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Abstract: We consider a quasistatic contact problem for thermo-elasto-viscoplastic
material with thermal effects. The contact is modeled with the normal damped
response condition, associated to Coulomb’s law of dry friction. A variational formu-
lation of the model is derived, and the existence of a unique weak solution is proved.
The proofs are based on the arguments of evolutionary quasivariational inequality,
the classical result of nonlinear first order evolution inequalities, and the fixed point
arguments. We also study the dependence of the solution and prove a convergence
result.
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1 Introduction

Scientific research and recent papers in mechanics are articulated around two main com-
ponents, one devoted to the laws of behavior and other devoted to the boundary con-
ditions imposed on the body. The boundary conditions reflect the binding of the body
with the outside world. The frictional contact between deformable bodies can be fre-
quently found in industry and everyday life. Because of the importance in metal forming
and automotive industry, a considerable effort has been made towards the modeling and
numerical simulations of contact problems and the engineering literature concerning this
topic is rather extensive. An excellent reference in the field of contact problems with
or without friction is [8]. The constitutive law with internal variables has been used in
various publications in order to model the effect of internal variables on the behavior
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of real bodies such as metal and rocks polymers. Some of the internal state variables
considered by many authors are the spatial display of dislocation, the work-hardening
of materials, the absolute temperature and the damage fields. The cases of hardening,
temperature and other internal state variables were considered in [2, 5, 17, 18], general
models for contact processes with thermal effects can be found in [4, 10, 19]. Elastic
or viscoelastic frictional contact problems, with thermal considerations, can be found
in [1,3,14] and the references therein. The purpose of this paper is to make the coupling
of an elasto-viscoplastic material with thermal effects and friction. We study a quasistatic
problem of frictional contact with the normal damped response condition and the asso-
ciated version of Coulomb’s law of dry friction. We derive a variational formulation of
the problem and prove that the proposed model has a unique weak solution by using the
evolutionary quasivariational inequality. Also, we study the continuous dependence of
the weak solution of the problem and prove a convergence result.

The paper is structured as follows. In Section 2, we present notation and some
preliminaries. The model is described in Section 3, where the variational formulation is
given. In Section 4, we present our existence and uniqueness result and the proof is based
on the arguments for functional analysis concerning the evolutionary quasivariational
inequality, the classical result for nonlinear first order evolution inequalities and the
fixed point arguments. In Section 5, we study the dependence of the solution and prove
a convergence result.

2 Notation and Preliminaries

In this section, we list the assumptions on the data, derive a variational formulation
for the contact problem (9)–(18) and state our main existence and uniqueness result,
Theorem 4.2. To this end, we need to introduce some notation and preliminary material.

We recall that the inner products and the corresponding norms on Rd and Sd are
given by

u.v = uivi, ∥v∥ = (v.v)
1
2 ∀u, v ∈ Rd,

σ.τ = σijτij , ∥τ∥ = (τ.τ)
1
2 ∀σ, τ ∈ Sd.

Here and everywhere in this paper, i, j run from 1 to d, the summation over repeated
indices is used and the index which follows the comma represents the partial derivative.
We use the classical notation for Lp and Sobolev spaces associated to Ω and Γ. Moreover,
we use the notation H, H , H1 and H1 for the following spaces:

H = L2 (Ω)
d
=

{
v = (vi) / vi ∈ L2 (Ω)

}
,

H =
{
σ = (σij) / σij = σji ∈ L2 (Ω)

}
,

H1 = {u = (ui) / ε(u) ∈ H} ,
H1 = {σ ∈ H / Div σ ∈ H} .

The spaces H, H, H1 and H1 are the real Hilbert spaces endowed with the canonical
inner products given by

(u, v)H =

∫
Ω

u.vdx, (σ, τ)H =

∫
Ω

σ.τdx,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H , (σ, τ)H1

= (σ, τ)H + (Div σ,Div τ)H ,
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and the associated norms ∥.∥H , ∥.∥H , ∥.∥H1
and ∥.∥H1

, respectively. Here and below, we
use the notation

ε (v) = (εij (v)) , εij (v) =
1

2
(vi,j + vj,i) ∀v ∈ H1 (Ω)

d
,

Div τ = (τij,j) ∀τ ∈ H1.

For every element v ∈ H1, we also write v for the trace of v on Γ and we denote by vν
and vτ the normal and tangential components of v on Γ given by vν = v.ν, vτ = v− vνν.
We also denote by σν and στ the normal and the tangential traces of a function σ ∈ H1,
and we recall that when σ is a regular function, then σν = (σν).ν, στ = σν − σνν, and
the following Green’s formula holds:

(σ, ε (v))H + (Div σ, v)H =

∫
Γ

σν.vda ∀v ∈ H1.

Let T > 0. For every real Banach space X, we use the notation C(0, T ;X) and C1(0, T ;X)
for the space of continuous and continuously differentiable functions from [0, T ] to X, re-
spectively; C(0, T ;X) is a real Banach space with the norm ∥f∥C(0,T ;X) = max

t∈[0,T ]
∥f(t)∥X ,

while C1(0, T ;X) is a real Banach space with the norm ∥f∥C1(0,T ;X) = max
t∈[0,T ]

∥f(t)∥X +

max
t∈[0,T ]

∥∥∥ .

f(t)
∥∥∥
X
. Finally, for k ∈ N and p ∈ [1,∞], we use the standard notation for the

Lebesgue spaces LP (0, T ;X) and for the Sobolev spaces W k,p(0, T ;X). Moreover, for a
real number r, we use r+ to represent its positive part, that is, r+ = max {0, r}. More-
over, if X1 and X2 are real Hilbert spaces, then X1 × X2 denotes the product Hilbert
space endowed with the canonical inner product (., .)X1×X2

.
Let X be a real Hilbert space with the inner product (.,.)X and the associated norm

∥.∥, and consider the problem of finding u : [0, T ] → X such that
(Au̇(t), v − u̇(t))V + (Bu(t), v − u̇(t))V + j (u̇(t), v)
−j

( .
u(t),

.
u(t)

)
⩾

(
f(t), v − .

u(t)
)
V

∀v ∈ X, t ∈ [0, T ] .
u(0) = u0.

(1)

To study problem (1), we need the following assumptions.
The operator A : X → X is Lipschitz continuous and strongly monotone, i.e.,

a) There exists LA > 0 such that
∥Au1 −Au2∥X ⩽ LA ∥u1 − u2∥X ∀u1, u2 ∈ X,
c) There exists mA > 0 such that

(Au1 −Au2, u1 − u2)X ⩾ mA ∥u1 − u2∥2X ∀u1, u2 ∈ X.

(2)

The nonlinear operator B : X → X is Lipschitz continuous, i.e.,{
There exists LB > 0 such that
∥Bu1 −Bu2∥X ⩽ LB ∥u1 − u2∥X ∀u1, u2 ∈ X.

(3)

The functional j : X ×X → R satisfies the following conditions:
a) j(u, .) is convex and i.s.c on X for all u ∈ X.
b) There exists α > 0 such that
j(u1, v2) + j(u1, v1) + j(u2, v1) + j(u2, v2)
⩽ α ∥u1 − u2∥X ∥v1 − v2∥X , ∀u1, u2, v1, v2 ∈ X.

(4)
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f ∈ C(0, T ;X), (5)

u0 ∈ X, (6)

mA > α. (7)

We have the following existence and uniqueness result which can be found in [16].

Theorem 2.1 Assume that (2)-(7) hold. Then there exists a unique solution u to
problem (1). Moreover, the solution satisfies u ∈ C1([0, T ] ;X).

3 Mechanical and Variational Formulations

We consider a thermo-elasto-viscoplastic body which occupies a bounded domain Ω ⊂
Rd (d = 2.3) with a Lipschitz continuous boundary Γ that is divided into three disjoint
measurable parts Γ1,Γ2 and Γ3 such that meas Γ1 > 0. Let T > 0 and let [0, T ] be the
time interval of interest. The body is clamped on Γ1 × (0, T ), so the displacement field
vanishes there. The surface tractions of density f2 act on Γ2× (0, T ), and the body force
of density f0 acts in Ω× (0, T ). The contact between the body and the foundation, over
the contact surface Γ3, is modeled with the normal damped response and the associated
general version of Coulomb’s law of dry friction. Moreover, the process is quasistatic, i.e.,
the intertial terms are neglected in the equation of motion. The material is assumed to
behave according to the general elasto-viscoplastic constitutive law with thermal effects
given by

σ = Aε
( .
u
)
+ Fε (u) +

∫ t

0

G
(
σ (s)−Aε

( .
u (s)

)
, ε (u (s))

)
ds−Mθ (t) , (8)

where σ denotes the stress tensor, u represents the displacement field,
.
u is the velocity,

ε (u) is the small strain tensor, and θ is the temperature field. Here, A and F are non-
linear operators describing the purely viscous and the elastic properties of the material,
respectively. G is a general nonlinear constitutive function describing the viscoplastic
behavior of the material. M = (mij) represents the thermal expansion tensor. We use
dots for derivatives with respect to the time variable t. It follows from (8) that at each
time moment, the stress tensor σ(t) is split into two parts: σ(t) = σV (t) + σR(t), where
σV (t) = Aε

( .
u
)
represents the purely viscous part of the stress, whereas σR(t) satisfies a

rate-type thermo-elasto-viscoplastic relation

σR(t) = Fε (u) +

∫ t

0

G
(
σR (s) , ε (u (s))

)
ds−Mθ (t) .

The evolution of the temperature field θ is governed by the heat equation (see [1]), ob-
tained from the conservation of energy, and defined by the following differential equation
for the temperature:

.

θ − div(k∇θ) = q −M∇ .
u,

where K = (kij) represents the thermal conductivity tensor, div(k∇θ) = (kijθ,i),i and q
represents the density of volume heat sources.

The associated temperature boundary condition on Γ3 is described by

kijθ,inj = −ke (θ − θR) + hτ

(∣∣ .uτ

∣∣) on Γ3 × (0, T ),
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where θR is the temperature of the foundation, ke is the heat exchange coefficient between
the body and the obstacle and hτ : Γ3 ×R+ → R+ is a given tangential function.

Then, the classical formulation of the mechanical problem is as follows.
Problem P : Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ :

Ω× [0, T ] → Sd and a temperature θ : Ω× [0, T ] → R such that

σ = Aε
( .
u
)
+ Fε (u) +

∫ t

0

G
(
σ (s)−Aε

( .
u (s)

)
, ε (u (s))

)
ds (9)

−Mθ (t) in Ω× (0, T ) ,

.

θ − div(k∇θ) = q −M∇ .
u in Ω× (0, T ) , (10)

Div σ + f0 = 0 in Ω× (0, T ) , (11)

u = 0 on Γ1 × (0, T ) , (12)

σν = f2 on Γ2 × (0, T ) , (13)

− σν = pν
( .
uν

)
on Γ3 × (0, T ) , (14)

∥στ∥ ⩽ µpν
( .
uν

)
∥στ∥ < µpν

( .
uν

)
⇒ .

uτ = 0
∥στ∥ = µpν

( .
uν

)
⇒ ∃λ ⩾ 0 στ = −λ

.
uτ

on Γ3 × (0, T ) , (15)

− kij
∂θ

∂ν
= ke (θ − θR)− hτ

(∣∣ .uτ

∣∣) on Γ3 × (0, T ) , (16)

θ = 0 on ( Γ1 ∪ Γ2)× (0, T ) , (17)

u (0) = u0, θ (0) = θ0 in Ω. (18)

We now provide some comments on the equations and conditions of problem (9)–(18).
First, (9)-(10) represent the thermo-elasto-viscoplastic constitutive law and the evo-

lution equation of the heat field, respectively. (11) is the equilibrium equation. (12)
and (13) represent the displacement and traction boundary conditions, respectively.
Conditions (16) and (17) represent the temperature boundary conditions, where (17)
means that the temperature vanishes on (Γ1 ∪ Γ2) × (0, T ). Conditions (14) and (15)
are Colomb’s friction law, where µ ⩾ 0, λ ⩾ 0, and they state a general normal damped
response condition, where

.
uν represents the normal velocity, pν is a prescribed function,

σν is the normal stress,
.
uτ denotes the tangential velocity and στ represents the tangen-

tial force on the contact boundary. Denote by u0 and θ0 the initial displacement and the
initial temperature, respectively. To simplify the notation, we do not indicate explicitly
the dependence of various functions on the variables x ∈ Ω ∪ Γ and t ∈ [0, T ] . To obtain
a variational formulation of the problem (9)–(18), we need additional notations. Let E
denote the closed subspace of H1 (Ω) given by

E =
{
γ ∈ H1 (Ω) / γ = 0 on Γ1 ∪ Γ2

}
.

Let us now consider the closed subspace of H1 defined by

V = {v ∈ H1/ v = 0 on Γ1} .
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Since meas (Γ1) > 0, the following Korn’s inequality holds:

∥ε (v)∥H ⩾ ck ∥v∥H1
∀v ∈ V, (19)

where ck > 0 is a constant which depends only on Ω and Γ1. On the space V , we consider
the inner product and the associated norm given by

(u, v)V = (ε (u) , ε (v))H , ∥v∥V = ∥ε(v)∥H ∀u, v ∈ V. (20)

It follows from Korn’s inequality that ∥.∥H1
and ∥.∥V are equivalent norms on V . There-

fore (V, ∥.∥V ) is a real Hilbert space. Moreover, by the Sobolev trace theorem and (20),
there exists a constant c0 > 0 depending only on the domain Ω , Γ1 and Γ3 such that

∥v∥L2(Γ3)
d ⩽ c0 ∥v∥V ∀v ∈ V. (21)

In the study of the mechanical problem (9)–(18), we assume that the viscosity operator
A : Ω× Sd → Sd satisfies the conditions:

(a) There exists a constant LA > 0 such that
∥A (x, ε1)−A (x, ε2)∥ ⩽ LA ∥ε1 − ε2∥ ∀ε1, ε2 ∈ Sd, a.e.x ∈ Ω.
(b) There exists a constant mA > 0 such that

(A (x, ε1)−A (x, ε2)) . (ε1 − ε2) ⩾ mA ∥ε1 − ε2∥2 , ∀ε1, ε2 ∈ Sd, a.e.x ∈ Ω.
(c) The mapping x 7→ A (x, ε) is Lebesgue measurable on Ω, for any ε ∈ Sd.
(d) The mapping x 7→ A (x, 0) ∈ H.

(22)

The elasticity operator F : Ω× Sd × R → Sd satisfies the conditions:
(a) There exists a constant LF > 0 such that
∥F (x, ε1)−F (x, ε2)∥ ⩽ LF ∥ε1 − ε2∥ ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(b) The mapping x → F (x, ε) is Lebesgue measurable on Ω, for any ε ∈ Sd.
(c) The mapping x → F (x, 0) ∈ H.

(23)
The visco-plasticity operator G : Ω× Sd × Sd → Sd satisfies the conditions:

(a) There exists a constant LG > 0 such that
∥G (x, σ1, ε1)− G (x, σ2, ε2)∥ ⩽ LG(∥ε1 − ε2∥+ ∥σ1 − σ2∥)
∀ε1, ε2, σ1, σ2 ∈ Sd, a.e. x ∈ Ω.
(b) The mapping x → G (x, σ, ε) is Lebesgue measurable on Ω, for any ε, σ ∈ Sd.
(c) The mapping x → G (x, 0, 0) ∈ H.

(24)
The contact function pν : Γ3 × R → R+ satisfies the conditions:

(a) There exists a constant Lν ≻ 0 such that
∥pν (x, r1)− pν (x, r2)∥ ≤ Lν ∥r1 − r2∥ ∀r1, r2 ∈ R, a.e.x ∈ Γ3.
(d) The mapping x 7−→ pν (x, r) is Lebesgue measurable on Γ3, for any r ∈ R.
(f) The mapping x 7−→ pν (x, r) belongs to L2(Γ3).

(25)
The tangential function hτ : Γ3 × R+ → R+ satisfies the conditions: (a) There exists a constant Lh > 0 such that

∥hτ (x, r1)− hτ (x, r2)∥ ≤ Lh ∥r1 − r2∥ ∀r1, r2 ∈ R+, a.e.x ∈ Γ3.
(b) The mapping x → hτ (x, r) ∈ L2(Γ3) is Lebesgue measurable on Γ3,∀r ∈ R+.

(26)
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The body forces and surface tractions have the regularity

f0 ∈ C (0, T ;H) , f2 ∈ C
(
0, T ;L2(Γ2)

d
)
. (27)

The coefficient µ satisfies the following conditions:

µ ∈ L∞(Γ3) µ(x) ⩾ 0 a.e. on Γ3. (28)

The thermal tensors and the heat source density satisfy the conditions:
M = (mij), mij = mji ∈ L∞(Ω).
K = (kij), kij = kji ∈ L∞(Ω), kijζiζi ⩾ ckζiζi,

for some ck > 0, for all (ζi) ∈ Rd.
q ∈ L2(0, T ;L2(Ω)).

(29)

Finally, the boundary and initial data verify that

u0 ∈ V, θ0 ∈ E, θR ∈ L2(0, T ;L2(Γ3)), ke ∈ L∞(Ω, R+). (30)

We define the function f : [0, T ] → V by

(f(t), v) =

∫
Ω

f0(t).vdx+

∫
Γ2

f2(t).vda. ∀v ∈ V,∀t ∈ [0, T ] . (31)

Next, we denote by j : V × V → R the functional defined by

j(u, v) =

∫
Γ3

pν(u).vνda+

∫
Γ3

µpν(u). ∥vτ∥ da ∀u, v ∈ V. (32)

We note that condition (27) implies

f ∈ C ([0, T ] , V ) . (33)

Using standard arguments, we obtain the variational formulation of the mechanical prob-
lem (9)-(18).

Problem PV . Find a displacement field u : [0, T ] → V, a stress field σ : [0, T ] → H
and a temperature field θ : [0, T ] → E such that for all t ∈ [0, T ] ,

σ = Aε
( .
u
)
+ Fε (u) +

∫ t

0

G
(
σ (s)−Aε

( .
u (s)

)
, ε (u (s))

)
ds−Mθ (t) , (34)(

σ (t) , ε(v)− ε
( .
u
))

H + j
( .
u(t), v

)
− j

( .
u(t),

.
u(t)

)
⩾

(
f(t), v − .

u
)
V
. (35)

.

θ(t) +Kθ(t) = R
.
u(t) +Q(t) in E′, (36)

u(0) = u0, θ(0) = θ0, (37)

where K : E → E′, R : V → E′ and Q : [0, T ] → E′ are given by

(Kτ, ω)E′×E =

d∑
i,j=1

∫
Ω

kij
∂τ

∂xj

∂ω

∂xi
dx+

∫
Γ3

keτωda,

(Rv, ω)E′×E =

∫
Γ3

hτ (|vτ |)ωda−
∫
Ω

mij
∂vi
∂xj

ωdx,

(Q(t), ω)E′×E =

∫
Γ3

keθR(t)ωda+

∫
Ω

q(t)ωdx

for all v ∈ V, τ, ω ∈ E.
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4 Existence and Uniqueness Result

Now, we propose our existence and uniqueness result.

Theorem 4.1 Assume that (22)-(30) hold. Then there exists L0 > 0 depending only
on Ω,Γ1,Γ3 and A such that if Lν(∥µ∥L∞(Γ3)

+ 1) < L0, problem PV has a unique
solution which satisfies the conditions:

u ∈ C1 ([0, T ] , V ) , σ ∈ C ([0, T ] ,H1) , (38)

θ ∈ W 1,2(0, T ;E′) ∩ L2(0, T ;E) ∩ C(0, T ;L2(Ω)). (39)

The functions u, σ and θ which satisfy (34)-(37) are called a weak solution of the
contact problem P . We conclude that, under the assumptions (22)–(30), the mechanical
problem (9)-(18) has a unique weak solution satisfying (38)-(39).

The proof of Theorem 4.2 is carried out in several steps that we prove in what follows,
everywhere in this section we suppose that the assumptions of Theorem 4.2 hold, and we
consider that C is a generic positive constant which is independent of time and whose
value may change from one occurrence to another.

Let η ∈ C (0, T ;H) be given; in the first step, we consider the following variational
problem.

Problem PVη : Find a displacement field uη : [0, T ] → V such that(
Aε

( .
uη

)
, ε(v)− ε

( .
uη

))
H +

(
Fε (uη) , ε(v)− ε

( .
uη

))
H +

(
η (t) , ε(v)− ε

( .
uη

))
H

+ j
( .
uη(t), v

)
− j

( .
uη(t),

.
uη(t)

)
⩾

(
f(t), v − .

uη

)
V
.

(40)

uη(0) = u0. (41)

We have the following result for the problem.

Lemma 4.1 There exists L0 depending only on Ω,Γ1,Γ3 and A such that if
Lν(∥µ∥L∞(Γ3)

+ 1) < L0, the problem PV has a unique solution uη ∈ C1 ([0, T ] , V ) .

Proof. We define the operators A : V → V , F : V → V and the function fη
:[0, T ] → V by

(Au, v)V = (Aε (u) , ε(v))H , (42)

(Fu, v)V = (Fε (u) , ε(v))H , (43)

(fη, v)V = (f(t), v)V − (η(t), ε(v))H (44)

for all u, v ∈ V and t ∈ [0, T ] .
We use (42), (22)(b) and (22)(c) to find that

∥Au1 −Au2∥ ⩽ LA ∥u1 − u2∥V . (45)

(Au1 −Au2, u1 − u2)V ⩾ mA ∥u1 − u2∥2V . (46)

From (23)(a) and (43), we have

∥Fu1 − Fu2∥ ⩽ LF ∥u1 − u2∥V . (47)

From (46) and (45), A is a strongly monotone Lipschitz continuous operator, then from
(47), F is a Lipschitz continuous operator. We use (27), we find that the function f
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defined by (31) satisfies f ∈ C ([0, T ] , V ), and keeping in mind that η ∈ C ([0, T ] ,H), we
deduce by (44) that fη ∈ C ([0, T ] , V ) and u0 ∈ V . We use (25), (28) and (21), we find
that the function j given by (32) satisfies the condition (4)(a). Moreover,

j(u1, v2)− j(u1, v1) + j(u2, v1)− j(u2, v2)
⩽ c20Lν(∥µ∥L∞(Γ3)

+ 1) ∥u1 − u2∥V ∥v1 − v2∥V
(48)

for all u1, u2, v1, v2 ∈ V , which implies that the function j satisfies the condition (4)(b)
on X = V with α = c20Lν(∥µ∥L∞(Γ3)

+1). Let L0 = mA
c20

and note that L0 depends only

on Ω,Γ1,Γ3 and A. Then, if Lν(∥µ∥L∞(Γ3)
+ 1) < L0, we have

mA > α, (49)

and it follows from Theorem 4.1 that there exists a unique function uη ∈ C1 ([0, T ] , V )
such that (

A
.
uη(t), v −

.
uη(t)

)
V
+
(
Fuη(t), v −

.
uη(t)

)
V
+ j

( .
uη(t), v

)
− j

( .
uη(t),

.
uη(t)

)
⩾

(
fη(t), v −

.
uη(t)

)
V
. ∀v ∈ V, t ∈ [0, T ] . (50)

uη(0) = u0. (51)

We use (42), (43), (50) and (51) to see that uη is the unique solution to PVη.
Let uη : [0, T ] → V be the function defined by

u =

∫ t

0

vη(s)ds+ u0, ∀t ∈ [0, T ] . (52)

In the second step, let η ∈ C ([0, T ] ,H) , we use the displacement field uη obtained
in Lemma 4.1 and we consider the following variational problem.

Problem QVη. Find the temperature field θη : [0, T ] → E such that

θ̇η(t) +Kθη (t) = Ru̇η (t) +Q (t) , (53)

θη (0) = θ0. (54)

We have the following result.

Lemma 4.2 Problem QVη has a unique solution θη which satisfies the regularity
(39), then we have for all t ∈ [0, T ],

∥θη1
(t)− θη2

(t)∥2L2(Ω) ⩽ C

∫ t

0

∥∥ .
uη1

(s)− .
uη2

(s)
∥∥2
V
ds. (55)

Proof. We use a classical result for the first order evolution equation given in [15].
We have the Gelfand triple

E ⊂ L2(Ω) ≡ (L2(Ω))′ ⊂ E′.

The operator K is linear and coercive. By Korn’s inequality

(Kτ, τ)E′×E ⩾ C |τ |2E , C > 0.

Now, for θηi ∈ E, i = 1, 2, let t ∈ [0, T ].
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We have(
θ̇η1

(t) −
.

θη2
(t), θη1

(t)− θη2
(t)

)
E′×E

+ (Kθη1
(t)−Kθη2

(t), θη1
(t)− θη2

(t))E′×E

=
(
R

.
uη1

(t)−R
.
uη2

(t), θη1
(t)− θη2

(t)
)
E′×E

,

(56)
we integrate (56) over (0, t) and we use the coercivity of K and the Lipschitz continuity

of R : V → E′ to deduce that (55) is satisfied for all t ∈ [0, T ] .
In the third step, we use the displacement field uη obtained in Lemma 4.1 and the

temperature field θη obtained in Lemma 4.2 to construct the following Cauchy problem
for the stress field.

Problem PV ση. Find the stress field ση : [0, T ] → H such that

ση(t) = Fε (uη(t)) +

∫ t

0

G (ση (s) , ε (uη (s))) ds−Mθη (t) ∀t ∈ [0, T ] . (57)

In the study of problem PV ση, we have the following result.

Lemma 4.3 There exists a unique solution of problem PV ση and it satisfies ση ∈
C1 ([0, T ] ,H) . Moreover, if ui, σi and θi represent the solutions of the problems PVηi

,
PV σηi

and QVηi
, respectively, for ηi ∈ C (0, T ;H), i = 1, 2, then there exists C > 0 such

that
∥σ1(t)− σ2(t)∥2H ⩽ C(∥u1(t)− u2(t)∥2V + ∥θ1(t)− θ2(t)∥2L2(Ω)

+
∫ t

0
∥u1(s)− u2(s)∥2V ds), ∀t ∈ [0, T ] .

(58)

Proof. Let Λη : C (0, T ;H) → C (0, T ;H) be the operator given by

Λησ(t) = Fε (uη(t)) +

∫ t

0

G (σ (s) , ε (uη (s))) ds−Mθη (t) (59)

for σ ∈ C (0, T ;H) and t ∈ [0, T ]. For σ1, σ2 ∈ C (0, T ;H), we obtain for all t ∈ [0, T ],

∥Λησ1 − Λησ2∥H ⩽ LG

∫ t

0

∥σ1(s)− σ2(s)∥ ds.

It follows from this inequality that for p large enough, the operator Λp
η is a contraction

on the Banach space C (0, T ;H) and, therefore, there exists a unique element ση ∈
C (0, T ;H) such that Λησ = ση. Moreover, ση is the unique solution of problem PV ση

and, when using (57), the regularity of uη, the regularity of θη and the properties of the
operators F and G, it follows that ση ∈ C1 (0, T ;H).

Consider now η1, η2 ∈ C (0, T ;H) and for i = 1, 2, denote uηi
= ui, σηi

= σi and
θηi

= θi. We have

σi(t) = Fε (ui(t)) +

∫ t

0

G (σi (s) , ε (ui (s))) ds−Mθi (t) , ∀t ∈ [0, T ] ,

and, using the properties (23) and (24) of F and G, we find

∥σ1(t)− σ2(t)∥2H ⩽ C(∥u1(t)− u2(t)∥2V +
∫ t

0
∥σ1(s)− σ2(s)∥2H ds

+
∫ t

0
∥u1(s)− u2(s)∥2V ds+ ∥θ1(t)− θ2(t)∥2L2(Ω)) ∀t ∈ [0, T ] .

We use the Gronwall argument in the obtained inequality to deduce the estimate (58).
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Finally, we consider the operator Λ : C (0, T ;H) → C (0, T ;H) defined by

Λη =

∫ t

0

G (ση (s) , ε (uη (s))) ds−Mθη. (60)

Here, for every η ∈ C (0, T ;H) , uη, θη and ση represent the displacement field, the
temperature field and the stress field which are obtained in Lemma 4.1, Lemma 4.2 and
Lemma 4.3, respectively. We have the following result.

Lemma 4.4 The operator Λ has a unique fixed point η∗ ∈ C (0, T ;H) such that
Λη∗ = η∗.

Proof. Let now η1, η2 ∈ C (0, T ;H). We use the notation uηi
= ui,

.
uηi

=
.

vηi
= vi, θη1

=
.

θη1
and σηi

= σi for i = 1, 2. Using (24), (20), (29) and (60), we de-
duce that

∥Λη1(t)− Λη2(t)∥2H ⩽ C(
∫ t

0
∥σ1(s)− σ2(s)∥2H ds+

∫ t

0
∥u1(s)− u2(s)∥2V ds

+ ∥θ1(t)− θ2(t)∥2L2(Ω)).
(61)

We use the estimate (58) to obtain

∥Λη1(t)− Λη2(t)∥2H ⩽ C(
∫ t

0
∥u1(s)− u2(s)∥2V ds+ ∥θ1(t)− θ2(t)∥2L2(Ω)

+
∫ t

0
∥θ1(s)− θ2(s)∥2L2(Ω) ds).

Moreover, from (40), we obtain

(Aε (v1)−Aε (v2) , ε(v1)− ε (v2))H − (Fε (u1)−Fε (u2) , ε(v2)− ε (v1))H
− (η1 (t)− η2, ε(v2)− ε (v1))H ⩽ j (v1, v2)− j (v1, v1) + j(v2, v1)− j(v2, v2).

We use the assumptions (22), (23) and the estimation (48) to find that

mA ∥v1 − v2∥2V ⩽ LF ∥u1 − u2∥V ∥v1 − v2∥V + ∥η1 − η2∥H ∥v1 − v2∥V
+c20Lν(∥µ∥L∞(Γ3)

+ 1) ∥v1 − v2∥2V .

Then, by (49), we have

∥v1 − v2∥V ⩽ C(∥u1 − u2∥V + ∥η1 − η2∥H). (62)

Since

ui(t) =

∫ t

0

vi(s)ds+ u0 ∀t ∈ [0, T ] ,

we have

∥u1(t)− u2(t)∥V ⩽ C

∫ t

0

∥v1(s)− v2(s)∥V ds. (63)

Next, we use (62), (63) and we apply Gronwall’s inequality to deduce

∥v1(t)− v2(t)∥2V ⩽ C ∥η1(t)− η2(t)∥2H , (64)

and from (56) and (64), we obtain

∥θ1(t)− θ2(t)∥2L2(Ω) ⩽ C

∫ t

0

∥η1(s)− η2(s)∥2H ds. (65)



152 N. BENSEBAA AND N. LEBRI

We substitute (63),(64) and (65) to obtain

∥Λη1 − Λη2∥2H ⩽ C

∫ t

0

∥η1(s)− η2(s)∥2H ds.

Reiterating this inequality m times leads to

∥Λmη1 − Λmη2∥2C(0,T ;H) ⩽
CmTm

m!
∥η1 − η2∥2C(0,T ;H) .

For m sufficiently large, Λm is a contraction on the Banach space C (0, T ;H) , and so Λ
has a unique fixed point.

Now, we have all the ingredients needed to prove Theorem 4.1.
Proof. Existence. Let η∗ ∈ C (0, T ;H) be the fixed point of Λ defined by

(60), and let uη∗
.

, ση∗ and θη∗ be the solutions of the problems PVη , PV ση and QVη,
respectively, for η = η∗, and denote

u = uη∗ ,
.
u =

.
uη∗ , θ = θη∗ , (66)

σ = Aε
( .
u
)
+ Fε (u) + ση∗ . (67)

We prove that (u, σ, θ) satisfies (34)-(37) and (38)-(39). Indeed, we write (57) for η = η∗

and use (66)-(67) to obtain (34). We consider (40) for η = η∗ and use the equality Λη∗

= η combined with (60) and (66)-(67) to conclude that (35) is satisfied. We write (53) for
η = η∗ and use (66) to find that (36) is also satisfied. Next, (37) and the regularities (38)-
(39) follow from Lemmas 4.1 and 4.2. The regularity of σ is a consequence of Lemmas
4.1, 4.2, 4.3, the relations (66)-(67) and the assumptions on A and F .

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the
fixed point of the operator Λ defined by (60) and the unique solvability of the problems
PVη, QVη and PV ση .

5 Convergence Results

In this section, we study the dependence of the solution to problem PV when we introduce
the perturbation of certain data. We suppose that the assumptions (22)-(30) are satisfied.
Moreover, we assume that Lν(∥µ∥L∞(Γ3)

+1) < L0, where L0 = mA
c20

. Let (u, σ, θ) be the

solution of PV which is obtained by Theorem 4.1 for every ρ > 0, let Fρ, p
ρ
ν and Lρ

ν be
the perturbations of F , pν and Lν , respectively, which satisfy the conditions (23) and
(25).

We define the function jρ : V × V → R by

jρ(u, v) =

∫ t

0

pρν(uν).vνda+

∫ t

0

µpρν(uν). ∥vτ∥ da ∀u, v ∈ V. (68)

Under these assumptions, we consider the following variational problem.
Problem PVρ. Find a displacement field uρ : [0, T ] → V , a stress field σρ : [0, T ] →

H and a temperature field θρ : [0, T ] → E such that for all t ∈ [0, T ] ,

σρ (t) = Aε
( .
uρ(t)

)
+ Fε (uρ(t)) +

∫ t

0
G
(
σρ (s)−Aε

( .
uρ (s)

)
, ε (uρ (s))

)
ds

−Mθρ (t) .
(69)
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σρ (t) , ε(v)− ε

( .
uρ

))
H + jρ

( .
uρ(t), v

)
− jρ

( .
uρ(t),

.
uρ(t)

)
⩾

(
f(t), v − .

uρ(t)
)
V
.

(70)

.

θρ(t) +Kθρ(t) = R
.
uρ(t) +Q(t) in E′, (71)

uρ(0) = u0, θρ(0) = θ0. (72)

Assume that
Lρ
ν(∥µ∥L∞(Γ3)

+ 1) < L0 ∀ρ > 0.

We deduce from Theorem 4.1 that for each ρ > 0, the problem PVρ has a unique solution
(uρ, σρ, θρ) satisfying uρ ∈ C1 ([0, T ] , V ), σρ ∈ C ([0, T ] ,H1) and θρ ∈ W 1,2(0, T ;E′) ∩
L2(0, T ;E) ∩ C(0, T ;L2(Ω)).

Let us suppose Fρ, F , pρν and pν satisfy the following assumptions:
There exists B : R+ → R+ such that
a) ∥Fρ(x, ε)−F(x, ε)∥ ⩽ B(ρ)
∀ε ∈ Sd, a.e.x ∈ Ω, for each ρ > 0.
b) lim

ρ→0
B(ρ) = 0.

(73)


There exists Gν : R+ → R+ such that
a) |pρν(x, r)− pν(x, r)| ⩽ Gν(ρ)
∀r ∈ R, a.e.x ∈ Γ3, for each ρ > 0.
b) lim

ρ→0
Gν(ρ) = 0.

(74)

We have the following convergence result.

Theorem 5.1 Assume that (73)-(74) hold, the solution (uρ, σρ, θρ) of the problem
PVρ converges to the solution (u, σ, θ) of problem PVη,

uρ → u in C1(0, T ;V ) as ρ → 0; (75)

σρ → σ in C(0, T ;H1) as ρ → 0; (76)

θρ → θ in C(0, T ;L2(Ω)) as ρ → 0. (77)

In addition to the mathematical interest of convergence result (75)-(77), it is im-
portant in mechanical applications because it indicates that small perturbations of the
contact conditions and of the elasticity operator lead to small perturbations of the weak
solution of the problem P .

Proof. Let ρ > 0 and t ∈ [0, T ], we use v =
.
u(t) in (70) and v =

.
uρ(t) in (35),

then in addition to the two inequalities, we get(
σρ(t)− σ(t), ε(

.
uρ(t))− ε

( .
u(t)

))
H ⩽ jρ

( .
uρ(t),

.
u(t)

)
− jρ

( .
uρ(t),

.
uρ(t)

)
+ j

( .
u(t),

.
uρ(t)

)
− j

( .
u(t),

.
u(t)

)
.

(78)

We have
σR
ρ (t) = σρ(t)−Aε

( .
uρ(t)

)
, σR(t) = σ(t)−Aε

( .
u(t)

)
, (79)

where

σR
ρ (t) = Fρε (uρ(t)) +

∫ t

0

G
(
σR
ρ (s) , ε (uρ (s))

)
ds−Mθρ (t) , (80)
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σR(t) = Fε (u(t)) +

∫ t

0

G
(
σR (s) , ε (u (s))

)
ds−Mθ (t) . (81)

We combine (78) and (79) to obtain(
Aε

( .
uρ(t)

)
−Aε

( .
u(t)

)
, ε(

.
uρ(t))− ε

( .
u(t)

))
H +

(
σR
ρ (t)− σR(t), ε(

.
uρ(t))− ε

( .
u(t)

))
H

⩽ jρ
( .
uρ(t),

.
u(t)

)
− jρ

( .
uρ(t),

.
uρ(t)

)
+ j

( .
u(t),

.
uρ(t)

)
− j

( .
u(t),

.
u(t)

)
.

(82)
Moreover, from (22), it follows that for a.e. t ∈ [0, T ],(

Aε
( .
uρ(t)

)
−Aε

( .
u(t)

)
, ε(

.
uρ(t))− ε

( .
u(t)

))
H ⩾ mA

∥∥ .
uρ(t)−

.
u(t)

∥∥2
V
. (83)

Using (80) and (81), we get

σR
ρ (t)− σR(t) = Fρε (uρ(t))−Fε (u(t)) +

∫ t

0
G
(
σR
ρ (s) , ε (uρ (s))

)
ds

−
∫ t

0
G
(
σR (s) , ε (u (s))

)
ds+Mθ (t)−Mθρ (t) .

We now use (20), (23), (24), (29) and (73) to obtain∥∥σR
ρ (t)− σR(t)

∥∥
H ⩽ B(ρ) + LF ∥uρ(t)− u(t)∥V + LG

∫ t

0

∥∥σR
ρ (s)− σR(s)

∥∥
H ds

+ LG
∫ t

0
∥uρ(s)− u(s)∥V ds+ ∥M∥∥θρ(t)− θ(t)∥L2(Ω) .

By the Gronwall inequality, we find∥∥σR
ρ (t)− σR(t)

∥∥
H ⩽ B(ρ) + LF ∥uρ(t)− u(t)∥V

+LG
∫ t

0
∥uρ(s)− u(s)∥V ds+ ∥M∥∥θρ(t)− θ(t)∥L2(Ω) .

(84)

From (71) and (36), we obtain

∥θρ(t)− θ(t)∥2L2(Ω) ⩽ C

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥2
V
ds. (85)

The estimation (84) becomes

∥∥σR
ρ (t)− σR(t)

∥∥
H ⩽ B(ρ) + C(

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥
V
ds+ ∥θρ(t)− θ(t)∥L2(Ω)). (86)

We use (85), the inequality (86) shows that

−
(
σR
ρ (t)− σR(t), ε(

.
uρ(t))− ε

( .
u(t)

))
H

⩽ (B(ρ) + C
∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥
V
ds)

∥∥ .
uρ(t)−

.
u(t)

∥∥
V

a.e t ∈ [0, T ] .
(87)

We use the definition of j and jp, (73)(a) and (24)(b), we find

jρ (u̇ρ(t), u̇(t))− jρ (u̇ρ(t), u̇ρ(t)) + j (u̇(t), u̇ρ(t))− j (u̇(t), u̇(t))
⩽

∫
Γ3

(pρν(u̇ρν)− pν(u̇ν)) (u̇ν − u̇ρν) da+
∫
Γ3
(µpρν(u̇ρν)− µpν(u̇ν))(∥u̇τ∥ − ∥u̇ρτ∥)da

⩽
∫
Γ3

|pρν(u̇ρν)− pν(u̇ν)| |u̇ν − u̇ρν | da+
∫
Γ3

|µpρν(u̇ρν)− µpν(u̇ν)| |∥u̇τ∥ − ∥u̇ρτ∥| da.

Then we use (74) and after some calculations, we get

jρ (u̇ρ(t), u̇(t))− jρ (u̇ρ(t), u̇ρ(t)) + j (u̇(t), u̇ρ(t))− j (u̇(t), u̇(t))

⩽ meas(Γ3)
1
2 c0(1 + ∥µ∥L∞(Γ3)

)Gν(ρ) ∥u̇ρ(t)− u̇(t)∥V
+ c20(1 + ∥µ∥L∞(Γ3)

)Lν ∥u̇ρ(t)− u̇(t)∥2V .

(88)
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We use (82), (83), (87) and (88) to obtain

∥u̇ρ(t)− u̇(t)∥V ⩽ 1
mA−c20(1+∥µ∥L∞(Γ3))Lν

B(ρ)

+ C
mA−c20(1+∥µ∥L∞(Γ3))Lν

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥
V
ds+

meas(Γ3)
1
2 c0(1+∥µ∥L∞(Γ3))

mA−c20(1+∥µ∥L∞(Γ3))Lν
Gν(ρ),

this inequality implies that

∥u̇ρ(t)− u̇(t)∥V ≤ δ (B(ρ) +Gν(ρ))+
C

mA − c20(1 + ∥µ∥L∞(Γ3)
)Lν

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥
V
ds,

where δ = max

{
1

mA−c20(1+∥µ∥L∞(Γ3))Lν
,
meas(Γ3)

1
2 c0(1+∥µ∥L∞(Γ3))

mA−c20(1+∥µ∥L∞(Γ3))Lν

}
.

Using the Gronwall inequality, we find

∥u̇ρ(t)− u̇(t)∥V ≤ c (B(ρ) +Gν(ρ)) . (89)

We integrate (89) over (0, t), using (52), (37) and (72), we get

∥uρ − u∥V ⩽ c

∫ t

0

∥u̇ρ(t)− u̇(t)∥V ds ⩽ c (B(ρ) +Gν(ρ)) . (90)

It results from (90), (73)(b) and (74)(b) that ( 75) is satisfied.

It follows from (79) that

σρ(t)− σ = σR
ρ (t)− σR(t) +Aε (u̇ρ(t))−Aε (u̇(t)) , a.e t ∈ [0, T ] .

We use this inequality, the properties (22) of the operator A, (87), (73) and (75), we
see that (76) is satisfied. We conclude that (77) is a consequence of (85), (90), (73)(b)
and (74)(b).

6 Conclution

Contact problems involving bodies arise in many industrial processes as well as in every-
day life. For this reason, they have been widely studied in the recent years, with various
constitutive laws and boundary conditions, including the normal compliance condition
associated to a version of Coulomb’s friction law. The studies concern the mechanical,
mathematical and numerical modeling of the corresponding boundary value problems.
In this paper, we consider a mathematical model which describes a quasistatic frictional
contact between a body and a foundation. We study an elasto-viscoplastic material with
thermal effects. The frictional contact is modeled with a normal damped response condi-
tion associated to a version of Coulomb’s law of dry friction. These non standard contact
conditions could model the contact with the deformable foundation covered by a lubri-
cant, say oil, as already mentioned. We derive a variational formulation of the problem
and prove that the proposed model has a unique weak solution by using evolutionary
quasivariational inequality. Also, we study the dependence of the solution on the data
and prove a convergence result.
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