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Abstract: This paper deals with the multidimensional global optimization problem
where the objective function f is non-Lipschitz over a hyper-rectangle of Rn. The
generalization of Piyavskii’s algorithm to the multivariate case requires finding the
intersection of many non-linear hyper-surfaces. In this paper, we propose an algorithm
which is composed of two steps. The first one is to transform the multivariate function
f into a single variable function f(t) using the α-dense curves and the second one is to
apply the extended version of Piyavskii’s algorithm to f(t). For minimizing f(t), we
construct a sequence of lower bounding piecewise tangent functions. A convergence
result is proved and the numerical experiments on some test functions are given and
compared with the existing methods.
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1 Introduction

Let us consider the box constrained global optimization problem

min
x∈P=

n∏
i=1

[ai,bi]

f(x), (P)

where f is a real continuous multi-extremal function defined on the hyper-rectangle P
and satisfies the following condition:

|f(x)− f(y)| ≤ h ∥x− y∥1/m , ∀x, y ∈ P, (1)
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with two parameters h > 0 and 1/m (m > 1), where ∥.∥ stands for the Euclidean norm.
The last condition is called the Hölder condition (it is clear that if m = 1, we have
the Lipschitz case) [7]. Global optimization is of interest in many complex industrial
applications. But it can also be applied to a variety of other multidimensional prob-
lems such as the resolution of systems of nonlinear functional equations [6] involving
objective functions, which are only continuous and do not possess strong mathemati-
cal proprieties such as convexity or differentiability, and which should be optimized [1].
The kind of problem (P) arises in several applications, for instance, the simple plant
location problem under a uniform delivered price policy, see Hanjoul et al. [10], infinite
horizon optimization problems, see Kiatsupaibul et al. [12], etc. The local irregular-
ity of the objective function, particularly when the value of m is large, is what causes
the problem to be complex to solve in this case. When applied to higher dimensions,
the traditional multidimensional global optimization methods present significant chal-
lenges. Some researchers have considered reducing the dimension of certain problems
to convert them into others that are simpler [5], [17]. There are numerous methods for
reducing a multidimensional global optimization problem to one or more optimization
problems with a smaller dimension, especially with one dimension. Many authors have
explored the strategy based on filling the feasible region with a curve, see, for example,
Butz [4], Strongin [18], and Sergeyev et al. [17]. For this, they take into account the
Peano-type curve approximations. These curves, known as space-filling curves, were first
presented by Peano (1890), subsequently by Hilbert (1891), and have the property of
passing through all points of a hyper-rectangle of Rn. On the other hand, Cherruault [5],
Guettal and Ziadi [9], [15], [16] and their collaborators have consistently improved the
reducing transformation method in recent years, their method depends on reducing a
multidimensional problem to a unidimensional one by using the space-filling curves like
α-dense type curves to fill the feasible domain, and then, using a one-dimensional global
optimization algorithm, to approximate the global minimizer. Gourdin et al. [8] have
suggested solving this problem by the generalization of Piyavskii’s algorithm to the mul-
tivariate situation [8]. Indeed, Piyavskii’s approach cannot be directly generalized since
finding the intersection of many parabolic hyper-surfaces is necessary to find the local
minima of the sub-estimators of the objective function on P. The authors in [8] proposed
a procedure for partitioning and eliminating (Branch-and-Bound) hyper-rectangles of no
interest by constructing piecewise constant sub-estimator functions. Here, we present
a novel method for deterministic global optimization that relies on a methodology for
reducing the dimension of the problem (P) and is referred to as the ”method of the re-
ducing transformation”. Finding the global minima of multivariate functions with a lot
of local minima has proven to be quite effective with the Alienor method coupled with
some covering one-dimensional methods. The concept is to densify the hyper-rectangle
P as accurately as we need, using pretty regular so-called ”α-dense curves”, and then
approach the objective function f with n variables defined on the hyper-rectangle P,
by a function f with a single variable t on a real interval A of R, which will be spec-
ified later. This allows the multidimensional optimization problem to be reduced to a
one-dimensional optimization problem, which can then be solved using one-dimensional
methods that are well-known for their effectiveness and performance. This coupling has
proved to be efficient for solving diverse non-Lipschitz global optimization problems. For
minimizing the function f on A, we construct a sequence of lower bounding piecewise
tangent functions.

The remainder of the work is organized as follows. Section 2 contains the Alienor
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reducing transformation method. Section 3 presents some covering methods to find
the global minima of univariate functions. Section 4 shows the modified mixed Alienor
method with covering methods and their convergence. Section 5 gives some numerical
experiments confirming theoretical results and showing a reliable performance of the
proposed method and Section 6 concludes the paper.

2 A Multivariate non-Lipschitz Method

2.1 The Alienor reducing transformation method

Global optimization is essentially the purpose of the Alienor reducing transformation
approach [5], [19], [20]. But it can also be applied to a variety of other multidimensional
problems such as the resolution of systems of non-linear functional equations and the ap-
proximation of functions of many variables by functions of a single variable. The essential
idea behind this approach is to perform a transformation that turns multidimensional
optimization problems into single-variable ones before using an effective algorithm for
one-dimensional optimization problems. The transformation is thus based on the cre-
ation of a specific α-dense parametrized curve ζ(t) = (ζ1(t), ζ2(t), ..., ζn(t)) in the feasible
set P.

Definition 2.1 Let A be an interval of R. We say that a parametrized curve of Rn

defined by ζ : A→ P is α-dense in P if for all x ∈ P, ∃t ∈ A such that

d(x, ζ(t)) ≤ α,

where d stands for the Euclidean distance in Rn.

2.2 Building α-dense curves

In order to create α-dense curves in P, let us assume that the function ζ(t) is defined on
the closed and bounded interval A = [0, T ] of R with values in P, where T is the upper
bound of the domain of definition of ζ. The number α is supposed strictly positive and

extremely small the dimension of the hyper-rectangle P =
n∏

i=1

[ai, bi]. We define by a

constructive way an α-dense curve in an arbitrary hyper-rectangle of Rn thanks to the
following results.

Theorem 2.1 Let ζ(t) = (ζ1(t), ζ2(t), ..., ζn(t)) be a function defined from [0, T ] into
the hyper-rectangle P, α > 0, and µ be the Lebesgue measure such that

(1) (ζi)1≤i≤n are continuous and surjective.
(2) (ζi)2≤i≤n are periodic, respectively, of periods (ti)2≤i≤n.
(3) For any interval I of [0, T ] and for any i ∈ {2, ..., n}, we have

µ(I) ≤ ti ⇒ µ(ζi−1(I)) < α.

Then for t ∈ [0, T ], the function ζ(t) represents a parametrized
√
n− 1α-dense curve in

P. (The proof can be found in [20]).

Corollary 2.1 [20] Let ζ(t) = (ζ1(t), ζ2(t), ..., ζn(t)) :
[
0, π

α1

]
→

n∏
i=1

[ai, bi] be a

function defined by

ζi(t) =
ai − bi

2
cos(αit) +

ai + bi
2

, i = 1, 2, ..., n,
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where α1, α2, ..., αn are given strictly positive constants satisfying the relationships

αi ≥
π

α
(bi−1 − ai−1)αi−1, ∀i = 2, ..., n.

Then the curve defined by the parametric curve ζ(t), is
√
n− 1α-dense in P.

When using the reducing transformation approach, we first explicitly provide a para-
metric representation xi = ζi(t), where i = 1, ..., n, of the α-dense curve in the hyper-

rectangle P, for t ∈
[
0, π

α1

]
. Let us specify the following function:

ζ(t) = (ζ1(t), ζ2(t), ..., ζn(t)) :

[
0,

π

α1

]
→ P

with

ζi(t) =
ai − bi

2
cos(αit) +

ai + bi
2

, i = 1, ..., n,

where α and (αi)1≤i≤n are provided by

α =
( ε

2h

)m 1√
n− 1

, α1 = 1 and αi =
π

α
(bi−1 − ai−1)αi−1, i = 2, ..., n.

According to Corollary 2.1, the parametrized curve ζ(t) is α-dense in the hyper-rectangle

P. Moreover, the function ζ is Lipschitzian on
[
0, π

α1

]
with the constant

L =
1

2

(
n∑

i=1

(bi − ai)
2α2

i

) 1
2

.

Then the objective function f is approximated by the function of a single variable defined
by f(t) = f(ζ(t)). The minimization problem (P) is then approximated by the one-
dimensional minimization problem

min
t∈

[
0, π

α1

]f(t).

Theorem 2.2 The function f(t) = f(ζ(t)) for t ∈
[
0, π

α1

]
satisfies the condition (1)

with the constant h and exponent 1/m, where h is given by h = hL1/m.

Proof. For t1 and t2 in
[
0, π

α1

]
, we have

|f(t1)− f(t2)| = |f(ζ(t1))− f(ζ(t2))| ≤ h ∥ζ(t1)− ζ(t2)∥1/m .

As the function ζ is Lipschitzian on
[
0, π

α1

]
with the constants L, we have

∥ζ(t1)− ζ(t2)∥ ≤ L |t1 − t2| ,

then
|f(t1)− f(t2)| ≤ h (L |t1 − t2|)1/m ,

whence
|f(t1)− f(t2)| ≤ hL1/m |t1 − t2|1/m .

This permits us to use one of the unidimensional algorithms to solve the multidimensional
problem (P) shown in Section 3.
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3 A Single Variable non-Lipschitz Method

The following unidimensional optimization problem will be defined by

min
t∈

[
0, π

α1

]f(t), (P′)

where f is defined on the interval
[
0, π

α1

]
and satisfies the condition (1) with the constant

h and exponent 1/m, (m > 1). When minimizing a non-convex function f , the general
principle behind most deterministic global optimization methods is to relax the original
non-convex problem in order to make the relaxed problem convex by utilizing an under-
estimator of the objective function [11], [14].

Definition 3.1 A function 𭟋 is said to be an under-estimator of a function f on a
set X if

𭟋(t) ≤ f(t), ∀t ∈ X,

with the possibility that 𭟋 may not reach f at any point in X.

3.1 Constructing a sequence of under-estimators

The idea is to build an increasing sequence of piecewise functions that minorize the
objective function f and are constructed in such a way that their global minima converge

to the desired global minimum. From the condition (1), if a point t′ ∈
[
0, π

α1

]
is fixed,

then we have

𭟋(t) = f(t′)− h |t− t′|1/m ≤ f(t), ∀t ∈
[
0,

π

α1

]
,

i.e., 𭟋 is an under-estimator of f on
[
0, π

α1

]
. Let us define the first under-estimator by

𭟋1 (t) = f(t1)− h |t− t1|1/m ≤ f(t), ∀t ∈
[
0,

π

α1

]
,

where t1 is chosen arbitrarily, we then determine a point t2 = argmin
t∈[0, π

α1
]

𭟋1 (t) , we thus

obtain a new under-estimator of f ,

𭟋2 (t) = max
1≤i≤2

{
f(ti)− h |t− ti|1/m

}
.

At step k, the function

𭟋k (t) = max
1≤i≤k

{
f(tk)− h |t− tk|1/m

}
.

In the search interval
[
0, π

α1

]
, the restriction of 𭟋k on each sub-interval [ti−1, ti], i =

2, . . . , k, can be expressed as

𭟋i (t) = max
i

f(ti−1)− h (t− ti−1)
1/m︸ ︷︷ ︸

Φi−1(t)

, f(ti)− h (ti − t)
1/m︸ ︷︷ ︸

Φi(t)

 .
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The function 𭟋i (t) is convex and non-differentiable in [ti−1, ti] and its global minimum
value can be computed by locating the point where the two parabolic curves intersect,
i.e., it necessitates solving a non-linear algebraic equation on [0, π

α1
],

f(ti−1)− h (t− ti−1)
1/m

= f(ti)− h (ti − t)
1/m

. (2)

Determining the unique point of intersection of two parabolic curves is generally easy
only for certain cases of m. Gourdin et al. [8] give the analytical expression for the
intersection point when m is the integers 2, 3, 4 and h is known. Lera and Sergeyev
proposed the secant method (SM) [13] when they utilized a different concept based on
changing the intersection point of the parabolic curves at each sub-interval [ti−1, ti] to
the intersection point t̄i of two linked linear interpolations li−1 (resp. li) of the parabolas
Φi−1 (resp. Φi). Then the constant lower bound of the objective function on [ti−1, ti] is
defined by

wi = min {Φi−1(̄ti),Φi(̄ti)} .
Here we suggest another technique noted TM , when changing the solution of the equation
(2) by an intersection point ωi of two tangents Ti−1 (resp. Ti) at the same middle point
of the interval [ti−1, ti], related to these two parabolas Φi−1 (resp. Φi) and defined by Ti−1(t) = −(h/m)e

(1/m)−1
i t+ he

1/m
i ( vi

mei
− 1) + f(ti−1),

Ti(t) = (h/m)e
(1/m)−1
i t− he

1/m
i ( vi

mei
+ 1) + f(ti)

(3)

such as vi =
ti+ti−1

2 and ei =
ti−ti−1

2 .
In this case, the point ωi can be calculated even if m is large enough or not integer,

by

ωi = vi +
m(f(ti−1)− f(ti))

2he
(1/m)−1
i

. (4)

Proposition 3.1 Let f be a real univariate function satisfying the condition (1) with

the constant h > 0 and exponent 1/m defined on the interval
[
0, π

α1

]
. Let the value

Ti = min {Φi−1 (ωi) ,Φi (ωi)} as a constant lower bound of f on [ti−1, ti] ⊂
[
0, π

α1

]
, then

we have

Ti = min

{
f(ti−1)− h

(
ei +

m(f(ti−1)−f(ti))

2he
(1/m)−1
i

)1/m

, f(ti)− h

(
ei +

m(f(ti)−f(ti−1))

2he
(1/m)−1
i

)1/m
}

and
Ti < f(t), ∀t ∈ [ti−1, ti] . (5)

Proof. The value Ti is given by replacing the variable t in the two functions Φi−1(t)
and Φi (t) by the expression (4). Since 𭟋i(t) < f(t), ∀t ∈ ]ti−1, ti[, where 𭟋i(t) =
max {Φi−1(t),Φi (t)}, we have

min {Φi−1(t),Φi(t)} ≤ min
[ti−1,ti]

𭟋i(t) ≤ f(t), ∀t ∈ [ti−1, ti] .

In particular, for t = ωi, it then follows

Ti = min {Φi−1(ωi),Φi(ωi)} < f(t), ∀t ∈ ]ti−1, ti[ .
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4 The Modified Mixed Alienor-TM Method

In order to determine the global minimum of f(x), the modified mixed Alienor-TM
Method consists of two steps: the reducing transformation step and the application of
the TM algorithm to the function f(t) = f(ζ(t)), which satisfies the condition (1) with
the constant h =hL1/m.

Algorithm 4.1 (Alienor-TM)

Input: P =
n∏

i=1

[ai, bi] is the search domain, f is the objective function (multivariate

non-Lipschitz function). The parameters h,m, ε and the dimension n.
Output: Part 1 : ζ(t) is the parametric curve,

f is the univariate non-Lipschitz function.
Part 2 : fopt is the best global minimum of f .

Part 1 :

α = ( ε
2h )

m, α1 = 1.
for i = 2 to n do
αi =

π
α (bi − ai)αi−1.

end for
for i = 1 to n do

ζi(t) =
ai−bi

2 cos(αit) +
ai+bi

2 .
end for

ζ(t) = (ζ1(t), ζ2(t), ..., ζn(t)) and f(t) = f(ζ(t)).

Part 2 :

Initialization: k ← 2, µ← 2, t1 ← 0, t2 ← π
α1

.
Step k: t1,t2, . . . , tk are ordered such that 0 = t1 < t2 < · · · < tk = π

α1
.

for i = 2 to k do
ωi = vi +

m(f(ti−1)−f(ti))

2he
(1/m)−1
i

,

Ti = min
{
f(ti−1)− h(ωi − ti−1)

1/m, f(ti)− h(ti − ωi)
1/m
}
.

end for

Tµ ← min {Ti, 2 ≤ i ≤ k} , (6)

tµ ← ωµ.

if |tµ − tµ−1| > ϵ =
(

ε
2h

)m
, then

tk+1 ← ωµ (7)

k ← k + 1
Go to Step k

else
fopt = min {f(ti) : 1 ≤ i ≤ k} and Stop.

end if
return fopt
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5 Convergence Results of TM and Alienor-TM Algorithms

Theorem 5.1 Let f(t) be a real non-Lipschitz function defined on a closed interval
[0, π

α1 ], with h > 0 and 1/m, (m > 1). Let t∗ be a global minimizer of f(t). Then the
sequence (tk)k≥1 generated by the TM algorithm converges to t∗, i.e.,

lim
k→+∞

f(tk) = f(t∗).

Proof. Let t1, t2, t3, ... be the sampling sequence satisfying (4), (6), (7). Let us
consider that ts ̸= ts′ for all s ̸= s′, the set of the elements of the sequence (tk)k≥1

is then infinite and therefore has at least one limit point in [0, π
α1

]. Let z be any limit
point of (tk)k≥1 such that z ̸= 0, z ̸= π

α1
, then the convergence to z is bilateral (one can

see [13]). Consider now an interval [tρ(k)−1, tρ(k)] which contains z, using (4), (6) and
(7), we obtain

lim
k→+∞

(tρ(k)−1 − tρ(k)) = 0. (8)

In addition, the value Tρ(k) that corresponds to [tρ(k)−1, tρ(k)], is given by

Tρ(k) = min
{
f(tρ(k)−1)− h(ωρ − tρ(k)−1)

1/m, f(tρ(k))− h(tρ(k) − ωρ)
1/m
}
, (9)

where zρ is obtained by replacing i by ρ in (4). As z ∈ [tρ(k)−1, tρ(k)] and from (8), we
have

lim
k→+∞

Tρ(k) = f(z). (10)

On the other hand, according to (5),

Tj(k) ≤ f(t), ∀t ∈ [tj(k)−1, tj(k)]. (11)

From (6), Tρ(k) = min {Tj , j = 2, ..., k}, then

Tρ(k) ≤ Tj(k), ∀t ∈ [tj(k)−1, tj(k)],

and since [0, π
α1

] =
k
∪

j=2
[tj(k)−1, tj(k)] , we have

lim
k→+∞

Tρ(k) ≤ Tj(k), ∀t ∈ [0,
π

α1
], (12)

and from (11), (12) we get

lim
k→+∞

Tρ(k) ≤ f(t), ∀t ∈ [0,
π

α1
].

Since t∗ is the global minimizer of f over [0, π
α1

] ,

lim
k→+∞

Tρ(k) ≤ f(t∗) ≤ f(z),

from (10), we have

0 ≤ f(z)− f(t∗) ≤ f(z)− lim
k→+∞

Tρ(k) = 0,
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then
f(z) = f(t∗).

The function f is non-Lipschitz on [0, π
α1

], so f must be continuous so that

f(z) = f

(
lim

k→+∞
tk

)
= lim

k→+∞
f (tk) = f(t∗).

Theorem 5.2 Let f be a non-Lipschitz function satisfying the condition (1) over
P and M be the global minimum of f on P. Then the mixed Alienor-TM algorithm
converges to the global minimum with an accuracy at least equal to ε.

Proof. Denote by M∗ the global minimum of f on [0, π
α1

], where f(t) = f(ζ(t)). On
the other hand, let us designate by fε the global minimum of the problem (P′) obtained
by the Alienor-TM method.
Let us show that

fε −M ≤ ε.

a) As f is continuous on P, there exists a point x ∈ P such that M = f(x). Moreover,
there exists t0 ∈ [0, π

α1
] such that ∥x− ζ(t0)∥ ≤

(
ε
2h

)m
so that ∥f(x)− f(ζ(t0))∥ ≤ ε

2 .
And therefore

f(ζ(t0))−M ≤ ε

2
.

But from M ≤M∗ ≤ f(ζ(t0)), we deduce that

M∗ −M ≤ ε

2
. (13)

b) As f is continuous on [0, π
α1

], there exists a point t∗ ∈ [0, π
α1

] such that M∗ = f(t∗),
involving t∗ as a global minimizer of f . Then t∗ is a limit point of the sequence (tk)k≥1

obtained by the mixed algorithm.
Hence t∗ ∈ [tρ(k)−1, tρ(k)] and lim

k→+∞
(tρ(k) − tρ(k)−1) = 0, i.e.,

∃tε ∈ [ts−1, ts] : |ts − ts−1| ≤
( ε

2h

)m
and fε = f(tε)

so that {
Ts = min

{
f(ts−1)− h |t− ts−1|1/m , f(ts)− h |t− ts|1/m

}
,

Ts ≤ f(t∗) ≤ f(tε) and t∗ ∈ [ts−1, ts].

Consequently,

fε −M∗ = f(tε)− f(t∗) ≤ h |tε − t∗|1/m ≤ ε

2
. (14)

Finally, from (13) and (14), the result of Theorem 5.2 is proved.

6 Computational Experiments

In this section, we present a series of numerical results concerning two mixed Alienor-SM
and Alienor-TM algorithms, applied to a set of non-Lipschitz test functions given in the
literature. The analytical expressions of the objective functions are reported in Table 1
below including their sources.
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Problem No. Non-Lipschitz test functions. Domain h m Ref.

1 max
{√
|x|,
√
|y|
}

[−1, 1]2 1 2 [2]

2
√
|x|+ |y| [−1, 1]2 (

√
2)

1
2 2 [2]

3
√
|x|+

√
|y| [−1, 1]2 2 2 [2]

4 |x+ y − 0.25|2/3 − 3 cos(x2 ) [−1
2 , 1

2 ]
2 2.42 3

2 [15]

5
3∑

k=1

1
2k

∣∣cos (( 3
2k + 1

)
x+ 1

2k

)∣∣ |x− y|3 [0, 3]2 15.8 3 [15]

6 − cos(x) cos(y) exp

(
1−
√

x2+y2

π

)
[−6, 6]2 45.265 2 [3]

7 −10 exp
(
−
√
0.5 (|x|+ |y|)

)
[−2, 12]2 10√

2
2 [3]

Table 1: The non-Lipschitz test functions.

The experiments have been carried out on PC with Intel(R) Core(TM)i5-7200U CPU
2.50 GHz and 8.00 RAM. The codes are implemented in MATLAB R2017a, with the
parameter α = 0.1. We give, in Table 2, the numerical results obtained by each method
to solve the problem (P) and the comparison is made with respect to the number of
evaluations Ev and the calculation time CPU . In Table 2, the bold form indicates the
best results in terms of CPU and Ev.

Problem No.
Alienor-SM Alienor-TM

Ev CPU Ev CPU
1 207 0.0655 212 0.1506
2 192 0.0901 196 0.1731
3 283 0.1738 248 0.0783
4 214 0.1063 206 0.0899
5 4905 1.6163 4865 1.6039
6 65549 308.5771 65546 307.6463
7 4792 13.5927 4862 12.9657

Table 2: The numerical results.

According to Table 1, all the test functions satisfy the condition (1) with m > 1 and
even for non-integer m. The results given in Table 2 show that the Alienor-TM mixed
method gives relatively satisfactory results, either in terms of the calculation time CPU
or the number of evaluations Ev. The dimensionality reduction Alienor method is rather
effective for dealing with difficult problems and its numerical implementation is very
simple. The number of evaluations Ev of f(t) depends on the length of the α-dense
curve. This raises a particular interest when choosing other curves. In general, for a
fixed value of α, the shorter the curve, the shorter the calculation time. It is therefore
natural to look for other α-dense curves having a shorter length.
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7 Conclusion

In this paper, we report a method for solving a multidimensional global optimization
problem, where the objective function is non-Lipschitz over a hyper-rectangle of Rn. The
concept relies on using the α-dense curve for reducing the size of the space Rn to 1,
then we apply the one-dimensional version of Piyavskii’s algorithm based on construct-
ing tangent minorant functions. This method is simple and easy to implement on any
multivariate non-Lipschitz function even if m is not an integer. We suggested a series of
numerical applications, followed by a comparative study of two mixed algorithms applied
to the proposed problem. We see that the mixed Alienor-TM and Alienor-SM methods
offer interesting prospects for reducing the computation time and the number of evalua-
tions. Finally, we want to elaborate on these investigations in cases where the constant
h is a priori unknown.
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