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Abstract: In this paper, a new hyperchaotic system with no rest point is pre-
sented and its basic properties such as divergence and convergence, rest points and
instability, Lypunov exponents, and bifurcation are analyzed in detail. In the pro-
posed system, some special features such as position controllability and multistability
in periodic state are observed. The analog circuit realization of the proposed hy-
perchaotic system is also presented to validate the present theoretical study of the
system. Furthermore, the adaptive synchronization of the proposed hyperchaotic
system is demonstrated using a novel anti-synchronization methodology. This paper
also presents the Field Programmable Gate Array based digital circuit realization
of adaptive anti-synchronization methodology for the proposed hyperchaotic system.
The digital circuit implementation is achieved by generating the VHDL code for the
FPGA implementation in Matlab and Xilinx. The experimental results are provided
to verify the feasibility and effectiveness of our proposed scheme.
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1 Introduction

The hyperchaotic system is a nonlinear dynamical system with at least two positive Lya-
punov exponents. The positive Lyapunov exponents indicate the complexity and unpre-
dictable response of a dynamical system. Due to this complex nature, the hyperchaotic
system is used in many engineering fields such as oscillators [1], image encryption [2] and
secure communication [3] etc. Recently, many hyperchaotic systems with hidden attrac-
tors have been introduced [4–6] and their dynamic behaviors are discussed in detail.

In this paper, another hyperchaotic system with hidden attractor is proposed and
its basic dynamic properties and bifurcation are studied in detail. The proposed system
also exhibits some special features such as multistability and offset boosting property for
various applications. Multistability is an important phenomenon by which the chaotic
system generates various number of attractors for different initial conditions. The mul-
tistability feature is observed in a periodic state in the proposed system. The position
of the proposed attractor is controllable by introducing a controller in one of the state
variable and this is known as the offset boosting control. The proposed system has three
nonlinear terms. It is exciting to observe that our proposed system has no rest point
and hence, its attractor is masked. In order to verify the dynamical behavior of our
proposed system, the electronic circuit realization is presented in this paper. The circuit
realization is based on discrete components and Integrated Circuits (IC) and simulated
using MULTISIM software.

The trajectory of a hyperchaotic signal highly depends on its initial points and the
parameters of the system are uncertain in practice. Therefore, there is a need to design a
controller function to synchronize the even identical hyperchaotic systems with unknown
parameters. Recently, many chaos synchronization methodologies have been proposed in
literature reviews [7–9]. In this research paper, an anti-synchronization scheme is chosen
for the demonstration of adaptive synchronization of the proposed system.

The digital realization of an adaptive synchronization scheme for chaotic systems has
predominant applications in many digital chaotic systems such as digital data transmis-
sion [10] etc. In order to expand the hyperchaos based real time applications, nowadays,
researchers give more attention to the implementation of a hyperchaotic system in digital
circuits such as Field Programmable Gate Array (FPGA) [11], [12]. Based on the lit-
erature survey, in this work, the proposed adaptive anti-synchronization scheme for the
hyperchaotic system is realized in FPGA using MATLAB simulink and Xilinx system
generator tools.

2 Modelling of New Hidden Attractor Hyperchaotic System

The new hyperchaotic system with hidden attractor is of the form

ṗ = α(q − p),
q̇ = βq − pr + w,
ṙ = pq − γr,
ẇ = w − pr.

(1)

Here, p, q, r, w are the state variables and α, β, γ are the non zero positive parameters
of the system (1). The system parameter values are chosen as α = 26, β = 14 and
γ = 3. The behavior of the new dynamical system (1) never changes the polarity of
the co-ordinates changes as (p, q, r, w) → (−p,−q, r,−w) and the proposed system has
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rotational symmetry about the r-axis. The divergence of the system (1) is given as

∇f =
∂fp
∂p +

∂fq
∂q + ∂fr

∂r + ∂fw
∂w = −14.36, where fp = ṗ, fq = q̇, fr = ṙ, fw = ẇ. Since

the divergence of (1) is negative for all positive values of α,β,γ, we can conclude that the
proposed system has a strange attractor. The rest points of the proposed system (1) can
be computed numerically by equating the Equation (1) to zero as given in Equation (2),

α(q − p) = 0,

βq − pr + w = 0,

pq − γr = 0,

w − pr = 0.

(2)

From Equation (2), the rest points of system (1) are computed as E{0, 0, 0, 0} and it
is observed that the attractor of new dynamical system (1) is masked up somewhere in
phase space. The Jacobian matrix of the system (1) is given as

J =


−α α 0 0
−r β −p 1
q p −γ 0
−r 0 −p 1

 . (3)

The eigenvalues of the Jacobian matrix (J) can be obtained as λ1 = −26, λ2 =
14, λ3 = −3 and λ4 = 1. Since the set of eigenvalues has both positive and
negative real values, the rest point E is an unstable point. The Lyapunov ex-
ponents of the new hyperchaotic dynamic system (1) are calculated using the
Wolf algorithm as LE = [0.331891, 0.038063, 0,−14.314174] for the initial conditions
p0 = 1, q0 = 2, r0 = 1, w0 = 3. The sum of Lyapunov exponents is −13.94422 < 0 and
hence, the proposed system (1) is dissipative. The Lyapunov dimension (DL) can be ob-
tained as DL = 3 + LE1+LE2+LE3

|LE4| = 3.019644, which indicates the fractional dimension

of the proposed system (1).

3 Dynamic Analysis of Proposed System

The variations of state variables of the proposed hyperchaotic system (1) in 2D and
3D planes are given in Figure 1. The bifurcation diagrams and Lyapunov exponents
of the proposed system (1), based on the parameters α and β for the initial conditions
{0, 1, -1, 1}, are shown in Figure 2. First, the parameter α varies in the range of
αϵ[22− 27] and the remaining parameters are kept constant, as demonstrated in Figure
2a, which shows that the system (1) is in a period state in the range of αϵ[22 − 22.3],
αϵ[24.3− 25.5] and in chaos states in the range of αϵ[22.3− 24.2], αϵ[25.5− 27]. Second,
the parameter β varies in the range of βϵ[13 − 18] and the other parameters are kept
constant as given in Figure 2b, which shows that there is the inverse doubling behavior.
It is in a chaotic state in the range of βϵ[13 − 14.5], and in a period state in the range
of nearly βϵ[14.5 − 15.4] and βϵ[17.5 − 18]. The Lyapunov spectrum versus the various
parameters is also demonstrated in Figures 2c and 2d, in which LE1, LE2, LE3 and LE4

are represented in blue, red, green, and cyan, respectively.
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(a) (b)

(c) (d)

Figure 1: Attractors of the proposed hyperchaotic system.

4 Controllability of Proposed Hyperchaotic System

The position of the proposed attractor is controllable by introducing a controller param-
eter δ in the state variable w in the proposed system (1). The state variable w in the
proposed system is replaced with w + δ as given in (4). Figure 3a shows the position of
the proposed controlled attractor in the r−w plane for δ = 0 (blue), δ = −90 (black) and
δ = 90 (magenta). Figure 3b shows that the state variable w is converted from bipolar
into unipolar by varying the controller value.

ṗ = α(q − p),
q̇ = βq − pr + (w + δ),
ṙ = pq − γr,
ẇ = (w + δ)− pr.

(4)

5 Multistability of Proposed Hyperchaotic System

Multistability or a multiple attractor property is observed in the various periodic states
of the proposed system. Figure 4a shows a bifurcation diagram for the parameter β
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(a) (b)

(c) (d)

Figure 2: (a-b) Bifurcation diagram, (c-d) Lyapunov exponents plots of the proposed
system.

under the initial conditions (0, 1,−1, 1) (red) and (1, 1,−1, 1)(black) and indicates that
there is a multiple attractor in periodic states. Figure 4b shows the phase portraits of
the proposed system when a = 26, b = 15, c = 3 under the initial conditions (0, 1,−1, 1)
(blue) and (1, 1,−1, 1) (magenta).

6 Electronic Circuit Implementation of Proposed Hyperchaotic System

In this section, an analog circuit is constructed to confirm the theoretical results of the
proposed system (1) using electronic components such as resistors, capacitors, OPAMP
741, and multiplier. The time and amplitude scaling factors are chosen as T = 100t and
A = 5, respectively, to realize the circuit parameters α, β and γ. The system (1) can be
written as (5),

dx
dT = 100α(y − x),

dy
dT = 100(βy −Axz + w),

dz
dT = 100(Axy − γz),

dw
dT = 100(w −Axz).

(5)
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(a) (b)

Figure 3: Position variation of the proposed attractor with δ = 0(Blue), δ =
90(Magenta), δ = −90(Black). (a) r − w plane, (b) The time series of the state variable
w.

(a) Bifurcation diagram for β (b) α = 26, β = 15, γ = 3

Figure 4: Multistability behaviour of the proposed system.

The equations for the proposed electronic circuit design can be given as in Equation (6),

dx
dT = R1

R2R3C1
(−y)− R1

R2R4C1
(x),

dy
dT = R5

R6R7C2
(−y)− R5

10R6R9C2
(xz)− R5

R6R8C2
(−w),

dz
dT = R10

R11R12C3
(−xy)− R10

R11R13C3
(z),

dw
dT = R14

R15R16C4
(−w)− R14

R15R17C4
(−xz).

(6)

The circuit realization of system (6) using Multisim software is shown in Figure 5. The
electronic components are chosen as C1 = C2 = C3 = C4 = 10nF, R1 = R5 = R10 =
R14 = R18 = R19 = R20 = R21 = R22 = R23 = R24 = R25 = 100Ω, R2 = R6 = R11 =
R15 = 50kΩ, R3 = R4 = 77kΩ,R7 = 143kΩ, R8 = R16 = 2000kΩ,R9 = R12 = R17 =
40kΩ and R13 = 595kΩ. Circuit simulation results are shown in Figure 6. Note that the
Multisim simulation results are agreeing with the Matlab results shown in Figure 1.
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(a) x signal (b) y signal

(c) z signal (d) w signal

Figure 5: Circuit realization of the proposed system.

(a) xy (b) yz

(c) zw

Figure 6: Electronic simulation result for the proposed system.
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7 Adaptive Synchronization of Proposed Hyperchaotic System

In this section, the anti-synchronization of the proposed system (1) is established us-
ing an adaptive control method. In the last two decades, a variety of synchronization
schemes such as fuzzy set based methods [13], observer-based methods [14], Lyapunov-
based methods [15], sliding surface-based methods [16], PID control [17], and active
method [18] were used. However, the synchronization schemes proposed in the literature
review [13–18] have some limitations. The fuzzy set methods need the states of the sys-
tem for the calculations of membership and non - membership functions and building a
regressor vector. The observer-based synchronization scheme is restricted to synchronize
different systems since the structure of the slave system is defined by the master system.
In backstepping, synchronization is a Lyapunov-based synchronization method in which
the calculation of the Lyapunov exponent is required for the entire system. The sliding
mode control method requires the design of a sliding surface in which the states of the
system sliding on the sliding surface and the dynamic behavior of the system depend on
the sliding surface equations. The chattering problem is the main drawback of the sliding
mode controller. The Proportional Integral Derivative (PID) controller has low robust-
ness and suitability for linear systems. The active control method is not suitable for
practical situations since the initial conditions and the system parameters are unknown
in practice. The literature review on chaos synchronization pinpoints that compared to
any other method, the adaptive feedback control method is a simple, convenient, and
efficient methodology for implementing the chaos synchronization. The master and the
slave system are given as in (1) and (7), respectively,

ṗ1 = α(q1 − p1) + u1,
q̇1 = βq1 − p1r1 + w1 + u2,
ṙ1 = p1q1 − γr1 + u3,
ẇ1 = w1 − p1r1 + u4.

(7)

Here, p1, q1, r1 and w1 are the state variables of the slave system, u1, u2, u3 and u4 are the
adaptive controllers used to synchronize the master and the slave system, α = 26, β =
14, γ = 3 are the system parameters. The anti-synchronization error between the master
and the slave system can be written as (8),

e1 = p1 + p,
e2 = q1 + q,
e3 = r1 + r,
e4 = w1 + w.

(8)

Based on adaptive control theory, the adaptive controllers can be derived as (9),

u̇1 = −α̂(e2 − e1)− g1e1,

u̇2 = −β̂e2 + e4 + p1r1 + pr − g2e2,
u̇3 = γ̂e3 − p1q1 − pq − g3e3,
u̇4 = −e4 + p1r1 + pr − g4e4.

(9)

Here, α̂, β̂, γ̂ are the estimate values of the unknown parameters α, β, γ, respectively.
g1, g2, g3, g4 are the gain of the controllers. Consider a Lyapunov function candidate as

V = e1ė1 + e2ė2 + e3ė3 + e4ė4 + eaėa + ebėb + ecėc

= ea[e1(e2 − e1)− ˙̂α] + eb[e
2
2 −

˙̂
β] + ec[−e23 − ˙̂γ]− g1e

2
1 − g2e

2
2 − g3e

2
3 − g4e

2
4.

(10)
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By choosing the dynamics of unknown parameter values as ˙̂α = e1(e2 − e1),
˙̂
β = e22

and ˙̂γ = −e23, Equation (10) becomes Equation (11) which indicates the negative Lya-
punov function, the anti-synchronization error signals and the parameter error signals
exponentially reach zero, which means that both the master and the slave system are
synchronized together.

V = −(g1e
2
1 + g2e

2
2 + g3e

2
3 + g4e

2
4) < 0. (11)

To demonstrate the adaptive synchronization of the proposed system, different initial
conditions are chosen for the master and the slave system separately such as Xm =
(3,−7, 1.5, 6) and Xs = (2, 3, 4, 1). The initial conditions for the positive parameters
α, β, γ are, respectively, taken for demonstration as (0.5,0.2,0.7). The gain of the adaptive
controllers is also chosen for the demonstration purpose as gi = 1, where i = 1, 2, 3, 4.
Figure 7a shows that the anti−synchronization errors e1, e2, e3 and e4 become zero when
both the master and the slave system are synchronized together. Figure 7b represents the
synchronized state variables for the simulation time 1500s. The dotted line represents
the master system and the solid line represents the controlled slave system p−p1 (Blue),
q − q1 (Brown), r − r1 (Magenta) and w − w1 (Red).

8 FPGA Implementation of Adaptive Synchronization of Proposed Hyper-
chaotic System

In this section, an FPGA-based digital circuit realization of the proposed adaptive
synchronization methodology for a new hyperchaotic system is presented. The digi-
tal realization of the synchronized hyperchaotic system is achieved in the MATLAB
and Xilinx environments. In this methodology, initially, Equations (1) and (7) to
(9) are constructed in MATLB simulink using Xilinx system generator tools to gen-
erate the VHDL code. Then, the generated VHDL code is simulated and synthe-
sized in Xilinx software. Figure 8 shows the digital circuit realization of the pro-
posed hyperchaotic system. The initial conditions for the master and the slave sys-
tem are chosen for the FPGA implementation of the synchronization methodology as
(p(0), q(0), r(0), w(0)) = (5, 2, 3, 1) and (p1(0), q1(0), r1(0), w1(0)) = (20, 30, 25, 15), re-
spectively. Hence, the initial conditions for the anti-synchronization error signal can be
from Equation (8): (e1(0), e2(0), e3(0), e4(0)) = (25, 32, 28, 16). The model of the pro-
posed anti-synchronization methodology is shown in Figure 9, which shows the coupling
between Equations (1) and (7) to (9). In Figure 9, p0 and q0 are the initial conditions for
the master and the slave system, pi outnet [31 : 0] is the 32-bit state signal of the master
system and qi outnet [31 : 0] is the 32-bit state signal of the slave system. α0, β0, and γ0
are the initial conditions for the parameters α, β, and γ, respectively. The master block
is shown in Figure 8, the controller block contains Equation (10), parameter and error
signal block generate the anti-synchronization error signals, and the initial conditions are
fed in the master and slave system block. The VHDL code for the proposed synchro-
nization methodology is generated for the FPGA device virtex-xc6vsx315t3ff1156. After
that, the generated code is simulated in Xilinx software using ISE simulator.

As a result of simulation, a small portion of discrete waveform for the proposed
anti-synchronization methodology is obtained as given in Figure 11, in which the sig-
nals x1outnet[31 : 0] to x4 outnet [31 : 0] represent the signals from the master system,
the signals y1 outnet [31 : 0] to y4 outnet [31 : 0] represent the signals from the slave
system, and e1 outnet [31 : 0] to e4 outnet [31 : 0] are the error signals. For instance,
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(a) Time variation of error signals.

(b) Synchronized master and slave system.

Figure 7: Simulation result for the adaptive synchronization of the proposed system.

x1 outnet [31 : 0] has the value 0000000000000101, which is equivalent to x1(0) = 5, and
y1 outnet [31 : 0] has the value 0000000000010100, which is equivalent to y1(0) = 20, and
the anti-synchronization error e1 outnet [31 : 0] has the value 0000000000011001, which
is equivalent to e1(0) = 25. Thus, we can conclude that the VHDL code simulation
result agrees with the theoretical model developed for the adaptive anti-synchronization
methodology in Section 7.

The resource utilization for virtex-xc6vsx315t3ff1156 is given in Table 1, which shows
that the proposed synchronization methodology utilizes a very small amount of the avail-
able source.

9 Conclusion

A new hyperchaotic system with no rest point or hidden attractors is investigated, and
numerical and analytical studies are carried out on its basic properties. The new system
has two positive, 4-dimensional Lyapunov exponents, no rest points, and is unstable,
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Figure 8: Digital realization of the proposed hyperchaotic system.

Figure 9: Coupling between the master and the slave hyperchaotic system.

which means that the proposed system has a hyperchaotic nature. The dynamical analy-
sis of the proposed system is conducted using a bifurcation diagram and a Lyapunov
exponents spectrum. An analog circuit for the new hyperchaotic system is constructed
and simulated in Multisim and the simulation results show the viability of the proposed
theoretical modeling of the new system. By using the adaptive control methodology,
the anti-synchronization of a new, identical hyperchaotic system is studied. The Matlab
simulation results for the adaptive anti-synchronization are demonstrated with different
initial conditions to verify the theoretical analysis of the designed controllers. In order
to digitize the synchronization methodology, FPGA implementation of the new synchro-
nized hyperchaotic system with hidden attractors is designed. The simulation results
and FPGA outputs demonstrate the efficiency of the proposed digitization methodology
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Figure 10: Simulation result of VHDL code for the proposed anti - synchronized hyper-
chaotic system.

Used Sources Available Sources Percentage
Number of Slice Registers 2502 393,600 1
Number of Slice LUTs 4775 196,800 2

Number of Occupied Slices 1466 49,200 2
Number of Bonded IOBs 193 600 32

Number of BUFG/BUFGCTRLs 1 32 0.3

Table 1: Utilization of resources for virtex-xc6vsx315t3ff1156.

for the adaptive anti-synchronization scheme for a new hyperchaotic system with hidden
attractors.
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