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Abstract: A modified harmonic balance method (MHBM) has been exhibited for
operating the damped Duffing oscillator with varying coefficients and periodic exter-
nal forces. The mentioned technique is able to convert a set of nonlinear algebraic
equations into a set of linear algebraic equations using only a nonlinear algebraic
equation and it makes the simplest form of the system and requires less computa-
tional effort than the classic harmonic balance method (HBM). On the contrary, a
set of nonlinear algebraic equations is required to solve by the numerical technique
in classic HBM. As a result, it needs a heavy computational attempt. The obtained
results have been compared with the numerical solutions attained by the fourth order
Runge-Kutta method in the Figures and Table. It is mentioned that the obtained
results display a strong similarity with the corresponding numerical results.
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1 Introduction

Differential equations are a very important branch of science and engineering. They
are linear or nonlinear differential equations. Actually, a greater portion of the real life
physical and engineering problems are related to nonlinear differential equations. Solu-
tions of differential equations provide a detailed information regarding the behavior of
the systems. In this regard, nonlinear oscillators are very important in all areas of sci-
ence and engineering. The appropriate solutions of these nonlinear oscillators are rarely
obtained. Therefore, many researchers and scientists have focused their attention on de-
veloping numerical techniques as well as analytical methods. Numerical techniques are
procedures for determining the true values for a set of discrete points. The true values
are attained by the process of incremental steps. The proper initial guess values are
required to perform the numerical techniques. Commonly, these techniques are compar-
atively simple but sometimes they need massive computational attempts and appropriate
primary approximate values to achieve the desired solutions. Also, the numerical tech-
niques are unable to provide overall feature of the nonlinear dynamical systems. It is
also not possible to know the amplitude and phase by the numerical techniques. In con-
trast, analytical approximation methods have become more interesting to the scientists,
physicists, engineers and applied mathematicians because of their analytical expression
and suitability for parametric study. Many analytical approximation methods have been
investigated for handling nonlinear dynamical systems, for example, the perturbation
method [1- 10], homotopy analysis technique [11,12], homotopy perturbation technique
[13-16], variational iteration technique [17,18], harmonic balance method (HBM) [19-
28], modified multi-level residue harmonic balance method [25- 27], modified harmonic
balance method (HBM) [28-33], etc. The perturbation methods [1- 10] are broadly used
techniques for dealing with weakly nonlinear dynamical systems. Jones [8] investigated
a technique to improve the scope of precision of the classical perturbation technique
for large as well as small parameters. Cheung et al.[9] modified the Lindstedt–Poincare
technique based on the idea of Jones [8]. Alam et al.[10] developed a modified Lindstedt-
Poincare method to control oscillators with strong nonlinearities. The HBM and MHBM
are also impressive methods for obtaining periodic solutions of nonlinear oscillators. In
this method, the truncated Fourier series is selected as the trial solution of the nonlinear
oscillators. According to the classical HBM, a set of nonlinear algebraic equations is
handled by a numerical technique to find the values of the unknown coefficients. This
method has been revised by some authors [18-28]. Rahman et al.[20] applied the HBM
to study the Van der Pol equation. Wagner and Lentz [21] investigated the HBM for
detecting the solutions to nonlinear oscillators. Wu [22] presented the HBM for the Yao-
Cheng oscillator. Yeasmin et al. [24] presented an analytical technique to solve the free
vibration problems with quadratic nonlinearity based on the HBM. Rahman and Lee
[25] and Rahman et al. [26] exhibited a modified multi-level residue HBM. Hasan et
al.[27] developed a multi-level residue harmonic balance solution for the nonlinear nat-
ural frequency of axially loaded beams with an internal hinge. Lee [28] presented an
analytical solution for nonlinear multimode beam vibration using a modified harmonic
balance approach and Vieta’s substitution. Ullah et al. [29] exhibited MHBM to solve
forced vibration problems with strong cubic and quadratic nonlinearities. Ullah et al.[30]
extended this method to forced vibration problems with generalized nonlinearities. Fur-
ther, Ullah et al.[31] exhibited the MHBM for the forced Van der Pol vibration equation.
Recently, Ullah et al. [32] have exhibited the MHBM for free vibration analysis of non-
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linear axially loaded beams. Ullah et al.[33] have handled a modified forced Van der Pol
vibration equation using a modified harmonic balance method. Kandil et al.[35] have
exhibited a HBM to obtain the steady-state solutions of the nonlinear problems. Alam
et al. [36] have solved some strongly nonlinear oscillators with a combination of the mod-
ified Lindstedt-Poincare and the homotopy perturbation methods. Uddin and Sattar [34]
developed an analytical procedure to solve the damped Duffing equation with varying
coefficients without periodic external force combining KBM and homotopy perturbation
methods. It is observed that MHBM has been remaining untouched for the controlling
forced Duffing equation with varying coefficients and damping with strong nonlinearity.
To fulfill this gap, a MHBM has been proposed to control the damped Duffing oscillator
with varying coefficients and periodic external forces. The proposed technique reduces
the heavy computational effort that cannot be avoided in the classical HBM.

2 Method

We guess a damped nonlinear oscillator [29-33, 34] with varying coefficients and periodic
external force

ẍ+ 2k ẋ+ e−τx+ ϵf(x) = F cos(ωt), (1)

where the dots above denote differentiation with respect to time t, 2k is the coefficient of
viscous damping, f(x) is a certain nonlinear function, ϵ is a positive parameter which is
not necessarily small, τ = ϵt is the slow varying time, F and ω represent the amplitude
and frequency of excitation, respectively. All of the parameters are positive. According
to the proposed method, the approximate solution of Eq.(1) is assumed [29-33]to be of
the following form:

x = c1 cos(ωt) + d1 sin(ωt) + c3 cos(3ωt) + d3 sin(3ωt) + . . . , (2)

where c1, d1, c3, d3... are unknown coefficients in the Fourier series. Now, differentiating
Eq.(2) twice with respect to t and then putting into Eq.(1) and expanding f(x) as a
truncated Fourier series expansion and then comparing similar harmonics, we accomplish
the following set of algebraic equations

c1(−ω2 + e−τ ) + 2d1kω + ϵA1(c1, d1, c3, d3, ...) = F, (3a)

d1(−ω2 + e−τ )− 2c1kω + ϵB1(c1, d1, c3, d3, ...) = 0, (3b)

c3(−9ω2 + e−τ ) + 6d3kω + ϵA3(c1, d1, c3, d3, ...) = 0, (3c)

d3(−9ω2 + e−τ )− 6c3kω + ϵB3(c1, d1, c3, d3, ...) = 0. (3d)

Deducting ω2 from the Eqs.(3b)-(3d), utilizing Eq.(3a), and removing the terms whose
responses are small, we get Eqs.(3a)-(3d) in the form

ω2 = e−τ + 2d1kω/c1 + ϵA1(c1, d1, c3, d3, ...)− F/c1, (4a)

− 2c1kω − 2d21kω/c1 − ϵA1(c1, d1, c3, d3, ...) + ϵB1(c1, d1, c3, d3, ...) + d1F/c1 = 0, (4b)

−8c3e
−τ−18c3d1kω/c1+6d3kω−ϵA1(c1, d1, c3, d3, ...)+ϵA3(c1, d1, c3, d3, ...)−9c3F/c1 = 0,

(4c)

−8d3e
−τ−18d1d3kω/c1+6c3kω−ϵA1(c1, d1, c3, d3, ...)+ϵB3(c1, d1, c3, d3, ...)+9d3F/c1 = 0.

(4d)
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Utilizing Eq.(4b), terminating ω from the Eqs.(4c)-(4d) and taking into account only
the linear terms of c3, d3, a set of linear algebraic equations of c3, d3 is achieved. After
simplifying, c3, d3 are acquired in terms of c1,d1. Finally, inserting c3, d3 in Eq.(4b), and
expanding d1 into a power series of λ(k, ω, F ), we acquire

d1 = l0 + l1λ+ l2λ
2 + l3λ

3 + . . . , (5)

where l0, l1, l2, . . . are the functions of c1 and λ is a small parameter. After inserting
c3, d3 and d1 in Eq.(4a) and solving, c1 is obtained. Systematically, d1, c3 and d3 are
obtained.

3 Example

Consider a nonlinear damped oscillator having varying coefficients with periodic external
force [29-33, 34] of the following form:

ẍ+ 2k ẋ+ e−τx+ ϵx3 = F cos(ωt). (6)

The solution of Eq.(6) is supposed as [29-33]

x(t) = c1 cos(ωt) + d1 sin(ωt) + c3 cos(3ωt) + d3 sin(3ωt). (7)

Eq.(7) is treated as the truncated Fourier series. The unknown constants c1, d1, c3 and d3
are to be found to get the desired results. Putting Eq.(7) in Eq.(6) and then comparing
the coefficients of similar harmonics and removing the terms whose effects are negligible,
we carry out

c1e
−τ − c1ω

2 + 3ϵc31/4 + 3ϵc21c3/4 + 3ϵc1c
2
3/2 + 2kωd1 + 3ϵc1d

2
1/4

− 3ϵc3d
2
1/4 + 3ϵc1d1d3/2 + 3ϵc1d

2
3/2 = F,

(8a)

− 2kωc1 + d1e
−τ − d1ω

2 + 3ϵc21d1/4− 3ϵc1c3d1/2 + 3ϵc23d1/2 + 3ϵd31/4

+ 3ϵc21d3/4− 3ϵd21d3/4 + 3ϵd1d
2
3/2 = 0,

(8b)

ϵc31/4 + c3e
−τ − 9c3ω

2 + 3ϵc21c3/2 + 3ϵc33/4− 3ϵc1d
2
1/4 + 3ϵc3d

2
1/2

+ 6kωd3 + 3ϵc3d
2
3/4 = 0,

(8c)

− 6kωc3 + 3ϵc21d1/4− ϵd31/4 + d3e
−τ − 9d3ω

2 + 3ϵc21d3/2 + 3ϵc23d3/4

+ 3ϵd21d3/2 + 3ϵd33/4 = 0.
(8d)

Deducting ω2 from the Eqs.(8b)-(8d), utilizing Eq.(8a), and removing the terms whose
responses are small, we receive

− 8kωc21 + 4Fd1 − 9ϵc21c3d1 − 8kωd21 + 3ϵc3d
3
1 + 3ϵc31d3 − 9ϵc1d

2
1d3 = 0, (9a)

ϵc41 + 36Fc3 − 32c1c3e
−τ − 21ϵc31c3 − 72kωc3d1 − 3ϵc21d

2
1 − 21ϵc1c3d

2
1

+ 24kωc1d3 = 0,
(9b)

− 24kωc1c3 + 3ϵc31d1 − ϵc1d
3
1 + 36Fd3 − 32c1d3e

−τ − 21ϵc31d3 − 72kωd1d3

− 21ϵc1d
2
1d3 = 0.

(9c)
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Figure 1: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) for ω = 10, ϵ = 0.5, k = 0.5, F = 20.

Utilizing Eq.(9a), terminating ω from the Eqs.(9b) and (9c) and taking into account
only the linear expressions of c3, d3 and omitting the expressions whose effects are in-
significant, we obtain

8ϵkc61 + 288kFc21c3 − 256kc51c3e
−τ − 168ϵkC3

1c3 − 16ϵkc41d
2
1 − 256kc1c3d

2
1e

−τ

− 16ϵkc41d
2
1 − 256kc1c3d

2
1e

−τ − 336ϵkc31c3d
2
1 − 24ϵkc21d4 − 168ϵkc1c3d

4
1 = 0,

(10a)

24ϵkc51d1 + 16ϵkc31d
3
1 − 8ϵkc1d

5
1 + 288kFc21d3 − 256kc31d3e

−τ − 168ϵkc51d3

− 256kc1d
2
1d3e

−τ − 336ϵkc31d
2
1d3 − 168ϵkc1d

4
1d3 = 0.

(10b)

By simplifying Eqs.(10a) and (10b), c3 and d3 are obtained as follows:

c3 = ϵc1(c
4
1 − 2c21d

2
1 − 3d41)e

−τ

/(−36Fc1e
τ + 32c21 + 21ϵc41e

τ + 32d21 + 42ϵc21d
2
1e

τ + 21ϵd41e
τ ),

(11a)

d3 = ϵd1(−c41 − 2c21d
2
1 + d41)e

τ

/(36Fc1e
τ − 32c21 − 21ϵc41e

τ − 32d21 − 42ϵc21d
2
1e

τ − 21ϵd41e
τ ).

(11b)

Inserting c3 and d3 in Eq.(9a) and expanding d1 into a power series of λ, we acquire

d1 = l0 + l1λ+ l2λ
2 + l3λ

3 + . . . , (12)

where λ = 2kω/E, l0 = 2c21kω/F , l1 = 16c41k
2ω2/F 2, l2 = 16c61k

3ω3/F 3, l3 =
80c81k

4ω4/F 4. Finally, after inserting c3, d3 and d1 into Eq.(8a) and solving, c1 is ob-
tained. Systematically, d1, c3 and d3 are obtained.

4 Results and Discussion

The proposed method is easy and straightforward. We have successfully applied this
technique to solve the strongly nonlinear forced dynamical damped problems with vary-
ing coefficients and cubic nonlinearity. The solutions have been assimilated with the
corresponding numerical outcomes to rationalize the precision and the correctness of
the mentioned scheme. Comparisons between the solutions acquired by the mentioned
scheme and the numerical technique have been displayed in Figs. 1–5 for nonlinear forced
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Figure 2: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) for ω = 10, ϵ = 1.0, k = 1.0, F = 15.

Figure 3: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) for ω = 3, ϵ = 0.1, k = 0.1, F = 10.

Figure 4: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) for ω = 3, ϵ = 0.5, k = 0.2, F = 10.

vibration problems with varying coefficients for various damping. Moreover, the phase
planes have been traced for different values in Figs. 6 and 7.

Geometrical representation is very important to visualize the behavior of the physical
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Figure 5: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) for ω = 3, ϵ = 0.1, k = 0.1, F = 20.

Figure 6: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) in the phase plane when ω = 10, ϵ = 0.5, k = 0.5, F = 20.

systems since it provides an overall view of the behavior of the nonlinear dynamical
systems. The approximate methods have become more interesting to the scientists,
physicists, engineers and applied mathematicians because of their analytical expression
and suitability for parametric study. From the figures presented, it is noticed that the
obtained results have agreed nicely with the numerical results determined by the fourth
order Runge-Kutta method. In Table 1, a comparison between the results obtained by
the proposed method and the numerical method is given. From the figures and table,
it is observed that the acquired outcomes comply almost accurately with the numerical
outcomes acquired by the fourth order Runge-Kutta technique.

5 Conclusion

A MHBM is exhibited for managing nonlinear forced dynamical equations with varying
coefficients and damping. The convenience of the mentioned scheme is that only one
nonlinear equation is requisite to handle instead of a set of nonlinear algebraic equations.
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Figure 7: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) in the phase plane when ω = 3, ϵ = 0.1, k = 0.1, F = 10.

Table 1: Comparison between the outcomes achieved by the mentioned and the numerical
techniques.

E = 15, ω = 10, E = 20, ω = 10,
ϵ = 0.1, k = 0.1 ϵ = 0.5, k = 0.5

Time, t Analytical Numerical Analytical Numerical
Solution, xapp Solution, xnu Solution, xapp Solution, xnu

0 -0.151 -0.151 -0.2 -0.2
0.5 -0.046 -0.046 -0.076 -0.076
1 0.125 0.125 0.157 0.157
1.5 0.117 0.117 0.165 0.165
2 -0.059 -0.059 -0.063 -0.061
2.5 -0.151 -0.15 -0.201 -0.89
3 -0.026 -0.026 -0.051 -0.051
3.5 0.136 0.134 0.172 0.17
4 0.103 0.103 0.148 0.148
4.5 -0.077 -0.077 -0.088 -0.085
5 -0.147 -0.146 -0.88 -0.86

It requires less computational effort than the harmonic balance method. The outcomes
acquired by the mentioned technique show a nice similarity with the numerical outcomes
in the figures and table. The mentioned scheme may play an important role for tackling
the forced dynamical systems with varying coefficients and damping.
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