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Abstract: We consider a mathematical problem for the quasistatic contact between
two electro-viscoelastic bodies. The contact is modelled with a version of normal
compliance and the evolution of the wear function is described by Archard’s law. We
derive a variational formulation for the model and prove an existence and uniqueness
result of the weak solution. The proof is based on the arguments of evolutionary
variational inequalities, a classical existence and uniqueness result for parabolic in-
equalities and the Banach fixed point theorem.
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1 Introduction

A considerable progress has been achieved recently in applied mathematics and mechan-
ics for dynamic and quasistatic problems, the recent advances in the formulation of these
problems are articulated around two main components, one devoted to the laws of be-
havior and the other devoted to the boundary conditions imposed on the body. The
boundary conditions reflect the binding of the body with the outside world. The laws of
behavior are stipulated by the nature of the materials under study, The authors utilize
composite laws of behavior that combine materials with varying thermal and mechanical
characteristics. These materials are referred to as thermo-mechanical materials. Alter-
natively, the authors also consider materials with combined mechanical and electrical
behavior, which are known as piezoelectric materials. For the boundary conditions, the
authors investigate the real processes such as adhesion, friction and wear to describe new
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problems, these processes can be described by several types of the models with normal
compliance or a normal damped response version.

The piezoelectric effect is characterized by the coupling between the mechanical and
electrical behavior of the materials.

Materials undergoing piezoelectric effects are called piezoelectric materials; their
study requires techniques and results from electromagnetic theory and continuum me-
chanics. However, there are very few mathematical results concerning contact problems
involving piezoelectric materials and therefore, there is a need to extend the results to the
models for contact with deformable bodies which include coupling between mechanical
and electrical properties. General models for elastic materials with piezoelectric effects
can be found in [4,6,12,13,15,16]. A static frictional contact problem for electric-elastic
materials was considered in [4, 15]. A frictional contact problem for electro-viscoelastic
materials was studied in [13]. Contact problems with friction and adhesion for electro
elastic-viscoplastic materials were studied recently in [1].

Wear is one of the processes which reduce the lifetime of modern machine elements.
It represents the unwanted removal of materials from the surfaces of contacting bodies
occurring in relative motion. Wear arises when a hard rough surface slides against a
softer surface, digs into it, and its asperities plough a series of grooves. When two surfaces
come into contact, rearrangement of the surface asperities takes place. When they are
in relative motion, some of the peaks break, and therefore, the harder surface removes
the softer material. This phenomenon involves the wear of the contacting surfaces. The
material loss by the wearing solids, the generation and circulation of free wear debris are
the main effects of the wear process. The loose particles form a thin layer on the body
surface. Tribological experiments show that this layer has a great influence on contact
phenomena and the wear particles between sliding surfaces affect the frictional behavior.
Realistically, wear cannot be totally eliminated.

Wear is a major problem for materials when two bodies come into contact with friction
and sliding, the contact surfaces are found worn-out, the more rigid one wears out the
other. The particles lost by contact surfaces form a thin layer between the two bodies,
this layer can improve the sliding, it may get one body enters in the other.

Generally, a mathematical theory of friction and wear should be a generalization
of experimental facts and it must be in agreement with the laws of thermodynamics
of irreversible processes. The first attempts of a thermodynamical description of the
friction and wear processes were provided in [3]. A bilateral frictional problem with wear
for multidisciplinary bodies and foundation was studied in [6, 8, 9]. General models of
quasi-static frictional contact with wear between deformable bodies were derived in [18]
from thermodynamic considerations.

The goal of this paper is to analyse the coupling of two electro-viscoelastic mate-
rials and a frictional contact problem with wear. We study a quasistatic problem of
frictional contact with wear. We model the materials behavior by an electro-viscoelastic
constitutive law and the contact is frictional.

The paper is organized as follows. In Section 2, we introduce the notation and give
some preliminaries. In Section 3, we describe the mathematical models for the frictional
contact problem between two electro-viscoelastic bodies. The contact is modelled with
normal compliance and wear, we introduce the list the assumptions on the problem’s data
and the variational formulation of the model. In Section 4, we state our main existence
and uniqueness result, Theorem 4.1. The proof of the theorem is based on the arguments
of evolutionary variational inequalities, a classical existence and uniqueness result on
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parabolic inequalities, differential equations and the Banach fixed point theorem.

2 Notation and Preliminaries

In this short section, we present the notation we shall use and some preliminary material.
For more details, we refer the reader to [5, 10, 17]. We denote by Sd the space of second
order symmetric tensors on Rd (d = 2, 3), while ∥·∥ represents the Euclidean norm if it
is applied to a vector on Sd and Rd, respectively. Let Ωk ⊂ Rd be a bounded domain
with the outer Lipschitz boundary Γ and let ν denote the unit outer normal on ∂Ωk =
Γk. We shall use the following notation.

We recall that the inner products and the corresponding norms on Sd and Rd are
given by

uk.vk = uki .v
k
i , ∥vk∥ = (vk.vk)

1
2 , ∀uk,vk ∈ Rd,

σk.τ k = σk
ij .τ

k
ij , ∥τ k∥ = (τ k · τ k)

1
2 , ∀σk, τ k ∈ Sd.

Here and below, the indices i and j run between 1 and d and the summation convention
over repeated indices is adopted. Now, to proceed with the variational formulation, we
need the following function spaces:

Hk = {vk = (vki ); v
k
i ∈ L2(Ωk)}, Hk

1 = {vk = (vki ); v
k
i ∈ H1(Ωk)},

Qk = {τ k = (τkij); τ
k
ij = τkji ∈ L2(Ωk)}, Qk

1 = {τ k = (τkij) ∈ Qk; div τ k ∈ Hk}.

The spaces Hk, Hk
1 , Q

k and Qk
1 are the real Hilbert spaces endowed with the canonical

inner products given by

(uk,vk)Hk =

∫
Ωk

uk.vkdx, (uk,vk)Hk
1
=

∫
Ωk

uk.vkdx+

∫
Ωk

∇uk.∇vkdx,

(σk, τ k)Qk =

∫
Ωk

σk.τ kdx, (σk, τ k)Qk
1
=

∫
Ωk

σk.τ kdx+

∫
Ωk

div σk.Div τ kdx

and the associated norms ∥ · ∥Hk , ∥ · ∥Hk
1
, ∥ · ∥Qk , and ∥ · ∥Qk

1
, respectively. Here and

below we use the notation

∇uk = (uki,j), ε(uk) = (εij(u
k)), εij(u

k) =
1

2
(uki,j + ukj,i), ∀uk ∈ Hk

1 ,

Div σk = (σk
ij,j), ∀σk ∈ Qk

1 .

For every element vk ∈ Hk
1 , we also use the notation vk for the trace of vk on Γk and we

denote by vkν and vk
τ the normal and the tangential components of vk on the boundary

Γk given by

vkν = vk.νk, vk
τ = vk − vkνν

k.

Let H ′
Γk be the dual of HΓk = H

1
2 (Γk)d and let (·, ·)− 1

2 ,
1
2 ,Γ

k denote the duality pairing

between H ′
Γk and HΓk . For every element σk ∈ Qk

1 , let σkνk be the element of H ′
Γk

given by

(σkνk,vk)− 1
2 ,

1
2 ,Γ

k = (σk, ε(vk))Qk + (Div σk,vk)Hk , ∀vk ∈ Hk
1 .
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Denote by σk
νσ

k
ν and σk

τ the normal and the tangential traces of σk ∈ Qk
1 , respectively.

If σk is continuously differentiable on Ωk ∪ Γk, then

σk
ν = (σkνk) · νk, σk

τ = σkνk − σk
νν

k,

(σkνk,vk)− 1
2 ,

1
2 ,Γ

k =

∫
Γk

σkνk · vkda

for all vk ∈ Hk
1 , where da is the surface measure element.

For the displacement field, we need the closed subspace of Hk
1 defined by

V k =
{
vk ∈ Hk

1 ;v
k = 0 on Γk

1

}
.

Since meas Γk
1 > 0, the following Korn’s inequality holds:

∥ε(vk)∥Qk ⩾ cK∥vk∥Hk
1
, ∀vk ∈ V k, (1)

where the constant cK denotes a positive constant which may depend only on Ωk, Γk
1

(see [17]).

Over the space V k, we consider the inner product given by

(uk,vk)V k = (ε(uk), ε(vk))Qk , ∀uk,vk ∈ V k, (2)

and let ∥ · ∥V k be the associated norm. It follows from Korn’s inequality (1) that the
norms ∥ · ∥Hk

1
and ∥ · ∥V k are equivalent on V k. Then (V k, ∥ · ∥V k) is a real Hilbert

space. Moreover, by the Sobolev trace theorem and (2), there exists a constant c0 > 0
depending only on Ωk, Γk

1 and Γ3 such that

∥vk∥L2(Γ3)d ⩽ c0∥vk∥V k , ∀vk ∈ V k. (3)

We also introduce the spaces

W k = {ψk ∈ Ek
1 ;ψ

k = 0 on Γk
a},

W k
1 = {Dk = (Dk

i );D
k
i ∈ L2(Ωk), div Dk ∈ L2(Ωk)}.

Since meas Γk
a > 0, the following Friedrichs-Poincaré inequality holds:

∥∇ψk∥Wk ⩾ cF ∥ψk∥H1(Ωk), ∀ψk ∈W k, (4)

where cF > 0 is a constant which depends only on Ωk, Γk
a. In the space W k, we consider

the inner product

(φk, ψk)Wk =

∫
Ωk

∇φk · ∇ψkdx, (5)

and let ∥ ·∥Wk be the associated norm. It follows from (4) that ∥ ·∥H1(Ωk) and ∥ ·∥Wk are

equivalent norms on W k and therefore (W k, ∥ · ∥Wk) is a real Hilbert space. Moreover,
by the Sobolev trace theorem, there exists a constant c0 depending only on Ωk, Γk

a and
Γ3 such that

∥ζk∥L2(Γ3) ⩽ c0∥ζk∥Wk , ∀ζk ∈W k. (6)
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The space W k
1 is a real Hilbert space with the inner product

(Dk,Φk)Wk
1
=

∫
Ωk

Dk ·Φkdx+

∫
Ωk

div Dk · div Φkdx,

where div Dk = (Dk
i,i), and the associated norm ∥ · ∥Wk

1
.

To simplify the notation, we define the product spaces

V = V 1 × V 2,H = H1 ×H2, H1 = H1
1 ×H2

1 ,

Q = Q1 ×Q2, Q1 = Q1
1 ×Q2

1, W =W 1 ×W 2,W1 =W 1
1 ×W 2

1 .

The spaces V, W and W1 are the real Hilbert spaces endowed with the canonical inner
products denoted by (·, ·)V, (·, ·)W and (·, ·)W1 . The associate norms will be denoted by
∥ · ∥V, ∥ · ∥W and ∥ · ∥W1 , respectively.

Finally, for any real Hilbert space X, we use the classical notation for the spaces
Lp(0, T ;X), W k,p(0, T ;X), where 1 ≤ p ≤ ∞, k ≥ 1. We denote by C(0, T ;X) and
C1(0, T ;X) the space of continuous and continuously differentiable functions from [0, T ]
to X, respectively, with the norms

∥f∥C(0,T ;X) = max
t∈[0,T ]

∥f(t)∥X ,

∥f∥C1(0,T ;X) = max
t∈[0,T ]

∥f(t)∥X + max
t∈[0,T ]

∥ḟ(t)∥X .

3 The Model and Variational Problem

Let us consider two electro-viscoelastic bodies occupying two bounded domains Ω1, Ω2

of the space Rd(d = 2, 3). For each domain Ωk, the boundary Γk is assumed to be
Lipschitz continuous, and is partitioned into three disjoint measurable parts Γk

1 , Γ
k
2 and

Γk
3 on one hand, and into two measurable parts Γk

a and Γk
b on the other hand, such that

meas Γk
1 > 0, meas Γk

a > 0. Let T > 0 and let [0, T ] be the time interval of interest. The
body Ωk is subjected to fk

0 forces and volume electric charges of density qk0 . The bodies
are assumed to be clamped on Γk

1 × [0, T ]. The surface tractions fk
2 act on Γk

2 × [0, T ].
We also assume that the electrical potential vanishes on Γk

a× [0, T ] and a surface electric
charge of density qk2 is prescribed on Γk

b × [0, T ]. The two bodies can enter in contact
along the common part Γ1

3 = Γ2
3 = Γ3, the bodies are in contact with wear.

We denote by uk the displacement field, by σk the stress tensor field and by ε(uk)
the linearized strain tensor. We use an electro-viscoelastic constitutive law given by

σk(t) = Akε(u̇k(t)) + Gkε(uk(t)) + (Ek)∗∇φk(t). (7)

Here Ak is a given nonlinear operator, Gk represents the elasticity operator. E(φk) =
−∇φk is the electric field, Ek represents the third order piezoelectric tensor, (Ek)∗ is its
transposition. In (7) and everywhere in this paper, the dot above a variable represents
the derivative with respect to the time variable t.

We now briefly describe the boundary conditions on the contact surface Γ3 based on
the model derived in [18]. We introduce the wear function w : Γ3 × [0, T ] → R+ which
measures the wear of the surface.

The wear is identified as the normal depth of the material that is lost. Let g be the
initial gap between the two bodies and let pν and pτ denote the normal and tangential
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compliance functions. We denote by v∗ and α∗ = ∥v∗∥ the tangential velocity and the
tangential speed of the contact surface, respectively. We use the modified version of
Archard’s law ẇ = −kwα∗σν to describe the evolution of wear, where kw > 0 is a wear
coefficient. We introduce the unitary vector δ : Γ3 → Rd defined by δ = v∗/ ∥v∗∥. In
the reference configuration, there is a gap between Γ3 of the two bodies, measured along
the direction of ν, denoted by g. When the contact occurs, some material of the contact
surface is worn out and immediately removed from the system. This process is measured
by the wear function w.

Then, the classical formulation of the mechanical problem of a frictional contact with
wear between two electro-viscoelastics bodies may be stated as follows.

Problem P

For k = 1, 2, find a displacement field uk : Ωk × [0, T ] → Rd, a stress field σk : Ωk ×
[0, T ] → Sd, an electric potential φk : Ωk × [0, T ] → R, a wear function w : Γ3 × [0, T ] →
R+ and an electric displacement field Dk : Ωk × [0, T ] → Rd such that

σk = Akε(u̇k) + Gkε(uk) + (Ek)∗∇φk, in Ωk × [0, T ] , (8)

Dk = Ekε(uk)− Bk∇φk in Ωk × [0, T ] , (9)

Div σk + fk
0 = 0 in Ωk × [0, T ] , (10)

div Dk − qk0 = 0 in Ωk × [0, T ] , (11)

uk = 0 on Γk
1 × [0, T ] , (12)

σkνk = fk
2 on Γk

2 × [0, T ] , (13)

σ1
ν = σ2

ν ≡ σν ,

σν = pν (uν − w − g) ,

}
on Γ3 × [0, T ] , (14)

σ1
τ = −σ2

τ ≡ στ ,

στ = −pτ (uν − w − g)
v∗

∥v∗∥
,

 on Γ3 × [0, T ] , (15)

u1ν + u2ν = 0, on Γ3 × [0, T ] , (16)

ẇ = −kwα∗σν = kwα
∗pν (uν − w − g) , on Γ3 × [0, T ] , (17)

φk = 0 on Γk
a × [0, T ] , (18)

Dk · νk = qk2 on Γk
b × [0, T ] , (19)

uk(0) = uk
0 , in Ωk, (20)

w(0) = w0 on Γ3. (21)

First, equations (8) and (9) represent the electro-viscoelastic constitutive law. Equations
(10) and (11) are the equilibrium equations for the stress and electric-displacement fields,
respectively, in which “Div ” and “div ” denote the divergence operator for the tensor
and vector valued functions, respectively. Next, the equations (12) and (13) represent
the displacement and traction boundary condition, respectively. Conditions (14), (15)
represent the frictional contact with the wear described above. Equation (16) means that
the two bodies are inseparable.

Next, the equation (17) represents the ordinary differential equation which describes
the evolution of the wear function. Equations (18) and (19) represent the electric bound-
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ary conditions. (20) represents the initial displacement field. Finally, (21) represents the
initial condition in which w0 is the given initial wear field.

We now list the assumptions on the problem’s data.
The viscosity function Ak : Ωk × Sd → Sd satisfies the following conditions:

(a) There exists LAk > 0 such that
∥Ak(x, ε1)−Ak(x, ε2)∥ ⩽ LAk∥ε1 − ε2∥ for all ε1, ε2 ∈ Sd, a.e. x ∈ Ωk.

(b) There exists mAk > 0 such that
(Ak(x, ε1)−Ak(x, ε2)) · (ε1 − ε2) ⩾ mAk∥ε1 − ε2∥2
for all ε1, ε2 ∈ Sd, a.e. x ∈ Ωk.

(c) The mapping x 7→ Ak(x, ε) is Lebesgue measurable on Ωk

for any ε ∈ Sd.
(d) The mapping x 7→ Ak(x,0) belongs to Q.

(22)

The elasticity operator Gk : Ωk × Sd → Sd satisfies the following conditions:

(a) There exists a constant LGk > 0 such that
∥Gk(x, ε1)− Gk(x, ε2)∥ ⩽ LGk∥ε1 − ε2∥
for all ε1, ε2 ∈ Sd a.e. x ∈ Ω.

(b) The mapping x → Gk(x, ε) is Lebesgue measurable on Ωk

for all ε ∈ Sd.
(c) The mapping x → Gk(x, 0) ∈ Q.

(23)

The piezoelectric tensor Ek : Ωk × Sd → Rd satisfies the following conditions:{
(a) Ek(x, τ) = (ekijk(x)τjk) for all τ = (τij) ∈ Sd a.e. x ∈ Ωk.

(b) ekijk = ekikj ∈ L∞(Ωk), 1 ⩽ i, j, k ⩽ d.
(24)

Recall also that the transposed operator (Ek)∗ is given by (Ek)∗ = (ek,∗ijk), where

ek,∗ijk = ekkij and the following equality holds:

Ekσ.v = σ · (Ek)∗v ∀σ ∈ Sd, ∀v ∈ Rd.

The electric permittivity operator Bk = (bkij) : Ωk × Rd → Rd satisfies the following
conditions:

(a) Bk(x,E) = (bkij(x)Ej) for all E = (Ei) ∈ Rd, a.e. x ∈ Ωk.
(b) bkij = bkji, b

k
ij ∈ L∞(Ωk), 1 ⩽ i, j ⩽ d.

(c) There exists mBk > 0, such that BkE ·E ⩾ mBk |E|2 for all E = (Ei) ∈ Rd,
a.e. x ∈ Ωk.

(25)
The normal compliance function pν : Γ3 × R → R+ satisfies the following conditions:

(a) There exists Lν > 0 such that
|pν(x, r1)− pν(x, r2)| ⩽ Lν |r1 − r2| for all r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) The mapping x 7→ pν(x, r) is measurable on Γ3 for all r ∈ R.
(c) pν(x, r) = 0 for all r ⩽ 0, a.e. x ∈ Γ3.

(26)

The tangential contact function pτ : Γ3 × R → R+ satisfies the following conditions:
(a) There exists Lτ > 0 such that

|pτ (x, r1)− pτ (x, r2)| ⩽ Lτ |r1 − r2| for all r1, r2 ∈ R, a.e. x ∈ Γ3.
(b) The mapping x 7→ pτ (x, r) is measurable on Γ3 for all r ∈ R.
(c) pτ (x, r) = 0 for all r ⩽ 0, a.e. x ∈ Γ3.

(27)
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We also suppose the following regularities:

fk0 ∈ C(0, T ;L2(Ωk)d), fk2 ∈ C(0, T ;L2(Γk
2)

d),

qk0 ∈ C(0, T ;L2(Ωk)), qk2 ∈ C(0, T ;L2(Γk
b )),

(28)

uk
0 ∈ V k, (29)

w0 ∈ L2(Γ3), (30)

pν (., r) ∈ L2(Γ3), pτ (., r) ∈ L2(Γ3),∀r ∈ R (31)

g ∈ L2(Γ3), g ⩾ 0 a.e on Γ3. (32)

Using the Riesz representation theorem, we define the linear mappings f = ( f1, f2) :
[0, T ] → V and q = (q1, q2) : [0, T ] → W as follows:

(f(t),v)V =

2∑
k=1

∫
Ωk

fk0 (t) · vk dx+

2∑
k=1

∫
Γk
2

fk2 (t) · vk da ∀v ∈ V, (33)

(q(t), ζ)W =

2∑
k=1

∫
Ωk

qk0 (t)ζ
k dx−

2∑
k=1

∫
Γk
b

qk2 (t)ζ
k da ∀ζ ∈ W. (34)

The use of (33) permits to verify that

f ∈ C(0, T ;V). (35)

Next, we define the mappings j : L2(Γ3)× V× V → R by

j(w,u,v) =

∫
Γ3

(pν (uν − w − g) vν) da+

∫
Γ3

pτ (uν − w − g) .δ.vτda,

for all u,v ∈V,w ∈ L2 (Γ3) .

(36)

Now, we give the following variational formulation of the mechanical problem (8)–
(21).

Problem PV

Find a displacement field u = (u1,u2) : [0, T ] → V, a stress field σ = (σ1,σ2) : [0, T ] →
Q, an electric potential φ = (φ1, φ2) : [0, T ] → W, a wear w : [0, T ] → L2(Γ3) and an
electric displacement field D = (D1,D2) : [0, T ] → W1 such that

σk = Akε(u̇k) + Gkε(uk) + (Ek)∗∇φk in Ωk × [0, T ] , (37)

Dk = Ekε(uk)− Bk∇φk in Ωk × [0, T ] , (38)

2∑
k=1

(σk, ε(vk))Qk + j(w(t),u(t),v) = (f(t),v)V

∀v ∈ V, a.e. t ∈ (0, T ),

(39)

2∑
k=1

(Bk∇φk(t),∇ϕk)Hk −
2∑

k=1

(Ekε(uk(t)),∇ϕk)Hk = (q(t), ϕ)W,

∀ϕ ∈ W, a.e. t ∈ (0, T ),

(40)

ẇ = kwα
∗pν (uν − w − g) , a.e. (0, T ), (41)

u(0) = u0, w(0) = w0. (42)
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We notice that the variational Problem PV is formulated in terms of a displacement
field, a stress field, an electrical potential, a wear and an electric displacement field. The
existence of the unique solution of Problem PV is stated and proved in the next section.

4 Existence and Uniqueness of a Solution

Our main existence and uniqueness result is the following.

Theorem 4.1 Assume that (22)–(32) hold and also assume the smallness assump-
tion:

(Lν + Lτ ) < α0, (43)

where α0 =
mAk

c20
such that mAk is defined in (22) and c0 is defined in (3). Then there

exists a unique solution of Problem PV. Moreover, the solution satisfies the following
conditions

u ∈ C1(0, T ;V), (44)

σ ∈ C(0, T ;Q1), (45)

w ∈ C1(0, T ;L2(Γ3)), (46)

φ ∈ C(0, T ;W), (47)

D ∈ C(0, T ;W1). (48)

Then {u, σ, w, φ,D} which satisfy (37)-(42) are called a weak solution of the contact
Problem P. We conclude that, under the assumptions (22)–(32), the mechanical problem
(8)–(21) has a unique weak solution satisfying (44)–(48).

The proof of Theorem (4.1) is carried out in several steps and is based on the following
abstract result for evolutionary variational inequalities.

We turn now to the proof of Theorem (4.1) which will be carried out in several steps
and is based on the arguments of nonlinear equations with monotone operators, a classical
existence and uniqueness result on parabolic inequalities and fixed-point arguments. To
this end, we assume in what follows that (22)–(32) hold, and we consider that C is a
generic positive constant which depends on Ωk, Γk

1 , Γ
k
1 , Γ3, pν ,pτ , Ak, Gk, Ek but does

not depend on t or the rest of input data, and whose value may change from place to
place.

First step.
Let η = (η1, η2) ∈ C(0, T ;V).
We consider the following variational problem.

Problem PVu
η .

Find a displacement field uη = (u1
η,u

2
η) : [0, T ] → V such that

2∑
k=1

(Akε(u̇k), ε(vk))Qk + (η(t),v)V = (f(t),v)V, (49)

uη (0) = u0 (50)
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for all v ∈ V a.e t ∈ (0, T ).

We have the following result for PVu
η .

Lemma 4.1 There exists a unique solution uη = (u1
η,u

2
η) ∈ C1(0, T ;V) to the prob-

lem (49) and (50).

Proof. Let A : V → V be a semi-continuous and monotone operator which satisfies
the condition

(Au,v)V×V =

2∑
k=1

(Akε(uk), ε(vk))Qk . (51)

It follows from hypothesis (22) that

∥Au−Av∥V ⩽ LAK∥u− v∥V ∀u,v ∈ V.

This proves that A is bounded and semi-continuous on V.
On the other hand, by (22) and Korn’s inequality, we find, for every v ∈ V,

(Av,v)V×V

∥v∥V
⩾ c20mAk∥v∥V .

The passage to the limit in this inequality when ∥v∥V → +∞ implies that A is coercive
in V

Next, by the definition of A, the use of (22) and Korn’s inequality permits also to
obtain

(Au−Av,u− v)V×V > c20mAK∥u− v∥V if u ̸= v.

Then A is strict monotone. Therefore, we put

fη(t) = f(t)− η(t) ∈ C(0, T ;V).

From (33) and the condition η ∈ C(0, T ;V), we have fη ∈ C(0, T ;V). Then, from the
Cauchy-Lipschitz theorem, there exists a unique function vη satisfying the relations

Avη(t) = fη(t) a.e t ∈ (0, T ) ,

uη =

∫ t

0

vη (s) ds+ u0, ∀t ∈ [0, T ] .

We recall that by (35), we have Fη ∈ C(0, T ;V). Keeping in mind that the operator
A is strict monotone, semi-continuous, bounded and coercive, and by using the classical
arguments of functional analysis concerning parabolic equations [5, 14], we can easily
prove the existence and uniqueness of uη satisfying (49)–(50) and the regularity (44).

Second step.

In the second step, we consider the following variational problem.
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4.1 Problem PVw
η

Find the wear function wη : [0, T ] → L2(Γ3) such that

ẇη (t) = kwα
∗pν (uν − w − g) , (52)

wη (0) = w0 in Γ3. (53)

We have the following result for PVw
η .

Lemma 4.2 There exists a unique solution wη ∈ C1
(
0, T ;L2(Γ3)

)
to the problem

PVw
η .

Proof. We use a version of the classical Cauchy–Lipschitz theorem when consid-

ering the mapping Fη : [0, T ]× L2(Γ3) → L2(Γ3) defined by

Fη (t, wη) = kwα
∗pν (uν − wη − g) , ∀wη ∈ L2(Γ3), t ∈ [0, T ] .

It is easy to see that Fη is Lipschitz continuous with respect to the second variable,
uniformly in time. Thus, by the Cauchy–Lipschitz theorem, there exists a unique solution
wη which satisfies (52)–(53).

Third step.
In the third step, we consider the following variational problem.

4.2 Problem PVφ
η

Find the electric potential φη : [0, T ] → W such that

2∑
k=1

(Bk∇φk
η(t),∇ϕk)Hk −

2∑
k=1

(Ekε(uk
η(t)),∇ϕk)Hk = (q(t), ϕ)W (54)

for all ϕ ∈ W, a.e. t ∈ (0, T ). We have the following result.

Lemma 4.3 There exists a unique solution φη ∈ C(0, T ;W ) to the problem PVφ
η .

Proof. We define a bilinear form b(·, ·) : W×W → R such that

b(φ, ϕ) =

2∑
k=1

(Bk∇φk,∇ϕk)Hk ∀φ, ϕ ∈ W. (55)

We use (4), (5), (25) and (55) to show that the bilinear form b(·, ·) is continuous, sym-
metric and coercive on W, moreover, using (34) and the Riesz representation theorem,
we may define an element qη : [0, T ] → W such that

(qη(t), ϕ)W = (q(t), ϕ)W +

2∑
k=1

(Ekε(uk
η(t)),∇ϕk)Hk ∀ϕ ∈ W, t ∈ [0, T ].

We apply the Lax-Milgram theorem to deduce that there exists a unique element φη(t) ∈
W such that

b(φη(t), ϕ) = (qη(t), ϕ)W ∀ϕ ∈ W. (56)
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We conclude that φη is a solution of Problem PVφ
η . Let t1, t2 ∈ [0, T ], it follows from

(54) that

∥φη(t1)− φη(t2)∥W ⩽ C
(
∥uη(t1)− uη(t2)∥V + ∥q(t1)− q(t2)∥W

)
. (57)

We also note that assumptions (28), uη ∈ C1(0, T ;V) and inequality (57) imply that
φη ∈ C(0, T ;W).

Finally, as a consequence of these results, and using the properties of the operator Ek

and the functional j , for t ∈ [0, T ], we consider the element

Λ : C(0, T ;V) → C(0, T ;V) (58)

defined by the equations

(Λη(t),v)V =

2∑
k=1

(Gkε(uk
η(t)),v)V + j(wη(t),uη(t),v)

+

2∑
k=1

(
(Ek)∗∇φk

η(t), ε(v
k)
)
Qk ,∀v ∈ V.

(59)

Here, for every η ∈ C(0, T ;V), uη, wη and φη represent the displacement field, wear field
and the potential electric field obtained in Lemmas 4.1, 4.2 and 4.3, respectively, and σk

η

is denoted by

σk
η(t) = Akε(u̇k

η(t)) + Gkε(uk
η(t)) + (Ek)∗∇φk

η(t) in Ωk × [0, T ]. (60)

We have the following result.

Lemma 4.4 There exists a unique η∗ ∈ C(0, T ;V) such that Λη∗ = η∗.

Proof. Let η1, η2 ∈ C(0, T ;V) and denote by ui, wi, φi and σi the functions
obtained in Lemmas 4.1, 4.2, 4.3 and the relation (60), respectively, for η = ηi, i = 1, 2.
Let t ∈ [0, T ], we have

∥Λη1(t)− Λη2(t)∥V ⩽
2∑

k=1

∥Gkε(uk
1(t))− Gkε(uk

2(t))∥Qk

+ |j(w1(t),u1(t),v)− j(w2(t),u2(t),v)|

+

2∑
k=1

∥(Ek)∗∇φk
1(t)− (Ek)∗∇φk

2(t)∥Qk .

We use (23) and (24), we have

∥Λη1(t)− Λη2(t)∥V ⩽ C
(
∥u1(t)− u2(t))∥V + ∥φ1(t)− φ2(t)∥W

+ |j(w1(t),u1(t),v)− j(w2(t),u2(t),v)|
)
.

(61)

From (3),(26),(36) and (27), we get

∥j(w1(t),u1(t),v)− j(w2(t),u2(t),v)∥L2(Γ3)

⩽ c0 (Lν + Lτ )
(
c0∥u1(t)− u2(t)∥V + ∥w1(t)− w2(t)∥L2(Γ3)

)
∥v∥V.

∀u1,u2,v ∈V, w1, w2 ∈ L2(Γ3).
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Recall that ukην and uk
ητ denote the normal and the tangential component of the

function uk
η, respectively.

Also, since

uk
i (t) =

∫ t

0

u̇k
i (s)ds+ uk

0(t), t ∈ [0, T ], k = 1, 2,

we have

∥u1(t)− u2(t)∥V ⩽
∫ t

0

∥u̇1(s)− u̇2(s))∥V ds. (62)

Using now (22),(26),(27), (59) and (60), we get

(mAk − (Lν + Lτ )) ∥u̇1(t)− u̇2(t))∥V ⩽ ∥η1(s)− η2(s))∥V.

It follows from (49) that

∥u̇1(t)− u̇2(t))∥2V ⩽ C∥η1(s)− η2(s))∥2V,

and using this inequality in (62) yields

∥u1(t)− u2(t)∥2V ⩽ C

∫ t

0

∥η1(s)− η2(s))∥2V ds. (63)

On the other hand, from the Cauchy problem (52)–(53), we can write

wi(t) = w0 −
∫ t

0

kwα
∗pν (uν (s)− wi (s)− g (s)) ds,

and then

∥w1(t)− w2(t)∥L2(Γ3) ⩽ C
(∫ t

0

∥kwα∗pν (uν (s)− w1 (s)− g (s)) ∥L2(Γ3)ds

+

∫ t

0

∥kwα∗pν (uν (s)− w2 (s)− g (s)) ∥L2(Γ3)ds
)
.

Using (26),(27), and writing w1 = w1 − w2 + w2, we obtain

∥∥w1(t)− w2(t)
∥∥
L2(Γ3)

⩽ C
(∫ t

0

∥w1(s)− w2(s)∥L2(Γ3)ds

+

∫ t

0

∥∥u1(s)− u2(s)
∥∥
Vds

)
.

Next, we apply Gronwall’s inequality to deduce

∥w1(t)− w2(t)∥L2(Γ3) ⩽ C

∫ T

0

∥u1(s)− u2(s)∥Vds,

and from the relation (3), we obtain

∥w1(t)− w2(t)∥2L2(Γ3)
⩽ C

∫ T

0

∥u1(s)− u2(s)∥2Vds. (64)
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We use now (4), (24),(25) and (54) to find

∥φ1(t)− φ2(t)∥2W ⩽ C∥u1(t)− u2(t)∥2V. (65)

We substitute (63), (64) and (65) in (61) to obtain

∥Λη1(t)− Λη2(t)∥2V ⩽ C

∫ T

0

∥η1(s)− η2(s)∥2V ds.

Reiterating this inequality m times, we obtain

∥Λmη1 − Λmη2∥2C(0,T ;V) ⩽
CmTm

m!
∥η1 − η2∥2C(0,T ;V).

Thus, for m sufficiently large, the operator Λm is a contraction on the Banach space
C(0, T ;V), and so Λ has a unique fixed point.

Now, we have all the ingredients to prove Theorem 4.1.
Proof. [Proof of Existence] Let η∗ ∈ C(0, T ;V) be the fixed point of Λ defined

by (59), and if {u∗, w∗, φ∗} are the solutions of PVu
η ,PVw

η and PVφ
η , for η = η∗, we use

the following notations:

u∗ = uη∗ , φ∗ = φη∗ , w∗ = wη∗ . (66)

Let σ and D be the functions defined by

σk
∗ = Akε(u̇k

∗) + Gkε(uk
∗) + (Ek)∗∇φk

∗, (67)

Dk
∗ = Ekε(uk

∗)− Bk∇φk
∗. (68)

We prove that {u∗,σ∗, w∗, φ∗,D∗} satisfies (37)–(42) and the regularities (44)–(48).
Clearly, (37), (41) and (42) are satisfied. We use now the equality Λη∗ = η∗, it follows

that
(Λη∗(t),v)V = (η∗(t),v)V. (69)

From the problem PVu
η , we get

(η∗(t),v)V = −
2∑

k=1

(Akε(u̇k
∗(t)), ε(v

k(t)))Qk + (f(t),v)V,∀v ∈ V, a.e. t ∈ (0, T ).

(70)
From the definition of Λ, we have

(Λη∗(t),v)V =

2∑
k=1

(Gkε(uk
∗(t)), ε(v

k(t)))V + j(w∗(t),u∗(t),v)

+

2∑
k=1

(
(Ek)∗∇φk

∗(t), ε(v
k(t))

)
Qk ,

∀v ∈ V, a.e. t ∈ (0, T ), k = 1, 2.

(71)

From (69), (70) and (71), we deduce that

(f(t),v)V =

2∑
k=1

(Akε(u̇k
∗(t)), ε(v

k(t)))Qk +

2∑
k=1

(Gkε(uk
∗(t)), ε(v

k))V

+ j(w∗(t),u∗(t),v) +

2∑
k=1

(
(Ek)∗∇φk

∗(t), ε(v
k)
)
Qk ,

∀v ∈ V, a.e. t ∈ (0, T ), k = 1, 2.

(72)
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We use (67) and (72), we get

(f(t),v)V =

2∑
k=1

(σk
∗(t), ε(v

k))Qk + j(w∗(t),u∗(t),v). (73)

We deduce that (39) is satisfied. Additionally, we use uη∗ in (52) and (66) to find

ẇ∗(t) = kwα
∗p∗ν (u∗ν − w∗ − g) , a.e.t ∈ (0, T ). (74)

Now, relations (66), (67), (68), (73) and (74) allow us to conclude that
{u∗,σ∗, w∗, φ∗,D∗} satisfies (37)–(42).

Next, (42) and the regularities (44), (46)–(47) follow from Lemmas 4.1, 4.2 and 4.3.
Since u∗, w∗ and φ∗ satisfy (44), (46) and (47), respectively, it follows from (66) and

(67) that

σ∗ ∈ C(0, T ;Q). (75)

For k = 1, 2, we choose v = u̇± ϕ in (73), with ϕ = (ϕ1, ϕ2), ϕk ∈ D(Ωk)d and ϕ3−k = 0
in (54), to obtain

Div σk
∗(t) = −fk

0(t) ∀t ∈ [0, T ], k = 1, 2, (76)

whereD(Ωk) is the space of infinitely differentiable real functions with a compact support
in Ωk. The regularity (45) follows from (28), (75) and (76). Let now t1, t2 ∈ [0, T ], by
(4),(24), (25) and (68), we deduce that

∥D∗(t1)−D∗(t2)∥H ⩽ C (∥φ∗(t1)− φ∗(t2)∥W + ∥u∗(t1)− u∗(t2)∥V) .

The regularity of u∗ and φ∗ given by (44) and (47) implies

D∗ ∈ C(0, T ;H). (77)

For k = 1, 2, we choose ϕ = (ϕ1, ϕ2) with ϕk ∈ D(Ωk)d and ϕ3−k = 0 in (54) and using
(34), we find

div Dk
∗(t) = qk0 (t) ∀t ∈ [0, T ], k = 1, 2. (78)

Property (48) follows from (28), (77) and (78).
Finally, we conclude that the weak solution {u∗,σ∗, w∗, φ∗,D∗} of the Problem PV

has the regularities (44)–(48), which concludes the existence part of Theorem 4.1.
Proof. [Proof of Uniqueness] The uniqueness of the solution is a consequence

of the uniqueness of the fixed point of the operator Λ defined by (59) and the unique
solvability of the Problems PVu

η ,PVw
η and PVφ

η .
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