
Nonlinear Dynamics and Systems Theory, 23 (2) (2023) 119–128

A DC Algorithm for Solving non-Uniquely Solvable

Absolute Value Equations

N. Anane ∗, Z. Kebaili and M. Achache

Fundamental and Numerical Mathematics Laboratory, Ferhat Abbas University,
Setif 1, Setif 19000, Algeria.

Received: January 19, 2023; Revised: March 20, 2023

Abstract: In this paper, we deal with the solution of non-uniquely solvable absolute
value equations (AVE) of the form Ax− B |x| = b, where A, B ∈ Rn×n and b ∈ Rn.
To do so, a non-convex quadratic optimization is considered, where its first-order
optimality conditions are reduced to AVEs. Therefore, solving the AVE is equivalent
to computing the local minimum of the non-convex quadratic optimization. Next, by
exploiting the technique of DC programming, a reformulation of the latter as a DC
program is presented. The resulting DC algorithm (DCA) is simple and consists of
solving a successive linear system of equations. Numerical experiments on some non-
uniquely solvable AVE problems are given to illustrate the efficiency of this approach.

Keywords: absolute value equations; DC programming; linear system; nonlinear
modes; nonlinear systems in control theory.

Mathematics Subject Classification (2010): 90C50, 90C33, 14C20, 70K75,
93C10.

1 Introduction

In this paper, we consider the absolute value equation (AVE) of the form

Ax−B |x| = b, (1)

where A, B ∈ Rn×n, b, x ∈ Rn and |x| denotes the component-wise absolute value of the
vector x. When B = I, the AVE (1) reduces to a special form

Ax− |x| = b. (2)

∗ Corresponding author: mailto:nasimaannan@gmail.com.

© 2023 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua119

mailto: nasimaannan@gmail.com.
http://e-ndst.kiev.ua

120 N. ANANE, Z. KEBAILI AND M. ACHACHE

In the last years, the AVEs have become an interesting topic of research in the domain of
mathematical programming and applied sciences. For instance, linear complementarity
problems, bi-matrix games and equilibrium problems, and the hydrodynamic equation
can be reformulated as AVE (1) [4, 7, 9]. For the existence and uniqueness of solutions
of AVE (1) and (2), many results are stated based on different assumptions most of
which are made on matrices A and B. Besides, various numerical methods have been
developed for solving efficiently the uniquely solvable AVEs (see eg. [1, 2, 5, 8, 10, 13, 17]
and the references therein).

The present work deals with AVE (1) that is not necessarily uniquely solvable, i.e., it
has more than one solution. For that, a non-convex quadratic optimization is considered
and its first-order optimality conditions are reduced to AVE (1). Therefore, finding a
solution of AVE (1) is equivalent to computing a local minimum of the corresponding
non-convex quadratic optimization. Next, by exploiting the idea of DC programming
and DC Algorithm (DCA) for non-convex optimization [11, 14, 15], we propose a sim-
ple and efficient iterative method for solving the AVE (1) by its non-convex quadratic
optimization. Hence, a suitable DC decomposition of the DC program is proposed for
which the DC algorithm is applied. Numerical results are reported by some examples of
solvable AVE (1) that can have either a unique solution or many solutions.

At the end of this section, some notations used in the paper are as follows. The
scalar product of two vectors x and y in Rn is denoted by ⟨x, y⟩ = xT y. For x ∈ Rn, the
norm ∥x∥ will denote the Euclidean norm (xTx)1/2 and sign(x) will denote a vector with
components equal to +1, 0 or −1, depending on whether the corresponding component
of x is positive, zero or negative, respectively. In addition, D := ∂|x|=Diag(sign(x))
(D is a diagonal matrix corresponding to sign(x)), where ∂|x| represents the generalized
Jacobian of |x| based on the sub-gradient. λmax(A) stands for the maximal eigenvalue of
a matrix A. The vector of one is denoted by e and the matrix A is positive semi-definite
if xTAx ≥ 0 for any x ∈ Rn. Finally, ∥A∥ := max {∥Ax∥ : x ∈ Rn, ∥x∥ = 1} denotes the
induced norm of A.

The paper is organized as follows. In Section 2, a quadratic formulation of the AVE
(1) is presented. The equivalence of its first optimality conditions to AVE (1) is shown,
where any local minimum of the latter is a solution of the AVE. In Section 3, a brief
outline of DC programming and the DCA is given. The DCA for this formulation is
discussed. In Section 4, some numerical results are reported. A conclusion and future
work outlook end Section 5.

2 Quadratic Formulation of AVE

In this section, we present a quadratic formulation of the AVE (1). It states that when A
and B are given arbitrary matrices, the AVE (1) is equivalent to the first-order optimality
conditions of the following unconstrained quadratic optimization problem:

min
x∈Rn

q(x) =
1

2
⟨Ax−B |x| , x⟩ − ⟨b, x⟩ (3)

or, equivalently,

min
x∈Rn

q(x) =
1

2
⟨Cx− F |x| , x⟩ − ⟨b, x⟩ ,

where C = AT + A, F = BT + B are symmetric matrices, and q(x) is the quadratic
objective function of (3). Indeed, if x satisfies the first-order optimality conditions of

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (2) (2023) 119–128 121

problem (3), then we have ∇q(x) = Ax − B|x| − b = 0. It follows that any local
minimum of (3) is a solution of the AVE (1). In the case where q is convex, any local
minimum is global. Consequently, any unique solution of AVE (1) is a global minimum
of (3).

3 Outline of DC Programming and DCA (Algorithm)

In general, a DC program takes the form

α = inf
x∈Rn

(q (x) = g (x)− h (x)) (Pdc) ,

where g, h are proper lower semi-continuous and convex functions on Rn. The function
q is called a DC function, and g − h is a DC decomposition of q, while g and h are the
DC components of q.
A point x∗ is called a critical point of g−h or a generalized Karush-Kuhn-Tucker (KKT)
point of Pdc (3) if

∂h(x∗) ∩ ∂g(x∗) = ∅,

where ∂ϕ(x) denotes the sub-differential of ϕ(x) at the point x. Based on local optimality
conditions and duality in DC programming, the DCA generates two sequences

{
xk

}
and{

yk
}
in the primal and its dual, respectively. Each iteration k of DCA approximates the

concave part of −g by its affine majorization (that corresponds to taking yk ∈ ∂h(xk)
and minimizing the resulting convex function (that is equivalent to determining a point
xk+1 ∈ ∂g∗(yk) (or yk ∈ ∂g(xk+1)) with g∗ being the conjugate function of g. The
generic form of a DC algorithm is stated as follows.

3.1 Generic DCA scheme

Initialization: Let x0 ∈ Rn be a starting point, k := 0;
Repeat.
Calculate yk ∈ ∂h(xk);
Calculate xk+1 ∈ ∂g∗(yk) ⇒ yk ∈ ∂g(xk+1);
k := k + 1;
Until convergence of

{
xk

}
.

We note that the convergence properties of DCA (Algorithm) can be found in details
in [14].

4 Proposed DC Decompositions

Let ρ > 0 be such that g and h are convex. In this paper, we adopt the following DC
decomposition of q(x):

q (x) = g (x)− h (x) . (4)

4.1 DCA for AVE

The DC decomposition of the objective function q(x) is given by

g(x) =
1

2
xT (A+ ρI)x and h (x) =

1

2
(xT (BD + ρI)x) + xT b

122 N. ANANE, Z. KEBAILI AND M. ACHACHE

with D(x)x = |x|. Then the problem (4) is a DC program in the standard form

min
x∈Rn

{g (x)− h (x)} .

Following the generic DCA scheme and its properties, we detail the ingredients of the
DC algorithm for solving AVE (1).
• An initial point x0 ∈ Rn.
• Computation of yk. We have

yk ∈ ∂h(xk) =
{
▽h(xk)

}
=

{
(ρI +BD(xk))xk + b

}
.

Then
yk = (ρI +BD(xk))xk + b. (5)

• Computation of xk+1. We have

xk+1 ∈ ∂g∗(yk) ⇒ yk ∈ ∂g(xk+1) =
{
▽g(xk+1)

}
=

{
(A+ ρI)xk+1

}
.

Hence
yk = (A+ ρI)xk+1. (6)

Consequently, due to (5) and (6), we deduce that the DC algorithm is based only on
solving the following linear system to obtain at each iteration k, xk+1:

(A+ ρI)xk+1 = (ρI +BD(xk))xk + b. (7)

• Choice of ρ. The choice of the parameter ρ is based on the fact that g and h in (4)
are convex functions. This is equivalent to obtaining for what suitable values of ρ, the
Hessian matrices

∇2g(x) = A+ ρI and ∇2h(x) = ρI +BD

are positive semi-definite (PSD) for any matrixD whose elements are±1 or 0. The matrix
∇2h(x) is a generalized Hessian caused by the non-differentiability of the absolute value
function |x|. We have ∇2g(x) is PSD if vT (A+ ρI)v ≥ 0 for any vector v ∈ Rn. By the
Cauchy-Schwartz inequality, it follows that

vT (A+ ρI)v ≥ ρvT v − ∥A∥∥v∥2 = (ρ− ∥A∥)∥v∥2.

Hence (A+ ρI) is PSD if (ρ−∥A∥) ≥ 0. Therefore, it suffices to take ρ ≥ ∥A∥ such that
∇2g(x) is PSD and so g is convex. Now, according to the linear system (7), the matrix
(A+ ρI) must be invertible to ensure the uniqueness of solution of the latter. Therefore,
we require only the values of ρ which provide the positive definiteness of this matrix, i.e.,
ρ > ∥A∥.

In a similar way, ∇2h(x) is PSD for any diagonal matrix D whose elements are ±1
or 0 if vT (ρI + BD)v ≥ 0 for any v ∈ Rn. Also, by the Cauchy-Schwartz inequality, we
get

vT (ρI +BD)v ≥ ρvT v − ∥B∥∥D∥∥v∥2 ≥ (ρ− ∥B∥)∥v∥2, ∀v ∈ Rn.

Hence, (ρI + BD) is PSD for all diagonal matrix D whose elements are ±1 or 0 if
(ρ − ∥B∥) ≥ 0. So, it suffices to take ρ ≥ ∥B∥ such that (ρI + BD) is PSD. Finally, to
guarantee that g and h are convex, we take ρ as follows:

ρ ≥ ρmin = max(∥A∥ , ∥B∥).

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (2) (2023) 119–128 123

Remark 4.1 When A and B are symmetric matrices, ρ is taken as follows:

ρ ≥ ρmin = max(|λmax(A)|, |λmax(B)|).

Now, according to (7), the DCA for solving AVE (1) is presented in Figure 1 as
follows.

Step 0.
A precision ϵ > 0;
a starting point x0 ∈ Rn, a parameter ρ ≥ ρmin, set k := 0;
for k = 0, 1, ...
Step 1. Compute xk+1 the unique solution of the system (7);

If the relative residue RSD :=
∥xk+1 − xk∥

1 + ∥b∥
≤ ϵ,

then stop and xk+1 is an approximated solution;
If not, set k := k + 1 and go to Step 1.

Figure 1. DC Algorithm for the AVE (1).

4.2 Numerical experiments

In this section, we implement the DC algorithm on MATLAB and run it on three
examples of solvable AVE (1). We denote by x0 the initial point in the algorithm and
x∗ is the true solution of the AVE (1). In the tables of the obtained numerical results,
(Iter) represents the number of iterations produced by the algorithm and CPU(s) is the
elapsed time. In all our implementation, we set ϵ = 10−6. However, the value of ρ > 0 is
taken such that ρ ≥ ρmin, which ensures the convexity of functions g and h as well the
uniqueness of solution of system (7). Our stopping criterion is the residual relative error

RSD:=
∥xk+1 − xk∥

1 + ∥b∥
.

Problem 1. Consider the AVE, where A and B are symmetric matrices:

A =

 0 1 2
1 3 1
2 1 0

 , B =

 2 −1 −2
−1 −1 −1
−2 −1 2

 , b = [−1, 2, −1]T .

In this example, two initial points are taken as x0
1 = [0, 0, 0]T and x0

2 = [0.8, 0.8, 0.8]T .
The iterations number, the CPU(s) times and the RSD for our obtained numerical results
are stated in Table 1.

x0
1 x0

2

ρ ↓ Iter CPU(s) RSD Iter CPU(s) RSD
0.8 18 0.006220 6.2374e− 007 18 0.005908 7.4684e− 007
2.5 20 0.006584 4.5457e− 007 20 0.005955 8.3400e− 007
3 22 0.005967 6.5456e− 007 23 0.005950 5.5641e− 007
ρmin 25 0.010668 5.6823e− 007 26 0.010063 4.6759e− 007
10 45 0.006927 8.1837e− 007 55 0.008193 8.7384e− 007

Table 1.

124 N. ANANE, Z. KEBAILI AND M. ACHACHE

This example of the AVE has at least two solutions, namely,

x∗
1 = [−1, 0.5,−1]T and x∗

2 =

[
2

3
,
1

6
,−2

]T
.

Problem 2. In this example of AVEs, the matrices A and B are not symmetric and
sparse, where

A =



−5 0 0 · · · 0 0
0 10 0 · · · 0 0

0 0 10 · · · 0
...

...
...

. . .
. . . 0 0

0 0 0 · · · 10 0
0 0 · · · 0 1 10


and

B =



10 0 0 · · · 0 0
0 10 0 · · · 0 0

0 0 10 · · · 0
...

...
...

. . .
. . . 0 0

0 0 0 · · · 10 0
0 0 · · · 0 12 3


.

For b = [−15, −20, · · · , −20, −26]T , this example of the AVE admits at least two solu-
tions, namely,

x∗
1 = [1, −1, · · · , −1]T and x∗

2 = [−3, −1, · · · , −1]T .

The initial point is taken as

x0 = [0, −0.5, · · · ,−0.5]T .

Then the obtained numerical results with different size of n are shown in Table 2.

Size n ρmin 20 100

100
iter

CPU(s)
RSD

8
0.033798

7.4215e− 007

22
0.075531

9.9621e− 007

125
0.188725

9.6155e− 007

1500
iter

CPU(s)
RSD

7
5.151696

5.5016e− 007

19
13.954670

8.7237e− 007

100
72.055416

9.6398e− 007

3000
iter

CPU(s)
RSD

7
37.860998

3.8919e− 007

18
95.470970

9.2569e− 007

93
495.417176

9.9564e− 007

4000
iter

CPU(s)
RSD

6
93.784429

9.6312e− 007

18
258.326851

8.0178e− 007

91
1381.492980
9.6084e− 007

Table 2.

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (2) (2023) 119–128 125

For b = [−15, 0, · · · , 0, 0]T , this example of the AVE admits at least two solutions,
namely,

x∗
1 = [1, 0.5, · · · , 0.5, 0.7857]T andx∗

2 = [−3, 0, · · · , 0]T .

Our starting point in the algorithm for this example is taken as

x0 = [0,−0.5, · · · ,−0.5,−0.5]T .

The obtained numerical results with different size of n are shown in Table 3.

Size n ρmin 20 100

100
iter

CPU(s)
RSD

21
0.096385

7.6245e− 007

30
0.075766

9.9112e− 007

172
0.220155

9.5277e− 007

1500
iter

CPU(s)
RSD

21
18.841956

7.6245e− 007

30
21.227324

9.9112e− 007

172
123.081425

9.5277e− 007

3000
iter

CPU(s)
RSD

21
116.801005

7.6245e− 007

30
154.224982

9.9112e− 007

172
882.412729

9.5277e− 007

4000
iter

CPU(s)
RSD

21
294.215091

7.6245e− 007

30
415.582267

9.9112e− 007

172
2381.140220
9.5277e− 007

Table 3.

Next, we deal with two examples of the AVEs which have a unique solution (see
[2, 3, 5]).

Problem 3. Consider the AVE, where

A =



−100 10 0 · · · 0 0
10 −100 10 · · · 0 0

0 10 −100 · · · 0
...

...
...

. . .
. . . 10 0

0 0 0 · · · −100 10
0 0 · · · 0 10 −100


,

and

B =



−1 0.1 0 · · · 0 0
0.1 −1 0.1 · · · 0 0

0 0.1 −1 · · · 0
...

...
...

. . .
. . . 0.1 0

0 0 0 · · · −1 0.1
0 0 · · · 0 0.1 −1


, b = (A− I)e.

The numerical results with different size of n and with the initial point

x0 = [0.1, · · · , 0.1]T

126 N. ANANE, Z. KEBAILI AND M. ACHACHE

are shown in Table 4.

Size n ρmin 10 35

100
iter

CPU(s)
RSD

3
0.013635

3.1876e− 009

6
0.009922

4.9863e− 007

37
0.044977

9.8002e− 007

1500
iter

CPU(s)
RSD

2
4.078783

4.2391e− 007

6
5.753656

5.0486e− 007

38
34.767854

7.7765e− 007

3000
iter

CPU(s)
RSD

2
30.693572

2.9980e− 007

6
39.979472

5.0511e− 007

38
259.846648

7.7887e− 007

4000
iter

CPU(s)
RSD

2
70.940271

2.5965e− 007

6
95.628900

5.0518e− 007

38
605.623886

7.7918e− 007

Table 4.

Now, with and without spacing other initial point x0 = [1, 2, · · · , n]T , the numerical
results are shown in Table 5.

Size n ρmin 10 35

100
iter

CPU(s)
RSD

3
0.022255

2.4503e− 007

8
0.011792

6.1149e− 007

53
0.055950

9.6970e− 007

1500
iter

CPU(s)
RSD

3
5.803212

9.5316e− 007

10
8.905991

1.8358e− 007

64
58.258065

9.9229e− 007

3000
iter

CPU(s)
RSD

4
44.731209

3.3368e− 009

10
71.126180

3.7840e− 007

67
458.376902

9.3035e− 007

4000
iter

CPU(s)
RSD

4
113.000257

3.8532e− 009

10
156.209290

5.0839e− 007

68
1065.611029
9.6915e− 007

Table 5.

This example is uniquely solvable and for b = (A− I)e, the solution is

x∗ = [1.0215, 1.0226, 1.0227, · · · , 1.0227, 1.0226, 1.0215]T .

Problem 4. Consider the AVE, where

A =



−25, 5 −2, 5 0 · · · 0 0
−2, 5 −25, 5 −2, 5 · · · 0 0

0 −2, 5 −25, 5 · · · 0
...

...
...

. . .
. . . −2, 5 0

0 0 0 · · · −25, 5 −2, 5
0 0 · · · 0 −2, 5 −25, 5


,

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (2) (2023) 119–128 127

and

B =



0, 6 −0, 01 0 · · · 0 0
−0, 01 0, 6 −0, 01 · · · 0 0

0 −0, 01 0, 6 · · · 0
...

...
...

. . .
. . . −0, 01 0

0 0 0 · · · 0, 6 −0, 01
0 0 · · · 0 −0, 01 0, 6


, b = (A− I) e.

The numerical results with different size of n and with the starting point

x0 = [1, 2, · · · , n]T ,

are summarized in Table 6.

Size n ρmin 0.1 9

100
iter

CPU(s)
RSD

6
0.025191

8.3305e− 008

5
0.011119

2.2208e− 007

50
0.056285

8.6286e− 007

1500
iter

CPU(s)
RSD

6
7.978099

1.7720e− 007

6
5.531777

9.9349e− 008

55
51.736639

9.0413e− 007

3000
iter

CPU(s)
RSD

6
57.503325

2.7508e− 007

6
39.353990

2.0998e− 007

56
370.091181

9.3224e− 007

4000
iter

CPU(s)
RSD

6
132.305173

3.4085e− 007

6
93.222723

2.4286e− 007

57
942.398052

8.3854e− 007

Table 6.

This example has a unique solution if σmin(A) > σmax(B) in [2, 3, 5] given by

x∗ = [1.0144, 1.0134, 1.0135, · · · , 1.0135, 1.0134, 1.0144]T .

5 Concluding Remarks

In this paper, we have used the technique of DC programming for solving absolute
value equations. For that, a quadratic optimization is considered, where its first-order
optimality conditions are equivalent to the AVE (1) and where any local minimum of the
quadratic problem is a solution of the AVE. Further, based on a suitable decomposition
of the objective function q(x), we have designed a simple DC algorithm for solving the
AVE (1). Numerical results illustrate that the DC algorithm is efficient for solving some
solvable AVE problems that can have either one unique solution or many solutions. A
good topic of research in the future is suggesting other DC decompositions of the objective
q(x) in order to design other DC algorithms for solving the AVE (1).

Our results have a great importance in application such as the solution of a linear
complementarity problem including the linear and convex quadratic optimization, bima-
trix games, interval matrix, hydrodynamic equation.

128 N. ANANE, Z. KEBAILI AND M. ACHACHE

Acknowledgment

This work has been supported by: La Direction Générale de la Recherche Scientifique
et du Développement Technologique (DGRSDT-MESRS), under project PRFU number
C00L03UN190120190004. Algérie.

References

[1] L. Abdellah, M. Haddou and T. Migot. Solving absolute value equations using complemen-
tarity and smoothing functions. Journal of Computational and Applied Mathematics 327
(2018) 196–207.

[2] M. Achache. On the unique solvability and numerical study of absolute value equations. J.
Numer. Anal. Approx. Theory 48 (2) (2019) 112–121.

[3] M. Achache and N. Anane. On unique solvability and Picard’s iterative method for absolute
value equations. Bulletin of the Transilvani aUniversity of Brasov 1(63) (1) (2021) 13–26.

[4] M. Achache. Complexity analysis and numerical implementation of a short-step primal-dual
algorithm for linear complementarity problems. Applied Mathematics and computation. 216
(2010) 1889–1895.

[5] M. Achache and N. Hazzam. Solving absolute value equations via complementarity and
interior-point methods. Journal of Nonlinear Functional Analysis. 2018 (1) (2018) 1–10.

[6] N. Anane and M. Achache. Preconditioned conjugate gradient methods for absolute value
equations. J. Numer. Anal. Approx. Theory 48 (1) (2020) 3–14.

[7] A. Yu. Aleksandrov. Delay-Independent Stability Conditions for a Class of Nonlinear Me-
chanical Systems. Nonlinear Dynamics and Systems Theory 21 (5) (2021) 447–456.

[8] L. Caccetta, B. Qu and G. Zhou. A globally and quadratically convergent method for
absolute value equations. Computational Optimization and Applications 48 (1) (2011) 45–
58.

[9] R.W. Cottle, J.S. Pang and R.E. Stone. The linear Complementarity Problem. Academic
Press, New-York, 1992.

[10] M. Hladik. Bounds for the solution of absolute value equations. Computational Optimization
and Applications 69 (1) (2018) 243–266.

[11] Z. Kebaili and M. Achache. Solving non monotone affine variational inequalities problem
by DC programming and DCA. Asian-European Journal of Mathematics 13 (1) (2020)
2050067 (8 pages).

[12] O.L. Mangasarian and R.R. Meyer. Absolute value equations. Linear Algebra and Applica-
tions. 419 (2-3) (2006) 359–367.

[13] O.L. Mangasarian. A generalized Newton method for absolute value equation. Optimization
Letters 3 (1) (2009) 101–108.

[14] T. Pham Dinh and H.A. Le Thi. Convex analysis approach to dc programming. Theory,
algorithms and applications. Acta Math. Vietnam 22 (1) (1997) 289–355.

[15] T. Pham Dinh and H.A. Le Thi. A DC optimization algorithm for solving the trust-region
subproblem. SIAM Journal on Optimization 8 (2) (1998) 476–505.

[16] J. Rohn. On unique solvability of the absolute value equations. Optimization Letters (3)
(2009) 603–606.

[17] J. Rohn. An algorithm for computing all solutions of an absolute value equation. Optimiza-
tion Letters (6) (2012) 851–856.

	Introduction
	Quadratic Formulation of AVE
	Outline of DC Programming and DCA (Algorithm)
	Generic DCA scheme

	 Proposed DC Decompositions
	DCA for AVE
	Numerical experiments

	Concluding Remarks

