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Exponential and Strong Stabilization for

Inhomogeneous Semilinear Control Systems by

Decomposition Method

M. Baddi ∗, M. Chqondi and Y. Akdim

Laboratory LAMA, Department of Mathematics and Informatics, Sidi Mohamed Ben Abdellah
University, Faculty of Sciences, Dhar El Mahraz - FES, Morocco.
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Abstract: In this work, we study, in a Hilbert state space, the stabilization prob-
lem of inhomogeneous semilinear control systems; the existence and uniqueness of
solutions of the system are proved by the semigroup theory. The paper also gives
a feedback control and sufficient conditions for exponential and strong stabilization
using the decomposition method. Finally, an application to the heat equations is
provided.

Keywords: stability of control systems; stabilization of systems by feedback; heat
equation.

Mathematics Subject Classification (2010): 93-XX; 34-XX.

1 Introduction

Semilinear systems are special types of nonlinear systems. They are a transition class
between linear and nonlinear systems and thus represent a wide range for modeling
the dynamic behavior of various real-world phenomena. Stability is one of the most
important concepts in dynamical systems theory, particularly semi-linear systems. This
problem remains a major concern in the work of mathematicians and engineers. In this
work, we study the stabilization of the inhomogeneous semi-linear system described by
the equation {

dy(t)
dt = Ay(t) + v(t)(Ny(t) + c),

y(0) = y0,∈ H,
(1)

where
∗ Corresponding author: mailto:chminfo@gmail.com
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2 M. BADDI, M. CHQONDI AND Y. AKDIM

1. The state space is an infinite-dimensional Hilbert space H with the inner product
⟨., .⟩ and the corresponding norm ∥.∥;

2. v(t) is a scalar-valued control;

3. A is an unbounded operator with the domain D(A) ⊂ H, it generates a semigroup
of contractions (S(t))t≥0 on H;

4. N is a nonlinear operator from H into H, which is locally Lipschitz and sequentially
continuous operator such that N(0) = 0; since N(.) is locally Lipschitz, there
is L > 0 such that for all z, y ∈ H satisfying 0 < ∥y∥ ⩽ ∥z∥ ⩽ R, we have
∥Nz −Ny∥ ⩽ L∥z − y∥;

5. c ̸= 0 is a fixed vector in H.

Remark 1.1 If N is linear, the system(1) is bilinear, and if N is not linear, the
system (1) is semilinear; if c = 0, the system is homogeneous, and if c ̸= 0, the system is
inhomogeneous.

One of the most important concepts in systems theory is stability; we study the possibility
of finding feedback u(y(t)) as ”regular” as possible such that the system is stable; this
stability can be strong, weak, or exponential. The study of the stability of homogeneous
bilinear and semilinear systems has been considered in many works, and different results
have been developed in finite and infinite dimensional cases, see J. Ball, M. Slemrod [1],
M. Ouzahra, A. Tsouli and A. Boutoulout [2], M. Ouzahra [3], A. Benzaza and M.
Ouzahra [4], E. Zerrik and M. Ouzahra [5], H. Bounit, and Hammouri [6], A. El Alami
and M. Chqondi [7].

However, only a few works study the case of inhomogeneous systems; the stability of
such systems has been studied in the bilinear case by Z. Hamidi and M. Ouzahra [8], who
proved the necessary and sufficient conditions for weak and strong partial stabilization
of inhomogeneous bilinear system by the control

v(t) = −ρ
⟨y(t), Ny(t) + c⟩

|⟨y(t), Ny(t) + c⟩|+ 1
, ∀t > 0, (2)

where ρ > 0 is the gain control.
In this work, an exponential and strong stabilization result has been established

using the same feedback control (2), provided that the following observation assumption
is verified:

∃δ, T > 0 such that

∫ T

0

|⟨NS(s)y(t) + c, S(s)y(t)⟩|ds ≥ δ∥y(t)∥, ∀y ∈ H.

This paper is organized as follows. In Section 2, we choose a control that ensures the
stabilization of our system; in Section 3, we show the existence and uniqueness of the
solution in the semilinear inhomogeneous case; in Section 4, we present an appropriate
decomposition of the state space H and the system (1) via the spectral properties of the
operator A. We apply this approach to study the exponential stabilization problem of
the type (1); in Section 5, we look at the strong stabilization problem using the chosen
control. In the last section, we give illustrations through examples governed by a heat
equation.
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2 Choice of Control

Let (1) be as given in the Introduction. Here, the state space is a Hilbert space H with
the inner product ⟨., .⟩ and corresponding norm ∥.∥, y(t) is the state, and u(t) is a scalar
valued control. The problem of stabilization consists of choosing a feedback control u(t)
such that the solution of the resulting feedback system satisfies in some sense y(t) → 0
as → +∞. If we formally compute the time rate of change of the “energy”, we get the
following:

d

dt
∥y(t)∥2 = 2 < y(t);

d

dt
y(t) >

= 2 < y(t);Ay(t) > +2u(t) < y(t), Ny(t) + c >

which implies, since S(t) is a semigroup of contractions,

d

dt
∥y(t)∥2 ≤ 2u(t) < y(t);Ny(t) + c >, ∀t ∈ [0, T ].

Then, to make the energy nonincreasing, an obvious choice of the feedback control

(though not the only one) is v(t) = −ρ ⟨y(t),Ny(t)+c⟩
|⟨y(t),Ny(t)+c⟩|+1 ;

(
∀t > 0, ρ > 0

)
since this control

yields the ”dissipating energy inequality”

d

dt
∥y(t)∥2 ≤ −2

(⟨Ny(t) + c, y(t)⟩)2

|⟨y(t), Ny(t) + c⟩|+ 1
;∀t ∈ [0, T ]. (3)

3 Well-Possedness

Let us consider the closed loop-system{
dy(t)
dt = Ay(t) + f(y(t)), ∀t > 0,

y(0) = y0 ∈ H,
(4)

where f(y(t)) = v(t)
(
Ny(t) + c

)
, ∀y ∈ H, and v(t) is the control given in (2).

We set ϕ(s) = s
|s|+1 for all s ∈ R so that f(y(t)) = −ρϕ(< y;Ny + c >)(Ny + c).

In this section, we aim to study the existence, uniqueness, and regularity of the solution
to the system (1).

We start our study with the well-posedness result.

Proposition 3.1 Assume that A is the infinitesimal generator of a linear C0 semi-
group of contractions on a Hilbert space H and let N be locally Lipschitz and sequentially
continuous operator; then the system (1) admits a unique global mild solution y(t) defined
on the infinite interval [0,+∞[, which is given by the following variation of constants for-
mula:

y(t) = S(t)y0 +

∫ t

0

v(τ)(Ny(τ) + c)S(t− τ)dτ.

Moreover, we have the following estimate:

∥z(t)∥2 − ∥z(s)∥2 ⩽ −2ρ

∫ t

s

⟨y(τ);Ny(τ) + c⟩2

|⟨y(τ), Ny(τ) + c⟩|+ 1
dτ.

In particular, we have ∥y(t)∥ ≤ ∥y0∥. ∀t ≥ 0.
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Proof. To establish the existence and uniqueness of the solution of (4), let us show
that the function f is locally Lipschitz for all y, z ∈ H. Let x, y, z ∈ H with t ∈ [0, T ]
and R > 0 such that ∥x−y∥, ∥x−z∥ ≤ R. Without loss of generality, we can take x = 0.
Since N is locally Lipschitz, there is LR(N) > 0 such that for all z, y ∈ H, satisfying
0 < ∥z∥ ⩽ ∥y∥ ⩽ R, we have ∥Nz −Ny∥ ⩽ LR(N)∥z − y∥.

We have f(t, y)− f(t, z) =
(
ρϕ(< z;Nz + c >)(Nz + c)− ρϕ(< y;Ny + c >)(Ny + c)

)
= ρ
(
ϕ(< z;Nz + c >)− ϕ(< y;Ny + c >

)(
Nz + c

)
+ ϕ(< y;Ny + c >

(
Nz −Ny

)
.

By making use of the function ϕ(s) = s
|s|+1 , we have |ϕ(s) − ϕ(r)| ≤ |s − r| and

|ϕ(s)| ≤ |s| for all (s, r) ∈ R2 since N() is locally Lipschitz, and when using Schwartz’s
inequality, it follows that

∥f(t, y)− f(t, z)∥ ≤ ρ
(
| < z;Nz + c > − < y;Ny + c > |∥Nz + c∥

)
+ ρ|ϕ(< y;Ny + c >)|∥Nz −Ny∥.

We have | < z;Nz + c >)− < y;Ny + c > | = | < z − y;Nz + c >)+ < y;Nz −Ny > |

≤
(
∥c∥+ 2LR(N)∥y0∥

)
∥z − y∥

and |ϕ(< y;Ny + c >)|∥Nz −Ny∥ ≤ | < y;Ny + c > |LR(N)∥z − y∥

≤ ∥y0∥
(
∥Ny∥+ ∥c∥

)
|LR(N)∥z − y∥

≤ ∥y0∥LR(N)

(
LR(N)∥y0∥+ ∥c∥

)
∥z − y∥.

So, ∥f(t, y)−f(t, z)∥ ≤ ρ

(
LR(N)∥y0∥+∥c∥

)(
∥y0∥|LR(N)+∥c∥+2LR(N)∥y0∥

)
∥z − y∥

≤ ρ

(
LR(N)∥y0∥+ ∥c∥

)(
∥c∥+ 3LR(N)∥y0∥

)
∥z − y∥

≤ M(∥y0∥;c)∥z − y∥.

where M(∥y0∥;c) = ρ

(
LR(N)∥y0∥+ ∥c∥

)(
∥c∥+ 3LR(N)∥y0∥

)
.

Remark 3.1 For c=0, we obtain the constant M(∥y0∥;0) = 3ρ

(
LR(N)∥y0∥

)2

which

is strictly smaller than that found in the homogeneous case in [9].

So f(t; y(t)) satisfies a local Lipschitz condition in y, uniformly in t on bounded
intervals. Thus we may apply Theorem 1.4 [10] (p.185), to obtain that there is a tmax ≤ ∞
such that (8) has a unique mild solution y on [0, tmax[, which is given by the following
variation of constants formula:

y(t) = S(t)y0 +

∫ t

0

f(y(τ))S(t− τ)dτ

= S(t)y0 − ρ

∫ t

0

⟨y(τ), Ny(τ) + c⟩
|⟨y(τ), Ny(τ) + c⟩|+ 1

(Ny(τ) + c)S(t− τ)dτ.
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To show that tmax = +∞, it is sufficient to prove that for each T > 0, the mild solution
y(t) is bounded by a constant independent of T . To do this, we discuss two cases:
(i) If the initial value y0 ∈ D(A), then the function w(t) := 1

2∥y(t)∥
2 is continuously

differentiable and we can write for all t ≥ 0, the following: since this control yields the
“dissipating energy inequality”,

d

dt
∥y(t)∥2 ≤ −2ρ

(⟨y(t);Ny(t) + c⟩)2

|⟨y(t), Ny(t) + c⟩|+ 1
;∀t ∈ [0, T ]. (5)

When integrating the last inequality over the interval [s,t ], it follows that

∥y(t)∥2 − ∥y(s)∥2 ≤ −2ρ

∫ t

s

⟨y(τ);Ny(τ) + c⟩2

|⟨y(τ), Ny(τ) + c⟩|+ 1
dτ,∀t ≥ s ≥ 0. (6)

It follows that ∥y(t)∥ ≤ ∥y0∥ ,∀t ≥ 0.
ii) Let y0 ∈ H and consider a sequence (yn0 )n of elements in H converging to y0. For
each T > 0, let y(t) and yn(t) be the mild solutions of (S) associated, respectively, to
the initial values y0 and yn0 . Then one can prove that for each t ∈ [0, T ], the sequence
(yn(t))n converges in H to y(t), see [11].

So, if y0 /∈ D(A), then we can find a sequence (yn0 )n of elements in D(A) converging

to y0 in H (because D(A) = H).
∀t ∈ [0, T ] and ∀n ∈ N, we know from i) that ∥yn0 (t)∥ ≤ ∥yn0 ∥ .

Now, we conclude that ∥y(t)∥ ≤ ∥y0∥ for all t ∈ [0, T ].
∥z(t)∥ ⩽ ∥z0∥ , ∀t ∈ [0, tmax[ .

Hence tmax = +∞ and from (6), we have ∥y(τ)∥2−∥y(t)∥2 ≥ 2ρ
∫ t

τ
⟨y(s);Ny(s)+c⟩2

|⟨y(t),Ny(t)+c⟩|+1ds

for all 0 ≤ τ ≤ t. This completes the proof.

4 Exponential Stabilisation

4.1 Decomposition of the state space and the system

Let δ > 0 be fixed in advance. We suppose that the spectrum σ(A) of A can be decom-
posed into σu(A) and σs(A)

such that σu(A) = σ(A) ∩ {λ : Reλ ⩾ −δ}, σs(A) = σ(A) ∩ {λ : Reλ < −δ}.

Then σ(A) = σu(A) ∪ σs(A) such that σu(A) can be separated from σs(A) by a simple
and closed curve C.

It has been shown in [12](p. 178) and [13] that the operator A may be decomposed
according to the decomposition:

H = Hu ⊕Hs (7)

meaning PD(A) ⊂ D(A);AHs ⊂ Hs, AHu ⊂ Hu (invariance of Hs and Hu under A),
where Hu = PuH and Hs = PsH with Pu being the projection operator

Pu =
1

2πi

∫
C

(λI −A)−1dλ and Ps = I − Pu.

Then the operator A can be decomposed as

A = Au +As (8)
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with Au = PuA and As = PsA. Here, As and Au are the restrictions of A on Hs and
Hu, respectively.

We considerNs andNu, the restrictions of the operatorN onHs andHu, respectively,
such that

(H1) : NHu ⊆ Hu.

(H2) : NHs ⊆ Hs.

In the sequel, we suppose that the operator A may be decomposed according to the
decomposition (8). Under the hypotheses (H1) and (H2), the system (1) can be decom-
posed into the two following systems:{

dyu(t)
dt = Auyu(t) + vu(t)(Nuyu(t) + cu), ∀t > 0,

yu(0) = (yu0
) ∈ Hu,

(9)

and {
dys(t)

dt = Asys(t) + vs(t)(Nsys(t) + cs), ∀t > 0,
ys(0) = (ys0) ∈ Hs,

(10)

where yu and ys are the components of the solution y ∈ H on Hu and Hs, respectively.
By [13], the semigroup S(t) generated by A also commutes with Pu and Ps, and induces
a C0-semigroup Su(t) (resp. Ss(t)) on Hu (resp. Hs).

We further suppose that Au generates a C0-semigroup of contractions Su(t), and Au

generates a C0-semigroup of contractions Su(t). If As satisfies the following spectrum-
determined growth assumption:

limt→+∞
ln∥Ss(t)∥

t = supRe (σ (As)) , then ∃η,Kη > 0 such that ∥Ss(t)∥ ⩽ Kηe
−ηt, t ⩾ 0.

The aim of what follows is to study the problem of weak and strong stabilization of
(1) via the properties of the systems (10) and (9). We begin with the component ys(t)
of the solution y(t) of the system (10).

4.2 Exponential stabilization of the component ys(t)

Theorem 4.1 Let A generate a C0-semigroup S(t), and suppose that the following
conditions hold:

1. The operator A may be decomposed according to the decomposition (8).

2. As satisfies the following spectrum-determined growth assumption:

∃η,Kη > 0 such that: ∥Ss(t)∥ ⩽ Kηe
−ηt, t ⩾ 0.

Then if ρ < η

Kη

(
L∥ys(0)∥+∥cs∥

)2 , the feedback

vu(t) = −ρ
⟨yu(t), Nuyu(t) + cu⟩

|⟨yu(t), Nsy(t) + cu⟩|+ 1
, ∀t > 0, (11)

exponentially stabilizes the system (10).
More precisely, ∃βs > 0 such that ∥ys(t)∥ ≤ Kη∥ys(0)∥e−βst, ∀t > 0.
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Proof. Using Proposition 3.1, we deduce that the system (10) admits a unique global
mild solution given by

{
ys(t) = Ss(t)ys(0) +

∫ t

0
Ss(t− τ)vs(τ) (Nsys(τ) + cs) dτ, t ≥ 0,

ys(0) ∈ Hs.

So, ∥ys(t)∥ ≤ ∥Ss(t)∥∥ys(0)∥+
∫ t

0

|vs(τ)| ∥Ss(t− τ)∥
(
∥Nsys(τ)∥+ ∥cs∥

)
dτ.

We have ∥Ss(t)∥ ⩽ Kηe
−ηt. So,

∥ys(t)∥ ≤ Kηe
−ηt∥ys(0)∥+

∫ t

0

|vs(τ)|Kηe
−η(t−τ)

(
∥Nsys(τ)∥+ ∥cs∥

)
dτ

≤ Kηe
−ηt∥ys(0)∥+

(
Ls∥ys(0)∥+ ∥cs∥

)∫ t

0

|vs(τ)|Kηe
−η(t−τ)dτ(

Ls is a Lipschitz constant of Nu in the ball B(0,∥z0∥)
)
.

The feedback (11) is a bounded function in time and is uniformly bounded with respect
to the initial states, and we have

|vu(t)| ≤ ρ| ⟨yu(t), Nyu(t) + cu⟩ | ∀t > 0,

≤ ρ∥yu(t)∥
(
Lu∥yu(0)∥+ ∥cu∥

)
;(

Lu is a Lipschitz constant of Nu in the ball B(0,∥z0∥)

)
So,
∥ys(t)∥ ≤ Kηe

−ηt∥ys(0)∥

+ ρKη

(
Lu∥ys(0)∥+ ∥cs∥

)(
Ls∥ys(0)∥+ ∥cs∥

)∫ t

0

∥ys(τ)∥e−η(t−τ)dτ

≤ Kηe
−ηt∥ys(0)∥+Ae−ηt

∫ t

0

∥ys(τ)∥eτdτ,

where A = ρKη

(
Lu∥ys(0)∥+ ∥cs∥

)(
Lu∥ys(0)∥+ ∥cs∥

)
.

So, ∥ys(t)∥ eηt ≤ Kη∥ys(0)∥+A
∫ t

0
∥ys(τ)∥eτdτ.

By using Gronwall’s inequality, we have ∥ys(t)∥ eηt ≤ K∥ys(0)∥ exp
(∫ t

0

Ads

)
≤ Kη∥ys(0)∥eAt.

So, ∥ys(t)∥ ≤ Kη∥ys(0)∥e(A−η)t.

We set: βs = η −A = η − ρK
(
Lu∥ys(0)∥+ ∥cs∥

)(
Lu∥ys(0)∥+ ∥cs∥

)
if

ρ < η

Kη

(
Lu∥ys(0)∥+∥cs∥

)(
Lu∥ys(0)∥+∥cs∥

) .
Then ρKη

(
Lu∥ys(0)∥+ ∥cs∥

)(
Lu∥ys(0)∥+ ∥cs∥

)
< η, so βs > 0.

Finally, ∥ys(t)∥ ≤ Kη∥ys(0)∥e−βst, Kη, βs > 0. This completes the proof of the
theorem.

Now let us study the component yu(t) of the solution y(t) of the system (10).
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4.3 Decay estimate and exponential stabilization of the component yu(t)

Lemma 4.1 Let Au generate a semigroup Su(t) of contractions on Hu and let Nu be
locally Lipschitz. Then the system (9) controlled by (2) possesses a unique mild solution
yu(t) ∈ Hu for each yu(0) ∈ Hu which satisfies, when t → +∞,

∫ T

0

|⟨Su(τ)yu(t), NuSu(τ)yu(t) + cu⟩|dτ = O

√∫ t+T

t

|⟨yu(τ), Nuyu(τ) + cu⟩|2
1 + |⟨Nuyu(τ) + cu, yu(τ)⟩|

dτ

. (12)

Proof. Using Proposition 3.1, we deduce that the system (9) admits a unique global mild
solution given by the following formula of variation of the constants:

yu(t) = Su(t)yu(0)− ρ

∫ t

0

⟨yu(τ), Nuyu(τ) + cu⟩
|⟨yu(τ), Nuyu(τ) + cu⟩|+ 1

(Nuyu(τ) + cu)Su(t− τ)dτ,

and using the fact that Su(t) is a semigroup of contractions, and Schwartz’s inequality, for all
t ∈ [0, T ], we have

∥yu(t)− Su(t)yu(0)∥ ≤ ρ
√
T
(
L ∥yu(0)∥+ ∥cu∥

)(∫ T

0

|⟨yu(τ), Nuyu(τ) + cu⟩|2

1 + |⟨yu(τ), Nuyu(τ) + cu⟩|
dτ

) 1
2

. (13)

From the relation

⟨NuSu(t)y0 + cu, Su(t)y0⟩ = ⟨NuSu(t)y0, Su(t)yu(0)− yu(t)⟩+ ⟨cu, Su(t)yu(0)− yu(t)⟩
+ ⟨NuSu(t)y0 −Nuyu(t), yu(t)⟩+ ⟨Nuyu(t) + c, yu(t)⟩,

when using ∥yu(t)∥ ≤ ∥yu(0)∥ , ∀t ∈ [0, tmax[ , the fact that Su(t) is a semigroup of contraction,
Nu is locally Lipschitz, and Schwartz’s inequality, it comes

|⟨NuSu(s)yu(0)+cu, Su(s)yu(0)⟩|≤
(
2Lu∥yu(0)∥+∥cu∥

)
∥yut)−Su(t)yu(0)∥+|⟨Nuyu(s)+cu, yu(s)⟩|.

Using (13),

|⟨NuSu(s)yu(0) + cu, Su(s)yu(0)⟩| ≤ C(∥yu(0)∥;cu)

(∫ t

0

|⟨yu(s), Nuyu(s) + cu⟩|2

1 + |⟨yu(s), Nuyu(s) + cu⟩|
ds

) 1
2

+ |⟨Nuyu(s) + cu, yu(s)⟩|,
(14)

where C(∥yu(0)∥;cu) = ρ
√
T (2Lu ∥y0∥+ ∥cu∥) (Lu ∥y0∥+ ∥cu∥) . Replacing y0 by yu(t) in (14)

and using the fact that ∥yu(t)∥ ≤ ∥yu(0)∥ ∀t ≥ 0, we get

|⟨NuSu(s)yu(t) + cu, Su(s)yu(t)⟩| ≤ C(∥y0∥;cu)

(∫ T

0

|⟨yu(s+ t), Nuyu(s+ t) + cu⟩|2

1 + |⟨yu(s+ t), Nuyu(s+ t) + cu⟩|
ds

) 1
2

+ |⟨Nuyu(s+ t) + cu, yu(s+ t)⟩|.
Integrating the last inequality over the interval [0, T ] and using the semigroup prop-

erty of the solution y(t) and Schwartz’s inequality, remarking that the mappings
x 7→ Cx = (2Lux+ ∥c∥) (Lux+ ∥cu∥) are increasing

(
C∥yu(t)∥ ≤ C∥y0∥

)
, we get∫ T

0

|⟨NuSu(s)yu(t)+cu, Su(s)yu(t)⟩|ds ≤ T 3C(∥y0∥;cu)

(∫ T

0

|⟨yu(s+ t), Nuyu(s+ t) + cu⟩|2

1 + |⟨yu(s+ t), Nuy(s+ t) + cu⟩|
ds

) 1
2

+

∫ T

0

|⟨Nuyu(s+ t) + cu, yu(s+ t)⟩|ds.

Since∫ T

0
|⟨Nuyu(s+ t) + cu, yu(s+ t)⟩|ds ≤

(
1 + Lu∥y0∥2+∥cu∥∥y0∥

) ∫ T

0

|⟨yu(s+t),Nuyu(s+t)+cu⟩|2
1+|⟨yu(s+t),Nuyu(s+t)+cu⟩|ds,
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by Schwartz’s inequality, we get∫ T

0
|⟨Nuyu(s+t)+cu, yu(s+t)⟩|ds ≤ T

(
1+Lu∥y0∥2 + ∥cu∥∥y0∥

)(∫ T

0

|⟨yu(s+t),Nuyu(s+t)+cu⟩|2
1+|⟨yu(s+t),Nuyu(s+t)+cu⟩|ds

) 1
2

.

We deduce that∫ T

0

|⟨NuSu(s)yu(t) + cu, Su(s)yu(t)⟩|ds ≤ M
(∫ T

0

|⟨yu(s+ t), Nuyu(s+ t) + cu⟩|2

1 + |⟨yu(s+ t), Nuyu(s+ t) + cu⟩|
ds

) 1
2

,

where M =
(
ρT

3
2 C(∥y0∥;cu)

)
+ T (1 + Lu∥y0∥2 + ∥cu∥∥y0∥). This gives the estimate (12).

Remark 4.1 For c=0, we obtain the same content found in the homogeneous case,
see [2], M = ρT

3
2

(
2Lu∥yu(0)∥)(L(Nu)∥yu(0)∥

)
+ T (1 + Lu∥yu(0)∥2).

Theorem 4.2 Let A generate a C0-semigroup Su(t), and suppose that the following
conditions hold:
1. Su(t) is a contraction semigroup;
2. there exist δ, T > 0 such that∫ T

0

|⟨NuSu(s)yu(t) + cu, S(s)yu(t)⟩|ds ≥ δ∥yu(t)∥, ∀yu ∈ Hu. (15)

Then the feedback (5) exponentially stabilizes the system (6).

More precisely, there exists βu > 0 such that ∥yu(t)∥ ≤ e−βu ∥y0∥ e−
βu
T (t) ∀t > 0.

Proof. Integrate now the following inequality over the interval [kT, (k + 1)T ], for
k ∈ N and T > 0,

d

dt
∥yu(t)∥2 ≤ −2ρ

(⟨yu(t);Nuy(t) + cu⟩)2

|⟨yu(t), Nuy(t) + cu⟩|+ 1
;∀t ∈ [0, T ].

We get ∥yu((k + 1)T )∥2 − ∥yu(kT )∥2 ≤ −2ρ
∫ (k+1)T

kT
|⟨y(τ),Nuy(τ)+cu⟩|2

|⟨yu(τ),Nuyu(τ)+cu⟩|+1 dτ.

Using now the estimate (12), we deduce that

∥yu((k + 1)T )∥2 − ∥yu(kT )∥2 ≤ −2ρ

M

(∫ T

0

|⟨Su(τ)yu(t), NuSu(τ)yu(t) + cu⟩|dτ

)2

.

According to the inequality (15), we have

∥yu((k + 1)T )∥2 − ∥yu(kT )∥2 ≤ −2ρδ2

M
∥yu(kT )∥2. (16)

Letting sk = ∥y(kT )∥2, k ∈ IN, the inequality (16) can be written as

sk+1 − sk ≤ −2ρδ2

M
sk, ∀k ≥ 0,

sk+1 ≤ Csk, ∀k ≥ 0,

where C =
(
1− 2ρ

Mδ2
)
< 1, which gives sk ≤ e−k ln 1

C s0.

So, ∥yu(t)∥ ≤ e−
ln( 1

C
)

2 ∥y0∥ e−
ln( 1

C
)

2T t for all t ≥ 0, ∥yu(t)∥ ≤ e−βu ∥y0∥ e−
βu
T t for all

t ≥ 0, where βu =
ln( 1

C )

2 > 0.
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4.4 Exponential stabilization

Theorem 4.3 Suppose that the assumptions of both Theorems 4.1 and 4.2 are veri-
fied. Then the feedback (2) exponentially stabilizes the system (1). More precisely, there
exist β > 0 and α > 0 such that ∥y(t)∥ ≤ αe−βt,∀t ≥ 0.

Proof. Using Proposition 3.1, we deduce that the system (1) admits a unique global
mild solution y(t); according to the decomposition (8), we have y(t) = yu(t) + ys(t).
It follows from Theorems 4.1 and 4.2 that

y(t) ⩽ e−βu∥y0∥e−
βu
T t +Kη∥ys(0)∥e−βst

⩽ 2(e−βu ∥y0∥+Kη∥ys(0)∥)e−min(e−
βu
T ,βs)t.

So, ∥y(t)∥ ≤ αe−βt, ∀t ≥ 0, where α = 2(e−βu ∥y0∥+Kη∥ys(0)∥) and β = min(βu

T , βs).

5 Strong Stabilisation

Theorem 5.1 Let A generate a semigroup S(t) of contractions on H. Suppose that
(i) N is locally Lipschitz;
(ii) ∃δ, T > 0 such that∫ T

0

|⟨NS(s)y(t) + c, S(s)y(t)⟩|ds ≥ δ∥y(t)∥2, ∀y ∈ H. (17)

Then the feedback (2) strongly stabilises the system (1) with the following decay estimate:

∥y(t)∥ = O
(
t−

1
2

)
as t → +∞.

Proof. If H = Hu is of finite dimension, then we retrieve the result of Theorem 4.2.
In the case dimHu = +∞, following the techniques used in the proof of Lemma 4.1, we
can obtain the following estimate when t → +∞:∫ T

0

|⟨S(τ)y(t), NS(τ)y(t) + c⟩|dτ = O

√∫ t+T

t

|⟨y(τ), Ny(τ) + c⟩|2
1 + |⟨Ny(τ) + c, y(τ)⟩|

dτ

 . (18)

Integrating now the inequality d
dt∥y(t)∥

2 ≤ −2ρ (⟨y(t);Ny(t)+c⟩)2
|⟨y(t),Ny(t)+c⟩|+1 ;∀t ∈ [0, T ], over the

interval [kT, (k + 1)T ], for k ∈ N and T > 0, we get

∥y((k + 1)T )∥2 − ∥y(kT )∥2 ≤ −2ρ

∫ (k+1)T

kT

|⟨y(τ), Ny(τ) + c⟩|2

|⟨y(τ), Ny(τ) + c⟩|+ 1
dτ.

Using now the estimate (18), we deduce that

∥y((k + 1)T )∥2 − ∥y(kT )∥2 ≤ −2ρ

M

(∫ T

0

|⟨S(τ)y,NS(τ)y + c⟩|dτ

)2

.

From (17), we have ∥y((k + 1)T )∥2 − ∥y(kT )∥2 ≤ −2ρδ2

M ∥y(kT )∥4.
Letting sk = ∥y(kT )∥2, k ∈ IN, the last inequality can be written as

sk+1 ≤ sk − 2ρδ2

M
s2k, ∀k ≥ 0.
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Using the fact that t 7→ ∥y(t)∥ is a decreasing function on [0,+∞[, we get

sk+1 ≤ sk − 2ρδ2

M
s2k+1, ∀k ≥ 0.

The last inequality can be written as follows: sk+1 ≤ sk − Cs2k+1, ∀k ≥ 0, where

C = 2ρδ2

M > 0. Now, to obtain the decay rate for solutions of (1), we recall the following
lemma, see [14] and [15].

Lemma 5.1 Let the sequence of non-negative real numbers sk, k = 0, 1, 2, . . ., sat-
isfy sk+1 ⩽ sk − C(k + 1)rs2k+1, where C is a positive real number and r is a non-
negative integer. Then there exists a positive number M = M (M, r, u0) such that
sk ⩽ M

(k+1)r+1 , k = 0, 1, 2, 3, . . . .

So, from the lemma and for r = 0, there exists a positive constant K (depending on
C) such that sk ≤ M

k+1 , so ∥y(kT )∥2 ≤ M
k+1 . For k = E( t

T ),
(
E
(

t
T

)
designed the integer

part of t
T

)
, we obtain

∥y(E(
t

T
)T )∥2 ≤ M

E( t
T ) + 1

.

Using the fact that E( t
T )T ≤ t and t 7→ ∥y(t)∥ is a decreasing function on [0,+∞[, we

get ∥y(t)∥2 ≤ TM
t . So, ∥y(t)∥ = O

(
t−

1
2

)
as t → +∞.

6 Applications

Example 6.1 One-dimensional heat equation.
Let us consider the following semilinear heat equation:{

∂y(x,t)
∂t = ∂2y(x,t)

∂x2 + v(y(t))(Ny(t) + c), x ∈ (0, 1), t > 0,
∂y(0,t)

∂x = ∂y(1,t)
∂x = 0, ∀t > 0,

(19)

where y(t) is the temperature profile at time t. Here we take the state space H = L2(0, 1)
and the operator A is defined by

Ay =
∂2y

∂x2
with D(A) =

{
y ∈ H2(0, 1) | ∂y(0, t)

∂x
=

∂y(1, t)

∂x
= 0

}
.

The domain of A gives the homogeneous Neumann boundary condition imposed at
the ends of the bar, which requires specifying how the heat flows out of the bar and
means that both ends are insulated. The control v(y(t)) is defined by

v(y(t)) = −ρ
⟨y(t), Ny(t) + c⟩

|⟨y(t), Ny(t) + c⟩|+ 1
, ∀t ≥ 0. (20)

The operator of control N is defined by Ny = 1
1+∥y∥

∑+∞
j=1 αj ⟨y, φj⟩φj , αj ≥ 0,∀j ≥ 1,

such that
∑+∞

j=1 α
2
j < ∞; N is a nonlinear sequentially continuous and locally Lipschitz

operator such that N(0) = 0.
The spectrum of A is given by the simple eigenvalues λj = −π2(j − 1)2, j ∈ N∗,

and eigenfunctions φ1(x) = 1 and φj(x) =
√
2 cos((j − 1)πx) for all j ≥ 2. Then the
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subspace Hu is the one-dimensional space spanned by the eigenfunction φ1, and we have
Su(t)yu = ⟨yu, φ1⟩φ1, so Su(t) = IHu

(the identity) and hence (Su(t))t≥0 is a semigroup
of isometries.

Nu is the restriction of the operator N on Hu defined by

Nuyu(t) = α1yu(t)
1+∥yu(t)∥

= α1

1+|⟨yu(t),φ1⟩| ⟨yu(t), φ1⟩φ1,

Nu is a nonlinear sequentially continuous and locally Lipschitz operator,

∥Nuyu(t)−Nuzu(t)∥ = ∥ α1yu(t)
1+∥yu(t)∥ − α1zu(t)

1+∥zu(t)∥∥
⩽ α1yu(t)

1+∥yu(t)∥ − α1zu(t)
1+∥yu(t)∥ + α1zu(t)

1+∥yu(t)∥ − α1zu(t)
1+∥zu(t)∥

⩽ ∥ α1

1+∥yu(t)∥ (yu(t)− zu(t))∥+ ∥α1zu(t)
(

1
1+∥yu(t)

− 1
1+∥zu(t)∥

)
∥

⩽ Lu∥yu(t)− zu(t)∥, where Lu = |α1|.

Here we can see that NHu ⊂ Hu. We have

< NSu(τ)yu(t) + cu, Su(τ)yu(t) >H | = | < Nuyu(t), yu(t) > + < cu, yu(t) > |

=

(
α1∥yu(t)∥
1+∥yu(t)∥ + ∥cu∥

)
∥yu(t)∥

if α1 > 0, we have

(
α1∥yu(t)∥
1+∥yu(t)∥ + ∥cu∥

)
∥yu(t)∥ > ∥cu∥∥yu(t)∥, then

| < NSu(τ)yu(t) + cu, Su(τ)yu(t) > | > ∥cu∥∥yu(t)∥, so∫ T

0
| < NSu(τ)yu(t) + cu, Su(τ)yu(t) > |dτ > δ∥yu(t)∥ with δ = T∥cu∥.
We can see that (15) holds, and the assumptions of Theorem 4.1 are verified.

For j ≥ 2, the subspace Hs is spanned by the eigenfunctions (φj)j≥2; Ns is the

restriction of the operator N on Hs defined by Nsys =
1

1+∥ys∥
∑+∞

j=2 αj ⟨ys, φj⟩φj .

We have Ss(t) =
∑∞

j=2 e
−π2(j−1)2t. Since j − 2 ≥ 0, one has e−2π2j(j−2)t ⩽ 1,

then ∥Ss(t)∥ ≤ e−π2t, ∀t ≥ 0.
So, As satisfies the spectrum-determined growth assumption.

If ρ <
π2

(Ls ∥ys(0)∥+ ∥cs∥) (Lu ∥ys(0)∥+ ∥cs∥)
, where Lu = α1 and Ls =

+∞∑
j=2

α2
j ,

then the assumptions of Theorem 4.2 are verified.
Finally, the assumptions of both Theorems 4.1 and 4.2 are verified. Then by applying

Theorem 4.3, we deduce that (19) is exponentially stabilizable by the control

v(y(t)) = −ρ
(α1 + |cu|)yu(t)2 + |cu|yu(t)

(1 + α1 + |cu|)yu(t)2 + (1 + |cu|)yu(t)
, ∀t ≥ 0.

7 Conclusion

In this work, the sets of necessary and sufficient conditions for the exponential stabi-
lization of inhomogeneous semilinear systems are given. The stabilizing controls may
be chosen bounded with respect to time and initial states and can be applied to sys-
tems subject to constraints on the control input. Though the exponential stabilization
of bounded operators enables us to discuss various stabilization problems, the present
study does not cover other situations. This is the case of exponential stabilization of
unbounded operators in a Banach space. Also, the issue of unbounded operator control
is of great interest.
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1 Introduction

Mathematical modelling has been applied in various fields of studies including biology,
ecology, epidemiology, economics, and many other fields, see [1], [2], [3], [4]. The model
aims to explain the real phenomena from the mathematical aspect [5] and is also used
to make prediction for the future, see [6]. A dynamical population is one of the research
objects in the modelling. The growth rates of populations and their interaction are still
a concern of researchers, including the dynamics of prey-predator populations living at
the same area. The dynamics of populations were not only affected by their growth rate
and interaction but also by some other factors like the death rate, competition, preda-
tion response, harvesting, and migration, see [7]. The dynamical population analysis not
only studies and predicts sustainability but also considers social and economic aspects,
see [8].

In the prey-predator model, one thing that is very important is the form of inter-
action between the prey and the predator, known as the predation function. Some
of the predation functions often used in prey-predator models are of the Holling type,
Holling-Tanner type, Mechaelis-Menten type, and Leslie-Gower type, see [5], [9]. The
Beddington-DeAngelis type as another type of functional response is used as a control
to stabilize the interaction of the prey and the predator, see [10]. The use of these types
of functional response is dependent on the characteristic of the prey and the predator.
The Crowley-Martin response function is influenced by the predator density, catch rate,
handling time, and the magnitude of disturbance among predators, see [11]. The prey-
predator model with the Crowley-Martin response function has been applied for many
purposes, see [12].

The Crowley-Martin response function was also applied to predict the dynamics of a
phytoplankton-zooplankton system [13]. There are prey-predator models which consider
two identical areas and populations can migrate to these areas. Some of the population
models are useful, for example, a fish population model in fisheries management, when
the populations are harvested in various ways and policies. There is a policy in the fish-
eries management where the population in an area is prohibited from being harvested
while in the other area it is permitted. Several policies in harvesting include selective
harvesting, harvesting with constant quotas, harvesting with constant effort. Harvesting
activities in population dynamics have economic consequences. The populations are not
only managed to be sustainable but also strived to provide the maximum benefit. In
some prey-predator models, only the prey populations are harvested or only the preda-
tor populations are harvested, see [14]. There are also other researchers who considered
both prey and predator populations to be harvested, see [15].

In this paper, we consider a prey-predator model with the Crowley-Martin response
function in an ecosystem which is divided into two areas, namely, an area where fishing is
permitted and other area where fishing is prohibited. The prey population can migrate
into both areas. The modeled populations are the population of butini fish (Glossogobius
matanensis) as the prey and the population of nila fish (Oreochromis nilotichus) as the
predator. The butini is an endemic and native fish found in several lakes of East Luwu
district, South Sulawesi province, Indonesia, see [16]. In this model, the nila fish as the
predator is divided into two compartments according to where the fish is located. Both
populations are allowed to be harvested in the permitted area. The model formed is a
system of nonlinear differential equations and the constant harvesting efforts are used for
both populations. The local stability is analyzed using the linearization method. Max-
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imum profit is evaluated over a certain range of effort values. The surface of the profit
function is given to visualize the maximum profit.

2 Material and Method

This research involves a prey-predator population model following the Crowley-Martin
response function. The populations considered in this study are butini fish and nila fish
that live in several lakes in East Luwu district. Both sets of fish can only be harvested in
the permitted area. The location of the two sets of fish is divided into the permitted and
prohibited areas for fishing, where the nila fish population can migrate into the two areas.
The populations are divided into three compartments, namely, butini fish, nila fish that
live in the prohibited area to be harvested, and the nila fish that live in the permitted
area to be harvested. The growth models of the three compartments are expressed in
the form of an autonomous system of nonlinear differential equations.

The interior equilibrium point of the model is confirmed and then stability analysis is
carried out using the linearization method and checking the eigenvalues of the Jacobian
matrix resulting from the linearized model around the interior equilibrium point. The
butini fish and nila fish are harvested in the permitted area with constant harvesting
efforts. In order to get the profit function which is the consequence of fishing activity,
the cost function and revenue function should be defined. The profit function (π) is given
by π = TR − TC, based on the total revenue function (TR), TR = p1E1B

∗ + p2E2M
∗

and the total cost function (TC), TC = c1E1 + c2E2. The parameter Ei represents the
harvesting efforts, pi represents the price of fish catch per unit, and ci represents the cost
of fishing activities, where i = 1, 2.

The prey-predator population model is a nonlinear system and the interior equilib-
rium point cannot be stated explicitly. In order to perform the analysis, the parameter
values of the model were used being partially obtained from data collection for the fish
populations. Some of the relevant parameter values are obtained from various references
and some other are assumed. The various ordered pairs of the harvesting efforts are taken
within a range of values to get the interior equilibrium points. Therefore, stability of the
equilibrium points and profit value are determined. From the simulation, we determine
the ordered pair of efforts that gives the stable interior equilibrium point and maximize
the profit.

3 Results and Discussion

3.1 Predator-prey population model

The dynamics of the predator and prey population with the Crowley-Martin response
function is expressed in the form of a system of nonlinear differential equations. The
environment in which the population lives is divided into two areas, the permitted and
prohibited areas for harvesting. The predator population is divided into two compart-
ments, depending on where the predator live. The predator can migrate between the two
areas. The prey population is assumed to follow logistic growth. The predator and prey
populations are harvested in the permitted area with constant harvesting efforts. The
interaction between the prey and predator populations is shown in the following Figure
1. The growth rates of the prey-predator population with their interaction are stated in
the system of nonlinear differential equations.
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Figure 1: Interaction Diagram for the Prey and Predator Populations.

dB

dt
= rB(1− B

K
)− αNB

(1 + ηB)(1 + µN)
− βMB − q1E1B, (1)

dN

dt
=

δαNB

(1 + ηB)(1 + µN)
− bN − σN + θM, (2)

dM

dt
= ϑMB − cM + σN − θM − q2E2M. (3)

The symbol B is the size of the butini fish population as the prey, N and M state the size
of the predator population in the permitted and prohibited area at time t, respectively.
All parameters of the model are assumed to be positive. The description, meaning, and
units of the parameters can be found in the related references, see [5]. For simplicity, we
take q1 = q2 = 1, r1 = r−E1, r2 = b+ σ, and r3 = c+ θ+E2. Thus, the model (1, 2, 3)
is rewritten as

dB

dt
= r1B(1− B

K
)− αNB

(1 + ηB)(1 + µN)
− βMB, (4)

dN

dt
=

δαNB

(1 + ηB)(1 + µN)
− r2N + θM, (5)

dM

dt
= ϑMB − r3M + σN. (6)

3.2 Equilibrium points and stability analysis

The possible non negative equilibrium points for the model (4, 5, 6) are T1 =
(0, 0, 0), T2 = (K, 0, 0), T3 = (ω, ωα1+α2

µβ1α2
,σωα1−α2

µβ1β2α2
), where ω are the roots of the

equation δηµr1r2ϑZ
5 + (−Kδηµr1r2ϑ

2 + σδηµr1θϑ − 2δηµr1r2r3ϑ + δµr1r2ϑ
2)Z4 +

(−Kσδηµr1θϑ + 2Kδηµr1r2r3ϑ − Kαβσδ2ϑ + Kβσδηr2 − Kδµr1r2ϑ
2 − σδηµr1r3ϑ +

δηµr1r2r
2
3 − 2δµr1r2r3ϑ)Z

3 + (Kσδηµr1r3θ − Kδηµr1r2r
2
3 + Kαβδ2r3 − Kβσ2δηθ −

Kβσδηr1r2−Kδµr1r2r
2
3+δµr1r2r

2
3−Kr23ϑ

2)Z2+(Kσδµr1r3θ−Kδµr1r2r
2
3−Kασδr3θ+

Kαδr23r2 + Kβσ2δθ − Kβσδr2r3 − Kσ2ηθ2 + 2Kσηµr2r3θ − Kηr22r
2
3 − 2Kδr2θϑ +

2Kr22r3ϑ)Z − Kδ2θ2 + 2Kδr2r3θ − Kr22r
2
3, α1 = ωηr2ϑ − ωαδϑ − αδr3 + σηθ − ηr2r3,

α2 = ωr2ϑ+ σθ − r2r3, β1 = ηω + 1, and β2 = ωϑ− r3.
We focus to analyze the equilibrium point T3 which is located in the first octant when

ω > 0, α1 + α2 > 0, and σωα1 > α2 > 0. Because of the complexity of the system, we
just consider the local stability of the interior equilibrium point.
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3.3 Bionomic equilibrium and maximum profit

The bionomic equilibrium point is a condition where dB
dt = dM

dt = dN
dt = 0 and π = 0.

The only interior equilibrium point satisfies the condition T3 = (ω, ωα1+α2

µβ1α2
, σωα1−α2

µβ1β2α2
)

which can be written in terms of E1 and E2 so that it becomes T3 = (B∗, N∗,M∗) =

(ω(r − E1),
ωα1+α2(b+σ)

µβ1α2
, σωα1−α2(c+θ+E2)

µβ1β2α2
). The total revenue function (TR) obtained

from harvesting of the populations B and M evaluated at the equilibrium point T3 is
given by TR(B∗, N∗,M∗) = TR(B∗)+TR(M∗) = p1E1B

∗+p2E2M
∗. After substituting

the values of B∗ and M∗ in the state of equilibrium, we get

TR = p1ωrE1 − p1ωE
2
1 + p2(σωα1−α2)(c+θ)E2

µβ1β2α2
+

p2(σωα1−α2)E
2
2

µβ1β2α2
.

The total cost function (TC) can be expressed as C = c1E1 + c2E2. Furthermore, the
profit function (π) is given as

π = (p1ωr−c1)E1−p1ωE
2
1+

(p2(σωα1 − α2)(c+ θ)− µβ1β2α2c3)E2

µβ1β2α2
+
p2(σωα1 − α2)E

2
2

µβ1β2α2
.

(7)
The profit function (7) now depends on the efforts E1, E2, and the parameter ω

which is a positive root of the polynomial of degree five and cannot be written explicitly.
The value of ω also depends on the efforts E1 and E2. As a standard procedure to get
the maximum value of profit, we need to get the stationary points via the first partial
derivative with respect to E1 and E2. Since ω cannot be stated in terms of E1 and E2,
we evaluate the value of profit by taking various values of ordered pairs (E1, E2) and
determine the interior equilibrium point T3 and its stability by showing the eigenvalues.
The eigenvalues are related to the Jacobian matrix evaluated at the equilibrium point
T3. Furthermore, the profit function at each value of ordered pairs (E1, E2) can be
determined. In this study, we restrict the value of efforts as 0 ≤ E1, E2 ≤ Emax, and
Emax = 1. The ordered pair (E1, E2) to be considered is the ordered pair that gives the
interior equilibrium point T3 and is stable.

3.4 Simulation

In order to simulate the profil function, we set the values of parameters for the model
equations (4), (5, (6) as follows: K = 100, r = 0.7, α = 0.3, η = 0.01, µ = 0.01, β =
0.1, ϑ = 0.01, δ = 0.03, σ = 0.25, θ = 0.25, b = 0.2, and c = 0.1, see [5, 17]. The values of
these parameters are partly based on data collection. The interior equilibrium point T3

with various ordered pairs of (E1, E2) are given in Table 1.

The various ordered pairs of the efforts (E1, E2) give the interior equilibrium point
T3 and the stability is determined by inspection of the real part of eigenvalues. The
equilibrium point is asymptoticaly stable when the real parts of eigenvalues are negative.
The ordered pairs of efforts and eigenvalues of the interior equilibrium point T3 are given
in Table 2.

In order to simulate and determine the profit, we set the values of parameters related
to the total revenue and total cost, namely, p1 = 3.5, p2 = 1.3, c1 = 0.5 and c2 =
0.3 in appropriate units. Together with the various values of ordered pairs of efforts,
we determine the profit evaluated at the equilibrium point T3 following the formula
π(E1, E2) = p1B

∗E1 + p2M
∗E2 − (c1E1 + c2E2). The ordered pairs of efforts and profit

are given in Table 3.
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Table 1: Ordered Pairs of Efforts and Interior Equilibrium Point T3.

E1/E2 0 0.1 0.2 0.3
0 15.94, 1.52, 1.99 23.01, 1.52, 1.73 29.69, 1.51, 1.48 35.97, 1.47, 1.27
0.1 15.93, 1.26, 1.65 22.98, 1.23, 1.40 29.65, 1.19, 1.18 35.91, 1.14, 0.98
0.2 15.92, 1.00, 1.31 22.95, 0.95, 1.08 29.61, 0.89, 0.87 35.85, 0.81, 0.70
0.23 15.91, 0.92, 1.21 22.95, 0.87, 0.98 29.60, 0.80, 0.78 35.83, 0.72, 0.61
0.235 15.91, 0.91, 1.19 22.94, 0.85, 0.97 29.59, 0.78, 0.77 35.82, 0.70, 0.60
0.3 15.91, 0.74, 0.97 22.93, 0.67, 0.76 29.57, 0.58, 0.57 35.78, 0.48, 0.42
0.4 15.89, 0.48, 0.63 22.91, 0.39, 0.44 29.53, 0.28, 0.27 35.72, 0.16, 0.14
0.5 15.88, 0.22, 0.29 22.88, 0.11, 0.12 - -

E1/E2 0.4 0.5 0.6 0.7
0 41.81, 1.43, 1.08 47.21, 1.38, 0.91 52.11, 1.32, 0.77 56.54, 1.26, 0.65
0.1 41.72, 1.08, 0.81 47.07, 1.01, 0.66 51.94, 0.93, 0.54 56.33, 0.85, 0.43
0.2 41.63, 0.73, 0.54 46.95, 0.63, 0.41 51.78, 0.54, 0.31 56.12, 0.44, 0.23
0.23 41.61, 0.62, 0.46 46.91, 0.52, 0.34 51.73, 0.42, 0.24 56.06, 0.32, 0.16
0.235 41.60, 0.61, 0.45 46.90, 0.51, 0.33 51.72, 0.40, 0.23 56.05, 0.29, 0.15
0.3 41.54, 0.38, 0.28 46.83, 0.26, 0.17 51.61, 0.15, 0.08 55.92, 0.03, 0.01
0.4 41.45, 0.03, 0.02 - - -

E1/E2 0.8 0.9 1
0 60.51, 1.19, 0.55 64.05, 1.13, 0.46 67.18, 1.07, 0.39
0.1 60.25, 0.76, 0.35 63.74, 0.69, 0.28 66.82, 0.61, 0.22
0.2 60.01, 0.34, 0.15 63.44, 0.24, 0.10 66.47, 0.16, 0.05
0.23 59.92, 0.21, 0.09 63.34, 0.12, 0.04 66.36, 0.02, 0.009
0.235 59.91, 0.19, 0.08 63.33, 0.09, 0.03 66.34, 0.002, 0.0009

Table 2: Ordered Pairs of Efforts and Eigenvalues of Interior Equilibrium Point T3.
E1/E2 0 0.1 0.2 0.3

0 -0.02 ± 0.28I, -0.53 -0.03 ± 0.31I, -0.52 -0.05 ± 0.32I, -0.52 -0.07 ± 0.31I, -0.52
0.1 -0.02 ± 0.25I, -0.53 -0.04 ± 0.27I, -0.52 -0.06 ± 0.28I, -0.52 -0.08 ± 0.27I, -0.52
0.2 -0.03 ± 0.22I, -0.53 -0.05 ± 0.24I, -0.51 -0.07 ± 0.24I, -0.51 -0.09 ± 0.22I, -0.52
0.23 -0.03 ± 0.21I, -0.51 -0.05 ± 0.23I, -0.51 -0.07 ± 0.22I, -0.51 -0.09 ± 0.21I, -0.52
0.235 -0.03±0.21I, -0.53 -0.05±0.22I, -0.51 -0.07±0.22I, -0.51 -0.09±0.21I, -0.52
0.3 -0.03±0.19I, -0.52 -0.05± 0.21I, -0.52 -0.08± 0.18I, -0.51 -0.08±0.18I, -0.51
0.4 -0.04±0.15I, -0.52 -0.06±0.14I, -0.51 -0.09±0.11I, -0.51 -0.15, -0.08, -0.51
0.5 -0.05±0.09I, -0.52 -0.07±0.04I, -0.51 - -

Table 3 shows that maximum profit is reached when the efforts (E1, E2) = (0.235, 1)
with πmax = 217.05. The profit becomes maximum when the predator population in the
permitted area is harvested at the maximum level of efforts and the prey population is
harvested at the level 0.235. The maximum profit occurs at the top of the surface of the
profit function, as shown in Figure 2.

For the model without harvesting, we get an interior equilibrium point at the level



20 DIDIHARYONO, SYAMSUDDIN TOAHA, JEFFRY KUSUMA AND KASBAWATI

E1/E2 0.4 0.5 0.6 0.7

0 -0.09±0.31I, -0.54 -0.11±0.29I, -0.56 -0.13±0.27I, -0.58 -0.15±0.24I, -0.61

0.1 -0.11±0.26I, -0.53 -0.12±0.23I, -0.55 -0.14±0.21I, -0.58 -0.16±0.17I, -0.61

0.2 -0.07±0.24I, -0.51 -0.14±0.16I, -0.55 -0.16±0.11I, -0.58 -0.23, -0.12, -0.61

0.23 -0.12±0.17I, -0.53 -0.14±0.13I, -0.55 -0.01±0.05I, -0.58 -0.29, -0.07, -0.61

0.235 -0.12±0.17I, -0.53 -0.14±0.12I, -0.55 -0.16±0.03I, -0.58 -0.31, -0.06, -0.61

0.3 -0.13±0.11I, -0.52 -0.21, -0.09, -0.54 -0.31, -0.03, -0.57 -0.38, -0.006, -0.6

0.4 -0.27, -0.009, -0.52 - - -

E1/E2 0.8 0.9 1
0 -0.17±0.21I, -0.65, -0.19±0.18I, -0.71, -0.21±0.14I, -0.75
0.1 -0.18±0.12I, -0.65, -0.20±0.04I, -0.70, -0.32, -0.11, -0.76
0.2 -0.33, -0.06, -0.66 -0.39, -0.04, -0.71 -0.43, -0.02, -0.77
0.23 -0.36, -0.04, -0.66 -0.42, -0.02, -0.71 -0.45, -0.003, -0.77
0.235 -0.37, -0.03, -0.66 -0.42, -0.01, -0.72 -0.46, -0.0003, -0.77

Table 3: Ordered Pairs of Efforts and Profit.
E1/E2 0 0.2 0.4 0.6 0.8 1

0 0 54.62 103.91 142.36 171.36 193.88
0.1 3.29 60.67 112.26 152.66 183.20 206.97
0.2 5.472 64.64 117.70 159.27 190.74 215.27
0.23 5.907 65.43 118.79 160.54 191.96 216.84
0.235 5.971 65.55 118.94 160.72 192.01 217.05
0.3 6.532 66.53 120.21 162.23 - -
0.4 6.476 66.362 119.82 - - -
0.5 5.308 - - - - -

Figure 2: Surface of the Profit Function.

(15.94, 1.52, 1.99) and the related eigenvalues -0.02±0.28I, -0.53. This means that the
prey (B) and the predators (M and N) will live sustainably. From Tables 1, 2 and 3, as
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the efforts of harvesting increase, the equilibrium points are still in the first octant and
also remain stable but there are changes in the type of stability of the equilibrium point
which are indicated by all the eigenvalues having negative real values. In addition, the
value of the profit function also increases. When the prey and the predator are harvested
at the level (E1, E2) = (0.23, 1), the ordered pair of efforts gives an interior equilibrium
point at the level (66.36, 0.02, 0.009), the eigenvalues -0.46, -0.0003, -0.77, and the profit
at the level 216.84. The dynamics of the solution curve of the prey (B) and the predators
(M and N) with the initial population B(0) = 66.36, N(0) = 0.02, and M(0) = 0.009
are shown in Figures 3, 4, 5.

Figures 3, 4, 5 show that with a given initial value of the prey and the predator

Figure 3: Solution Curve of Prey Population (B) with t ∈ [0, 1000].

Figure 4: Solution Curve of Predator Population (N) with t ∈ [0, 1000].

populations, there is initially little oscillatory motion. This is caused by the nonlinear
term in the model and then the trajectories of the populations move monotonously toward
the equilibrium point. It takes a long time to reach the equilibrium state. The ordered
pair of efforts provides a stable interior equilibrium point and also almost maximizes the
profit, the maximum profit is at the level 217.05.
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Figure 5: Solution Curve of Predator Population (M) with t ∈ [0, 1000].

4 Conclusion

The model for growth of butini fish as the prey and nila fish as the predator in the
permitted and prohibited areas for harvesting with the Crowley-Martin type response
function and migration possibly has an interior equilibrium point. The prey and predator
populations in the permitted area are harvested with constant efforts. The interior
equilibrium point cannot be stated explicitly because of complexity of the nonlinear
model. In order to get the maximum value of the profit function, several ordered pairs of
harvesting efforts are evaluated to obtain a stable interior equilibrium point. Using the
suitable parameter values and harvesting efforts, we get an ordered pairs of efforts that
give a stable interior equilibrium point and maximize the profit.

The analysis and simulation show that if the level of harvesting effort for the prey
population is increased, the equilibrium state for the prey and predator populations will
decrease. This is because of the more prey populations are harvested, the lower number
of prey populations exists. This has a consequence for predators having difficulty to get
food, which results in the number of predator also decreasing. On the other hand, if the
level of harvesting effort in the predator population is increased, this condition will result
in a decrease in the number of predator population both in the permitted and prohibited
areas for harvesting. This causes the prey population tending to increase because the
number of predator population decreases. Harvesting with constant efforts for the prey
and predator populations in the permitted area can obviously increase the number of the
prey population, give maximum profit, and the populations also remain sustainable.
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Abstract: Data from the World Health Organization (WHO) of the year 2016
recorded that stroke cases were ranked second as a non-communicable disease that
causes death, and the third leading cause of disability worldwide. Stroke can cause
disability or weakness on one side of the body, including the upper limbs such as the
fingers being difficult to move, so rehabilitation is required to restore the function
of the hand. A finger arm robot is one solution to help accelerate the rehabilitation
process specifically for finger movements. One of the efforts to develop a finger robot
is finger motion estimation. It is started with the inverse kinematic modeling of the
finger arm robot with 3 joints matching the structure of a human finger. One reliable
estimation method frequently used is the Advanced Kalman Filter method. In this
paper, the Advanced Kalman Filter is divided into two methods, that is, the Ensem-
ble Kalman Filter (EnKF) and the Ensemble Kalman Filter Square Root (EnKF-SR).
The focus of this paper is to estimate the fingers, especially the index finger of the
left hand, using the EnKF and Square Root EnKF (SR-EnKF) methods. And, the
simulation results show that both methods reached an accuracy of 99% when 400
ensembles were generated on a semicircular path by the EnKf-SR with lower error.
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1 Introduction

Data from the World Health Organization (WHO) of 2016 recorded that stroke cases
were ranked second as a non-communicable disease that causes death and ranked third
as a leading cause of disability worldwide. A stroke can cause weakness in one part or
side of the body (hemiparesis), due to which a stroke sufferer finds it difficult to move
and use parts of the respective side of the body [1]. A stroke can cause disability or
weakness on one side of the body, including the upper limbs such as the fingers that are
difficult to move, so rehabilitation is needed to restore the function of the hand. Hands
and fingers are the most important and complex body parts that humans have. Their
muscles can carry out any movement as the human brain commands, without having to
control it one by one.

Robotics technology is currently developing rapidly along with advances in science
and technology to assist medical rehabilitation, one of which is post-stroke rehabilitation,
especially the rehabilitation of finger movements [2]. This is also due to the human desire
to help each other in accelerating the recovery of post-stroke patients. The manufacture
of technology in the form of robots can be inspired by the phenomena of living things,
among others, by referring to the basic principles of movement of the human body.
For instance, the way humans walk, talk, hold objects and others. The aim of medical
rehabilitation is to maximize functional independence and ability of a patient to continue
his or her pre-illness way of living or roles and to improve quality of his or her life.

A finger is one part of the human body, having an important role in human body
movement to do various activities [2]. A human has a total of ten fingers functioning to
hold objects. The working principles of the human finger are then used as the basis of
developing a finger robot designed to hold objects.

A finger robot is one solution to help accelerate the rehabilitation process specifically
for finger movements. One of the efforts to develop the finger robot is finger motion
estimation [3]. One reliable estimation method frequently used is the Advanced Kalman
Filter method. In this paper, the Advanced Kalman Filter method is divided into two
methods, that is, the Ensemble Kalman Filter (EnKF) and the Ensemble Kalman Filter
Square Root (EnKF-SR) ones. These EnKF and EnkF-SR methods are very reliable for
both linear and nonlinear models [4], [5], [6]. The EnKF method was frequently used
for estimating the motion and position of AUV [7], ASV [8]- [9] and missiles [10]. And
in this paper, the finger estimation is carried out, particularly for the index finger of
the left hand by using the EnKF and Square Root EnKF (SR-EnKF) methods on a
semi-circular path, and the simulation results produce comparison of the accuracy of one
motion estimation method and that of the other [11].

2 Inverse Kinematic Modeling of Finger Motion with 3 Joints

The following is a modeling analysis of the 3-joint finger arm robot [12]. Figure 1 shows
the 3-joint arm robot using x and y coordinates in its working area. Just like the 2-joint
arm robot, the 3-joint arm robot uses forward kinematics as an equation analysis [5].

The angle Ψ is the angle of the direction of the third part toward the X-axis, as in
equation

Ψ = (θ1 + θ2 + θ3). (1)

Figure 2 shows that the equations for the projection of link 1, link 2 and link 3 toward
the x- and y-axis can be obtained by the analysis and combination of equations to locate
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Figure 1: Configuration of a Finger Arm Robot with 3 Joints.

the coordinate points of XT and YT as follows:

Figure 2: The First part, Second part and Third part of a Finger Arm Robot with 3 DOF.

x = x1 + x2 + x3,

x = l1 cos θ1 + l2 cos (θ1 + θ2) + l3 cos (θ1 + θ2 + θ3), (2)

and

y = y1 + y2 + y3,

y = l1 sin θ1 + l2 sin (θ1 + θ2) + l3 sin (θ1 + θ2 + θ3), (3)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (1) (2023) 24–33 27

so that

xT = l1 cos θ1 + l2 cos (θ1 + θ2) + l3 cos (θ1 + θ2 + θ3),

yT = l1 sin θ1 + l2 sin (θ1 + θ2) + l3 sin (θ1 + θ2 + θ3). (4)

Simplify by using the trigonometric identity formula [5]:

xT = x− l3 cos (θ1 + θ2 + θ3),

yT = y − l3 sin (θ1 + θ2 + θ3). (5)

The formula for the forward kinematic equation of 3 joint is

x = l1 cos θ1 + l2 cos (θ1 + θ2) + l3 cos (θ1 + θ2 + θ3),

y = l1 sin θ1 + l2 sin (θ1 + θ2) + l3 sin (θ1 + θ2 + θ3). (6)

For the inverse kinematics, if the coordinates of P (xT , yT ) and P (x, y) are known, then
θ1 and θ2 can be obtained by using the same equation as that applied to the two joint
arm robot:

θ2 = cos−1

(
x2 + y2 − l21 − l22

2l1l2

)
,

θ1 = tan−1

(
y(l1 + l2 cos θ2)− xl2 sin θ2
x(l1 + l2 cos θ2) + yl2 sin θ2

)
. (7)

The angle Ψ = (θ1 + θ2 + θ3) can be obtained by using P (xT , yT ) and P (x, y) inserted
into equations (5) and (6) so that θ3 can be found.

By substituting P (xT , yT ) and P (x, y) into equation (5), we get

l3 cosΨ = 0, (8)

whereas, by substituting P (xT , yT ) and P (x, y) into equation (6), it becomes

yT = x− l3 sinΨ,

l1 sin θ1 + l2 sin (θ1 + θ2) + l3 sinΨ = l1 cos θ1 + l2 cos (θ1 + θ2) + l3 cosΨ− l3 sinΨ,

2l3 sinΨ− l3 cosΨ = l1(cos θ1 − sin θ1) + l2(cos (θ1 + θ2)−
sin (θ1 + θ2)). (9)

Since in equation (8), l3 cosΨ = 0, we obtain

Ψ = θ1 + θ2 + θ3

= sin−1

(
l1(cos θ1 − sin θ1) + l2(cos (θ1 + θ2)− sin (θ1 + θ2))

2l3

)
. (10)

Below is the picture of a finger arm robot and its finger parts.

3 Ensemble Kalman Filter and EnKF Square Root Algorithm

The Ensemble Kalman Filter and the Square Root Ensemble Kalman Filter (SR-EnKF)
algorithms are summarized in Table 1.
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Figure 3: The Arm Robot Image with a Focus on the Finger Arm Robot.

4 Simulation Results

This study started with the inverse kinematic modeling of a finger arm robot with 3
joints that matches the structure of the human fingers. In this section, two choices of
the number of ensembles, that is, 300 ensembles and 400 ensembles were tested on a
semi-circle track. Such a choice of track was because in a semi-circle, all the joints of a
finger can move optimally.

In this trajectory, the diameter used is about 7.5 cm. This is due to the fact that
the finger length of most people in Indonesia ranges from 7.5 to 8.2 cm. So, with a
semi-circular movement having a diameter of about 7.5 cm, physical exercises for the
index finger can be carried out thoroughly. And, the simulation results can be seen in
Figures 4-7.

Figure 4 shows the simulation results by the EnKF and EnKF-SR methods using
300 ensembles and a time of 400 seconds. Figure 4 a) shows the forefinger movement,
moving up to 8 cm of the X-axis, by both estimation methods with a small error of 0.1 for
the EnKF method and 0.09 for the EnkF-SR method. Figure 4 b) shows the forefinger
movement on the Y-axis is of only 2.5 cm, and the EnKF and EnKF-SR methods have
sufficient accuracy.

Figure 5 shows the results of the simulation by the EnKF and EnKF-SR methods, pro-
ducing a movement resembling a semi-circle with a diameter of

√
(82 + 2.52) =

√
70.25 =

8.3 cm, so overall if in terms of the diameter of about 7.5 cm, when using 300 ensembles,
it has an error of about 10%.

Figure 6 shows the simulation results by the EnKF and EnKF-SR methods using 400
ensembles and a time of 400 seconds. Figure 6a) shows the forefinger movement, moving
up to 6.8 cm of the X-axis, and by both estimation methods, having a small error of
0.09% for the EnKF method and 0.08% for the EnkF-SR method. Figure 6b) shows that
the forefinger movement on the Y-axis is of only 3 cm, and the EnKF and EnKF-SR
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EnKF EnKF-SR
System Model and Measurement Model

xk+1 = f(uk, xk) + wk, wk ∼ N(0, Qk) xk+1 = f(uk, xk) + wk, wk ∼ N(0, Qk)
zk = Hxk + vk, vk ∼ N(0, Rk) zk = Hxk + vk, vk ∼ N(0, Rk)

Initialization
Generate N ensemble in accordance with
initial estimate x0

Generate N ensemble in accordance with
initial estimate x0

x0,i = [x0,1 x0,2 x0,3 ... x0,Ne] x0,i = [x0,1 x0,2 x0,3 ... x0,Ne]

Determine initial value : x̂0 = 1
Ne

N∑
i=1

X0,i Initial Mean Ensemble : x0,i = x0,i1N

Ensemble initial error :
x̃0,i = x0,i − x0,i = x0,i(I − 1N )

Prediction Stage

x̂−
k,i = f(x̂k−1,i, uk−1,i)+wk,i with wk,i ∼

N(0, Qk)
x̂−
k,i = f(x̂k−1,i, uk−1,i) + wk,i of which

wk,i ∼ N(0, Qk)

Estimate : x̂−
k = 1

Ne

N∑
i=1

x̂−
k,i Ensemble Mean : x−

k,i = x̂−
k,i1N

Covariance error : Ensemble Error :

P−
k = 1

Ne−1

N∑
i=1

(x̂−
k,i − x̂−

k )(x̂
−
k,i − x̂−

k )
T x̃−

k,i = x̂−
k,i − x−

k,i = x̂−
k,i(I − 1N )

Correction Stage
zk,i = zk + vk,i with vk,i ∼ N(0, Rk) zk,i = zk + vk,i of which vk,i ∼ N(0, Rk)
Kalman gain : Sk = Hx̃−

k,i, Ek = (v1, v2, ..., vN ), and

Kk = P−
k HT (HP−

k HT +Rk)
−1 Ck = SkS

T
k + EkE

T
k

Estimate : Ensemble Mean :
x̂k,i = x̂−

k,i +Kk(zk,i −Hx̂−
k,i) x̄k,i = x̄−

k,i + x̃−
k,iS

T
k C

−1
k (z̄k,i −Hx̄−

k,i)

x̂k = 1
Ne

N∑
i=1

x̂k,i Square root schema:

- decompose eigenvalue of Ck = UkΛkU
T
k

- compute matrices Mk = Λ
−1/2
k UT

k S−
k

- determine SVD from Mk = YkLkV
T
k

Ensemble Error :
x̃k,i = x̃−

k,iVk(I − LT
k Lk)

1/2

Ensemble Estimate : x̂k,i = x̃k,i + x̄k,i

Table 1: EnKF and EnKF-SR Algorithms [13,14].

methods have high accuracy.

Figure 7 shows the results of the simulation using the EnKF and EnKF-SR methods
resulting in a movement resembling a semi-circle with a diameter of

√
(6.82 + 32) =√

46.24 + 9 =
√
55.24 = 7.43 cm, so overall if viewed in terms of a diameter of about

7.5 cm, when using 400 ensembles, it has an error of about 0.09. In Table 2, it can be
seen that the EnKF-SR method is more accurate than EnKF because there is a factor
square root in the correction stage. Viewed in comparison of the numbers of ensembles,
the generating of 400 ensembles is more accurate than that of 300 ensembles. When the
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Figure 4: Estimation of Forefinger Motion using 300 Ensembles: a) X position, b) Y Position.

Figure 5: Estimation of Forefinger Motion in XY-Plane using 300 Ensembles.

index finger size of Indonesian people is generally around 7.5 cm (as the diameter) as a
reference for the half-track trajectory, then the error for XY motion using 300 ensembles
is about 10%, but that for XY motion using 400 ensembles is about 0.09%.

5 Conclusion

Based on the simulation results and the analysis above, it can be concluded that the
EnKF and EnKF-SR methods were effective to estimate the movement of the index
finger, especially for the finger size of the Indonesian people, with an accuracy of about
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Figure 6: Estimation of Forefinger Motion using 400 Ensembles: a) X position, b) Y Position.

Figure 7: Estimation of Forefinger Motion in XY-Plane using 400 Ensembles.

99% and an error of 0.09%, and an error of 10% if using 300 ensembles. The error was
obtained after comparing to the average finger size of the Indonesian people, about 7.5
as the diameter of the movement forming a semicircular path.
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300 Ensembles 400 Ensembles
EnKF EnKF-SR EnKF EnKF-SR

X Motion 0.1% 0.09% 0.094% 0.091%
Y Motion 0.12% 0.095% 0.09% 0.087

XY Motion (compare
with real simulation) 0.13% 0.1% 0.093% 0.09%
XY Motion (compare
with the real (average) 10.2% 10% 0.092% 0.09%

finger size of
Indonesian people)

Table 2: The Value of Motion Error by the EnKF and EnKF-SR Based on 400 Iterations.
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Abstract: This paper discusses the exact controllability for impulsive neutral
stochastic delay partial differential equations driven by Lévy noise in Hilbert spaces.
Under the Lipschitz conditions, the linear growth conditions are weakened and under
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1 Introduction

Exact controllability is one of the fundamental concepts in mathematical control theory,
it plays an important role in both deterministic and stochastic control systems. It is
well known that the controllability of deterministic systems is widely used in many fields
of science and technology (for instance, see [4, 7, 21, 26, 28]). Stochastic control theory
is a stochastic generalization of classic control theory. The theory of controllability of
differential equations in infinite dimensional spaces has been extensively studied in the
literature, and the details can be found in various papers and monographs, see [3,16,29]
and the references therein. Besides white noise or stochastic perturbation, many systems,
for example, predator-prey systems, arising from realistic models depend heavily on the
histories or impulsive effect [10, 12, 13, 17, 20, 24, 28]. Therefore, there is a real need
to discuss impulsive neutral partial differential systems with delays. Tai and Lun [25]
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studied the exact controllability of fractional impulsive neutral infinite delay evolution
integrodifferential systems in Banach spaces. However, in order to establish the results,
the conditions presented in [25] state that the resolvent operator associated with the
linear part is compact and the controllability operator is also compact, thus the induced
inverse does not exist in the infinite dimensional state space. To relax that restriction,
in this paper, we will study the exact controllability of stochastic nonlinear systems
together with the condition that the compactness of the semigroup S(t) is not assumed.
Besides the environmental noise, sometimes, we have to consider the impulsive effects,
which exist in many evolution processes, because the impulsive effects may bring an
abrupt change at certain moments of time (see, e.g. [28]). Moreover, in most research
on nonlinear stochastic systems, the control function uα(t, x) is always constructed by
its corresponding linear systems and the stochastic maximum principle [1], however, the
stochastic maximum principle is not available in impulsive stochastic systems as a result
of its linear form. Therefore, there is a real need to discuss impulsive differential control
systems with memory (delay).

On the other hand, in recent years, stochastic partial differential equations with
Poisson jumps have gained much attention since Poisson jumps not only exist widely but
also can be used to study many phenomena in the real life. Therefore, it is necessary to
consider the Poisson jumps into the stochastic systems. To be more precise, in [6], Cui
et al. investigated the exponential stability of mild solutions to neutral stochastic partial
differential equations with delays and Poisson jumps by using the Banach fixed point
principle. Bao et al. [5] studied the existence, uniqueness and some sufficient conditions
for stability in the distribution of mild solutions to stochastic partial differential delay
equations with Poisson jumps. More recently, by using the successive approximations
method, Yin and Xiao [27] considered the controllability of a stochastic partial equation
driven by a Poisson random measure. For more details about the stochastic partial
differential equations with Poisson jumps, we refer the reader to the monographs [2, 14,
15,23] and the references therein.

However, to the best of our knowledge, the exact controllability problem for impulsive
neutral stochastic delay partial differential equations driven by Lévy noise in Hilbert
spaces has not been investigated yet. Motivated by the above works, in this paper,
we will study the exact controllability problem for impulsive neutral stochastic delay
partial differential equations driven by Lévy noise, which are natural generalizations of
controllability concepts well known in the theory of infinite dimensional deterministic
control systems. More precisely, we consider the following form:

d[x(t)−G(t, x(t− τ))] = A[x(t)−G(t, x(t− τ))]dt

+
[
F (t, x(t), x(t− τ)) +Bu(t)

]
dt+ σ(t, x(t), x(t− τ))dW (t)

+
∫
Z
L(t, x(t), x(t− τ), z)Ñ(dt, dz), tk ̸= t ∈ J := [0, T ],

∆x(tk) = Ik(x(t
−
k ), k ∈ {1, 2, ...,m},

x(t) = φ(t) ∈ Cτ = Cb
F0

([−τ, 0];H), −τ ≤ t ≤ 0, τ > 0,

(1)

where x(·) is a stochastic process taking values in a real separable Hilbert space H;
A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous semigroup of
the bounded linear operators S(t), t ≥ 0 in H. Assume that the mappings G : J×H → H,
F : J×H×H → H, σ : J×H×H → L0

2, L : J×H×H×Z → H are the Borel measurable
functions and Ik : H → H, k = 1, 2, ...,m are continuous functions. The control function
u(·) takes values in LF

2 (J, U) of admissible control functions for a separable Hilbert space
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U and B is a bounded linear operator from U into H. Furthermore, let 0 = t0 < t1 <
· · · < tm < tm+1 = T be prefixed points, and ∆x(tk) = x(t+k ) − x(t−k ) represent the
jump of the function x at time tk with Ik determining the size of the jump, where x(t+k )
and x(t−k ) represent the right and left-hand limits of x(t) at t = tk, respectively. Let
φ(t) : [−τ, 0] → H be càdlàg independent of the Wiener process W and the Poisson point
process p(·) with E[sup−τ≤s≤0 ∥φ∥2H] < ∞.

The structure of this paper is as follows. In Section 2, we briefly present some basic
notations, preliminaries and assumptions. The main results in Section 3 are devoted to
the study of the exact controllability for the system (1) and supplied with their proofs.

2 Preliminaries

Let (H, ∥ · ∥H, ⟨·, ·⟩H) and (K, ∥ · ∥K, ⟨·, ·⟩K) denote two real separable Hilbert space, with
their vector norms and their inner products, respectively. We denote by L(K;H) the
set of all linear bounded operators from K into H, which is equipped with the usual
operator norm ∥ · ∥. In this paper, we use the symbol ∥ · ∥ to denote the norms of
operators regardless of the spaces potentially involved when no confusion possibly arises.
Let (Ω,F ,F = {Ft}t≥0,P) be a complete filtered probability space satisfying the usual
condition (i.e., it is right-continuous and F0 contains all P-null sets). Let W = (W (t))t≥0

be a Q-Wiener process defined on the probability space (Ω,F ,F,P) with the covariance
operator Q such that Tr(Q) < ∞. We assume that there exist a complete orthonormal
system {ek}k≥1 in K, a bounded sequence of nonnegative real numbers λk such that
Qek = λkek, k = 1, 2, ..., and a sequence of independent Brownian motions {βk}k≥1 such
that

⟨W (t), e⟩K =

∞∑
k=1

√
λk⟨ek, e⟩Kβk(t), e ∈ K, t ≥ 0.

Let L0
2 = L2(Q

1
2K;H) be the space of all Hilbert-Schmidt operators from Q

1
2K into

H with the inner product

⟨Ψ, ϕ⟩L0
2
= Tr[ΨQϕ∗],

where ϕ∗ is the adjoint of the operator ϕ.
Let p = p(t), t ∈ Dp (the domain of p(t)), be a stationary Ft-Poisson point process

taking its value in a measurable space (Z,B(Z)) with a σ-finite intensity measure λ(dz).
We will denote by N(dt, dz) the Poisson counting measure of p such that

N(t,Z) =
∑

s∈Dp,s≤t

IZ(p(s))

for any measurable set Z ∈ B(K−{0}), which denotes the Borel σ-field of (K−{0}). Let

Ñ(dt, dz) := N(dt, dz)− λ(dz)dt

be the compensated Poisson measure that is independent of W (t).
Let τ > 0 and C := C([−τ, 0];H) denote the family of all right-continuous functions

with left-hand limits (càdlàg) from [−τ, 0] to H. The space C is assumed to be equipped
with the norm

∥ς∥C := sup
−τ≤t≤0

∥ς(t)∥H, ς(t) ∈ C.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (1) (2023) 34–45 37

We also assume that Cb
F0

([−τ, 0];H) denotes the family of all almost surely bounded,
F0-measurable, C([−τ, 0];H)-valued random variables. For all t ≥ 0,

xt = {x(t+ θ) : −τ ≤ θ ≤ 0}

is regarded as the C([−τ, 0];H)-valued stochastic process. Further, we consider the Ba-
nach space BT of all H-valued Ft-adapted càdlàg process x(t) defined on [0, T ] with

x(t) = φ(t), t ∈ [−τ, 0]

such that
∥x∥2BT

:= E[ sup
0≤t≤T

∥x(t)∥2H] < ∞.

Next, let us recall the definition of a mild solution for (1).

Definition 2.1 An Ft-adapted càdlàg stochastic process x : J → H is called a mild
solution of (1) if for each u ∈ LF

2 (J, U) and for arbitrary t ∈ J , P{ω :
∫
J
∥x(s)∥2Hds <

+∞} = 1, it satisfies the integral equation

x(t) =S(t)[φ(0)−G(0, φ)] +G(t, x(t− τ))

+

∫ t

0

S(t− s)[F (s, x(s), x(s− τ)) +Bu(s)]ds

+

∫ t

0

S(t− s)σ(s, x(s), x(s− τ))dW (s) +
∑

0<tk<t

S(t− tk)Ik(x(t
−
k )

+

∫ t

0

∫
Z

S(t− s)L(s, x(s), x(s− τ), z)Ñ(ds, dz) (2)

for any x0(·) = φ(·) ∈ Cτ .

Consider the following linear stochastic system of the form:{
dx(t) = [Ax(t) +Bu(t)]dt+ σ(t)dW (t), t ∈ J,

x(0) = x0.
(3)

It is convenient to introduce the relevant operators and the basic controllability condition.

(i) The operator LT
0 ∈ L(LF

2 (J,H), L2(Ω,FT ,H)) is defined by

LT
0 u =

∫ T

0

S(T − s)Bu(s)ds,

where LF
2 (J,H) is the space of all Ft-adapted, H-valued measurable square inte-

grable processes on J × Ω. Clearly, the adjoint (LT
0 )

∗ : L2(Ω,FT ,H) → LF
2 (J,H)

is defined by
[(LT

0 )
∗z](t) = B∗S∗(T − t)E{z | Ft}.

(ii) The controllability operator ΠT
0 associated with (3) is defined by

ΠT
0 {·} = LT

0 (L
T
0 )

∗{·} =

∫ T

0

S(T − t)BB∗S∗(T − t)E{· | Ft}dt
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and belongs to L(L2(Ω,FT ,H), L2(Ω,FT ,H)), and the controllability operator
ΓT
s ∈ L(H,H) is

ΓT
s =

∫ T

s

S(T − t)BB∗S∗(T − t)dt, 0 ≤ s < t.

Lemma 2.1 ( [19]) The linear stochastic system (3) is exactly controllable on J iff
there exists a γ > 0 such that

E⟨ΠT
0 x, x⟩ ≥ γE∥x∥2, ∀x ∈ L2(Ω,FT ,H).

Then

E∥(ΠT
0 )

−1∥2 ≤ 1

γ
.

Let x(t;φ, u) denote the state value of the system (1) at time t corresponding to the
control u ∈ LF

2 (J, U) and the initial value φ. In particular, the state of system (1) at
t = T , x(T ;φ, u), is called the terminal state with the control u.

RT := R(T, φ) = {x(T ;φ, u) : u(·) ∈ LF
2 (J, U)}

is called the reachable set of the system (1).

Definition 2.2 The stochastic system (1) is said to be exactly controllable on the
interval J if

RT = L2(Ω,FT ,H).

To prove our main results, we list the following basic assumptions of this paper.
(H1) A is the infinitesimal generator of a contraction C0-semigroup S(t), t ≥ 0, in H.
(H2) There exists a positive constant C0 such that for all t ∈ J, x, y ∈ H,

∥G(t, x)−G(t, y)∥2H ≤ C0

(
∥x− y∥2H

)
.

(H3) There exist a positive constant C1 such that for all t ∈ J, x1, y1, x2, y2 ∈ H,

∥F (t, x1, y1)− F (t, x2, y2)∥2H ∨ ∥σ(t, x1, y1)− σ(t, x2, y2)∥2L0
2

∨
∫
Z

∥L(t, x1, y1, z)− L(t, x2, y2, z)∥2Hλ(dz)

≤ C1

(
∥x1 − x2∥2H + ∥y1 − y2∥2H

)
.

(H4) There exists a positive constant C2 such that for all t ∈ J, x1, y1, x2, y2 ∈ H,∫
Z

∥L(t, x1, y1, z)− L(t, x2, y2, z)∥4Hλ(dz) ≤ C2

(
∥x1 − x2∥4H + ∥y1 − y2∥4H

)
.

(H5) There exists some positive constants Qk, k = 1, 2, ...,m such that for all t ∈ J,
x, y ∈ H,

∥Ik(x)− Ik(y)∥2H ≤ Qk∥x− y∥2H.
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(H6) For all t ∈ J , there exists a positive constant M such that

∥G(t, 0)∥2H ∨ ∥F (t, 0, 0)∥2H ∨ ∥σ(t, 0, 0)∥2H ∨ ∥Ik(0)∥2H

∨
∫
Z

∥L(t, 0, 0, z)∥2Hλ(dz) ∨
∫
Z

∥L(t, 0, 0, z)∥4Hλ(dz) ≤ M.

(H7) The linear stochastic system (3) is exactly controllable.

We now note that for the proof of our main results, we need the following lemmas.

Lemma 2.2 (see [8], Proposition 7.3). Suppose that Φ(t), t ≥ 0, is a L0
2-valued

predictable process and let WΦ
A =

∫ t

0
S(t−s)Φ(s)dW (s), t ∈ [0, T ]. Then for any arbitrary

p > 2, there exists a constant C(p, T ) > 0 such that

E sup
t∈[0,T ]

∥WΦ
A ∥pH ≤ C sup

t∈[0,T ]

∥S(t)∥pE
∫ T

0

∥Φ(s)∥pL0
2
ds,

where C = C(p, T ). Moreover, if E
∫ T

0
∥Φ(s)∥pds < +∞, then there exists a continuous

version of the process {WΦ
A }t≥0. If (S(t))t≥0 is a contraction semigroup, then the above

result is true for p ≥ 2.

Lemma 2.3 (see [18], Lemma 2.2). Let the space Mp
ν ([0, T ] × Ω × (K − {0}),H),

p ≥ 2, denote the set of all random process J(x, y) with values in H, predictable with
respect to {Ft} such that

E
(∫ T

0

∫
Z

∥J(t, y)∥pHν(dy)dt
)
< ∞.

Suppose J ∈ M2
ν ([0, T ] × Ω × (K − {0}),H) ∩M4

ν ([0, T ] × Ω × (K − {0}),H). Then for
any t ∈ [0, T ],

E
[

sup
θ∈[0,t]

∥∥∥∫ θ

0

∫
Z

S(θ − s)J(s, y)Ñ(ds, dy)
∥∥∥2
H

]
≤ C

{
E
(∫ t

0

∫
Z

∥J(t, y)∥2Hν(dy)dt
)

+E
(∫ t

0

∫
Z

∥J(t, y)∥4Hν(dy)dt
) 1

2

}
for some constant C = C(T ) > 0, dependent on T > 0.

3 Main Results

In this section, we shall investigate the exact controllability for impulsive neutral stochas-
tic delay partial differential equations driven by Lévy noise in Hilbert spaces.

The main result of this section is the following theorem.

Theorem 3.1 Let the assumptions (H1)−(H7) hold. Then the system (1) is exactly
controllable on J provided that

(
1 +

30T 2C2
B

γ

)[
6(C0 + 2T 2C1 + 2TCC1 +m

∑m
k=1 Qk)

+ 1
2 + (2CC1 + C2C2)T

]
< 1, where ∥B∥2 = CB .

(4)
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Proof. Using the assumptions, for an arbitrary function x(·), choose the feedback
control function

uT
x (t) =B∗S∗(T − t)E

{
(ΠT

0 )
−1

[
xT − S(T )[φ(0)−G(0, φ)]−G(t, x(t− τ))

−
∫ T

0

S(T − s)F (s, x(s), x(s− τ))ds

−
∫ T

0

S(T − s)σ(s, x(s), x(s− τ))dW (s) (5)

−
∫ T

0

∫
Z

S(T − s)L(s, x(s), x(s− τ), z)Ñ(ds, dz)

−
∑

0<tk<T

S(T − tk)Ik(x(t
−
k )

]
| Ft

}
.

We transform (1) into a fixed point problem. Consider the operator Π : BT → BT

defined by

Π(x)(t) =S(t)[φ(0)−G(0, φ)] +G(t, x(t− τ))

+

∫ t

0

S(t− s)[F (s, x(s), x(s− τ)) +BuT
x (s)]ds

+

∫ t

0

S(t− s)σ(s, x(s), x(s− τ))dW (s) (6)

+
∑

0<tk<t

S(t− tk)Ik(x(t
−
k )

+

∫ t

0

∫
Z

S(t− s)L(s, x(s), x(s− τ), z)Ñ(ds, dz).

In what follows, we shall show that when using the control uT
x (·), the operator Π has a

fixed point, which is then a mild solution for system (1).

By our assumptions, Hölder’s inequality, Lemma 2.1, Lemma 2.2, Lemma 2.3 and the

basic inequality
(∑n

i=1 xi

)p

≤ n(p−1)∨0
∑n

i=1 x
p
i , p > 0, we obtain that for x ∈ BT ,

∥Π(x)(t)∥2BT
≤ 7

{
E
(
sup
t∈J

∥S(t)[φ(0)−G(0, φ)]∥2
)

+E
(
sup
t∈J

∥G(t, x(t− τ))∥2
)

+E
(
sup
t∈J

∥∥∥∫ t

0

S(t− s)F (s, x(s), x(s− τ))ds
∥∥∥2)
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+E
(
sup
t∈J

∥∥∥ ∫ t

0

S(t− s)BuT
x (s)ds

∥∥∥2)
+E

(
sup
t∈J

∥∥∥ ∫ t

0

S(t− s)σ(s, x(s), x(s− τ))dW (s)
∥∥∥2)

+E
(
sup
t∈J

∥∥∥ ∑
0<tk<t

S(t− tk)Ik(x(t
−
k )

∥∥∥2)
+E

(
sup
t∈J

∥∥∥ ∫ t

0

∫
Z

S(t− s)L(s, x(s), x(s− τ), z)Ñ(ds, dz)
∥∥∥2)}

≤ 7

{[
2(1 + C0)E∥φ∥2C + 2

[
M + C0(E∥φ∥2C + ∥x∥2BT

)
]

+ 2T
[
MT + C1(τE∥φ∥2C + 2T∥x∥2BT

)
]

+ 2C
[
MT + C1(τE∥φ∥2C + 2T∥x∥2BT

)
]
+ 2m

m∑
k=1

Qk(M + ∥x∥2BT
)

+ 8C
[
MT + C1(τE∥φ∥2C + 2T∥x∥2BT

)
]

+ 8C
[
MT +

√
C2(

√
τE∥φ∥2C +

√
2T∥x∥2BT

)
]]

×
(
1 +

7T 2C2
B

γ

)
+

7T 2C2
B

γ
E∥xT ∥2H

}
< ∞.

Thus, Π maps BT into itself.

Now, we shall prove that Π is a contraction mapping in BT . For any x, y ∈ BT , in
the same ways as above, we can get

∥Π(x)(t)−Π(y)(t)∥2BT

≤
[
6(C0 + 2T 2C1 + 2TCC1 +m

m∑
k=1

Qk) +
1

2
+ (2CC1 + C2C2)T

]
∥x− y∥2BT

+ 6T 2CBE
(
sup
t∈J

∥uT
x − uT

y ∥2H
)

≤
(
1 +

30T 2C2
B

γ

)[
6(C0 + 2T 2C1 + 2TCC1 +m

m∑
k=1

Qk)

+
1

2
+ (2CC1 + C2C2)T

]
∥x− y∥2BT

.

By assumption (4), we conclude that Π is a contraction mapping on BT . On the other
hand, by the Banach fixed point theorem, there exists a unique fixed point x(·) ∈ BT

such that (Πx)(t) = x(t). This fixed point is then the mild solution of the system (1).
Thus, the system (1) is exactly controllable on J . The proof of Theorem 3.1 is complete.

Remark 3.1 From the assumptions (H1)− (H6), for every u(·) ∈ U , the system (1)
has a unique solution in BT .

Now let us consider a special case for the system (1). If G ≡ 0, m ≡ 0, then the
system (1) becomes the following stochastic delay partial differential equations driven by
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Lévy noise:
dx(t) = Ax(t)dt+

[
F (t, x(t), x(t− τ)) +Bu(t)

]
dt+ σ(t, x(t), x(t− τ))dW (t)

+
∫
Z
L(t, x(t), x(t− τ), z)Ñ(dt, dz), t ∈ [0, T ],

x(t) = φ(t) ∈ Cb
F0

([−τ, 0];H), −τ ≤ t ≤ 0, τ > 0.

(7)

Corollary 3.1 Suppose that the assumptions (H1), (H3), (H4), (H6), (H7) hold.
Then the system (10) is exactly controllable on J provided that(

1 +
12T 2C2

B

γ

)[1
2
+ 8(T 2C1 + TCC1) + (2CC1 + C2C2)T

]
< 1. (8)

Remark 3.2 As we all know, the mathematical formulation of many physical phe-
nomena contains integro-differential equations arisen in various applications such as vis-
coelasticity, heat equations, fluid dynamics, chemical kinetics and so on. More recently,
M.A. Diop et al. [9, 10] studied the asymptotic stability of neutral impulsive stochastic
partial integro-differential equations with delays and Poisson jumps in Hilbert spaces. In
this remark, we consider the exact controllability for impulsive neutral stochastic delay
partial integro-differential equations driven by Lévy noise in the form

d[x(t)−G(t, x(t− τ))] = A[x(t)−G(t, x(t− τ))]dt

+
∫ t

0
K(t− s)[x(s)−G(s, x(s− τ))]dsdt

+
[
F (t, x(t), x(t− τ)) +Bu(t)

]
dt

+σ(t, x(t), x(t− τ))dW (t)

+
∫
Z
L(t, x(t), x(t− τ), z)Ñ(dt, dz), tk ̸= t ∈ [0, T ],

∆x(tk) = Ik(x(t
−
k ), k ∈ {1, 2, ...,m},

x(t) = φ(t) ∈ Cb
F0

([−τ, 0];H), −τ ≤ t ≤ 0,

(9)

where K(t), t ≥ 0, is a closed linear operator defined on a common domain which is
dense in a Banach space X.

Further, we assume that the integro-differential abstract Cauchy problem

dx(t)

dt
= Ax(t) +

∫ t

0

K(t− s)x(s)ds, x(0) = x0 ∈ X, (10)

has an associated resolvent operator of bounded linear operators {R(t)}t≥0 on X.
A one-parameter family of bounded linear operator {R(t)}t≥0 on X is called a resol-

vent operator of (10) if the following conditions are verified.
(i) Function R(·) : [0,∞) → L(X) is strongly continuous and R(0)x = x for all x ∈ X.
(ii) For x ∈ D(A), R(·) ∈ C([0,+∞);D(A)) ∩ C1([0,+∞);X), and

dR(t)x

dt
= AR(t)x+

∫ t

0
K(t− s)R(s)xds

= R(t)Ax+
∫ t

0
R(t− s)K(s)xds, for t ≥ 0.

(iii) There exist constants M > 0, β such that ∥R(t)∥ ≤ M.eβt for every t ≥ 0.
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An Ft-adapted càdlàg stochastic process x : [0, T ] → H is called a mild solution of
(9) if for each u ∈ LF

2 (J, U) and for arbitrary t ∈ [0, T ],P{ω :
∫
J
∥x(s)∥2Hds < +∞} = 1,

it satisfies the integral equation

x(t) =R(t)[φ(0)−G(0, φ)] +G(t, x(t− τ))

+

∫ t

0

R(t− s)[F (s, x(s), x(s− τ)) +Bu(s)]ds

+

∫ t

0

R(t− s)σ(s, x(s), x(s− τ))dW (s)

+
∑

0<tk<t

R(t− tk)Ik(x(t
−
k )

+

∫ t

0

∫
Z

R(t− s)L(s, x(s), x(s− τ), z)Ñ(ds, dz)

for any x0(·) = φ(·) ∈ Cb
F0

([−τ, 0];H).
By implementing appropriate conditions on the functions, one can easily show that

by adapting and employing the techniques used in Theorem 3.1, the stochastic control
system (9) is exactly controllable on [0, T ].

Remark 3.3 We now consider the non-autonomous versions of systems (1) and (9),
where the operator A is replaced by {A(t) : t ∈ [0, T ]}. To proceed to prove the exact
controllability results in a similar manner as employed in the above theorem, an evolution
system {U(t, s) : 0 ≤ s ≤ t ≤ T} and a resolvent family {R(t, s) : 0 ≤ s ≤ t ≤ T} are
guaranteed to exist. Conditions guaranteeing the existence of U(t, s) and R(t, s) can be
found in [22] and [11], respectively. Therefore, the above theorem can be extended to the
time-dependent case by making suitable modifications involving the use of the properties
of the time-dependent evolution system and the time-dependent resolvent family in the
above arguments.

4 Conclusions

This paper focuses on establishing the exact controllability for impulsive neutral stochas-
tic delay partial differential equations driven by Lévy noise in Hilbert spaces through the
application of one of the most important results of the analysis and considers the main
source of the metric fixed point theory known as the “Banach Contraction Principle”. In
the future, we aim to expand this study to the approximate controllability for impulsive
neutral second-order stochastic delay partial differential equations driven by Lévy noise
in Hilbert spaces.
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[17] V. Lakshmikantham, D. Bǎinov and P. S. Simeonov. Theory of Impulsive Differential Equa-
tions. Series in Modern Applied Mathematics, 6. World Scientific Publishing Co., Inc.,
Teaneck, NJ, 1989.

[18] J. Luo and K. Liu. Stability of infinite dimensional stochastic evolution with memory and
Markovian jumps. Stoch. Proc. Appl. 118 (2008) 864–895.

[19] N. I. Mahmudov and A. Denker. On controllability of linear stochastic systems. Int. J.
Control 73 (2000) 144–151.

[20] X.R. Mao. Asymptotic properties of neutral stochastic differential delay equations. Stochas-
tics and Stochastic Reports 68 (3-4) (2000) 273–295.
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Politechnika Świȩtokrzyska, Al. 1000–lecia PP 7, 25-314 Kielce, Poland

Received: October 24, 2022; Revised: December 22, 2022

Abstract: The jump phenomenon, present in the forced asymmetric Duffing oscil-
lator, is studied using the known steady-state asymptotic solution. The main result
consists in construction of a new mathematical object – a jump manifold – encoding
global information about all possible jumps. The jump manifold is computed for the
forced asymmetric Duffing oscillator, and several examples of jumps are calculated,
showing the advantages of the method.
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1 Introduction

In this work, we study steady-state dynamics of the forced asymmetric Duffing oscillator
governed by the equation

ÿ + 2ζẏ + γy3 = F0 + F cos (Ωt) , (1)

which has a single equilibrium position and a corresponding one-well potential [1], where
ζ, γ, F0, F are parameters and Ω is the angular frequency of the periodic force. This
dynamical system in particular and Duffing-type equations in general, which can be used
to describe pendulums, vibration absorbers, beams, cables, micromechanical structures,
and electrical circuits, have a long history [2]. The equation of motion (1) can describe
several nonlinear phenomena such as various nonlinear resonances, symmetry breaking,
chaotic dynamics, period-doubling route to chaos, multistability and fractal dependence
on initial conditions, and jumps [1–6].
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Our work aims to research the jump phenomenon using the implicit function machin-
ery. Kovacic and Brennan described and investigated jumps for the system (1) in their
interesting study [1]. Recently, Kalmár-Nagy and Balachandran [6] applied a differential
condition to detect vertical tangents, characteristic of the jump phenomenon.

A standard approach to nonlinear equations of the form (1) is based on asymptotic
methods [7, 8]. More exactly, in the case of Eq.(1), approximate nonlinear resonances
1 : 1 are computed in the form

y (t) = A0 +A1 cos (Ωt+ θ) , (2a)

fi (A0, A1, Ω; c) = 0, i = 1, 2, 3, (2b)

where A0, A1 and Ω fulfill nonlinear implicit amplitude-frequency response algebraic
equations (2b) and c = (γ, ζ, F, F0) [1, 5, 9].

We have proposed in our earlier papers an analysis of differential properties of so-
lutions of the implicit amplitude-frequency response equations, see [10] and references
therein. It turns out that bifurcations of dynamics, such as hysteresis and jump phe-
nomenon, are related to the appearance/disappearance of branches of solutions, as well
as more complicated bifurcations such as, for example, the creation/destruction of solu-
tions follow from the changes of differential properties of solutions of the equations (2b),
induced by a change of the parameters c. Analytical methods, permitting the prediction
of metamorphoses of solutions, are of great help in numerical simulation. Our formalism
applies also to several models of coupled oscillators [11,12], see also [13].

The novelty of this work consists in defining, in the differential geometry formulation,
the jump manifold encoding global information about all possible jumps. Our formal-
ism generalizes the differential condition of Kalmár-Nagy and Balachandran [6] for an
arbitrary implicit amplitude-frequency response function.

In the next section, we describe the steady-state solution (2a) [1,5,9], given by implicit
equations (2b). Working in the framework developed in our earlier papers, see [10] and
references therein, we compute the jump manifold in Section 3 (see Eq.(9a) and Table
2) which contains information about all possible jumps – this is the main achievement
of this work. In Section 4, we compare the analytical predictions with the numerical
solutions of Eq.(1). We summarize our results in the last Section 5.

2 The Steady-State Solution

The steady-state solution of Eq.(1) of the form (2a) was computed in Refs. [1, 5, 9] with
the following implicit amplitude-frequency response equations (2b):

−A1Ω
2 + 3γA2

0A1 +
3

4
γA3

1 − F cos θ = 0, (3a)

−2ζA1Ω− F sin θ = 0, (3b)

γA3
0 +

3

2
γA0A

2
1 − F0 = 0. (3c)

Eliminating θ from Eqs.(3a), (3b), we get two implicit equations for A0, A1, and Ω:

A2
1

(
−Ω2 + 3γA2

0 +
3

4
γA2

1

)2

+ 4Ω2ζ2A2
1 = F 2, (4a)

γA3
0 +

3

2
γA2

1A0 − F0 = 0. (4b)
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Computing A2
1 from Eq.(4b) and substituting into (4a), we obtain finally one implicit

equation for A0, Ω:

f (Ω, A0; γ, ζ, F, F0) =
∑9

k=0
ckA

k
0 = 0, (5)

where the coefficients ck are given in Table 1.

Table 1: Coefficients ck of the polynomial (5).

c9 = 25γ3 c4 = 16Ω2γF0

c8 = 0 c3 = −9γF 2
0 + 6γF 2

c7 = −20Ω2γ2 c2 = −4F0Ω
4 − 16ζ2Ω2F0

c6 = −15γ2F0 c1 = 4Ω2F 2
0

c5 = −15γ2F0 c0 = −F 3
0

We can also obtain an implicit equation for A1, Ω. We solve the cubic equation (4b)
for A0 computing the only one real root:

A0 = −A2
1

2Y
+ Y, Y ≡ 3

√√
1

8
A6

1 +
1

4γ2
F 2
0 +

1

2γ
F0. (6)

Two other roots are indeed complex since the discriminant of Eq.(4b), D = −4p3−27q2,
p = 3

2A
2
1,q = −F0

γ , γ ̸= 0, is negative.

Then we substitute A0, Y from Eq.(6) into Eq.(4a), obtaining finally a complicated
but useful implicit equation for A1, Ω:

g (Ω, A1; γ, ζ, F, F0) = A2
1

(
3γA2

0 +
3
4γA

2
1 − Ω2

)2
+ 4Ω2ζ2A2

1 − F 2 = 0, (7)

where A0 and Y are defined in (6).

3 Jump Phenomenon

3.1 Jump conditions and jump manifold

Jump conditions in the implicit function setting read [10]

f (Ω, A0; γ, ζ, F, F0) = 0, (8a)

∂f (Ω, A0; γ, ζ, F, F0)

∂A0
= 0, (8b)

where equation (8b) is the condition for a vertical tangency.
Solving equations (8), we obtain

J (A0; γ, ζ, F, F0) =
∑21

k=0
akA

k
0 = 0, (9a)

Ω2 =
(−50γ4)A12

0 +95γ3F0A
9
0+(6F

2γ2−39γ2F 2
0 )A

6
0+(3F

2γF0−7γF 3
0 )A

3
0+F 4

0

2A0(F0−10γA3
0)(F0−γA3

0)
2 , (9b)

the non-zero coefficients ak of the polynomial J (A0) are given in Table 2.
The polynomial J (A0), complicated as it is, encodes global information about all

possible jumps. We shall thus refer to equation (9a), which defines an implicit function
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Table 2: Non-zero coefficients of polynomial (9a).

a21 = 4000γ7ζ2 a9 = 3248γ3ζ2F 4
0 − 72F 2γ3ζ2F 2

0

a18 = −16 000γ6ζ2F0 a8 = 36F 4γ3F0 − 978F 2γ3F 3
0

a17 = 600F 2γ6 a6 = 528γ2ζ2F 5
0 − 240F 2γ2ζ2F 3

0

a15 = 23 880γ5ζ2F 2
0 − 480F 2γ5ζ2 a5 = 9F 4γ2F 2

0 + 138F 2γ2F 4
0

a14 = −1920F 2γ5F0 a3 = 24F 2γζ2F 4
0 − 152γζ2F 6

0

a12 = 768F 2γ4ζ2F0 − 15 512γ4ζ2F 3
0 a2 = −6F 2γF 5

0

a11 = 36F 4γ4 + 2166F 2γ4F 2
0 a0 = 8ζ2F 7

0

of variables A0, γ, ζ, F , F0, as a jump manifold equation. Thus, the jump manifold
J (A0, γ, ζ, F, F0):

J (A0; γ, ζ, F, F0) = {(A0, γ, ζ, F, F0) : J (A0; γ, ζ, F, F0) = 0} , (10)

belongs to a 5D space. It is purposeful to introduce the projection of the jump manifold
onto the parameter space:

J⊥ = {(γ, ζ, F, F0) : there is a real A0 such that J (A0; γ, ζ, F, F0) = 0} . (11)

In other words, for any set of parameters γ, ζ, F, F0 belonging to J⊥, there is a jump in
the dynamical system (1) and all jumps occur for the parameters belonging to J⊥.

We shall consider 2D and 3D projections, plotting J (A0; γ∗, ζ∗, F∗, F0) and
J (A0; γ∗, ζ∗, F, F0), respectively, where the parameters γ∗, ζ∗, F∗ or γ∗, ζ∗ are fixed.

3.1.1 2D projection, J (A0; γ∗, ζ∗, F∗, F0) = 0

The global picture of the jump manifold J (A0; γ∗, ζ∗, F∗, F0), where γ∗ = 0.0783, ζ∗ =
0.025, F∗ = 0.1 and A0, F0 are variable, is shown in Fig.1. We have chosen the values of
γ, ζ, F such as in [1] for the sake of comparison.

All points lying on the blue curve (jump manifold) correspond to jumps (vertical
tangents). Moreover, there are four critical points dividing Fig.1 into parts and referred

to as the border points: F
(1)
0 = 0, F

(2)
0 = 0.0920, F

(3)
0 = 0.7385, F

(4)
0 = 6. 5321,

where the number of jumps changes, it is defined and computed in Subsection 3.2. More
precisely, these critical points are where the red dashed vertical lines are tangent to the
blue jump manifold.

Indeed, for F0 ∈
(
F

(1)
0 , F

(2)
0

)
, there are two jumps; for F0 ∈

(
F

(2)
0 , F

(3)
0

)
, there are

four; for F0 ∈
(
F

(3)
0 , F

(4)
0

)
, there are two, and there are no jumps for F0 > F

(4)
0 .

For example, in Fig.2 below, the case F0 = 0.4 is shown. More exactly, the implicit
function A1 (Ω), computed with the help of Eq.(7), is plotted for γ = 0.0783, ζ = 0.025,
F = 0.1, and F0 = 0.4. The red dots, denoting vertical tangents, correspond to the red
dots in Fig.1. These points can be easily computed from Eqs.(8), (4).

Indeed, solving equations (8) for γ = 0.0783, ζ = 0.025, F = 0.1, F0 = 0.4, we
get four real solutions Ω, A0 shown in the first two columns in Table 3. Then, for the
above values of Ω, we solve equations (4) obtaining the same four values of A0 and the
corresponding values of A1 listed in the third column of Table 3.

In Fig.3, the bifurcation diagram is shown for the set of parameters listed in Fig.2,
where y is a numerical solution of Eq.(1). Note that branches a-b, c-d, e-f in Fig.3
correspond to analogous branches in Fig.2.
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
0

1

2

3

4

5 A0

F0

Figure 1: Jump manifold J (A0; γ∗, ζ∗, F∗, F0), γ∗ = 0.0783, ζ∗ = 0.025, F∗ = 0.1 (blue) and
four border points (purple dots) – points of contact between J and the vertical red lines.

Table 3: Solutions of Eqs.(8) and (4).

Ω A0 A1

0.576 122 891 0.846 633 527 1. 882 759 746
0.643 209 846 0.755 260 872 2. 032 001 367
0.690 545 624 1. 583 776 750 0.691 474 188
0.711 882 658 0.425 889 574 2. 806 379 023

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84
0.0

0.5

1.0

1.5

2.0

2.5

3.0 A1

Ω
a

b

c

d

e

f

Figure 2: Amplitude-frequency response curve A1 (Ω), γ = 0.0783, ζ = 0.025, F = 0.1,
F0 = 0.4. Stable branches: a-b, c-d, e-f.
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Figure 3: Bifurcation diagram, γ = 0.0783, ζ = 0.025, F = 0.1, F0 = 0.4.

3.1.2 3D projection, J (A0; γ∗, ζ∗, F, F0) = 0

We now fix two parameters only, for example, γ∗ = 0.0783, δ∗ = 0.025, and plot the
jump manifold J (A0; γ∗, ζ∗, F, F0) as a 3D surface, see Fig.4.

0.0
0.0

1.0
1.0

0.9

0.6
0.8
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0.4

F

0.5

0.7
0.2

0.6

0 0.7
0.9

0.8

0.5

F

0.4

0.3

0.2

0.1

0.0

0.1

1.5

A
1.0

0.5

0

2.0

2.5

Figure 4: Jump manifold J (A0; γ∗, ζ∗, F, F0), γ∗ = 0.0783, ζ∗ = 0.025.

Next, we compute one border point. For the sake of example, we choose F0 = 0.5
(γ∗ = 0.0783, δ∗ = 0.025) and compute the corresponding border point as F = 0.544 860,
A0 = 1. 238 340 as explained in the next subsection.

The blue vertical line, (0.544 860, 0.5, A0) with A0 variable, touches the upper lobe
of the jump manifold exactly at the border point (0.544 860, 0.5, 1. 238 340).
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3.2 Border sets

We shall now determine the condition for the border set: the set of points in the parameter
space (γ, ζ, F0, F ) is such that the number of vertical tangents changes at these points.
The mathematical condition for the border set is that the polynomial J (A0) given in
Eq.(9a) and Table 2 has multiple roots.

The qualitative behavior of the polynomial equation J (A0) can be seen in Figs.1 and
4, where 2D and 3D projections of the implicit function J (A0; γ, ζ, F, F0) = 0 are shown.
To find the parameter values for which the polynomial J (A0; γ, ζ, F, F0) has multiple
roots, we demand that the resultant of J (A0) and its derivative J ′ (A0) =

d
dA0

J (A0) is
zero [15]:

R (J, J ′; γ, ζ, F, F0) = 0. (12)

The resultant of the polynomial J (A0) and its derivative J ′ (A0) =
∑20

k=0 bkA
k
0 is a

determinant of the (m+ n)× (m+ n) Sylvester matrix, n = 21, m = 20,

R (J, J ′; γ, ζ, F, F0) = det



an an−1 an−2 . . . 0 0 0
0 an an−1 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . a1 a0 0
0 0 0 . . . a2 a1 a0
bm bm−1 bm−2 . . . 0 0 0
0 bm bm−1 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . b1 b0 0
0 0 0 . . . b2 b1 b0


(13)

and is an enormously complicated polynomial in variables γ, ζ, F, F0. However, if we
fix three parameters, say γ, ζ, F , then the equation R (J, J ′;F0) = 0 can be solved
numerically and thus the critical values of F0 can be computed.

For example, we have solved equation (12), R (J, J ′; γ∗, ζ∗, F∗, F0) = 0, for γ∗ =

0.0783, ζ∗ = 0.025, F∗ = 0.1, obtaining the following real positive solutions: F
(1)
0 = 0,

F
(2)
0 = 0.092 075, F

(3)
0 = 0.738 510, F

(4)
0 = 6. 532 092. In Figs.5, the border amplitudes

A1 (Ω) are shown for γ = 0.0783, ζ = 0.025, F = 0.1 and F
(2)
0 , F

(3)
0 , F

(4)
0 , with critical

points marked with blue crosses. At these points, jumps just appear/disappear – there is a
metamorphosis of the amplitude-frequency response function. For example, the function
A1 (Ω) has no jumps for F0 > 6. 532 092, and two jumps appear for F0 < 6. 532 092, see
Fig.8.4e plotted for F0 = 0.95 in [1]. Vertical tangents at these points are also plotted
with dashed lines. Blue dots denote extant points of jumps.

We have also solved equation (12), R (J, J ′; γ∗, ζ∗, F, F0∗) = 0, for γ∗ = 0.0783, ζ∗ =
0.025, F0∗ = 0.5, obtaining real positive solutions: F (1) = 0, F (2) = 0.026 998 9, F (3) =
0.077 925 6, F (4) = 0.544 859 5. Next, for γ = 0.0783, ζ = 0.025, F0 = 0.5, and F =
0.544 859 5, we have computed from Eqs.(8) the border value A0 = 1. 238 340, see the
blue vertical line in Fig.4.

3.3 Number of solutions of Eq.(5) for a given value of Ω

There are also other qualitative changes in the amplitudes A1 (Ω) controlled by the
parameters. For example, the number of solutions of Eq.(5) for a given value of Ω may
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Figure 5: Amplitude-frequency response curves: γ = 0.0783, ζ = 0.025, F = 0.1, F
(2)
0 = 0.092

(top left), F
(3)
0 = 0.7385 (top right), F

(4)
0 = 6.532 (bottom).

change. This happens when two vertical tangents appear at the same value of Ω.

To find a value of F0 for which this occurs, we have to find a double root Ω of
equations (8). For example, let γ = 0.0783, ζ = 0.025, F = 0.1. Now, solving Eqs.(8)
numerically for several values of F0, we easily find that for F0 = 0.301 007, there is
indeed a double root: Ω = 0.597 114, A0 = 0.679 284 and Ω = 0.597 114, A0 = 1. 411 787.
There is another similar case: for F0 = 0.429 166, there is a double root: Ω = 0.714 419,
A0 = 0.459 118 and Ω = 0.714 419, A0 = 1. 628 271, see Fig.6 as well as the related Fig.9.
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Figure 6: Amplitude-frequency response curves A1 (Ω): γ = 0.0783, ζ = 0.025, F = 0.1,
F0 = 0.301 (left), F0 = 0.429 (right). Stable branches: a-b, c-d, e-f.

Therefore, for F0 ∈ (0.301, 0.429) , equation (5) has five solutions for some values of
Ω (three stable, two unstable), see, for example, Figs.2, 3, where F0 = 0.4.



54 J. KYZIO L AND A. OKNIŃSKI

4 Numerical Verification and Analysis of the Results

We start with the verification of our results for the border sets obtained in Section 3,
comparing them with numerical computations carried out for the equation (1). Consider,
for example, the top right figure in Fig.5. In Fig.7, we show magnification of this critical
curve with a vertical tangency on the red curve and two curves: just before (green) and
just after (blue) the formation of the vertical tangency.
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Figure 7: Implicit curves A1 (Ω): γ = 0.0783 , ζ = 0.025, F0 = 0.738 510 and F = 0.095
(green), F = 0.1 (red), F = 0.105 (blue). Critical vertical tangency on the red curve is at
(Ω, A1) = (0.761, 2.558) (light blue-green dot).

Recall that we have solved equation (12) for γ = 0.0783 , ζ = 0.025, F = 0.1,

obtaining four real positive solutions: F
(1)
0 = 0, F

(2)
0 = 0.092 075, F

(3)
0 = 0.738 510,

F
(4)
0 = 6. 532 092. Curves in Fig.7 have been plotted for γ = 0.0783, ζ = 0.025, F

(3)
0 =

0.738 510 and F = 0.095 (green), F = 0.1 (red), F = 0.105 (blue). We have decided to
plot curves A1 (Ω) for the variable F since the shapes of these curves are very sensitive
to this parameter.

When we pass from the green to the red curve, we note the formation of vertical
tangency on the red curve. Stable branches on the red curve are: a-b, c-d=e, and d=e-f.

In Fig.8, we show the bifurcation diagrams computed by solving numerically Eq.(1)
for the values of the parameters γ, ζ, F0 such as in Fig.7 and F = 0.114 (green), F = 0.116
(blue), respectively.

These two bifurcation diagrams correspond qualitatively to the green and blue curves
A1 (Ω) in Fig.7. The main difference between these two plots is a discontinuity of the
blue curve corresponding to the creation of the jump phenomenon at Ω = 0.785.

Note that the discontinuity appears in the interval F ∈ (0.114, 0.116) while the
analytically predicted value is F = 0.1. This discrepancy can be attributed to the error
of the asymptotic method used to compute the solution (2a).

We now discuss the results obtained in Subsection 3.3. In Fig.9, two bifurcation
diagrams are shown, corresponding to the amplitude-frequency curves shown in Fig.6.
Two Figures 6 were computed for γ = 0.0783, ζ = 0.025, F = 0.1 and F0 = 0.301 and
F0 = 0.429 can be set together with Figures 8.4b, 8.4c, 8.4d from Ref. [1], computed
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Figure 8: Bifurcation diagrams: F = 0.114 (green), F = 0.116 (blue), the values of the
parameters γ, ζ, F0 are the same as in Fig.7. Discontinuity is at Ω = 0.785.

for the same values of γ, ζ, F and for F0 = 0.2, F0 = 0.4, F0 = 0.5, respectively. The
sequence of the amplitude-frequency curves plotted for F0 = 0.2, 0.301, 0.4, 0.429, 0.5
shows the metamorphoses of these curves.

In Figures 6, there are two different jumps for the same value of Ω. Indeed, in the
bifurcation diagrams shown in Fig.9, two different branches of the solution of Eq.(1) end
or begin at the same value of Ω (these places are denoted in Fig.6 and Fig.9 as ”b” and
”e”).

It follows that three stable solutions of Eq.(1) are in the interval F0 ∈ (0.284, 0.395),
γ = 0.0783, ζ = 0.025, F = 0.1, while analytical prediction was F0 ∈ (0.301, 0.429) (see
the end of Subsection 3.3). This discrepancy is again due to the unavoidable errors of
the asymptotic method.
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Figure 9: Bifurcation diagrams: γ = 0.0783, ζ = 0.025, F = 0.1, F0 = 0.284 (top), F0 = 0.395
(bottom).

5 Summary

Working in the implicit function framework [10], we have computed the jump manifold,
cf. (10) and Table 2, including information about all jumps in the dynamical system (1).

Our work on the asymmetric Duffing oscillator is a supplementation and amplification
of the results obtained by Kovacic and Brennan [1]. The sequence of Figures 8.4 (a) –(e),
computed in [1] for γ = 0.0783, ζ = 0.025, F = 0.1, and F0 = 0.01, 0.2, 0.4, 0.5, 0.95,
respectively, can be appended with Figs.5 and 6 computed for F0 = 0.092, 0.7385, 6.532,
and F0 = 0.301, 0.429. The sequence of metamorphoses of the curve A1 (Ω) consists of
the plots computed for F0 = 0.01, 0.092, 0.2, 0.301, 0.4, 0.429, 0.5, 0.7385, 0.95, 6.532,
where the numbers highlighted in bold correspond to Figs.8.4 (a)–(e) plotted in [1].

We show in Section 4 how a jump phenomenon arises in the dynamical system (1)
and how it can be predicted based on a solution of Eq.(3), see Figs.7, 8. In short, the
dynamical signature of the appearance of the jump phenomenon consists in a rupture of
a stable branch, see Fig.8. Jumps are created at a border set, see Eqs.(12), (13). We
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have computed the values of parameter F0, at which a change of multi-stability occurs.
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Abstract: This study’s primary area of interest is the generalized operators, which
are defined with doubling measures by generalized Bessel-Riesz kernels with various
measures in Morrey spaces. In terms of Bessel decay, the kernel satisfies a few key
requirements. To prove that the integral operators are bounded, we will make use
of Young, Holder, and Minköwski inequalities and a doubling measure. Additionally,
we look into the relationship, we discover that the norm of these operators will be
similarly constrained by the relationship between the elements of the kernel and the
integral operators based on the norm of each kernel, although according to several
measures. Additionally, we investigate the boundedness of pointwise multiplier op-
erators in Morrey spaces using generalized fractional integrals and the generalized
Bessel-Riesz operator.

Keywords: generalized Bessel-Riesz operators; doubling measure; fractional integral;
Morrey spaces.
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1 Introduction

This paper extends our recent findings in paper [1] by investigating the boundedness of
Bessel-Riesz operators by a generalized kernel defined with doubling measures in Morrey
spaces with various measures. Some basic requirements are being met by the operator’s
kernel in relation to Bessel decay. We will use the Young, Holder, and Minköwski inequal-
ities and a doubling measure to demonstrate that the integral operators are bounded.
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In Morrey spaces, we also focus on the boundedness of pointwise multiplier operators.
Here,

∥f : Lp(Rn)∥ :=

[∫
Rn

|f(t)|p dt
]1/p

is defined, as a function 1 ≤ p < ∞, and a group of f in a way that ∥f : Lp(Rn)∥ < ∞.
The definition of the Bessel-Riesz operator is

Iα,γf(x) :=

∫
Rn

Gα,γ(|x− y|)f(y) dy

for every f ∈ Lp
loc(Rn), and 1 ≤ p < ∞ for each instance of Gα,γ : (0,∞) → (0,∞), with

Gα,γ(t) :=
tα−n

[1 + t]γ
, 0 < α < n, γ ≥ 0.

TheGα,γ , the Bessel-Riesz kernel, is referred to in this context. Bessel-Riesz operators
are derived from Schrödinger’s equation. Schrödinger’s equation, a partial differential
linear equation, (see [2] for some results of differential equations of order 1 < α ≤ 2, in a
Banach space) is used to explain a quantum field system’s wave function or state function.
Schrödinger’s equation is the quantum physics equivalent of Newton’s law. In 1999
Kazuhiro Kurata et al. [3] conducted a research on the boundedness of integral operators
with Lebesgue and generalized Morrey spaces. They then used this knowledge to estimate
the Schrödinger operator L2 = −△ + V (x) + W (x) with nonnegative V ∈ (RH)∞
(reverse Hölders class) and small perturbed potentials W on Morrey spaces. Idris et al.
[Theorem 6, [4]] reported the boundedness of Bessel-Riesz operators on Morrey spaces
in 2016. They achieved outcomes for the boundedness of fractional integral operators
that were comparable to the results by F. Chiarenza [5]. The boundedness of fractional
integral operators when constructed on quasi-metric measure spaces was discussed by
Eridani et al. in their study [6]. Even for Euclidean spaces, the research team’s findings
were novel. The boundedness of these operators for Euclidean spaces on Lebesgue and
Morrey spaces was also demonstrated by Idris et al. in their paper [4], which also looked
into the weighted boundedness of generalized Morrey spaces. Euclidean spaces are the
most straightforward illustration of measure metric spaces. The weighted boundedness
of generalized Morrey spaces has been studied by Kurata et al. [3]. We will use the
Young, Holder, and Minköwski inequalities and a doubling measure to demonstrate the
boundedness of these operators on Morrey spaces in Euclidean contexts. Additionally, we
shall see that the generalized Bessel-Riesz operators’ norm is constrained by the kernels’
norm. Bessel-Riesz operators on Lebesgue spaces in measure metric spaces are bounded,
which is a simple argument of the Young inequality, it was demonstrated by Saba et al. [7]
using the Young inequality. Our entry into the subsequent Morrey space phenomenon is
the second outcome since the generalized Bessel-Riesz operator is bounded on Lebesgue
spaces [1]. The ideal constant in the Young inequality is 1, and it is used throughout the
research. However, we still do not know what the optimum constant in Morrey spaces
is at this point. As a result, we focus on generalized Bessel-Riesz operators in Morrey
spaces in this study. We will also discuss the circumstance in which the measure meets
the doubling requirement. For the relevant inequalities that were derived in [8], [9], the
resulting criteria are both necessary and sufficient. When W is a scalar operator, Kurata
et al. [3] have demonstrated that W . Iα,γ is bounded on generalized Morrey spaces. We
will also work on this operator for boundedness with the generalized operator on Morrey
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spaces. See citation [3] for the examples of using the aforementioned operators in settings
involving Euclidean spaces.

2 Doubling Conditions

We take into account ρ : (0,∞) → (0,∞) and define (DC) as a collection of ρ such that

1

2
≤ s

t
≤ 2 ⇒ 1

C
≤ ρ(s)

ρ(t)
≤ C

for some C ≥ 1. If ρ ∈(DC), then we have

ρ(R) ∼
∫ 2R

R

ρ(t)

t
dt, or C∗ρ(R) ≤

∫ 2R

R

ρ(t)

t
dt ≤ C∗∗ρ(R)

for some C∗∗ ≥ C∗ > 0. Additionally, if ρ ∈ (DC), then Gρ,γ ∈ (DC), where

Gρ,γ(t) :=
ρ(t)

tn[1 + t]γ
, t > 0.

Assume that µ is a random measure on Rn. We consider a group of measures that meet
the growth condition, denoted by (GC). Now, since B(a,R) := {x ∈ Rn : |x − a| < R}
in Rn exists, we define µ ∈ (GC) if and only if C1 > 0 such that

µ(B(a,R)) ≤ C1R
n

exists for all open balls. See [6] for more details on a doubling measure.
Using the definitions provided above, we attempt to estimate

∥Gρ,γ : Ls(µ)∥ :=

(∫
Rn

|Gρ,γ(|x|)|s dµ(x)
)1/s

, s ≥ 1.

For 1 ≤ s < ∞ and R > 0, we take into account the following:∫
|x|<R

ρ(|x|)s

|x|sn[1 + |x|]sγ
dµ(x) =

−1∑
k=−∞

∫
2kR≤|x|<2k+1R

ρ(|x|)s

|x|sn[1 + |x|]sγ
dµ(x)

≤ C

−1∑
k=−∞

ρ(2kR)sµ(B(0, 2kR))

(2kR)sn[1 + 2kR]sγ
≤ C

−1∑
k=−∞

ρ(2kR)s

(2kR)(s−1)n

≤ C

−1∑
k=−∞

∫ 2k+1R

2kR

ρ(t)s

t(s−1)n+1
dt = C

∫ R

0

ρ(t)s

t(s−1)n+1
dt, and also

∫
R≤|x|

ρ(|x|)s

|x|sn[1 + |x|]sγ
dµ(x) =

∞∑
k=1

∫
2kR≤|x|<2k+1R

ρ(|x|)s

|x|sn[1 + |x|]sγ
dµ(x)

≤ C

∞∑
k=0

ρ(2kR)sµ(B(0, 2kR))

(2kR)sn[1 + 2kR]sγ
≤ C

∞∑
k=0

ρ(2kR)s

(2kR)(s−1)n+sγ

≤ C

∞∑
k=0

∫ 2k+1R

2kR

ρ(t)s

t(s−1)n+sγ+1
dt = C

∫ ∞

R

ρ(t)s

t(s−1)n+sγ+1
dt,
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where a constant, not necessarily the same one, is denoted by the letter C > 0 at all
time. At this stage, we define

∥Gρ, γ : Ls(µ)∥ = supR > 0

(∫ R

0

ρ(t)s

t(s−1)n+1
dt+

∫ ∞

R

ρ(t)s

t(s−1)n+sγ+1
dt

)1/s

for 1 ≤ s < ∞, µ ∈ (GC) and ρ ∈ (DC).

3 Morrey Spaces with the Generalized Bessel-Riesz Operator

We begin this section with the definition that is given below. Take into account
0 < λ < 1 ≤ p < ∞, B := B(a,R), and µ(B(a,R)) ∼ Rn. If and only if

∥f : Lp,λ(ν, µ)∥ = sup
B

(
1

µ(B)λ

∫
B

|f(y)|p dν(y)
)1/p

< ∞

holds, then we define f ∈ Lp,λ(ν, µ). We define

f = f1 + f2 := fχB̃ + fχB̃C

for each f ∈ Lp,λ(ν, µ) and B̃ := B(a, 2R), given that

∥f1 : Lp(ν)∥ =

[∫
B̃

|f(y)|p dν(y)
]1/p

≤ µ(B̃)λ/p∥f : Lp,λ(ν, µ)∥ < ∞.

For each B, we arrive at the following estimation when f1 ∈ Lp(ν):[∫
B

|Iρ,γf1(y)|p dµ(y)
]1/p

≤ ∥Iρ,γf1 : Lp(µ)∥

≤ C ∥Gρ,γ : L1(µ)∥ · ∥f1 : Lp(ν)∥
≤ C µ(B)λ/p∥Gρ,γ : L1(µ)∥ · ∥f : Lp,λ(ν, µ)∥,

and of course, we will come to the following estimation:[
1

µ(B)λ

∫
B

|Iρ,γf1(y)|p dµ(y)
]1/p

≤ C ∥Gρ,γ : L1(µ)∥ · ∥f : Lp,λ(ν, µ)∥.

Contrarily, we have the estimation given below for each x ∈ B:

|Iρ,γf2(x)| ≤
∫
B̃

Iρ,γf2(x)dµ(x)

≤
∫
|x−y|≥R

Iρ,γf2(x)dµ(x)

=

∞∑
k=0

∫
2kR≤|x−y|<2k+1R

Iρ,γf2(x)dµ(x)

≤
∞∑
k=0

ρ(2kR)

(2kR)n+γ

∫
|x−y|<2k+1R

|f(y)| dν(y)

≤ C ∥f : Lp,λ(ν, µ)∥
∞∑
k=0

ρ(2kR)ν(B(x, 2k+1R))1−1/p

(2kR)n−[nλ/p]+γ
.
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Considering that ν ∈ (GC),

|Iρ,γf2(x)| ≤ C ∥f : Lp,λ(ν, µ)∥
∞∑
k=0

ρ(2kR)

(2kR)[n/p]−[nλ/p]+γ

≤ C ∥f : Lp,λ(ν, µ)∥
∫ ∞

R

ρ(t)

t1+γ+[n(1−λ)/p]
dt

≤ C Rn(λ−1)/p∥f : Lp,λ(ν, µ)∥
∫ ∞

R

ρ(t)

t1+γ
dt

≤ C Rn(λ−1)/p∥f : Lp,λ(ν, µ)∥ · ∥Gρ,γ : L1(µ)∥.
And ultimately, we shall have that for any open ball B, we come to[

1

µ(B)

∫
B

|Iρ,γf2(x)|p dµ(x)
]1/p

≤ C Rn(λ−1)/p∥f : Lp,λ(ν, µ)∥ · ∥Gρ,γ : L1(µ)∥,

or

[
1

µ(B)λ

∫
B

|Iρ,γf2(x)|p dµ(x)
]1/p

≤ C ∥f : Lp,λ(ν, µ)∥ · ∥Gρ,γ : L1(µ)∥.

Corollary 3.1 Let us say there are ν ∈ (GC) and 1 < p < ∞. In the case when both
f ∈ Lp,λ(ν, µ) and Gρ,γ ∈ L1(µ) are true, one has Iρ,γf ∈ Lp,λ(µ). In addition, there is
C > 0 such that

∥Iρ,γf : Lp,λ(µ)∥ ≤ C ∥Gρ,γ : L1(µ)∥ · ∥f : Lp,λ(ν, µ)∥.

3.1 Minköwski’s inequality

Before stating our key findings on the boundedness of Iρ,γ , we take into consideration
the following simple finding [10].

Lemma 3.1 Assume we are given F : Rn×Rn → R. When considering any measure
ν and µ on Rn,[∫

Rn

∣∣∣∣∫
Rn

G(x− y) dν(y)

∣∣∣∣p dµ(x)]1/p ≤
∫
Rn

[∫
Rn

|G(x− y)|p dµ(x)
]1/p

dν(y).

4 Main Results

Theorem 4.1 Let ν be any measure on Rn and µ ∈ (GC).
If there is Cs > 0 such that f ∈ L1,λ(ν) and Gρ,γ ∈ Ls(µ), then

∥Iρ,γf : Ls,λ(µ)∥ ≤ Cs∥Gρ,γ : Ls(µ)∥ · ∥f : L1,λ(ν)∥, s ≥ 1.

Proof. According to Minköwski’s inequality, with 1 ≤ s < ∞, we have[
1

µ(B)λ

∫
B

|Iρ,γf(x)|s dµ(x)
]1/s

=

(∫
B

∣∣∣∣∫
B

1

µ(B)λ
Gρ,γ(|x− y|)f(y) dν(y)

∣∣∣∣s dµ(x))1/s

≤
∫
B

(∫
B

1

µ(B)λ
|Gρ,γ(|x− y|)f(y)|s dµ(x)

)1/s

dν(y)

≤
∫
B

(∫
B

|Gρ,γ(|x− y|)|s dµ(x)
)1/s

| 1

µ(B)λ
f(y)| dν(y)

≤ C ∥Gρ,γ : Ls(µ)∥ · ∥f : L1,λ(ν)∥.
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So [
1

µ(B)λ

∫
B

|Iρ,γf(x)|s dµ(x)
]1/s

≤ sup
x∈B

∥Iρ,γf(x) : Ls,λ∥ (1)

≤ C ∥Gρ,γ : Ls(µ)∥ · ∥f : L1,λ(ν)∥. ■ (2)

In accordance with the aforementioned Theorem 4.1, we additionally have the follow-
ing.

Corollary 4.1 Consider the case when ν is any measure on Rn and µ ∈ (GC). There
exists C > 0 such that if f ∈ L1,λ(ν) and Gρ,γ ∈ L1(µ), then

∥Iρ,γf : L1,λ(µ)∥ ≤ C∥Gρ,γ : L1(µ)∥ · ∥f : L1,λ(ν)∥.

Next, we come to a particular case of Young’s inequality.
Suppose

1

s
=

1

p
+

1

q
− 1, or 1 =

1

s
+ 1− 1

p
+ 1− 1

q
=

1

s
+

1

p′
+

1

q′
.

Note that

p = q′
(
1− p

s

)
, q = p′

(
1− q

s

)
.

Theorem 4.2 Assume µ, ν ∈ (GC). If f ∈ Lp(ν) and Gρ,γ ∈ Lq(µ), then there exists
C > 0 so that

∥Iρ,γf : Ls,λ(µ)∥ ≤ C∥Gρ,γ : Lq(µ)∥ · ∥f : Lp,λ(ν)∥, 1

s
=

1

p
+

1

q
− 1.

Proof. With Hölder’s inequality, we start with the following:[
1

µ(B)λ

∫
B

|Iρ,γf(x)|s dµ(x)
]1/s

≤
∫
B

1

µ(B)λ
|f(y)|p/s+(1−p/s)|Gρ,γ(|x− y|)|q/s+(1−q/s) dν(y)

≤
[∫

B

|Gρ,γ(|x− y|)|q|f(y)|p dν(y)
]1/s

[∫
B

1

µ(B)λ
|f(y)|q

′(1−p/s) dν(y)

]1/q′
×
[∫

B

|Gρ,γ(|x− y|)|p
′(1−q/s) dν(y)

]1/p′

=

[∫
B

|Gρ,γ(|x− y|)|q|f(y)|p dν(y)
]1/s

[∫
B

1

µ(B)λ
|f(y)|p dν(y)

]1/q′
×
[∫

B

|Gρ,γ(|x− y|)|q dν(y)
]1/p′

.
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The right-hand side will now be estimated for every f ∈ Lp,λ(ν, µ) and B̃ := B(a, 2R),
we define

f = f1 + f2 := fχB̃ + fχB̃C .

Since ∥f1 : Lp(ν)∥ =

[∫
B̃

|f(y)|p dν(y)
]1/p

≤ µ(B̃)λ/p∥f : Lp,λ(ν, µ)∥ < ∞,

we have f1 ∈ Lp(ν), and for every B, we come to the following estimation:∫
B

|Gρ,γ(|x− y|)|q|f1(y)|p dν(y) ≤ ∥Gρ,γ(|x− y|)|qfp
1 : Lp(ν)∥

≤ C ∥Gρ,γ(|x− y|) : Lq(µ)∥q · ∥f1 : Lp(ν)∥p

≤ C µ(B)λ/p∥Gρ,γ(|x− y|) : Lq(µ)∥q · ∥f : Lp,λ(ν, µ)∥p

≤ ∥Gρ,γ(|x− y|) : Lq(µ)∥q · ∥f : Lp,λ(ν, µ)∥p.

On the other hand, for every x ∈ B, we have the following estimation:∫
B

|Gρ,γ(|x− y|)|q|f2(y)|p dν(y) ≤
∫
B̃

|Gρ,γ(|x− y|)|q|f2(y)|p dν(y)

≤
∫
|x−y|≥R

|Gρ,γ(|x− y|)|q|f2(y)|p dν(y)

=

∞∑
k=0

∫
2kR≤|x−y|<2k+1R

|Gρ,γ(|x− y|)|q|f2(y)|p dν(y)

≤
∞∑
k=0

(
ρ(2kR)

(2kR)n+γ
)q
∫
|x−y|<2k+1R

|f(y)|p dν(y)

≤ C ∥f : Lp,λ(ν, µ)∥
∞∑
k=0

(
ρ(2kR)ν(B(x, 2k+1R))1−1/p

(2kR)n−[nλ/p]+γ
)q.

Since ν ∈ (GC), we have∫
B

|Gρ,γ(|x− y|)|q|f2(y)|p dν(y) ≤ C ∥f : Lp,λ(ν, µ)∥p
∞∑
k=0

(
ρ(2kR)

(2kR)[n/p]−[nλ/p]+γ
)q

≤ C ∥f : Lp,λ(ν, µ)∥p
∫ ∞

R

(
ρ(t)

t1+γ+[n(1−λ)/p]
)q dt

≤ C Rn(λ−1)q/p∥f : Lp,λ(ν, µ)∥p
∫ ∞

R

(
ρ(t)

t1+γ
)q dt

≤ C Rn(λ−1)q/p∥f : Lp,λ(ν, µ)∥p · ∥Gρ,γ : Lq(µ)∥q

≤ C∥f : Lp,λ(ν, µ)∥p · ∥Gρ,γ : Lq(µ)∥q,

it implies∫
B

|Gρ,γ(|x− y|)|q|f(y)|p dν(y) ≤ C∥f : Lp,λ(ν, µ)∥p · ∥Gρ,γ : Lq(µ)∥q. (3)
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Now we want to estimate the right-hand side, especially when for x ∈ B and R > 0,
we will have∫
B

|Gρ,γ(|x−y|)|q dν(y) =
∫
|x−y|<R

|Gρ,γ(|x−y|)|q dν(y)+
∫
|x−y|≥R

|Gρ,γ(|x−y|)|q dν(y).

We start with∫
|x−y|<R

|Gρ,γ(|x− y|)|q dν(y) =
−1∑

k=−∞

∫
2kR≤|x−y|<2k+1R

|Gρ,γ(|x− y|)|q dν(y)

∼ C

−1∑
k=−∞

Gρ,γ(2
kR)qν(B(x, 2k+1R))

≤ C

−1∑
k=−∞

ρ(2kR)q

(2kR)(q−1)n

≤ C

∫ R

0

ρ(t)q

t(q−1)n+1
dt

≤ C∥Gρ,γ : Lq(µ)∥q,

and also ∫
|x−y|≥R

|Gρ,γ(|x− y|)|q dν(y) ∼ C

∞∑
k=0

Gρ,γ(2
kR)qν(B(x, 2k+1R))

≤ C

∞∑
k=0

ρ(2kR)q

(2kR)nq−n+qγ

≤ C

∫ ∞

R

ρ(t)q

tn(q−1)+qγ+1
dt

≤ C∥Gρ,γ : Lq(µ)∥q.

Up to now, for every x ∈ B, we already have[
1

µ(B)λ

∫
B

|Iρ,γf(x)|s dµ(x)
]1/s

≤ C∥Gρ,γ : Lq(µ)∥qs/p
′
· ∥f : Lp,λ(ν)∥sp/q

′

·
[∫

B

|Gρ,γ(|x− y|)|q|f(y)|p dν(y)
]1/s

.

By using (1) and (3), finally, we have

∥Iρ,γf(x) : Ls,λ∥s ≤ C ∥Gρ,γ : Lq(µ)∥qs/p
′
· ∥f : Lp,λ(ν)∥sp/q

′

≤ C∥f : Lp,λ(ν, µ)∥p · ∥Gρ,γ : Lq(µ)∥q,

≤ C ∥Gρ,γ : Lq(µ)∥q+qs/p′
· ∥f : Lp,λ(ν)∥p+sp/q′ .

So
q +

qs

p′
= s = p+

sp

q′
.

■
Consequently, we also have the following result.
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Corollary 4.2 Consider µ, ν ∈ (GC). If f ∈ Ls,λ(ν) and Gρ,γ ∈ L1(µ), now there is
C > 0, and thus

∥Iρ,γf : Ls,λ(µ)∥ ≤ C∥Gρ,γ : L1(µ)∥ · ∥f : Ls,λ(ν)∥, s ≥ 1.

5 Pointwise Multiplier Operators

Say that 1 < p < ∞ and 1 = 1/p+ 1/p′ with f ∈ Lp,λ(µ) and g ∈ Lp′,λ(µ), respectively.
The Hölder inequality will then result in ∥f · g : L1,λ(µ)∥ ≤ ∥f : Lp,λ(µ)∥ · ∥g : Lp′,λ(µ)∥.

We will examine a pointwise multiplier operator W by

W : f 7→ W · f, with [W · f ](x) := W (x) · f(x), x ∈ Rn.

Therefore, based on the Hölder inequality, ifW ∈ Lp′,λ(µ), then W is a bounded operator
from Lp,λ(µ) to L1,λ(µ), with ∥W · f : L1,λ(µ)∥ ≤ ∥W : Lp′,λ(µ)∥ · ∥f : Lp,λ(µ)∥, 1 <
p < ∞.

The following is another illustration. Assume we take a look at a fractional integral
operator Iα, and we define

W · Iα : f 7→ W · Iαf, with [W · Iαf ](x) := W (x) · Iαf(x), x ∈ Rn.

Reiterating the previous point, given that 1 < p < n/α and 1/q+α/n = 1/p are both
affected by the Hölder inequality, we get

∥W · Iαf : Lp,λ∥ ≤ ∥W : Ln/α,λ∥ · ∥Iαf : Lq,λ∥ ≤ C∥W : Ln/α,λ∥ · ∥f : Lp,λ∥.

In other words, if W ∈ Ln/α,λ, then W · Iα : Lp,λ → Lp,λ is a bounded operator.
From our primary findings, we also have the following.

Corollary 5.1 Assume ν is any measure on Rn and µ ∈ (GC). If f ∈ L1,λ(ν), W ∈
Ls′,λ(µ) and Gρ,γ ∈ Ls(µ) are true, then

W · Iρ,γ : L1,λ(ν) → L1,λ(µ)

is a bounded operator. To put it another way, for any s ∈ [1,∞), there exists Cs > 0
such that

∥W · Iρ,γf : L1,λ(µ)∥ ≤ Cs∥W : Ls′,λ(µ)∥ · ∥Gρ,γ : Ls(µ)∥ · ∥f : L1,λ(ν)∥.

Corollary 5.2 Suppose µ, ν ∈ (GC).
If f ∈ Ls,λ(ν), W ∈ Ls′,λ(µ), and Gρ,γ ∈ Lp′,λ(µ), then

W · Iρ,γ : Ls,λ(ν) → L1,λ(µ)

is a bounded operator. That is, for every s ∈ [1,∞), there exists Cs > 0 such that

∥W · Iρ,γf : L1,λ(µ)∥ ≤ C∥Gρ,γ : L1(µ)∥ · ∥W : Lp′,λ(µ)∥ · ∥f : Ls,λ(ν)∥.

The next result is our last corollary.

Corollary 5.3 Suppose 1/s+ 1/q′ = 1/p, and µ, ν ∈ (GC).
If f ∈ Lp,λ(ν), W ∈ Lq′,λ(µ) and Gρ,γ ∈ Lq(µ), then

W · Iρ,γ : Lp,λ(ν) → Lp,λ(µ)

is a bounded operator. That is, there exists C > 0 such that

∥W · Iρ,γf : Lp,λ(µ)∥ ≤ C∥Gρ,γ : Lq(µ)∥ · ∥W : Lq′,λ(µ)∥ · ∥f : Lp,λ(ν)∥.
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6 Conclusions

As a result of this investigation, we have learned that generalized Bessel-Riesz operators
defined with doubling measures in Morrey spaces with various measures are working
toward boundedness. Regarding Bessel decay, the kernel of the operators satisfies a few
essential characteristics. To prove that the integral operators are bounded, we used the
Young, Hölder, and Minköwski inequalities and a doubling measure. The norm of these
generalized operators is similarly bounded by the norm of their respective kernels, but
with different measures, according to our investigation of the relationship between the
kernel’s parameters and generalized integral operators. The Bessel-Riesz kernel is used in
studying the behavior of the solution of a Schrödinger type equation [3] which is related
to quantum mechanics. In future we will consider it for the generalized Bessel-Riesz
kernel. [11] investigated a new discrete chaotic system with rational fraction including
the symmetry. Furthermore, symmetry properties of a nonlinear two-dimensional space-
fractional diffusion equation with the Riesz potential of the order α ∈ (0, 1) will be further
considered.
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Abstract: A tsunami is a series of waves that are generally caused by a vertical
change in the seabed due to an earthquake beneath or on the seabed. Tsunamis
usually strike coastal areas and result in damage to the shoreline, it can destroy
buildings and roads and even take the lives of those who are in the area. One way
to reduce the impact of a tsunami is to know the dangers of a tsunami, including
natural signs. So, in this paper, it is shown by numerical simulation using the finite
difference method, namely, by adding a barrier to the shallow water wave equation.
The simulation results obtained in the presence of a barrier, show that the Tsunami
waves are split due to hitting the barrier and experience a reduction in wave strength.

Keywords: tsunami; shallow water equation; finite difference method.

Mathematics Subject Classification (2010): 65L12, 76M20.

1 Introduction

Indonesia as a country that is located between three world plates, namely, the Eurasian,
Indoaustralian and Pacific plates, has a high potential for natural disasters [1, 2]. These
plates have a high seismic activity, which causes the emergence of many natural disasters
[3,4], one of which is the occurrence of earthquakes as a primary impact of seismic activity
and tsunamis as a secondary impact [2].

Tsunamis are one of the most dangerous natural disasters and damage the area around
the coast [5]. Tsunamis arise as a result of displacement of large volumes of water due
to earthquakes, volcanic eruptions, landslides or other phenomena that occur above or
below the seabed [6]. The sea waves are not dangerous if their height does not exceed
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1 meter. However, it becomes disastrous when the wave energy is concentrated and the
wavelength is greater than the depth of the sea. When the wave enters the shallow water
zone, the wave velocity at the foreshore decreases sharply and the wave height increases
tenfold [5].

The impact of the tsunami waves causes huge losses to humans, both in terms of
the large number of casualties and the large losses in the economic field. Coastal areas
affected by tsunami waves require a long time and expensive economic resources to restore
[7]. Recorded in the last two decades, there have been 12 tsunamis out of 252 earthquakes
with a total loss of 79.5 trillion rupiah [8]. Based on this, to minimize losses that will
occur, disaster mitigation is needed.

Based on Law of the Republic of Indonesia Number 24 of 2007 concerning disaster
management, mitigation is defined as a series of efforts to reduce disaster risk, both
through physical development and awareness and increased capacity to face disaster
threats. The embodiment of examples of mitigation activities is spatial planning, devel-
opment arrangements, arrangements for infrastructure development and building layout,
as well as the provision of education, counseling and training, both conventional and
modern. In Indonesia, orientation in minimizing disaster risk is more towards emergency
or curative handling and has not yet led to preventive aspects [9]. Therefore, it is neces-
sary to improve the understanding of physical, engineering and social factors related to
disaster mitigation implementation.

According to the initial joint rapid assessment report by the Central BMKG, BNPB,
National Media, regional PUSDALOPS and community responses in the evaluation of
the tsunami early warning system in the event of the Aceh earthquake and tsunami on
April 11, 2012, no one really knew when the tsunami hit an area and how big was the
strength of the tsunami until the time was so critical, it quickly passed and the earthquake
was felt until the impact of the first wave [11]. The danger from tsunami waves is so
unpredictable, sudden and extraordinary, it is almost impossible to avoid it [5]. However,
other countries experiencing similar disasters have carried out several related studies
in minimizing disaster risk by constructing tsunami barriers using analytical research
methods and numerical modeling approaches [5].

The shallow water equation is commonly used in describing fluid problems that are
based on physical conservation. With increased computation capabilities and refinement
of the numerical aspects related to boundary conditions, it is possible to overcome the
inherent limitations of the classical depth mean model. Shallow water equation models
have been widely applied in atmospheric flows, storms, water flows around the pier,
tsunami prediction, and so on.

Research on fluid computing has been widely studied, including the Airway Pressure
Valve [12], Solitary Wave [13], Navier-Stokes Equation [14], Shallow Water Equation [15],
[16]. The shallow water equations can be solved using the finite difference method. The
method used to solve partial differential equations is the finite difference method [17,18].

In this paper, the concept of a tsunami barrier as an obstacle is presented as an
attempt to deal with a complex breakwater configuration. The breakwater is studied to
identify the hydrodynamic induced tsunami.
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2 Research Method

2.1 Finite difference method

The Finite Difference Method is a method used in solving Partial Differential Equations
(PDP) which can be used to approach the Taylor series [19]. The differential equation
is an estimate of the value δ at the calculation points U1,1, U1,2, . . . , Ui,j , . . . for the
estimation it can be done by substituting the derivative of the partial differential equation
using the difference estimate up to [20].

The first derivative can be calculated using the forward difference approach with
∂u
∂x

∂u
∂y and ∂u

∂t of a differential equation based on the Taylor series which can be written
as below:

∂u(x, y, t)

∂x
=

1

△x
(u(x+△x, y, t))− u(x, y, t), (1)

∂u(x, y, t)

∂y
=

1

△y
(u(x, y +△y, t))− u(x, y, t), (2)

∂u(x, y, t)

∂t
=

1

△t
(u(x, y, t+△t))− u(x, y, t). (3)

If the approach is backwards, the first derivatives of ∂u
∂x

∂u
∂y and ∂u

∂t can be written as
below:

∂u(x, y, t)

∂x
=

1

△x
(u(x+△x, y, t))− u(x−△x, y, t), (4)

∂u(x, y, t)

∂y
=

1

△y
(u(x+△x, y, t))− u(x, y −△y, t), (5)

∂u(x, y, t)

∂t
=

1

△t
(u(x+△x, y, t))− u(x, y, t−△t). (6)

Second order center order is obtained:

∂2u

∂x2
=

1

△x2
(u(x+△x, y, t)− 2u(x, y, t)− u(x−△x, y, t)) , (7)

∂2u

∂y2
=

1

△y2
(u(x, y +△y, t)− 2u(x, y, t)− u(x, y −△y, t)) , (8)

∂2u

∂t2
=

1

△t2
(u(x, y, t+△t)− 2u(x, y, t)− u(x, y, t−△t)) . (9)

When using the subscript index i which is used to express the discrete point x, as
well as the subscript index j which is used in expressing the discrete point y, and also
the subscript index n used in expressing the discrete point t, it can be written as the
equation below:

∂2u

∂x2
=

∪n
i+1,j − 2 ∪n

i,j +∪n
i−1,j

∂x2
, (10)

∂2u

∂y2
=

∪n
i,j+1 − 2 ∪n

i,j +∪n
i−1,j

∂y2
, (11)

∂2u

∂t2
=

∪n+1
i,j − 2 ∪n

i,j +∪n−1
i−1,j

∂t2
. (12)
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2.2 Shallow water equation

The shallow water equation is generally used to model a surface wave of water that is
influenced by gravity, for example, a wave flow on the surface of the seashore, lake, river,
or on a smaller domain such as the water surface in a bathtub [16].

Figure 1: Shallow Water System Illustration [20].

The shallow water equation will take effect when the wavelength is greater than the
depth. For a one-dimensional problem, the shallow water equation is stated as follows:

ht + (uh)x = 0, (13)

(hu)t +

(
hu2 +

1

2
gh2

)
x

= 0. (14)

Meanwhile, for a two-dimensional problem, the shallow water equation is stated as
follows:

ht + (hu)x + (hv)y = 0, (15)

(hu)t +

(
hu2 +

1

2
gh2

)
x

+ (huv)y = 0, (16)

(hu)t + (huv)x +

(
hu2 +

1

2
gh2

)
y

= 0, (17)

where g is the Earth’s gravitational constant, h is the height of the sea surface, (u, v) is
the vector of the velocity of the water flow, and hu and hv are the momentum in two
directions [16].

3 Result and Discussion

3.1 Tsunami wave analysis

In this study, the model used is a model of the shallow water equation to simulate the
movement of a tsunami wave that has resistance by using the finite difference method.
The shallow water equation comes from the mass conservation equation and the conser-
vation of linear momentum (Navier-Stokes equation).
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The mass equation in volume is defined as follows:

∂m

∂t
= ρu(x)h(x)− ρu(x+ dx)h(x+ dx)

= −ρ
∂(uh)

∂x
dx,

assuming m = ρh dx, we obtain

∂m

∂t
= −ρ

∂(uh)

∂x
dx,

∂ρh

∂t
dx = −ρ

∂(uh)

∂x
dx,

∂h

∂t
= −∂(uh)

∂x
,

∂h

∂t
+

∂(uh)

∂x
= 0,

ht + (uh)x = 0. (18)

Based on Newton’s laws of motion applied to volume, we define

F = m
du

dt
= −ρgh

∂h

∂x
dx

by applying m = ρhdx, we then obtain

m
du

dt
= −ρgh

∂h

∂x
dx,

ρhdx
du

dt
= −ρgh

∂h

∂x
dx,

du

dt
= −g

∂h

∂x
.

Then the chain rule is applied to d
dt , we obtain

du

dt
=

∂u

∂t
+

dx

dt

∂u

∂x
,

=
∂u

∂t
+ u

∂u

∂x
.

So the equation is expressed by

∂u

∂t
+ u

∂u

∂x
= −g

∂h

∂x
,(

∂u

∂t
+ u

∂u

∂x

)
dx =

(
−g

∂h

∂x

)
dx,

h

(
∂u

∂t
+ u

∂u

∂x

)
= −1

2
gh

∂h

∂x
,

h
∂u

∂t
+ hu

∂u

∂x
= −1

2
gh

∂h

∂x
,

h
∂u

∂t
+ hu

∂u

∂x
+

1

2
gh

∂h

∂x
= 0,

(hu)t +

(
hu2 +

1

2
gh2

)
x

= 0. (19)
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For the problems adopted in this study, the shallow water equation does not have a
Coriolis force. Thus, equation (15) is based on equation (18), while equation (16) and
equation (17) are based on equation (19).

3.2 Discretization of tsunami wave time

Based on the shallow water equation which is approached by the finite difference method,
equations 4, 5 and 6 are substituted in equations 16 and 17 in order to obtain

u(i, j, n+ 1) =
(u(i+ 1, j, n) + u(i− 1, j, n) + u(i, j + 1, n) + u(i, j − 1, n))

4

−1

2

dt

dx

(
u(i+ 1, j, n)2

2
− u(i− 1, j, n)2

2

)
−1

2

dt

dy
v(i, j, n) (u(i, j + 1, n)− u(i, j − 1, n))

−1

2
g
dt

dx
(h(i+ 1, j, n)− h(i− 1, j, n)) ,

v(i, j, n+ 1) =
(v(i+ 1, j, n) + v(i− 1, j, n) + v(i, j + 1, n) + v(i, j − 1, n))

4

−1

2

dt

dy

(
v(i, j + 1, n)2

2
− v(i, j + 1, n)2

2

)
−1

2

dt

dx
u(i, j, n) (v(i+ 1, j, n)− v(i− 1, j, n))

−1

2
g
dt

dy
(h(i, j + 1, n)− h(i, j − 1, n)) ,

h(i, j, n+ 1) =
(h(i+ 1, j, n) + h(i− 1, j, n) + h(i, j + 1, n) + h(i, j − 1, n))

4

−1

2

dt

dx
u(i, j, n) (h(i+ 1, j, n)− b(i+ 1, j))

− (h(i− 1, j, n)− b(i− 1, j))

−1

2

dt

dy
v(i, j, n) (h(i, j + 1, n)− b(i, j + 1))

− (h(i, j − 1, n)− b(i, j − 1))

−1

2

dt

dx
(h(i, j, n)− b(i, j)) (u(i+ 1, j, n)− u(i− 1, j, n))

−1

2

dt

dy
(h(i, j, n)− b(i, j)) (v(i, j + 1, n)− v(i, j − 1, n))

with the following boundary conditions:

u(1, i, n+ 1) =
10

4
u(2, i, n+ 1)− 2u(3, i, n+ 1) +

1

2
u(4, i, n+ 1),

v(1, i, n+ 1) =
10

4
v(2, i, n+ 1)− 2v(3, i, n+ 1) +

1

2
v(4, i, n+ 1),

h(1, i, n+ 1) =
10

4
h(2, i, n+ 1)− 2h(3, i, n+ 1) +

1

2
h(4, i, n+ 1).
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The initial simulation of the formation of a wave (t = 1) is shown in Figure 2. At
t = 1, it is assumed to be the time when the tsunami first appearance on the surface
after a shift in the earth’s plate under the sea. So its first appears on the surface is very
large at the starting point of its appearance, then it travels towards the mainland.

Figure 2: Tsunami Wave Simulation at t = 1.

Figure 2 shows simulation of a tsunami wave that appears to have a height that
exceeds the height of the barrier by a height of 8 meters above sea level. Then, at the
next time, the tsunami waves will move around, one of which being towards the shallow
water where a barrier has been built. Based on the simulation, the tsunami wave will
experience a collision with the barrier in 35 seconds since the initial appearance of the
tsunami.

Figure 3: Tsunami Wave Simulation at t = 40.

The collision of the wave with the barrier is shown in Figure 3. As a result of the
collision with the tsunami wave barrier, it breaks and can be suppressed. The damping
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by the barrier means that the area behind the barrier is not directly affected by the
tsunami. The tsunami waves hit the area behind the barrier due to the impact of the
tsunami from the area that is not protected by the barrier. The impact is not as high as
that of a tsunami wave without a barrier.

Figure 4: Tsunami Wave Simulation at t = 65.

Figure 5: Tsunami Wave Simulation at t = 100.

Figure 4 shows the condition of the tsunami waves behind the damping barrier. The
damping process is carried out continuously by the barrier that has been formed, until
the waves calm down again. This condition is shown in Figure 5.
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4 Conclusion

Numerical solutions and simulations have been carried out for the shallow water equation
to represent a tsunami wave with the construction of a barrier. It is known that the
construction of an obstacle can break up tsunami waves and can reduce the strength of
the waves. Thus, if it is realized, it can really be an effort to reduce the impact of the
tsunami disaster.
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Abstract: In this work, we propose a non-linear system of differential equations that
models the dynamics of transmission of dengue fever. Then, we perform a stability
analysis of this model. In particular, we prove that when the threshold of the model
called the basic reproduction ratio is less than unity, the disease-free equilibrium is
globally asymptotically stable. Furthermore, when this value is greater than unity,
under suitable conditions, the endemic equilibrium is globally asymptotically stable.
Some numerical simulations are provided to illustrate the obtained theoretical results.
We also propose a global sensitivity analysis of the basic reproduction ratio.

Keywords: dengue; general incidence function; mathematical analysis; basic repro-
duction number; Lyapunov function; stability analysis; sensitivity.
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1 Introduction

Mathematical modelling and numerical simulation are important decision tools that can
be used to study and control human and animal diseases [1, 2]. However, to tackle
real situations, the resulting models need to be adapted to each specific disease and its
biological characteristics [3].

From a general point of view, mathematical models are used to predict the behaviour
of a disease in a particular population [4, 5]. In particular, they help to determine if the
disease under consideration will be endemic (i.e., it remains active in the population)
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or not (i.e., it disappears). In this work, we introduce and study a particular mathe-
matical model to estimate the dynamic of the so-called dengue fever disease in a human
population.

Dengue disease is a common arboviral disease in tropical regions and the mediter-
ranean. It is transmitted to humans by the bite of Aedes mosquitoes. Four serotypes
have been recognized, they are denoted by DEN-I, DEN-II, DEN-III, and DEN-IV. These
viruses are carried by two kinds of mosquitoes referred to as Aedes aegypti and Aedes
albopictus which spread the disease through their bite. However, Aedes aegypti has been
the principal vector of dengue virus transmission. Another interesting fact is the shift of
patients phenomena when dengue fever previously attacked children of primary school
age, but now everybody is vulnerable to the fever [6]. Dengue viruses can infect only
a restricted number of vertebrates but it is an essentially human disease. Infection for
any dengue serotype produces permanent immunity to it, but apparently only temporary
cross immunity to other serotypes. Therefore, individuals that live in dengue endemic
areas can have more than one infection of dengue disease. It is considered that human
population growth and the dramatic redistribution of the human population in the urban
centers of developing countries have contributed to the introduction and enhancement of
dengue fever [7].

Mathematical models and methods of non-linear dynamic are used in comparing,
planning, implementing, evaluating and optimizing various detection, prevention, therapy
and control programmes [8, 9]. Thus, mathematical models are a useful tool to better
understand the mechanisms that allow the spread of a dengue epidemic and then to
increase the efficiency of the vector control strategy. There are a number of mathematical
expert models for dengue fever which involve differential equations. In general, they use
compartmental dynamic such as susceptible, infected, removed (SIR) and susceptible,
exposed, infected, removed (SEIR). In [10], the authors formulated stochastic models for
dengue in the presence of Wolbachia. This research aims to measure the effectiveness of
the Wolbachia intervention to reduce dengue transmission. It determines the proportion
of reduction in the basic reproduction number and also the probability of extinction.
Putri et al. (see [11]) proposed the study where the aim is to forecast and analyze the
spread of COVID-19 outbreak in Indonesia by applying machine learning and hybrid
approaches. Abdelhamid Zaghdani (see [9]) formulated a modified SEIR mathematical
model for the coronavirus infected disease-2019 (COVID-19). The author computed the
basic reproduction number (R0) and proposed a qualitative analysis of the local and
global stability of the equilibrium points.

In this paper, our aim is to study the dengue epidemic model presented and studied
in [5] by J. J. Tewa et al. with the law of mass action as the incidence functions. The
similar model was presented and studied in [12]. It appears that the incidence function
form is determinative in the study of the model system. Then, changing the form of
the incidence function can potentially change the behaviour of the system. In this work,
we study a coupling model (Humans and Vectors) with two general incidence functions
given by f , g. From the analysis of the global stability of the equilibrium points, we used
the same technique as in Guiro et al. [13]. We find conditions on the incidence function
to get the stability of the model.

This paper is organized as follows. In Section 2, we describe the mathematical model
which is studied in the paper. In Section 3, we give the equilibrium points, the basic
reproduction number, we define also a positive invariant and attractive set, which will
be used in the studies of the stability of equilibrium points. In Section 4, we study the
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stability of equilibrium points. Section 6 contains the numerical result and comments.
Section 7 is devoted to the analysis of global sensitivity of the parameters in the basic
reproduction number R0. We end by the conclusion.

2 Description of the Model

In this section, we recall the model studied in [5] by J. J. Tewa et al., which is given
with a particular incidence function as follows:

ṠH = µHNH − βHb

NH +m
SHIV − µHSH ,

İH =
βHb

NH +m
SHIV − (µH + γH)IH ,

ṘH = γHIH − µHRH ,

ṠV = A− βV b

NH +m
SV IH − µV SV ,

İV =
βV b

NH +m
SV IH − µV IV .

(1)

The model above is described as follows: the human and vector populations are divided
into classes or states containing susceptible, infective and immune individuals. At time
t, there are the susceptible humans (SH) and the infectious humans (IH), we assume
that the infectious humans recover (or get treated) at a constant rate γH , µH + γH
is the total exit of the infectious humans, RH are the immune humans, SV are the
susceptible mosquitoes and IV are the infectious mosquitoes. The mosquito population
does not have an immune class since their infectious period ends with their death. Let
NH = SH + IH + RH and NV = SV + IV be, respectively, the total human and vector
population at time t. Total death in the mosquito population occurs at a rate µVNV ,
where µV is the per capita mortality rate of mosquitoes. In this model, it is assumed that
the human population has constant size with the birth and death rate constant number
equal to µH . Also, for the mosquito population, it is assumed a constant recruitment
rate A, independent of the actual number of adult mosquitoes. It is admitted that the
flow from the susceptible to the infectious class, for each species, depends on the biting
rate of the mosquitoes, the transmission probabilities, as well as the number of infectious
and susceptible of each species.

Let b denote the biting rate of mosquitoes, which is the average number of bites per
mosquito per day. m denotes the number of alternative hosts available as blood sources,
then the probability that a mosquito chooses a human individual as a host is given by
NH

NH +m
. Thus, it is admitted that a human receives b

NV

NH

NH

NH +m
bites per unit of

time, and a mosquito takes
bNH

NH +m
human blood meals per unit of time. Then, the

infection rates per susceptible human and susceptible vector are given by

βHb
NV

NH

NH

NH +m

IV
NV

=
βHb

NH +m
IV ,

βV b
NH

NH +m

IH
NH

=
βV b

NH +m
IH ,
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respectively. Here βH is the transmission probability from a vector to a human and βV
is the transmission probability from a human to a vector.

The aim of our work is to generalize the model (1) with the incidence function as the
general incidence functions f and g. The interaction between the human population and
the vector population is given by the following diagram, see Figure 1:

SH IH RH

IV SV

Humans

Vectors

Λ̃

A

f
(S

H
, I

V
)

g(
S V
, I

H
)

µH µHµH+γH

µV µV

Figure 1: Transfer diagram for the mathematical model of dengue.

Then, according to Figure 1, we have the following system of five differential equa-
tions: 

ṠH = Λ̃− f(SH , IV )− µHSH ,

İH = f(SH , IV )− (µH + γH)IH ,

ṘH = γHIH − µHRH ,

ṠV = A− g(SV , IH)− µV SV ,

İV = g(SV , IH)− µV IV .

(2)

In the system (2), we use the same constant and the same subdivision of the human
population and the vector population as described in the system (1).

SinceRH does not appear in the first and second equations of system (2), it is sufficient
to analyse the behavior of solutions of the following system:

ṠH = Λ̃− f(SH , IV )− µHSH ,

İH = f(SH , IV )− (µH + γH)IH ,

ṠV = A− g(SV , IH)− µV SV ,

İV = g(SV , IH)− µV IV .

(3)

We assume that the functions f and g satisfy the following hypotheses:

H1 f and g are non-negative C1 functions in the non-negative orthant.

H2 For all (SH , IH , RH , SV , IV ) ∈ R5
+, f(S, 0) = f(0, I) = 0 and g(S, 0) = g(0, I) = 0.

Also, we denote by f1, g1 and f2, g2 the partial derivative of f and g with respect to S
and I.
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Remark 2.1 f and g are two incidence functions which explain the contact between
two species. Therefore, H2 is a natural assumption which means that if there is no
infected in the human and vector populations, then the incidence functions are equal to
zero. The incidence functions are also equal to zero when there is no susceptible in the
human and vector populations.

3 Basic Properties and Basic Reproduction number

In this section, we study the basic properties of the solution of system (3) and also, we
compute the basic reproduction number associated to the system (3).

Proposition 3.1 The positive orthant

{(SH , IH , SV , IV ) ∈ R4, SH ≥ 0, IH ≥ 0, SV ≥ 0, IV ≥ 0}

is positively invariant for system (3).

To prove Proposition 3.1, we need the following lemma.

Lemma 3.1 [14]: Let L : Rn −→ R be a differentiable function, and let a ∈ R. Let
X(x) be the vector field, and let G be the closed set G = {x ∈ Rn : L(x) ≤ a} such that
∇L(x) ̸= 0 for all x ∈ L−1(a) = {x ∈ Rn, L(x) = a}. If < X(x),∇L(x) >≤ 0 for all
x ∈ L−1(a), then the set G is positively invariant.

Proof of Proposition 3.1 Let x = (SH , IH , SV , IV ). Now, we have to prove that
{SH ≥ 0} is positively invariant.

Let L(x) = −SH . L is differentiable and ∇L(x) = (−1, 0, 0, 0) ̸= 0R5 for all x ∈
L(x)−1(0) = {x ∈ R4/L(x) = 0}. The vector field on {SH = 0} is

X(x) =


Λ̃

−(µH + γH)IH

A− g(SV , IH)− µV SV

g(SV , IH)− µV IV

 .

Then < X(x),∇L(x) >= −Λ̃ < 0. This proves that {SH ≥ 0} is positively invariant.
Similarly, we prove that {IH ≥ 0}, {RH ≥ 0}, {SV ≥ 0}, {IV ≥ 0} are positively
invariant. Then {(SH , IH , SV , IV ) ∈ R5, SH ≥ 0, IH ≥ 0, SV ≥ 0, IV ≥ 0} is positively
invariant for system (3). □

Therefore, the model is mathematically well posed and epidemiologically reasonable
since all the variables remain non-negative for all t > 0.

Proposition 3.2 Let (SH , IH , SV , IV ) be the solution of system (3) with the initial
condition (S0H , I0H , S0V , I0V ) and the compact set

D =

{
(SH , IH , SV , IV ) ∈ R4

+,W1 ≤ NH + ϵ,W2 ≤ A

µV
+ ϵ, for ϵ > 0

}
(4)

with W1 = SH + IH and W2 = SV + IV . Then, under the flow described by (3), D is
a positively invariant set that attracts all solutions in R4

+.
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Proof. By adding the first two equations of system (3), we have

dSH

dt
+
dIH
dt

= Λ̃− µHSH − (µH + γH)IH ,

d(SH + IH)

dt
≤ Λ̃− µH(SH + IH),

dW1

dt
≤ Λ̃− µHW1,

dW1

dt
+ µHW1 ≤ Λ̃ + ϵ. (5)

According to [15], from inequation (5), we have

W1(t) ≤
Λ̃

µH
+

ϵ

µH
+ (W1(0)−

Λ̃

µH
− ϵ

µH
)e−µHt, (6)

whereW1(0) = S0H+I0H . Thus, when t −→ +∞,W1(t) ≤
Λ̃

µH
+

ϵ

µH
. Similarly, we prove

thatW2(t) ≤
A

µV
+

ϵ

µV
, whereW1(0) andW2(0) are, respectively, the initial conditions of

W1(t) andW2(t). Thus, as t −→ ∞, 0 ≤ (W1(t),W2(t)) ≤ (NH+
ϵ

µH
,
A

µV
+

ϵ

µV
) and one

can conclude that D is an attractive set. □
Let E = (SH , IH , SV , IV ) be an equilibrium point of (3). Thus, we have

Λ̃− f(SH , IV )− µHSH = 0,

f(SH , IV )− (µH + γH)IH = 0,

A− g(SV , IH)− µV SV = 0,

g(SV , IH)− µV IV = 0.

(7)

By adding the first two and the last two equations (7), we get

SH =
Λ̃− (µH + γH)IH

µH
, SV =

A− µV IV
µV

,

and

E =

(
Λ̃− (µH + γH)IH

µH
, IH ,

A− µV IV
µV

, IV

)
.

Hence, the disease-free equilibrium and the endemic equilibrium of (3) are given by

E0 = (S0
H , I

0
H , S

0
V , I

0
V ) = (

Λ̃

µH
, 0,

A

µV
, 0)

and

E∗ = (S∗
H , I

∗
H , S

∗
V , I

∗
V ) =

(
Λ̃− (µH + γH)I∗H

µH
, I∗H ,

A− µV I
∗
V

µV
, I∗V

)
.

Here, I∗H and I∗V are the design infected human and infected mosquito at endemic period.
The reproduction number of model (3) is obtained by creating the next generation

matrix and funding the maximum eigenvalues of that matrix [16]. The reproduction
number of that model is given by

R0 =

√
f2(S

0
H , 0)g2(S

0
V , 0)

µV (µH + γH)
.
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Theorem 3.1 If R0 > 1, then the model (3) has only a unique endemic equilibrium
E∗.

Proof. Let us define the function ψ(IH , IV ) = (ψ1(IH , IV );ψ2(IH , IV )), where

ψ1(IH , IV ) = f(S0
H − IH , IV )− (µH + γH)IH

and

ψ2(IH , IV ) = g(S0
V − IV , IH)− µV IV .

Hence, it follows that any solution of the equation ψ = 0 in the set (0, S0
H)× (0, S0

V )
corresponds to an equilibrium, with SH , IH , SV , IV > 0. Since H2 holds, one has
ψ(0, 0) = 0 and ψ(S0

H , S
0
V ) ≤ 0. Then the sufficient condition for the equation ψ = 0

to have a solution in (0, S0
H)× (0, S0

V ) is that ψ is increasing at 0. This implies that an
endemic equilibrium exits if

∇ψ(0, 0) > 0, (8)

where

∇ψ(0, 0) = (∇ψ1(0, 0),∇ψ2(0, 0))

= (−f1(H0
s , 0)− µH + γH + f2(S

0
H , 0),−g1(S0

V , 0)− µV + g2(S
0
s , 0)).

Note that f1(S
0
H , 0) = g1(S

0
V , 0) = 0. Then inequality (8) is equivalent to

f2(S
0
H , 0) > µH + γH , and g2(S

0
V , 0) > µV ,

which give

αγf2(S
0
H , 0)g2(S

0
V , 0) > (µH + γH)µV .

That is,

R0 =
f2(S

0
H , 0)g2(S

0
V , 0)

(µH + γH)µV
> 1.

Then system (3) has a unique endemic equilibrium given by

E∗ =

(
Λ̃− (µH + γH)I∗H

µH
, I∗H ,

A− µV I
∗
V

µV
, I∗V

)
. The proof is completed. □

4 Stability of Equilibrium

In this section, we analyze the stability of the diseases-free equilibrium E0 and the en-
demic equilibrium E∗.
H3 For all (SH , IH , SV , IV ) ∈ R4

+,

f(SH , IV ) ≤ f2(S
0
H , 0)IV and g(SV , IH) ≤ g2(S

0
V , 0)IH .

H4 1 <
f2(S

0
H , 0)

µH + γH
and 1 <

g2(S
0
V , 0)

µV
.

Remark 4.1 The assumptions H3 and H4 are the technical assumptions which are
also used to have the global stability of the diseases-free equilibrium E0. Biologically,
the assumption H3 allows for the control of the infection speed.
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Theorem 4.1 Assume that H3 and H4 hold, then if R0 ≤ 1, the diseases-free equi-
librium E0 is globally asymptotically stable on D.

Proof. Let us consider the candidate Lyapunov function

V = µV IH + (µH + γH)IV .

By differentiating V with respect to time, we have

V̇ = µV İH + (µH + γH)İV

= µV f(SH , IV )− µV (µH + γH)IH + (µH + γH)g(SV , IH)− µV (µH + γH)IV

= µV f(SH , IV ) + (µH + γH)g(SV , IH)− µV (µH + γH)(IH + IV ).

By using the assumption H3, we get

V̇ ≤ f2(S
0
H , 0)µV IV + g2(S

0
V , 0)(µH + γH)IH − µV (µH + γH)(IH + IV ).

By adding and subtracting f2(S
0
H , 0)g2(S

0
V , 0)(IH + IV ) in the inequality above, we have

V̇ ≤ f2(S
0
H , 0)g2(S

0
V , 0)(IH + IV ) + f2(S

0
H , 0)IV [µV − g2(S

0
V , 0)]

+g2(S
0
V , 0)IH [(µH + γH)− f2(S

0
H , 0)]− µV (µH + γH)(IH + IV ).

By using the assumption H4, we obtain

V̇ ≤ µV (µH + γ)(IH + IV )

(
f2(S

0
H , 0)g2(S

0
V , 0)

µV (µH + γ)
− 1

)
≤ µV (µH + γH)(IH + IV )(R2

0 − 1).

Since R0 ≤ 1, we have V̇ ≤ 0, with equality only if IH = 0 and IV = 0. According to
LaSalle’s extension to Lyapunov method’s [17], the limit set of each solution is contained
in the largest invariant set, for which IH = 0 and IV = 0, which is the singleton {E0}.
Thus, the unique disease-free equilibrium E0 is globally asymptotically stable on D. □

We assume that the functions f and g satisfy the following assumptions:

H5 For all (SH , IH , SV , IV ) ∈ R4
+, 1 ≤ f(SH , IV )

f(SH , I∗V )
≤ IV
I∗V

and 1 ≤ g(SV , IH)

g(SV , I∗H)
≤ IH
I∗H

.

H6 For all (SH , SV ) ∈ R2
+, Sign(SH − S∗

H) = Sign(f(SH , I
∗
V )− f(S∗

H , I
∗
V ))

and Sign(SV − S∗
V ) = Sign(g(SV , I

∗
H)− g(S∗

V , I
∗
H)).

Remark 4.2 The assumptions H5 and H6 are the technical assumptions which are
used in the proof of the global stability of the endemic equilibrium.

Theorem 4.2 When R0 > 1, then the endemic equilibrium E∗ of system (3) exists
and is globally asymptotically stable on D.

Proof. At the endemic equilibrium E∗ and from the system (3), we have
Λ̃ = f(S∗

H , I
∗
V ) + µHS

∗
H ,

f(S∗
H , I

∗
V ) = (µH + γH)I∗H ,

A = g(S∗
V , I

∗
H) + µV S

∗
V ,

g(S∗
V , I

∗
H) = µV I

∗
V .

(9)
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Let us define the function h on R+ by h(x) = x−1− lnx. The function h is non-negative
for all x ∈ R+. Let us consider the candidate Lyapunov function U defined by

U(t) = UH(t) + UV (t) where UH(t) = USH
(t) + UIH (t) and UV (t) = USV

(t) + UIV (t)

with

USH
= SH − S∗

H −
∫ SH

S∗
H

f(S∗
H , I

∗
V )

f(χ, I∗V )
dχ, UIH = I∗Hh

(
IH
I∗H

)
,

USV
= SV − S∗

V −
∫ SV

S∗
V

g(S∗
V , I

∗
H)

g(χ, I∗H)
dχ, UIV = I∗V h

(
IV
I∗V

)
.

Now, we have to differentiate the function U with respect to time.

U̇SH
=

(
1− f(S∗

H , I
∗
V )

f(SH , I∗V )

)
ṠH

=

(
1− f(S∗

H , I
∗
V )

f(SH , I∗V )

)
(Λ̃− f(SH , IV )− µHSH).

By using the first equation of system (9), we have

U̇SH
= −µH(SH − S∗

H)

(
1− f(S∗

H , I
∗
V )

f(SH , I∗V )

)
+f(S∗

H , I
∗
V )

[
1− f(SH , IV )

f(S∗
H , I

∗
V )

− f(S∗
H , I

∗
V )

f(SH , I∗V )
+
f(SH , IV )

f(SH , I∗V )

]
.

Let us calculate U̇IH :

U̇IH =

(
1− I∗H

IH

)
İH

=

(
1− I∗H

IH

)
(f(SH , IV )− (µH + γH)I∗H

IH
I∗H

).

By using the second equation of system (9), we get

U̇IH =

(
1− I∗H

IH

)
(f(SH , IV )− f(S∗

H , I
∗
V )
IH
I∗H

)

= f(S∗
H , I

∗
V )

(
1− I∗H

IH

)(
f(SH , IV )

f(S∗
H , I

∗
V )

− IH
I∗H

)
= f(S∗

H , I
∗
V )

(
f(SH , IV )

f(S∗
H , I

∗
V )

− IH
I∗H

− I∗H
IH

f(SH , IV )

f(S∗
H , I

∗
V )

+ 1

)
.

Let us now evaluate U̇H :

U̇H = U̇SH
+ U̇IH

= −µH(SH − S∗
H)

(
1− f(S∗

H , I
∗
V )

f(SH , I∗V )

)
+ f(S∗

H , I
∗
V )Q(SH , IV ),
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where Q(SH , IV ) = 2− f(S∗
H , I

∗
V )

f(SH , I∗V )
+
f(SH , IV )

f(SH , I∗V )
− IH
I∗H

− I∗H
IH

f(SH , IV )

f(S∗
H , I

∗
V )

.

By adding and subtracting 1+ln
f(S∗

H , I
∗
V )

f(SH , I∗V )
+ln

f(SH , IV )

f(SH , I∗V )
+ln

IH
I∗H

to and fromQ(SH , IV ),

we get

Q(SH , IV ) =

(
− f(S∗

H , I
∗
V )

f(SH , I∗V )
+ 1 + ln

f(S∗
H , I

∗
V )

f(SH , I∗V )

)
+

(
− IH
I∗H

+ 1 + ln
IH
I∗H

)
+

(
f(SH , IV )

f(SH , I∗V )
− 1− ln

f(SH , IV )

f(SH , I∗V )

)(
− I∗H
IH

f(SH , IV )

f(S∗
H , I

∗
V )

+1+ln
I∗H
IH

f(SH , IV )

f(S∗
H , I

∗
V )

)
= −h

(
f(S∗

H , I
∗
V )

f(SH , I∗V )

)
− h

(
IH
I∗H

)
+ h

(
f(SH , IV )

f(SH , I∗V )

)
− h

(
I∗H
IH

f(SH , IV )

f(S∗
H , I

∗
V )

)
.

Let us calculate U̇SV
:

U̇SV
=

(
1− g(S∗

V , I
∗
H)

g(SV , I∗H)

)
ṠV

=

(
1− g(S∗

V , I
∗
H)

g(SV , I∗H)

)
(A− g(SV , IH)− µV SV ).

By using the third equation of system (9), we obtain

U̇SV
= −µV (SV − S∗

V )

(
1− g(S∗

V , I
∗
H)

g(SV , I∗H)

)
+g(S∗

V , I
∗
H)

(
1− g(SV , IH)

g(S∗
V , I

∗
H)

− g(S∗
V , I

∗
H)

g(SV , I∗H)
+
g(SV , IH)

g(SV , I∗H)

)
.

Let us calculate U̇IV :

U̇IV =

(
1− I∗V

IV

)
İV

= g(S∗
V , I

∗
H)

(
1 +

g(SV , IH)

g(S∗
V , I

∗
H)

− IV
I∗V

− I∗V
IV

g(SV , IH)

g(S∗
V , I

∗
H)

)
.

Let us now evaluate U̇V :

U̇V = U̇SV
+ U̇IV

= −µV (SV − S∗
V )

(
1− g(S∗

V , I
∗
H)

g(SV , I∗H)

)
+ g(S∗

V , I
∗
H)Ψ(SV , IH),

where Ψ(SV , IH) = 2− g(S∗
V , I

∗
H)

g(SV , I∗H)
+
g(SV , IH)

g(SV , I∗H)
− IV
I∗V

− I∗V
IV

g(SV , IH)

g(S∗
V , I

∗
H)
.

By adding and subtracting 1 + ln
g(S∗

V , I
∗
H)

g(SV , I∗H)
+ ln

g(SV , IH)

g(SV , I∗H)
+ ln

IV
I∗V

to and from



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (1) (2023) 79–94 89

Ψ(SV , IH), we have

Ψ(SV , IH) =

(
− g(S∗

V , I
∗
H)

g(SV , I∗H)
+ 1 + ln

g(S∗
V , I

∗
H)

g(SV , I∗H)

)
+

(
− IV
I∗V

+ 1 + ln
IV
I∗V

)
+

(
g(SV , IH)

g(SV , I∗H)
− 1− ln

g(SV , IH)

g(SV , I∗H)

)
+

(
− I∗V
IV

g(SV , IH)

g(S∗
V , I

∗
H)

+ 1 + ln
I∗V
IV

g(SV , IH)

g(S∗
V , I

∗
H)

)
= −h

(
g(S∗

V , I
∗
H)

g(SV , I∗H)

)
− h

(
IV
I∗V

)
+ h

(
g(SV , IH)

g(SV , I∗H)

)
− h

(
I∗V
IV

g(SV , IH)

g(S∗
V , I

∗
H)

)
.

Let ζ = max{f(S∗
H , I

∗
V ); g(S

∗
V , I

∗
H)},

U̇ ≤ −µH(SH − S∗
H)

(
1− f(S∗

H , I
∗
V )

f(SH , I∗V )

)
− µV (SV − S∗

V )

(
1− g(S∗

V , I
∗
H)

g(SV , I∗H)

)
+ζ(Q(SH , IV ) + Ψ(SV , IH)).

By using the assumption H5, we have

h

(
f(SH , IV )

f(SH , I∗V )

)
≤ h

(
IV
I∗V

)
and h

(
g(SV , IH)

g(SV , I∗H)

)
≤ h

(
IH
I∗H

)
,

thus, from the assumption H6, we can see that U̇ ≤ 0. In addition, we can see that
U > 0 for all SH , IH , SV , IV ∈ R+ and U = 0 for SH = S∗

H , IH = I∗H , SV = S∗
V and

IV = I∗V . Then the equilibrium state E∗ is the only positively invariant set of the system
(3) contained in {(SH , IH , SV , IV ) ∈ R4

+;SH = S∗
H , IH = I∗H , SV = S∗

V and IV = I∗V }
and hence, by the asymptotic stability theorem [17], the unique endemic equilibrium
state E∗ is globally asymptotically stable on D. □

5 Examples of Incidence Functions

In this section, we give the examples of incidence functions for which the required hy-
potheses are satisfied.

1. Mass action incidence. These incidence functions are defined by f(SH , IV ) =
α1SHIV and g(SV , IH) = α2SV IH , where α1 is the positive contact rate between a
susceptible human and an infectious mosquito and α2 designs the positive contact
rate between a susceptible mosquito and an infectious human. Then hypotheses
(H1)− (H6) are satisfied and so the global dynamics are determined by the mag-
nitude of the basic reproduction number R0.

2. Saturating incidence. Let f(SH , IV ) = SH
IV

1 + c1IV
and g(SV , IH) =

SV
IH

1 + c2IH
, where c1 and c2 are non-negative constant. Then hypotheses

(H1)− (H6) are satisfied and so the global dynamics are determined by the value
of R0.

3. Standard incidence. These functions are given by f(SH , IV ) =
SHIV
SH + IH

and

g(SV , IH) =
SV IH
SV + IV

. Then the assumptions (H1)− (H6) are satisfied and so the

global dynamics are given by the value of the basic reproduction number R0.
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In the following paragraph, we carry out the numerical simulation taking the mass action
law as the incidence function. But we specify that the dynamics remains the same as
with the other incidence functions.

6 Simulation and Comments

In this section, we carry out the computation work that supports our study. In our
simulation, we used the mass action as the incidence functions which are defined by
f(SH , IV ) = α1SHIV and g(SV , IH) = α2SV IH , where α1 and α2 are positives constants.
We present the graphics which illustrate the evolution of the different classes in two cases:
when R0 ≤ 1 and R0 > 1. The parameter values used in our simulation are: Λ̃ = 200;
µH = 0.3; µV = 0.2; γH = 0.4; α1 = 0.0005; α2 = 0.0021; A = 100. From these
values, we have R0 = 0.87. When we change the values of α1 and α2 to α1 = 0.001 and
α2 = 0.21, we get R0 = 12.25. The software used for the simulation is scilab.

(a) human population, R0 < 1. (b) human population, R0 > 1.

Figure 2: Dynamics of the human population for different magnitudes of R0. Figure 2a
give the dynamic of susceptible, infectious and remove, in model (2). These curves also
indicate that the disease tends to disappear. Figure 2b presents the dynamic of the same
classes, these curves show us that the disease persists in the population.

7 Global Sensitivity Analysis for R0

In this paragraph, we use the notion of sensitivity analysis to show the importance of
different parameters in the basic reproduction number R0. In Subsection 7.1, we define
the notion of sensitivity of some parameter p of the model (2). Subsection 7.2 is devoted
to the calculations of the analytical expressions of the sensitivity indices of different
parameters in the basic reproduction number. In Subsection 7.3, we give a numerical
representation and comments for different sensitivity indice.
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(a) Vector population, R0 < 1. (b) Vector population, R0 > 1.

Figure 3: Dynamics of the vector population for different values of R0. Figure 3a designs
the dynamic of susceptible and infectious mosquitoes, in model (2). The graphs together
also show that the disease tends to disappear. Figure 3b shows the dynamic of the vector
population, these curves indicate that the disease will persist in the population.

7.1 Definition

Let p be a parameter of the mathematical model (2). The parameter p is said to be
sensitive if any small alteration of p causes a significant change in the solution. It is
worthy to note that the parameter p is termed to be locally sensitive if the change in
the value of the parameter p influences the output of the model. In the same way, global
sensitivity takes into account the overall change in the model output as a result of the
change in all parameter values within their respective range [18].

In computing the normalized sensitivity index (℘R0
p ) for the basic reproduction num-

ber R0 for each parameter p, we use the relation given by

℘R0
p =

∂R0

∂p
× p

R0
. (10)

7.2 Analytic representation of the elasticity

We use the law of mass action as an incidence function. The general incidence functions
f and g are defined by the relations f(SH , IV ) = β̃SHIV and g(SV , IH) = ϵSV IH . In
this case, the expression of the basic reproduction number R0 is given by the relation

R0 =

√
β̃ϵΛ̃A

µHµ2
V (µH + γH)

.

The sensitivity indices of different parameters are given as follows.
Using the principle given by (10), we obtain

℘R0

β̃
=

1

2
, ℘R0

ϵ =
1

2
, ℘R0

Λ̃
=

1

2
, ℘R0

A =
1

2
,
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℘R0
γH

= −1

2

γH
µH + γH

, ℘R0
µV

= −1, ℘R0
µH

= −2µH + γH
2

.

Table 1: Parameter description and elasticity value.

Parameter Description Elasticity index

Λ̃ Humans recruitment rate 0.5

β̃ Positive contact rate between IV and SH 0.5
ϵ Positive contact rate between IH and SV 0.5
A Mosquito recruitment rate 0.5
γH Infectious humans who pass in RH -0.28
µV Natural death of mosquito -1
µH Natural death of humans -0.5

7.3 Numerical representation and comments

In this subsection, we give some numerical representation and comments for different
sensitivity indices while the analytical expressions and values are obtained in Subsection
7.2. For the numerical representation, we use the R software and the graph is given in
Figure 4.

Figure 4: Global sensitivity plot.

Parameters with a positive sensitivity index indicate an increase in the transmission of
dengue in the population for an increase in these values. On the other hand, parameters
with a negative sensitivity index mean that an increase in these values leads to a decrease
in the transmission of dengue in the population. For example, the sensitivity index of Λ̃
in R0 is 0.5. This implies that an increase of 1% in the value of Λ̃ leads to an increase
of 0.5% in the value of R0. The sensitivity indices of Λ̃, β̃, ϵ and A are the same, which
means that these parameters have the same impact on the secondary infection rate. In
the same way, the elasticity of µV in R0 is −1 meaning that the increase of 1% in the
value of mosquito mortality implies the decrease of 1% in the value of R0. The fact that
℘R0
µH

= −0.28 means that 1% increase in µV will produce 0.28% decrease in R0. Also,
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the fact that ℘R0
γH

= −0.5 implies that 1% increase in γH will produce 0.5% decrease in
the value of the basic reproduction number.

Thus, we find that the parameter µV , which denotes the mosquito mortality rate, is
a good parameter for controlling the dynamics of dengue transmission. As it increases,
the basic reproduction number R0 decreases more rapidly. However, it is not the only
parameter whose growth leads to a decrease in the basic reproduction number.

8 Conclusion

In this paper, we have studied the dengue disease transmission model, which includes the
human and vector populations with general admission incidence functions. We proved the
existence of the equilibrium and its stability. When the value of the basic reproduction
number R0 is less than unity, the disease-free equilibrium is globally asymptotically
stable, in this case the disease will disappear. When R0 > 1, the endemic equilibrium
exists and it is globally asymptotically stable, in this case the disease will persist in the
population. We used the Lyapunov function to study the stability of our equilibrium
points. We have also presented the numerical simulations, and the evolution of our
curves corroborate with the theoretical results. We carried out a sensitivity study of the
parameters in order to determine the influence of different parameters on the transmission
of the disease. We notice that the parameter µV , which denotes the mortality rate of
the mosquitoes, allows to better control the dynamics of dengue disease transmission. In
our future work we will integrate the spatial distribution of the disease.
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1 Introduction

The study of nonlinear elliptic system of equations

∆uj + gj(uj+1) = 0 in Ω,

uj = 0 on ∂Ω,

}
(1)

where j ∈ {1, 2, 3, · · ·, ℓ}, u1 = uℓ+1, and Ω is a bounded domain in RN , has an important
applications in population dynamics, combustion theory and chemical reactor theory. For
the recent literature on the existence, multiplicity and uniqueness of positive solutions
for (1), see [3–5,8, 9, 11,12] and references therein.

In [2], Akdim, Rhoudaf and Salmani established the existence of entropy solutions
for anisotropic elliptic equations of the form

Au+

n∑
i=1

gi(x, u,∇u) = f,

where Au is a Leray-Lions anisotropic operator. In [1], Aberqi, Bennouna and Elmassoudi
established the existence results for the following nonlinear elliptic equations with some
measure data in Musielak-Orlicz spaces:

Au+ K(x, u,∇u) = µ.

In [6], Dong and Wei established the existence of radial solutions for the following non-
linear elliptic equations with gradient terms in annular domains:

−∆u = g
(
|x|, u, x

|x|
· ∇u

)
in Ωb

a,

u = 0 on ∂Ωb
a,

by using Schauder’s fixed point theorem and the contraction mapping theorem. In [10], R.
Kajikiya and E. Ko established the existence of positive radial solutions for a semipositone
elliptic equation of the form

−∆u = λg(u) in Ω,

u = 0 on ∂Ω,

where Ω is a ball or an annulus in RN . Recently, Son and Wang [13] have studied positive
radial solutions for the nonlinear elliptic systems of the form

∆uj + λKj(|x|)gj(uj+1) = 0 in ΩE,

uj = 0 on |x| = r0,

uj → 0 as |x| → +∞,

where j ∈ {1, 2, 3, · · ·, ℓ}, u1 = uℓ+1, λ > 0, N > 2, r0 > 0, and ΩE is an exterior of a ball,
and established existence, multiplicity and uniqueness results for various nonlinearities
in gj. Inspired by the aforementioned works, in this paper, we apply Krasnoselskii’s fixed
point theorem to derive necessary conditions for the existence of denumerably many
positive radial solutions of the following iterative system of nonlinear elliptic equations
in the exterior of a ball:

∆uj + P(|x|)gj(uj+1) = 0 in RN\Br0 ,

uj = 0 on |x| = r0,

uj → 0 as |x| → +∞,

 (2)
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where j ∈ {1, 2, 3, ···, ℓ}, u1 = uℓ+1, ∆u = div(∇u), N > 2, r0 > 0, Br0 = {u ∈ RN | |u| <
r0}, P =

∏n
i=1 Pi, each Pi : (r0,+∞) → (0,+∞) is continuous, rN−1P is integrable and

may have singularities, and gj : [0,+∞) → R is continuous.
The study of positive radial solutions to (2) reduces to the study of positive solutions

to the following iterative system of two-point boundary value problems:

u′′j (τ) + Q(τ)gj
(
uj+1(τ)

)
= 0, τ ∈ (0, 1),

uj(0) = 0, uj(1) = 0,

}
(3)

where j ∈ {1, 2, 3, · · ·, ℓ}, u1 = uℓ+1, and Q(τ) =
r20

(N−2)2 τ
2(N−1)
2−N

∏n
i=1 Qi(τ), Qi(τ) =

Pi(r0τ
1

2−N ) by a Kelvin type transformation through the change of variables r = |x| and

τ =
(

r
r0

)2−N

. Here, Qi may have singularities on [0, 1]. Thus, for each i ∈ {1, 2, 3, · · ·, n},
we assume that the following conditions hold throughout the paper:

(H1) Qi ∈ Lpi [0, 1], (pi ≥ 1) and may have denumerably many singularities on (0, 1/2).

(H2) There exists a sequence {τk}∞k=1 such that 0 < τk+1 < τk <
1

2
, k ∈ N,

lim
k→∞

τk = τ∗ <
1

2
, lim

τ→τk

Qi(τ) = +∞, k ∈ N, i = 1, 2, 3, · · · , n,

and each Qi(τ) does not vanish identically on any subinterval of [0, 1]. Moreover,
there exists Q∗i > 0 such that

Q∗i < Qi(τ) < ∞ a.e. on [0, 1].

The rest of the paper is organized in the following fashion. In Section 2, we convert
the boundary value problem (3) into the equivalent integral equation which involves the
kernel. Also, we estimate bounds for the kernel which are useful in our main results. In
Section 3, we develop a criteria for the existence of denumerably many positive radial
solutions for (2) by applying Krasnoselskii’s cone fixed point theorem in a Banach space.
Finally, as an application, an example is given to demonstrate our results.

2 Kernel and Its Bounds

In this section, we constructed a kernel to the homogeneous boundary value problem
corresponding to (3) and established certain lemmas for the bounds of the kernel.

Lemma 2.1 Let y ∈ C[0, 1]. Then the boundary value problem

u′′1(τ) + Q(τ)y(τ) = 0, τ ∈ (0, 1),

u1(0) = 0, u1(1) = 0,

}
(4)

has a unique solution

u1(τ) =

∫ 1

0

ℵ(τ, s)Q(s)y(s)ds, (5)

where

ℵ(τ, s) =

{
s(1− τ), 0 ≤ s ≤ τ ≤ 1,

τ(1− s), 0 ≤ τ ≤ s ≤ 1.
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Lemma 2.2 The kernel ℵ(τ, s) has the following properties:

(i) ℵ(τ, s) is nonnegative and continuous on [0, 1]× [0, 1],

(ii) ℵ(τ, s) ≤ ℵ(s, s) for t, τ ∈ [0, 1],

(iii) there exists β ∈ (0, 1
2 ) such that βℵ(s, s) ≤ ℵ(τ, s) for τ ∈ [β, 1− β], s ∈ [0, 1].

Proof. From the definition of kernel ℵ(τ, s), it is clear that (i) and (ii) hold. To
prove (iii), let τ ∈ [β, 1− β] and s ≤ τ, then

ℵ(τ, s)
ℵ(s, s)

=
s(1− τ)

s(1− s)
≥ 1− τ ≥ β,

and for τ ≤ s, we have
ℵ(τ, s)
ℵ(s, s)

=
τ(1− s)

s(1− s)
≥ τ ≥ β.

This completes the proof.
From Lemma 2.1, we note that an ℓ-tuple (u1, u2, · · ·, uℓ) is a solution of the boundary

value problem (3) if and only if

u1(τ) =

∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1.

In general,

uj(τ) =

∫ 1

0

ℵ(τ, s)Q(s)gj
(
uj+1(s)

)
ds, j = 1, 2, 3, · · · , ℓ,

u1(τ) = uℓ+1(τ).

We denote the Banach space C([0, 1],R) by B with the norm ∥u∥ = max
τ∈[0,1]

|u(τ)|. For

β ∈ (0, 1/2), the cone Pβ ⊂ B is defined by

Pβ =
{
u ∈ B : u(τ) ≥ 0, min

τ∈[β, 1−β]
u(τ) ≥ β∥u∥

}
.

For any u1 ∈ Pβ, define an operator Ω : Pβ → B by

(Ωu1)(τ) =

∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1.

Lemma 2.3 For each β ∈ (0, 1/2), Ω(Pβ) ⊂ Pβ and Ω : Pβ → Pβ is completely
continuous.
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Proof. Let β ∈ (0, 1/2). Since gj(uj+1(τ)) is nonnegative for τ ∈ [0, 1], u1 ∈ Pβ.
Since ℵ(τ, s) is nonnegative for all τ, s ∈ [0, 1], it follows that Ω(u1(τ)) ≥ 0 for all
τ ∈ [0, 1], u1 ∈ Pβ. Now, by Lemmas 2.1 and 2.2, we have

min
τ∈[β,1−β]

(Ωu1)(τ)

= min
τ∈[β,1−β]

{∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1

}

≥ β

∫ 1

0

ℵ(s1, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1

≥ β

{∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1

}
≥ β max

τ∈[0,1]
|Ωu1(τ)|.

Thus Ω(Pβ) ⊂ Pβ. Therefore, the operator Ω is completely continuous by standard
methods and by the Arzela-Ascoli theorem.

3 Denumerably Many Positive Radial Solutions

In this section, we establish the existence of denumerably many positive radial solutions
for the system (2) by utilizing the following theorems.

Theorem 3.1 [7] Let E be a cone in a Banach space X and Λ1, Λ2 be open sets
with 0 ∈ Λ1,Λ1 ⊂ Λ2. Let T : E ∩ (Λ2\Λ1) → E be a completely continuous operator such
that

(a) ∥T u∥ ≤ ∥u∥, u ∈ E ∩ ∂Λ1, and ∥T u∥ ≥ ∥u∥, u ∈ E ∩ ∂Λ2, or

(b) ∥T u∥ ≥ ∥u∥, u ∈ E ∩ ∂Λ1, and ∥T u∥ ≤ ∥u∥, u ∈ E ∩ ∂Λ2.

Then T has a fixed point in E ∩ (Λ2\Λ1).

Theorem 3.2 (Hölder’s) Let f ∈ Lpi [0, 1] with pi > 1, for i = 1, 2, · · · , n and
n∑

i=1

1

pi
= 1. Then

n∏
i=1

fi ∈ L1[0, 1] and ∥
∏n

i=1 fi∥1 ≤
∏n

i=1 ∥fi∥pi . Further, if f ∈ L1[0, 1]

and g ∈ L∞[0, 1], then fg ∈ L1[0, 1] and ∥fg∥1 ≤ ∥f∥1∥g∥∞.

Consider the following three possible cases for Pj ∈ Lpi [0, 1] :

n∑
i=1

1

pi
< 1,

n∑
i=1

1

pi
= 1,

n∑
i=1

1

pi
> 1.
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Firstly, we seek denumerably many positive radial solutions for the case

n∑
i=1

1

pi
< 1.

Theorem 3.3 Suppose (H1) − (H2) hold, let {βk}∞k=1 be a sequence with τk+1 <
βk < τk. Let {Rk}∞k=1 and {Sk}∞k=1 be such that

Rk+1 < βkSk < Sk < NSk < Rk, k ∈ N,

where

N = max

{[
β1

r20
(N − 2)2

n∏
i=1

Q∗i

∫ 1−β1

β1

ℵ(s, s)s
2(N−1)
2−N ds

]−1

, 1

}
.

Further, assume that gj satisfies

(A1) gj(u(τ)) ≤ M1Rk for all τ ∈ [0, 1], 0 ≤ u ≤ Rk,
where

M1 <

[
r20

(N − 2)2
∥ℵ∥q

n∏
i=1

∥Qi∥pi

]−1

, ℵ(s) = ℵ(s, s)s
2(N−1)
2−N ,

(A2) gj(u(τ)) ≥ NSk for all τ ∈ [βk, 1− βk], βkSk ≤ u ≤ Sk.

The iterative system (2) has denumerably many radial solutions {(u[k]1 , u
[k]
2 , · · ·, u[k]ℓ )}∞k=1

such that u
[k]
j (τ) ≥ 0 on (0, 1), j = 1, 2, · · ·, ℓ and k ∈ N.

Proof. Consider the sequences {Λ1,k}∞k=1 and {Λ2,k}∞k=1 of the open subsets of B
defined by

Λ1,k = {u ∈ B : ∥u∥ < Rk}, Λ2,k = {u ∈ B : ∥u∥ < Sk}.

Let {βk}∞k=1 be as in the hypothesis and note that τ∗ < τk+1 < βk < τk < 1
2 for all

k ∈ N. For each k ∈ N, define the cone Pβk
by

Pβk
=

{
u ∈ B : u(τ) ≥ 0 and min

τ∈[βk, 1−βk]
u(t) ≥ βk∥u(τ)∥

}
.

Let u1 ∈ Pβk
∩∂Λ1,k. Then u1(s) ≤ Rk = ∥u1∥ for all s ∈ [0, 1]. By (A1) and 0 < sℓ−1 < 1,

we have∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ ≤

∫ 1

0

ℵ(sℓ, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

≤ M1Rk

∫ 1

0

ℵ(sℓ, sℓ)Q(sℓ)dsℓ

≤ M1Rk
r20

(N − 2)2

∫ 1

0

ℵ(sℓ, sℓ)s
2(N−1)
2−N

ℓ

n∏
i=1

Qi(sℓ)dsℓ.

There exists a q > 1 such that

n∑
i=1

1

pi
+

1

q
= 1. By the first part of Theorem 3.2, we have

∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ ≤ M1Rk

r20
(N − 2)2

∥ℵ∥q
n∏

i=1

∥Qi∥pi

≤ Rk.
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It follows, in a similar manner, for 0 < sℓ−2 < 1,

∫ 1

0

ℵ(sℓ−2, sℓ−1)Q(sℓ−1)gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
dsℓ−1

≤
∫ 1

0

ℵ(sℓ−1, sℓ−1)Q(sℓ−1)gℓ−1(Rk)dsℓ−1

≤ M1Rk

∫ 1

0

ℵ(sℓ−1, sℓ−1)Q(sℓ−1)dsℓ−1

≤ M1Rk
r20

(N − 2)2
∥ℵ∥q

n∏
i=1

∥Qi∥pi

≤ Rk.

Continuing with this bootstrapping argument, we get

(Ωu1)(t) =

∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1

≤Rk.

Since Rk = ∥u1∥ for u1 ∈ Pβk
∩ ∂Λ1,k, we get

∥Ωu1∥ ≤ ∥u1∥. (6)

Let τ ∈ [βk, 1− βk]. Then Sk = ∥u1∥ ≥ u1(t) ≥ min
τ∈[βk,1−βk]

u1(t) ≥ βk ∥u1∥ ≥ βkSk. By

(A2) and for sℓ−1 ∈ [βk, 1− βk], we have

∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ ≥

∫ 1−βk

βk

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

≥ NSk

∫ 1−βk

βk

ℵ(sℓ−1, sℓ)Q(sℓ)dsℓ

≥ NSkβ1

∫ 1−β1

β1

ℵ(sℓ, sℓ)Q(sℓ)dsℓ

≥ NSkβ1
r20

(N − 2)2

∫ 1−β1

β1

ℵ(sℓ, sℓ)s
2(N−1)
2−N

ℓ

n∏
i=1

Qi(sℓ)dsℓ

≥ NSkβ1
r20

(N − 2)2

n∏
i=1

Q∗i

∫ 1−β1

β1

ℵ(sℓ, sℓ)s
2(N−1)
2−N

ℓ dsℓ

≥ Sk.
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Continuing with the bootstrapping argument, we get

(Ωu1)(τ) =

∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1

≥ Sk.

Thus, if u1 ∈ Pβk
∩ ∂Λ2,k, then

∥Ωu1∥ ≥ ∥u1∥. (7)

It is evident that 0 ∈ Λ2,k ⊂ Λ2,k ⊂ Λ1,k. From (6),(7), it follows from Theorem 3.1 that

the operator Ω has a fixed point u
[k]
1 ∈ Pβk

∩
(
Λ1,k\Λ2,k

)
such that u

[k]
1 (t) ≥ 0 on (0, 1),

and k ∈ N. Next, setting uℓ+1 = u1, we obtain denumerably many positive solutions

{(u[k]1 , u
[k]
2 , · · ·, u[k]ℓ )}∞k=1 of (3) given iteratively by

uj(τ) =

∫ 1

0

ℵ(τ, s)Q(s)gj(uj+1(s))ds, j = 1, 2, · · · , ℓ− 1, ℓ,

uℓ+1(τ) = u1(τ).

The proof is completed.
For

∑n
i=1 pi = 1, we have the following theorem.

Theorem 3.4 Suppose (H1) − (H2) hold, let {βk}∞k=1 be a sequence with τk+1 <
βk < τk. Let {Rk}∞k=1 and {Sk}∞k=1 be such that

Rk+1 < βkSk < Sk < NSk < Rk, k ∈ N.

Further, assume that gj satisfies (A2) and
(A3) gι(u(τ)) ≤ M2Rk for all 0 ≤ u(τ) ≤ Rk, τ ∈ [0, 1], where

M2 < min

{[
r20

(N − 2)2
∥ℵ∥∞

n∏
i=1

∥Qi∥pi

]−1

, N

}
.

The iterative system (2) has denumerably many radial solutions {(u[k]1 , u
[k]
2 , · · ·, u[k]ℓ )}∞k=1

such that u
[k]
j (τ) ≥ 0 on (0, 1), j = 1, 2, · · ·, ℓ and k ∈ N.

Proof. Let Λ1,k be as in the proof of Theorem 3.3 and let u1 ∈ Pβk
∩ ∂Λ2,k. Again,

u1(τ) ≤ Rk = ∥u1∥ for all τ1 ∈ [0, 1]. By (A3) and 0 < τℓ−1 < 1, we have∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ ≤

∫ 1

0

ℵ(sℓ, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

≤ M1Rk

∫ 1

0

ℵ(sℓ, sℓ)Q(sℓ)dsℓ

≤ M1Rk
r20

(N − 2)2

∫ 1

0

ℵ(sℓ, sℓ)s
2(N−1)
2−N

ℓ

n∏
i=1

Qi(sℓ)dsℓ

≤ M1Rk
r20

(N − 2)2
∥ℵ∥∞

n∏
i=1

∥Qi∥pi

≤ Rk.
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Continuing with this bootstrapping argument, we get

(Ωu1)(t) =

∫ 1

0

ℵ(τ, s1)Q(s1)g1

[∫ 1

0

ℵ(s1, s2)Q(s2)g2

[∫ 1

0

ℵ(s2, s3)Q(s3)g4 · · ·

gℓ−1

[∫ 1

0

ℵ(sℓ−1, sℓ)Q(sℓ)gℓ
(
u1(sℓ)

)
dsℓ

]
· · ·

]
ds3

]
ds2

]
ds1

≤Rk.

Thus, ∥Ωu1∥ ≤ ∥u1∥ for u1 ∈ Pβk
∩ ∂Λ1,k. Now define Λ2,k = {u ∈ B : ∥u∥ < Sk}. Let

u1 ∈ PΩk
∩ ∂Λ2,k and let sℓ−1 ∈ [βk, 1 − βk]. Then the argument leading to (7) can be

applied to the present case. Hence, the theorem is proved.

Finally, we deal with the case
∑n

i=1 pi > 1.

Theorem 3.5 Suppose (H1) − (H2) hold, let {βk}∞k=1 be a sequence with τk+1 <
βk < τk. Let {Rk}∞k=1 and {Sk}∞k=1 be such that

Rk+1 < βkSk < Sk < NSk < Rk, k ∈ N.

Further, assume that gj satisfies (A2) and
(A4) gι(u(τ)) ≤ M3Rk for all 0 ≤ u(τ) ≤ Rk, τ ∈ [0, 1], where

M3 < min

{[
r20

(N − 2)2
∥ℵ∥∞

n∏
i=1

∥Qi∥1

]−1

, N

}
.

The iterative system (2) has denumerably many radial solutions {(u[k]1 , u
[k]
2 , · · ·, u[k]ℓ )}∞k=1

such that u
[k]
j (τ) ≥ 0 on (0, 1), j = 1, 2, · · ·, ℓ and k ∈ N.

Proof. The proof is similar to the proof of Theorem 3.3.

4 Applications

Example 4.1 Consider the following fractional order boundary value problem:

∆uj + P(|x|)gj(uj+1) = 0 in R3\B1,

uj = 0 on |x| = 1,

uj → 0 as |x| → +∞,

 (8)

where j ∈ {1, 2}, u3 = u1, Q(τ) =
1
τ4

∏2
i=1 Qi(τ), Qi(τ) = Pi(

1
τ
), in which

P1(t) =
1

|t− 4| 12
and P2(t) =

1

|t− 3| 12
,
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gj(u) =



5× 10−14, u ∈ (10−4,+∞),

30×10−(4k+2)−5×10−4k−10

10−(4k+2)−10−4k (u− 10−4k) + 5× 10−4k−10,

u ∈
[
10−(4k+2), 10−4k

]
,

30× 10−(4k+2), u ∈
(

1
5
× 10−(4k+2), 10−(4k+2)

)
,

30×10−(4k+2)−5×10−(4k+14)

1
5
×10−(4k+2)−10−(4k+4) (u− 10−(4k+4)) + 5× 10−(4k+14),

u ∈
(
10−(4k+4), 1

5
× 10−(4k+2)

]
,

j = 1, 2. Let

τk =
31

64
−

k∑
r=1

1

4(r + 1)4
, βk =

1

2
(τk + τk+1), k = 1, 2, 3, · · · ,

then

β1 =
15

32
− 1

648
<

15

32

and

τk+1 < βk < τk, βk >
1

5
.

It is easy to see

τ1 =
15

32
<

1

2
, τk − τk+1 =

1

4(k + 2)4
, k = 1, 2, 3, · · · .

Since

∞∑
k=1

1

k4
=

π4

90
and

∞∑
k=1

1

k2
=

π2

6
, it follows that

τ∗ = lim
k→∞

τk =
31

64
−

∞∑
i=1

1

4(i+ 1)4
=

47

64
− π4

360
>

1

5
.

Also,

P1, P2 ∈ Lp[0, 1] and

2∏
i=1

Q∗i =
1√
12

,

∫ 1−β1

β1

ℵ(s, s)s
2(N−1)
2−N ds = 0.2657555992,

β1
r20

(N − 2)2

n∏
i=1

Q∗i

∫ 1−β1

β1

ℵ(s, s)s
2(N−1)
2−N ds = 0.03584271890,

N = max

{[
β1

r20
(N − 2)2

n∏
i=1

Q∗i

∫ 1−β1

β1

ℵ(s, s)s
2(N−1)
2−N ds

]−1

, 1

}
≈ 27.89966918.
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Let q = 2, p1 = p2 = 1/4, then

M1 <

[
r20

(N − 2)2
∥ℵ∥q

n∏
i=1

∥Qi∥pi

]−1

≈ 5.95134× 10−10.

So, let M1 = 5.5× 10−10. In addition, if we take

Rk = 10−4k, Sk = 10−(4k+2),

then

Rk+1 = 10−(4k+4) <
1

5
× 10−(4k+2) < βSk < Sk = 10−(4k+2) < Rk = 10−4k,

and g1, g2 satisfy the following growth conditions:

gj(u) ≤ M1Rk = 5.5× 10−4k−10, u ∈
[
0, 10−4k

]
,

gj(u) ≥NSk = 27.89966918× 10−(4k+2), u ∈
[
1

5
× 10−(4k+2), 10−(4k+2)

]
.

Then all the conditions of Theorem 3.3 are satisfied. Therefore, by Theorem 3.3, the

boundary value problem (8) has denumerably many positive solutions {(u[k]1 , u
[k]
2 )}∞k=1

such that 10−(4k+2) ≤ ∥u[k]j ∥ ≤ 10−4k for each k = 1, 2, 3, · · · , and j = 1, 2.

5 Conclusion

This paper focuses on establishing the existence of denumerably many positive radial
solutions to the iterative system of nonlinear elliptic equations through the application
of one of the most important fixed point theorems known as ”Krasnoselskii’s fixed point
theorem”. These ease the proof of the existence of the positive solution attached to the
system under study.

In the future, we aim to expand this study by adapting some techniques used to
other ideas and extracting new results that show the effectiveness of this study and its
effect in the midst of scientific research. The closest result we would like to prove is
the establishment of the multiple and sign-changing solutions for the iterative system of
nonlinear elliptic equations with critical potential and critical parameters.
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Abstract: In this paper, we consider the existence of weak solutions for some
parabolic (p(b(u)), q(b(u)))-Laplacian problem when (p, q) is a nonlocal quantity. The
novelty of this work is the study of some problems involving the (p, q)-Laplacian op-
erator in the nonlocal case. The motivation to study these nonlocal problems relies
in the fact that in reality, the measurements of some physical quantities are not made
pointwise but through some local averages.

Keywords: (p(b(u)), q(b(u)))-Laplacian; weak solutions; parabolic problem, gener-
alised Sobolev spaces.

Mathematics Subject Classification (2010): 35J60, 35J05, 35-XX, 35Kxx.

1 Introduction

The study of partial differential equations involving the (p, q)-Laplacian generalized sev-
eral types of problems not only in physics, but also in biophysics, plasma physics, and
in the study of chemical reactions. These problems appear, for example, in a general
reaction–diffusion system

ut = −div
[(
ap|∇u|p−2 + bq|∇u|q−2

)
∇u

]
+ f(x, u),

where ap, bq ∈ R+ are some positive constants, the function u generally describes the
concentration, the term div

[(
ap|∇u|p−2 + bq|∇u|q−2

)
∇u

]
corresponds to the diffusion

with coefficient D(u) = ap|∇u|p−2 + bq|∇u|q−2, and f(x, u) is the reaction term related
to the source and loss processes. In general, the reaction term f(x, u) has a polynomial
form with respect to the concentration u.

∗ Corresponding author: mailto:saidotmghart@gmail.com
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Because of the importance of this kind of problems, many authors have investigated the
existence and uniqueness of different types of their solutions [5, 7, 14].

Our main interest in this work is to extend these results to the case when p, q may
depend on the space variable x and the unknown solution u. We consider the case where
the dependency of p, q on u is a nonlocal quantity. Namely, we study the following
parabolic problem:

ut − div(|∇u|p(b(u))−2∇u)− div(|∇u|q(b(u))−2∇u) = f in ΩT = Ω× (0, T ),

u = 0 on Γ = ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(1)

where Ω is a bounded domain of RN , N ≥ 2, T > 0, f, u0 are given data, p : R → [1, +∞)
and q : R → [1, +∞) are real functions such that

p, q are continuous and 1 < α ≤ q < p ≤ β < ∞ (2)

for some constants α, β. We denote by b a mapping from W 1,α
0 (Ω) into R such that

b is continuous and bounded, (3)

i.e., b sends the bounded sets of W 1,α
0 (Ω) into the bounded sets of R. In this case, suitable

examples for the mapping b in (3) can be chosen as

b(u) = ∥∇u∥Lα(Ω).

This kind of problems was first introduced by Chipot and de Oliveira in [9]. The
elliptic version of the problem (1) with local quantities p, q was studied by L. Yanru
in [15], he obtained the existence of weak solutions by means of a singular perturbation
technique and the Schauder fixed point theorem. We were inspired by the work of C.
Zhang and X. Zhang (see [16]), where the authors proved the existence of weak solutions
to the following parabolic p(u)-Laplacian problem:

ut − div
(
|∇u|p(b(u))−2∇u

)
= f in ΩT = Ω× (0, T ),

u = 0 on Γ = ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω.

The fact that in reality, the physical measurements of certain quantities are not made in
a pointwise way but through local averages, is always the motivation to study non-local
problems. The main difficulty in the analysis of these p(u)-problems relies in the fact
that their weak formulations cannot be written as equalities in terms of duality in fixed
Banach spaces. For more interesting features and results, we refer to [6, 9, 13, 15] and
references therein.

This paper is organized as follows. In Section 2, we introduce the basic assumptions
and we recall some definitions, basic properties of generalised Sobolev spaces that we will
use later. Section 3 is devoted to showing the existence of weak solutions to the problem
(1).
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2 Preliminaries

Let Ω be a bounded domain of RN , N ≥ 2, with the Lipschitz-continuous boundary
∂Ω. Given a measurable function h : Ω → [1, ∞), we introduce the variable exponent
Lebesgue space by

Lh(·)(Ω) = { u : Ω → R / ρh(·)(u) :=

∫
Ω

|u(x)|h(x)dx < ∞}. (4)

Equipped with the Luxembourg norm

∥u∥h(·) := inf
{
λ > 0 : ρh(·)

(u
λ

)
≤ 1

}
, (5)

Lh(·)(Ω) becomes a Banach space. If

1 < h− ≤ h+ < ∞, (6)

then Lh(·)(Ω) is separable and reflexive. The dual space of Lh(·)(Ω) is Lh′(·)(Ω), where
h′(x) is the generalised Hölder conjugate of h(x),

1

h(x)
+

1

h′(x)
= 1.

From the definitions of the modular ρh(·)(u) and the norm (5), it can be proved that if
(6) holds, then

min
{
∥u∥h−

h(·), ∥u∥h+

h(·)

}
≤ ρh(·)(u) ≤ max

{
∥u∥h−

h(·), ∥u∥h+

h(·)

}
. (7)

One very useful consequence of (7) is

∥u∥h−
h(·) − 1 ≤ ρh(·)(u) ≤ ∥u∥h+

h(·) + 1. (8)

For any functions u ∈ Lh(·)(Ω) and v ∈ Lh′(·)(Ω), the generalized Hölder inequality holds:∫
Ω

uvdx ≤ (
1

h−
+

1

h′
−
)∥u∥h(·)∥v∥h′(·) ≤ 2∥u∥h(·)∥v∥h′(·). (9)

We define also the generalised Sobolev space by

W 1,h(·)(Ω) := {u ∈ Lh(·)(Ω) : ∇u ∈ Lh(·)(Ω)},

which is a Banach space for the norm

∥u∥1,h(·) := ∥u∥h(·) + ∥∇u∥h(·). (10)

Now, we introduce the following function space:

W
1,h(·)
0 (Ω) := {u ∈ W1,1

0 (Ω) : ∇u ∈ Lh(·)(Ω)},

which we endow with the norm

∥u∥
W

1,h(·)
0 (Ω)

:= ∥u∥1 + ∥∇u∥h(·). (11)
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If h ∈ C(Ω), then the norm in W
1,h(·)
0 (Ω) is equivalent to ∥∇u∥h(·). If h is log-Hölder

continuous, then C∞
0 (Ω) is dense in W

1,h(.)
0 (Ω). Let h be a measurable function in Ω

satisfying 1 ≤ h− ≤ h+ < d and being log-Hölder continuous, then

∥u∥h∗(·) ≤ C∥∇u∥h(·) ∀u ∈ W
1,h(·)
0 (Ω),

for some positive constant C, where

h∗(x) :=

{
Nh(x)
N−h(x) if h(x) < N,

∞ if h(x) ≥ N.

On the other hand, if h− > N , then

∥u∥∞ ≤ C∥∇u∥h(·) ∀u ∈ W
1,h(·)
0 (Ω) ,

where C is another positive constant.

Lemma 2.1 [9] Assume that

1 < α ≤ qn(x) ≤ β < ∞ ∀n ∈ N,

for a.e. x ∈ Ω, for some constants α and β, (12)

qn → q a.e. in Ω, as n → ∞, (13)

∇un → ∇u in L1(Ω)d, as n → ∞, (14)

∥|∇un|qn(x)∥1 ≤ C, for some positive constant C not depending on n. (15)

Then ∇u ∈ Lq(·)(Ω)d and

lim
n→

inf
∞

∫
Ω

|∇un|qn(x)dx ≥
∫
Ω

|∇u|q(x)dx. (16)

3 Main Results

In this section, we will give a reasonable definition for weak solutions and prove the
existence of weak solutions to problem (1). We introduce the functional space

X (ΩT ) :=
{
u ∈ L∞ (

0, T ;L2(Ω)
)
: |∇u| ∈ Lp(b(u)) (ΩT ) , u(·, t) ∈ Vt(Ω) a.e. t ∈ (0, T )

}
,

where
Vt(Ω) :=

{
u ∈ L2(Ω) ∩W 1,α

0 (Ω) : |∇u| ∈ Lp(b(u(·,t)))(Ω)
}
.

In the same way, we define Y (ΩT ) associated with the nonlinear exponent function
q(b(u)). We denote their dual spaces by X (ΩT )

∗
and Y (ΩT )

∗
, respectively.

Now, we give a definition of weak solutions for the parabolic problem (1).

Definition 3.1 A function u ∈ X (ΩT ) ∩ Y (ΩT ) ∩ C
(
[0, T ];L2(Ω)

)
is said to be a

weak solution to problem (1) if for any φ ∈ C1
(
ΩT

)
with φ(·, T ) = 0, we have

−
∫
Ω

u0(x)φ(x, 0)dx+

∫ T

0

∫
Ω

−uφtdxdt

+

∫ T

0

∫
Ω

(
|∇u|p(b(u))−2∇u+ |∇u|q(b(u))−2∇u

)
· ∇φdxdt =

∫ T

0

∫
Ω

fφdxdt.

(17)
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Theorem 3.1 Assume that (2) and (3) hold together with α > 2N/(N + 2), u0 ∈
L2(Ω) and f ∈ Lα′

(ΩT ) . Then there exists at least one weak solution to problem (1) in
the sense of Definition 3.1.

Proof. We denote h = T/N0, where N0 is a positive integer. We consider the
following time-discrete problem:

uk−uk−1

h − div
(
|∇uk|p(b(uk))−2 ∇uk

)
−div

(
|∇uk|q(b(uk))−2 ∇uk

)
= [f ]h ((k − 1)h)) , x ∈ Ω,

uk|∂Ω = 0, k = 1, 2, . . . , N0,
(18)

where the Steklov average [f ]h of f is defined as

[f ]h(x, t) =
1

h

∫ t+h

t

f(x, τ)dτ ∈ Lα′
(Ω).

For k = 1, we consider the problem
u−u0

h − div
(
|∇u|p(b(u))−2∇u

)
− div

(
|∇u|q(b(u))−2∇u

)
= [f ]h(0), x ∈ Ω,

u|∂Ω = 0.
(19)

Set

W = W
1,p(b(u))
0 (Ω) ∩W

1,q(b(u))
0 (Ω) ∩ L2(Ω).

First, we show that the problem (19) has a weak solution u1 ∈ W.

Step 1: Approximation
For each ε > 0, we consider the auxiliary problem

u−u0

h − div
(
|∇u|p(b(u))−2∇u

)
− div

(
|∇u|q(b(u))−2∇u

)
−εdiv

(
|∇u|β−2∇u

)
= [f ]h (0), x ∈ Ω,

u|∂Ω = 0,

(20)

where
2N

N + 2
< α < q(b(u)) ⩽ p(b(u)) ⩽ β < ∞ ∀u ∈ R.

Lemma 3.1 For each ε > 0, there exists a weak solution uε to the problem (20).

Proof. Let ω ∈ L2(Ω) be given. We have

2N

N + 2
< α < q(b(w)) ⩽ p(b(w)) ⩽ β < ∞ for a.e. x ∈ Ω.
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Observing that [f ]h(0) ∈ Lα′
(Ω) ⊂ W−1,α′

(Ω) ⊂ W−1,β′
(Ω), by the usual theory of

monotone operators, there exists a unique solution uw ∈ W 1,β
0 (Ω) such that∫

Ω

uw − u0

h
vdx+

∫
Ω

|∇uw|p(b(w))−2 ∇uw · ∇vdx

+

∫
Ω

|∇uw|q(b(w))−2 ∇uw · ∇vdx+ ε

∫
Ω

|∇uw|β−2 ∇uw · ∇vdx =

∫
Ω

[f ]h(0)vdx (21)

for all v ∈ W 1,β
0 (Ω).

By taking v = uw in (21), we get

1

2h

∫
Ω

u2
wdx+

∫
Ω

|∇uw|p(b(w))
dx+

∫
Ω

|∇uw|q(b(w))
dx

+ ε

∫
Ω

|∇uw|β dx ⩽
1

2h

∫
Ω

u2
0dx+ C ∥∇uw∥Lβ(Ω)

for some positive constant C = C (α, β,Ω, [f ]h(0)) . Then, using Young’s inequality, we
obtain

∥uw∥L2(Ω) + ∥∇uw∥Lβ(Ω) ⩽ C (22)

for some positive constant C = C (α, β,Ω, [f ]h(0), ε, h,N) . Hence

∥uw∥L2(Ω) ⩽ C.

Let us now consider the mapping

T ∋ w → uw ∈ T,

where T := {v ∈ L2(Ω) : ∥v∥2 ⩽ C}. Firstly, we prove that this mapping is continuous,
then by Schauder’s fixed point theorem, it will have a fixed point. We suppose that wn

is a sequence in L2(Ω) such that

wn → w in L2(Ω) as n → ∞. (23)

For every n ∈ N, let un be the solution to the problem (20) associated to w = wn. From
(22), we have

∥∇un∥β ≤ C

for some positive constant C which does not depend on n. It follows that

un ⇀ u in W 1,β
0 (Ω), as n → ∞, (24)

un → u in L2(Ω), as n → ∞. (25)

From (21), one has∫
Ω

un − u0

h
vdx+

∫
Ω

|∇un|p(b(wn))−2 ∇un · ∇vdx+

∫
Ω

|∇un|q(b(wn))−2 ∇un · ∇vdx

+ ε

∫
Ω

|∇un|β−2 ∇un · ∇vdx =

∫
Ω

[f ]h(0)vdx, ∀v ∈ W 1,β
0 (Ω). (26)
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Using the monotonicity, one also has∫
Ω

(un − v)
2

h
dx

+

∫
Ω

(
|∇un|p(b(wn))−2 ∇un + |∇un|q(b(wn))−2 ∇un + ε |∇un|β−2 ∇un

)
∇ (un − v) dx

−
∫
Ω

(
|∇v|p(b(wn))−2∇v + |∇v|q(b(wn))−2∇v + ε|∇v|β−2∇v

)
∇ (un − v) dx ⩾ 0 (27)

for all v ∈ W 1,β
0 (Ω). Taking un − v as a test function in (26) and using (27), we get∫

Ω

u0 − v

h
(un − v) dx+

∫
Ω

[f ]h(0) (un − v) dx

−
∫
Ω

(
|∇v|p(b(wn))−2∇v + |∇v|q(b(wn))−2∇v + ε|∇v|β−2∇v

)
· ∇ (un − v) dx ⩾ 0 (28)

for all v ∈ W 1,β
0 (Ω). From (23), we may assume that for some subsequence

wn → w a.e. in Ω, as n → ∞.

According to the assumptions of p, q and Lebesgue’s theorem, we know that for any
v ∈ W 1,β

0 (Ω),

|∇v|p(b(wn))−2∇v → |∇v|p(b(w))−2∇v strongly in Lβ′
(Ω)d, as n → ∞,

|∇v|q(b(wn))−2∇v → |∇v|q(b(w))−2∇v strongly in Lβ′
(Ω)d, as n → ∞. (29)

Using (25), (28) and (29), we obtain∫
Ω

u0 − v

h
(u− v) dx+

∫
Ω

[f ]h(0) (u− v) dx

−
∫
Ω

(
|∇v|p(b(w))−2∇v + |∇v|q(b(w))−2∇v + ε|∇v|β−2∇v

)
· ∇ (u− v) dx ⩾ 0

for all v ∈ W 1,β
0 (Ω). We take v = u± θz in (3), with z ∈ W 1,β

0 (Ω) and θ > 0, we get

±
[∫

Ω

u0 − (u∓ δz)

h
zdx+

∫
Ω

[f ]h(0)zdx−
∫
Ω

(
|∇(u∓ δz)|p(b(w))−2∇(u∓ δz)

+|∇(u∓ δz)|q(b(w))−2∇(u∓ δz) + ε|∇(u∓ δz)|β−2∇(u∓ δz)
)
· ∇zdx

]
⩾ 0.

By letting θ → 0, we obtain that∫
Ω

u− u0

h
zdx+

∫
Ω

|∇u|p(b(w))−2∇u · ∇zdx+

∫
Ω

|∇u|q(b(w))−2∇u · ∇zdx

+ ε

∫
Ω

|∇u|β−2∇u · ∇zdx =

∫
Ω

[f ]h(0)zdx, ∀z ∈ W 1,β
0 (Ω).

Hence u = uw. Since the limit is uniquely determined and by (25), we get

un → uw strongly in L2(Ω), as n → ∞,
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which proves the continuity of the mapping. By Schauder’s fixed point theorem, this
mapping has a fixed point, and thus concludes the proof of Lemma 3.1.

Step 2: Passage to the limit as ε → 0
From Lemma 3.1, it can be obtained that for each ε > 0, there exists uε ∈ W 1,β

0 (Ω) such
that∫

Ω

uε − u0

h
vdx+

∫
Ω

|∇uε|p(b(uε))−2 ∇uε · ∇vdx+

∫
Ω

|∇uε|q(b(uε))−2 ∇uε · ∇vdx

+ε

∫
Ω

|∇uε|β−2 ∇uε · ∇vdx =

∫
Ω

[f ]h(0)vdx (30)

for all v ∈ W 1,β
0 (Ω).

By taking v = uε in (30), we get

1

2h

∫
Ω

u2
εdx+

∫
Ω

|∇uε|p(b(uε)) dx+

∫
Ω

|∇uε|q(b(uε)) dx+ ε

∫
Ω

|∇uε|β dx

⩽
1

2h

∫
Ω

u2
0dx+

∫
Ω

[f ]h(0)uεdx.

Then we conclude that∫
Ω

|∇uε|p(b(uε)) dx+

∫
Ω

|∇uε|q(b(uε)) dx+
ε

2
∥∇uε∥βLβ(Ω) ⩽ C,

and
∥∇uε∥Lα(Ω) ⩽ C,

where C is a positive constant which does not depend on ε.
Using the compact embeddingW 1,α

0 (Ω) ↪→ L2(Ω) due to the fact that α > 2N/(N+2),
we have

uε ⇀ u in W 1,α
0 (Ω),

∇uε ⇀ ∇u in (Lα(Ω))
N
,

uε → u strongly in L2(Ω),

uε → u a.e. in Ω,

p (b (uε)) → p(b(u)) a.e. in Ω, q (b (uε)) → q(b(u)) a.e. in Ω.

By the application of Lemma 2.1, we get

u ∈ W
1,p(b(u))
0 (Ω) and u ∈ W

1,q(b(u))
0 (Ω).

Therefore,

u ∈ W
1,p(b(u))
0 (Ω) ∩W

1,q(b(u))
0 (Ω).

By using the monotonicity trick in [9], we can establish that (19) has a weak solution
u1(x) in W.

In the same way, we show that (18) has weak solutions uk for k = 2, . . . , N0. It means
that, for every φ ∈ W, we have∫

Ω

uk − uk−1

h
φdx+

∫
Ω

|∇uk|p(b(uk))−2 ∇uk · ∇φdx+

∫
Ω

|∇uk|q(b(uk))−2 ∇uk · ∇φdx

=

∫
Ω

[f ]h ((k − 1)h)φdx. (31)
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For any h = T/N0, we define uh(x, t) by

uh(x, t) =



u0(x), t = 0,

u1(x), 0 < t ⩽ h,
...

...

uj(x), (j − 1)h < t ⩽ jh,
...

...

uN0
(x), (N0 − 1)h < t ⩽ N0h = T.

By taking φ = uk in (31), we obtain

1

2

∫
Ω

u2
kdx+ h

∫
Ω

|∇uk|p(b(uk)) dx+ h

∫
Ω

|∇uk|q(b(uk)) dx

⩽
1

2

∫
Ω

u2
k−1dx+ h ∥[f ]h((k − 1)h)∥Lα′ (Ω) · ∥uk∥Lα(Ω)

⩽
1

2

∫
Ω

u2
k−1dx+ Ch ∥[f ]h((k − 1)h)∥Lα′ (Ω) · ∥∇uk∥Lα(Ω) . (32)

By the Hölder inequality, one has∫
Ω

|∇uk|α dx ⩽ C ∥|∇uk|α∥L(p(b(uk))/α (Ω)

⩽ C

(∫
Ω

|∇uk|p(b(uk)) dx+ 1

)
.

By using Young’s inequality, one deduces that

∥[f ]h((k − 1)h)∥Lα′ (Ω) · ∥∇uk∥Lα(Ω) ⩽ ε

∫
Ω

|∇uk|p(b(uk)) dx+ C.

From (32), we get∫
Ω

u2
kdx+ h

∫
Ω

|∇uk|p(b(uk)) dx+ h

∫
Ω

|∇uk|q(b(uk)) dx ⩽
∫
Ω

u2
k−1dx+ Ch. (33)

By summing up inequalities in (33), we deduce that∫
Ω

u2
h(x, t)dx+

∫ T

0

∫
Ω

(
|∇uh(x, t)|p(b(uh)) + |∇uh(x, t)|q(b(uh))

)
dxdt ⩽

∫
Ω

u2
0dx+ CT.

Hence

∥uh∥L∞(0,T ;L2(Ω)) + ∥∇uh∥Lp(b(uh))(ΩT ) + ∥uh∥Lα
(
0,T ;W

1,p(b(uh))

0 (Ω)
)

+ ∥∇uh∥Lq(b(uh))(ΩT ) + ∥uh∥Lα
(
0,T ;W

1,q(b(uh))

0 (Ω)
) ⩽ C.
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Thus we have for some subsequence still labeled with h and some u,

uh −→ u weakly-* in L∞ (
0, T ;L2(Ω)

)
,

uh −→ u in Lα
(
0, T ;W 1,α

0 (Ω)
)
,

|∇uh|p(b(uh))−2 ∇uh −→ ξ in
(
Lα′

(ΩT )
)N

,

|∇uh|q(b(uh))−2 ∇uh −→ χ in
(
Lα′

(ΩT )
)N

.

Lemma 3.2 u is a weak solution to problem (1).

Proof. For every k ∈ {1, 2, . . . , N0} , we take φ(x, kh) as a test function in (31),
where φ ∈ C1

(
ΩT

)
, φ(·, T ) = 0 and φ(x, t)|Γ = 0, we obtain

1

h

∫
Ω

uk(x)φ(x, kh)dx− 1

h

∫
Ω

uk−1(x)φ(x, kh)dx

−
∫
Ω

(
|∇uk|p(b(uk))−2 ∇uk

)
(x)·∇φ(x, kh)dx−

∫
Ω

(
|∇uk|q(b(uk))−2 ∇uk

)
(x)·∇φ(x, kh)dx

=

∫
Ω

[f ]h((k − 1)h)φ(x, kh)dx.

Using the definition of uh(x, t) and the fact that φ (·, N0h) = 0, we get

h

N0−1∑
k=1

∫
Ω

uh(x, kh)
φ(x, kh)− φ(x, (k + 1)h)

h
dx−

∫
Ω

u0(x)φ(x, h)dx

−h

N0∑
k=1

∫
Ω

(
|∇uh|p(b(uh))−2 ∇uh + |∇uh|q(b(uh))−2 ∇uh

)
(x, kh) · ∇φ(x, kh)dx

= h

N0∑
k=1

∫
Ω

[f ]h((k − 1)h)φ(x, kh)dx. (34)

Since C1
(
ΩT

)
, one has

h

N0∑
k=1

∫
Ω

(
|∇uh|p(b(uh))−2 ∇uh + |∇uh|q(b(uh))−2 ∇uh

)
(x, kh) · ∇φ(x, kh)dx

=

∫ T

0

∫
Ω

(
|∇uh|p(b(uh))−2 ∇uh + |∇uh|q(b(uh))−2 ∇uh

)
(x, τ) · ∇φ(x, τ)dxdτ

+

N0∑
k=1

∫ kh

(k−1)h

∫
Ω

(
|∇uh|p(b(uh))−2 ∇uh

)
(x, τ) · (∇φ(x, kh)−∇φ(x, τ))dxdτ

+

N0∑
k=1

∫ kh

(k−1)h

∫
Ω

(
|∇uh|q(b(uh))−2 ∇uh

)
(x, τ) · (∇φ(x, kh)−∇φ(x, τ))dxdτ

−→
∫ T

0

∫
Ω

ξ · ∇φ(x, τ)dxdτ +

∫ T

0

∫
Ω

χ · ∇φ(x, τ)dxdτ, as h → 0.
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From (34), we deduce that

−
∫ T

0

∫
Ω

u
∂φ

∂t
dx dτ −

∫
Ω

u0(x)φ(x, 0)dx−
∫ T

0

∫
Ω

ξ · ∇φdxdτ

−
∫ T

0

∫
Ω

χ · ∇φdxdτ =

∫ T

0

∫
Ω

fφdxdτ.

By using the monotonicity method as in [9, 15], we show that ξ = |∇u|p(b(u))−2∇u a.e.
in ΩT and χ = |∇u|q(b(u))−2∇u a.e. in ΩT . By applying Lemma 2.1, we can show that

∇u ∈
(
Lp(b(u)) (ΩT )

)N
and ∇u ∈

(
Lq(b(u)) (ΩT )

)N
.

Choosing φ ∈ C∞
0 (ΩT ), we get

−
∫ T

0

∫
Ω

u
∂φ

∂t
dxdτ =

∫ T

0

∫
Ω

ξ · ∇φdxdτ +

∫ T

0

∫
Ω

χ · ∇φdxdτ +

∫ T

0

∫
Ω

fφdxdτ,

therefore ut ∈ X (ΩT )
∗
and ut ∈ Y (ΩT )

∗
. Since u ∈ X (ΩT ) ∩ Y (ΩT ), we can deduce

that u ∈ C
(
[0, T ];L2(Ω)

)
(see [10,12]). Then u is a weak solution to problem (1) in the

sense of Definition 3.1.

4 Conclusion

In this paper, we proved the existence of weak solutions to some parabolic
(p(b(u)), q(b(u)))-Laplacian problems stated in (1). By using a singular perturbation
technique, we proved the existence of weak solutions for the discretized problem asso-
ciated with problem (1). We finished this paper by proving the existence of a solution
for problem (1) as a limit of the solutions of the approximated problem (18). This work
provides a qualitative addition to the study of problems involving the (p, q)-Laplacian
operators, especially the general reaction–diffusion system [5,7, 14].
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