
, τk − τk+1 =

1

4(k + 2)4
, k = 1, 2, 3, · · · .

Since

∞∑
k=1

1

k4
=

π4

90
and

∞∑
k=1

1

k2
=

π2

6
, it follows that

τ∗ = lim
k→∞

τk =
31

64
−

∞∑
i=1

1

4(i+ 1)4
=

47

64
− π4

360
>

1

5
.

Also,

P1, P2 ∈ Lp[0, 1] and

2∏
i=1

Q∗i =
1√
12

,

∫ 1−β1

β1

ℵ(s, s)s
2(N−1)
2−N ds = 0.2657555992,

β1
r20

(N − 2)2

n∏
i=1

Q∗i

∫ 1−β1

β1

ℵ(s, s)s
2(N−1)
2−N ds = 0.03584271890,

N = max

{[
β1

r20
(N − 2)2

n∏
i=1

Q∗i

∫ 1−β1

β1

ℵ(s, s)s
2(N−1)
2−N ds

]−1

, 1

}
≈ 27.89966918.
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Let q = 2, p1 = p2 = 1/4, then

M1 <

[
r20

(N − 2)2
∥ℵ∥q

n∏
i=1

∥Qi∥pi

]−1

≈ 5.95134× 10−10.

So, let M1 = 5.5× 10−10. In addition, if we take

Rk = 10−4k, Sk = 10−(4k+2),

then

Rk+1 = 10−(4k+4) <
1

5
× 10−(4k+2) < βSk < Sk = 10−(4k+2) < Rk = 10−4k,

and g1, g2 satisfy the following growth conditions:

gj(u) ≤ M1Rk = 5.5× 10−4k−10, u ∈
[
0, 10−4k

]
,

gj(u) ≥NSk = 27.89966918× 10−(4k+2), u ∈
[
1

5
× 10−(4k+2), 10−(4k+2)

]
.

Then all the conditions of Theorem 3.3 are satisfied. Therefore, by Theorem 3.3, the

boundary value problem (8) has denumerably many positive solutions {(u[k]1 , u
[k]
2 )}∞k=1

such that 10−(4k+2) ≤ ∥u[k]j ∥ ≤ 10−4k for each k = 1, 2, 3, · · · , and j = 1, 2.

5 Conclusion

This paper focuses on establishing the existence of denumerably many positive radial
solutions to the iterative system of nonlinear elliptic equations through the application
of one of the most important fixed point theorems known as ”Krasnoselskii’s fixed point
theorem”. These ease the proof of the existence of the positive solution attached to the
system under study.

In the future, we aim to expand this study by adapting some techniques used to
other ideas and extracting new results that show the effectiveness of this study and its
effect in the midst of scientific research. The closest result we would like to prove is
the establishment of the multiple and sign-changing solutions for the iterative system of
nonlinear elliptic equations with critical potential and critical parameters.
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