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Abstract: In this paper, we present the implementation of infeasible interior-point
methods (IIPMs) for linear and nonlinear optimization with the full-Newton
step based on an algebraic equivalent transformation (AET). The algorithm was
implemented in Matlab language, thus supporting the effectiveness of the method.
Numerical tests demonstrate the behavior of the algorithms for different results of
parameters.
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1 Introduction

Linear optimization (LO) has numerous applications in different fields such as economics,
logistics, engineering, nonlinear dynamics and systems (see, e.g., [6], [7]). The classical
method for solving LO problems is the simplex algorithm proposed by Dantzig [2] in
1947. The appearance of interior-point algorithms (IPAs) in LO is the result of a longer
process. From the literature, we know that the first result is due to Frisch, who proposed
the use of logarithmic barrier functions in LO [8]. Later on Fiacco and McCormick [5]
developed the sequential unconstrained minimization technique (SUMT). Since then, the
barrier functions have been extensively studied.

The result of Karmarkar obtained in 1984 [9] had a great impact on mathematical
optimization from both theoretical and practical point of view. He derived projective
scaling IPAs with better complexity than the ellipsoid algorithm and he claimed that
his algorithm had better practical performance. Moreover, it turned out that the IPA
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approach to LO has a natural generalisation to the related field of convex nonlinear
optimisation, which resulted in a new stream of research and an exellent monograph
of Nesterov and Nemirovski [13]. This study opened the way into other new subfields
of optimization such as semidefinite optimization (SDO), convex quadratic optimization
(CQO), second-order cone optimization (SOCO), symmetric optimization (SO) and the
complementarity problem (CP), with important applications in system theory, discrete
optimization, and many other areas. The most important results related to IPAs for LO
were summarized in the monographs written by Roos, Terlaky and Vial [16], Wright [19]
and Ye [20]. Based on the starting point, two types of IPAs exist; feasible and infeasible
algorithm. Feasible IPAs start from a feasible interior point and maintain feasibility
during the whole process of the algorithms. Infeasible IPAs start from an infeasible
interior point and they use two kinds of steps, feasibility and centering steps in each
iteration. The first infeasible algorithms were introduced by Lustig [12] and Tanabe
[18]. Kojima et al. [11] analyzed the complexity of these algorithms. In 2005, Roos
[14] proposed a new algorithm, which uses only the full-Newton steps and starts from
infeasible points. Takács [17] gave an application of infeasible interior-point algorithms.
Several implementations of IPAs can be found in state-of-the-art solvers nowadays. The
paper presents an implementation of original Roos’s infeasible algorithm [2006, 2016],
and a short updating algorithm [10], where the AET technique is used with the new
function ψ(t) = t2 to transform the central path equation. Numerical results show
that the algorithm with the practical step size is more efficient than that with the fixed
(theoretical) step size.

The outline of the paper is as follows. In Section 2, we briefly recall the new search
direction based on the type of AET using the new function ψ(t) = t2. In Section 3, we
report some preliminary numerical results to demonstrate the computational performance
of the proposed methods. Finally, some conclusions and remarks are made in Section 4.

We use the following notations throughout the paper: Rn is the n-dimensional Eu-
clidean space with the inner product ⟨., .⟩ and ∥.∥ is the Euclidean norm which denotes
the 2−norm, Rm×n is the space of matrices of order m× n, xi is the i-th component of
x, xs is the component-wise product of vector x and s, respectively. The vector of ones
is denoted by e.

2 Formulation of the Problem

We consider the LO problem in standard form

min
{
cTx : Ax = b, x ≥ 0

}
, (P )

and its dual form
max

{
bT y : AT y + s = c, s ≥ 0

}
, (D)

where A ∈ Rm×n with rank(A) = m, b ∈ Rm and c ∈ Rn with y ∈ Rm and s ∈ Rn.
As usual, for IIPMs, we consider the starting point (x0, y0, s0) = ξ(e, 0, e) such that

∥ (x∗, s∗) ∥∞≤ ξ ⇔ 0 ≤ x∗ ≤ ξe and 0 ≤ s∗ ≤ ξe. (1)

For some primal-dual optimal solution (x∗, y∗, s∗), e is the all-one vector and ξ is a
positive scalar. The triple (x, y, s) is the ϵ-solution of (P ) and (D) if the norms of the
residual vectors b−Ax and c−AT y − s do not exceed ϵ, and also xT s.

For any λ with 0 < λ ≤ 1, we consider the perturbed problem (Pλ) defined by
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{
min(c− λr0c )

Tx : b−Ax = λr0b , x ≥ 0
}
, (P

λ
)

and its dual form {
max(b− λr0b )

T y : c−AT y − s = λr0c , s ≥ 0
}
, (D

λ
)

where r0b and r0c denote the primal and dual initial residual vectors, respectively,

r0b = b−Aξe and r0c = c− ξe.

Note that if λ = 1, then x = x0 yields a strictly feasible solution of (Pλ), and
(y, s) = (y0, s0) is a strictly feasible solution of (Dλ). We conclude that if λ = 1, then
(P

λ
) and (D

λ
) satisfy the interior point condition (IPC), we recall and develop some new

results on the scaled search directions.

Lemma 2.1 (cf. Theorem 5.13 in [20]) The original problems, (P ) and (D), are
feasible if and only if for each λ satisfying 0 < λ ≤ 1, the perturbed problems (Pλ) and
(Dλ) satisfy the IPC.

Let (P ) and (D) be feasible and 0 < λ ≤ 1. Then Lemma 2.1 implies that the
problems (Pλ) and (Dλ) satisfy the IPC, and hence their central paths exist. This means
that the system  b−Ax = λr0b , x ≥ 0,

c−AT y − s = λr0c , y ∈ Rm, s ≥ 0,
xs = µe

(2)

has a unique solution for every µ > 0. This solution consists of the µ-centers of the
perturbed problems (Pλ) and (Dλ). The perturbed central path can be equivalently
stated as follows: 

b−Ax = λr0b , x ≥ 0,
c−AT y − s = λr0c , y ∈ Rm, s ≥ 0,
xs

µ
=

√
xs

µ
.

(3)

From [10], we replace the third equation of system (3) by the equivalent equation ψ(
xs

µ
) =

ψ(

√
xs

µ
), where ψ is a real valued function differentiable on

(
k2 → +∞

)
, where 0 ≤ k <

1, such that 2tψ′(t2)− ψ′(t), we get
b−Ax = λr0b , x ≥ 0,
c−AT y − s = λr0c , y ∈ Rm, s ≥ 0,

ψ(
xs

µ
) = ψ(

√
xs

µ
).

(4)

Let (x, y, s) be a feasible solution of (Pλ) and (Dλ). We consider the notation

f(x, y, s) =


λ+r0b − b+Ax
λ+r0c − c+AT y + s

ψ(
xs

µ
)− ψ(

√
xs

µ
)

 = 0,
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where λ+ = (1− θ)λ and θ ∈ (0, 1), a new triple

(x+, y+, s+) = (x+∆x, y +∆y, s+∆s)

is obtained thanks to the Newton method for solving the following system:



A∆x = θλ+r0b ,
AT∆y +∆s = θλ+r0c

1

µ
(s∆x+ x∆s) =

−ψ
(
xs

µ

)
+ ψ

(√
xs

µ

)
ψ′

(
xs

µ

)
− 1

2

√xs

µ

ψ′
(√

xs

µ

) . (5)

Define the scaled search directions dx and ds as follows:

v =

√
xs

µ
, dx :=

v∆x

x
, ds :=

v∆s

s
, (6)

then the system reduces to the system


Ādx = θλ+r0b ,

ĀT ∆y

µ
+ ds = θvλ+s−1r0c ,

dx + ds = pv,

(7)

where

pv =
2ψ(v)− 2ψ(v2)

2vψ′(v2)− 2ψ′(v)
and Ā = A diag(

x

v
). (8)

We consider the proximity measure defined by

δ(v) = δ(x, s;µ) =
∥pv∥
2

=
1

2
∥ v − v3

2v2 − e
∥, (9)

suppose that for some µ ∈ (0, µ0), we have a feasible solution (x, y, s) of the problem

(Pλ) and (Dλ) with λ =
µ

µ0
, such that δ(x, s;µ) ≤ τ , τ ∈ (0, 1). Then the algorithm

finds the feasible solution (x+, y+, s+) of (Pλ+) and (Dλ+), where λ+ = (1 − θ)λ and
θ ∈ (0, 1). In this case, µ is reduced to µ+ = (1− θ)µ and so δ(x+, y+;µ

+) = δ(v+) ≤ τ .
If necessary, we repeat the procedure until an ϵ-solution is found.

Now we can define the generic infeasible interior-point algorithm for LO.
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Algorithm 2.1 The generic infeasible interior-point algorithm for LO.

Input :
-Accuracy parameter ϵ > 0,
-barrier update parameter θ barrier update parameter θ, 0 < θ < 1,
-threshold parameter τ > 0,
Begin
x = ξe; y = 0; s = ξe;λ = 1;µ = λξ2.
while : max(xT s, ∥rb∥, ∥rc∥) > ϵ do
Begin
solve the systeme (7) and use (6) to obtain (∆x,∆y,∆s);
x = x+∆x;
y = y +∆y;
s = s+∆s;
update of λ and µ
λ = (1− θ)λ;
µ = (1− θ)µ;

end
end

Lemma 2.2 ( [10]) If τ =
1

12
and θ =

1

22n
, n ≥ 4, then δ(v) ≤ τ implies δ(v+) ≤ τ .

Theorem 2.1 (Theorem 1 [10]) If (P ) and (D) are feasible and ξ > 0 such that
∥(x∗; s∗)∥∞ ≤ ξ for some optimal solutions x∗ of (P ) and (y∗, s∗) of (D), then after at
most

22n log
max(nξ2, ∥r0b∥, ∥r0c∥

ϵ

iterations, the algorithm finds an ϵ-optimal solution of (P ) and (D).

3 Numerical Results

In this section, we present an implementation of the IIPMs for LO, which demonstrates
the influence of the update parameters θ and the dimension of the problem on the number
of the iterations. The algorithm is coded in MATLAB (R 2014 a) and our experiments
are performed on PC with Processor Genuine Intel (R) CPR T2080 @ 1, 73 GHZ in-
stalled memory (RAM) 2, 00GO. In all test problems, the starting point is designated
by (x0, y0, s0) = ξ(e, 0, e) such that e = (1, 1, . . . , 1)T , we use (m,n) as the size of the

problem, ϵ = 10−6and τ =
1

12
as our default accuracy parameter. The barrier update

parameter θ is a given constant between 0 and 1, while in the theoretical version of

the algorithm, θ =
1

22n
. We denote by iter the number of iterations and by CPU the

computing time in seconds. The primal and dual optimal solutions are denoted by x∗,
(y∗, s∗), we tested the above mentioned algorithms in two different cases of the test: the
full Newton step (α = 1) and the practice step size αmax, which guarantees that the new
iterates {

x+ = x+ αmax∆x,
s+ = s+ αmax∆s
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remain nonnegative. To ensure the strict feasibility of the new iterates, we used a factor
ρ = 0.95 to shorten the step length, thus the used step length is αp = ραmax with
αmax = min(αx, αs), or αx and αs are given by

αx =

 min

(
− xi
∆xi

)
if ∆xi < 0,

1 if ∆xi ≥ 0,

αs =

 min

(
− si
∆si

)
if ∆si < 0,

1 if ∆si ≥ 0.

3.1 Cases of full Newton step (α = 1) with θ =
1

22n

3.1.1 Examples with fixed size

Example 3.1 m = 2, n = 4,

A =

(
1 1 1 1
1 1 0 −3

)
, b =

(
1 0.5

)T
, c =

(
1 2 3 2 4

)T
.

The optimal solution is

x∗ = (0.875, 0, 0, 0.125)
T
, y∗ = (1.75,−0.75)

T
, s∗ = (0, 1, 1.25, 0)

T
.

iter CPU
1332 0.3279

Table 1: Number of iterations and computation time.

Example 3.2 m = 3, n = 6,

A =

 2 1 0 −1 0 0
0 0 1 0 1 −1
1 1 1 1 1 1

 , b =
(
0 0 1

)T
, c =

(
3 −1 1 0 0 0

)T
.

The optimal solution is

x∗ = (0.0000, 0.5000, 0.0000, 0.5000, 0.0000, 0.0000)T ,

y∗ = (−0.5000,−0.0383,−0.5000)
T
,

s∗ = (4.5000, 0.0000, 1.4617, 0.0000, 0.4617, 0.5383)
T
.

iter CPU
2054 0.5914

Table 2: Number of iterations and computation time.
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Example 3.3 m = 5, n = 9,

A =


0 1 2 −1 1 1 0 0 0
1 2 3 4 −1 0 1 0 0
−1 0 −2 1 2 0 0 1 0
1 2 0 −1 −2 0 0 0 1
1 3 4 2 1 0 0 0 0

 ,

b =
(
1 2 3 2 1

)T
, c =

(
1 0 −2 1 1 0 0 0 0

)T
.

The optimal solution is

x∗ = ( 0 0 0.25 0 0 0.5 1.25 3.5 2 )T , y∗ =
(
0 0 0 0 −0.5

)T
,

s∗ =
(
1.5 1.5 0 2 1.5 0 0 0 0

)T
.

iter CPU
3241 1.5285

Table 3: Number of iterations and computation time.

3.1.2 Examples with variable size

Example 3.4 We consider the following example: n = 2m,

A(i, j) =

{
0 if i ̸= j and i ̸= j +m
1 if i = j and i = j +m

, c(i) = −1, c(i +m) = 0 and b(i) = 2 for

i = 1, ...,m.

The optimal solutions is obtained as follows:

x∗ =

{
2 for i = 1, ...,m,
0 for i = m+ 1, ..., n,

, y∗ = −1 for i = 1, ..., n,

and s∗ =

{
0 for i = 1, ...,m,
1 for i = m+ 1, ..., n.

We have the following results:

(m,n) iter CPU
(10, 20) 7390 6.2958
(15, 30) 11356 13.8918
(25, 50) 19493 45.4140
(50, 100) 40518 226.3179
(100, 200) 84093 1856.1149
(200, 400) 174293 61443.8710

Table 4: Number of iterations and computation time.

3.2 Cases of practice step size (αmax ) with θ ∈ (0, 1)

In this part, to improve the numerical results, we take θ ∈ (0, 1). Then we obtain the
numerical results in the following tables.



164 L. DERBAL

3.2.1 Examples with fixed size

θ iter CPU
0.01 1514 0.3941
0.02 754 0.2678
0.05 298 0.1895
0.1 146 0.1646
0.2 70 0.1575
0.8 11 0.1868

Table 5: Number of iterations and computation time in Example 1.

θ iter CPU
0.01 1554 0.438790
0.02 774 0.283944
0.05 306 0.190252
0.1 150 0.167571
0.2 72 0.180073
0.4 32 0.184932

Table 6: Number of iterations and computation time in Example 2.

θ iter CPU
0.01 1633 0.7102
0.05 320 0.2167
0.02 813 0.4256
0.1 156 0.1827
0.7 15 0.2377
0.8 11 0.2349

Table 7: Number of iterations and computation time in Example 3.

3.2.2 Examples with variable size

θ 0.01 0.05 0.1
(m,n) iter CPU iter CPU iter CPU
(10, 20) 1664 1.0255 329 0.3340 161 0.2524
(15, 30) 1715 1.7057 337 0.4459 165 0.2990
(25, 50) 1765 2.7304 347 0.6487 170 0.4376
(50, 100) 1834 8.4164 361 1.5884 176 0.86035
(100, 200) 1903 38.0307 374 7.0592 176 4.5225
(200, 400) 1972 182.1165 388 36.1221 183 29.9616
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θ 0.2 0.3
(m,n) iter CPU iter CPU
(10, 20) 74 0.2840 47 0.6049
(15, 30) 76 1.2352 48 0.6665
(25, 50) 78 2.1898 49 1.3937
(50, 100) 81 4.3522 − −
(100, 200) 84 16.9204 − −
(200, 400) − − − −

Table 8: Number of iterations and computation time in Example 4.

4 Concluding Remarks

In this paper, we have proposed an implementation of the IIPMs for linear and nonlinear
optimization based on the AET proposed in [10]. Some preliminary numerical results
are provided to reveal the influence of the update parameters θ and the dimension of the
problem on the number of iterations. Through these results, we notice that the number
of iterations and the computation time to reach the optimal solution are a bit large. To
improve these results, we proposed other choices of the parameter θ and the step size α
different from the theorecal values. It was found that these values decreased the number
of iterations and the computation time. For further research, it is necessary to think of
a simple strategy to determine the appropriate values of the parameter θ which keeps
the iteration in the interior of the feasible domain. Furthermore, this algorithm may be
possible to extend to the semidefinite linear optimization, quadratic programming and
linear complementarity problem with these choices of the step size.
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