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A DC Algorithm for Solving non-Uniquely Solvable

Absolute Value Equations

N. Anane ∗, Z. Kebaili and M. Achache

Fundamental and Numerical Mathematics Laboratory, Ferhat Abbas University,
Setif 1, Setif 19000, Algeria.

Received: January 19, 2023; Revised: March 20, 2023

Abstract: In this paper, we deal with the solution of non-uniquely solvable absolute
value equations (AVE) of the form Ax− B |x| = b, where A, B ∈ Rn×n and b ∈ Rn.
To do so, a non-convex quadratic optimization is considered, where its first-order
optimality conditions are reduced to AVEs. Therefore, solving the AVE is equivalent
to computing the local minimum of the non-convex quadratic optimization. Next, by
exploiting the technique of DC programming, a reformulation of the latter as a DC
program is presented. The resulting DC algorithm (DCA) is simple and consists of
solving a successive linear system of equations. Numerical experiments on some non-
uniquely solvable AVE problems are given to illustrate the efficiency of this approach.

Keywords: absolute value equations; DC programming; linear system; nonlinear
modes; nonlinear systems in control theory.

Mathematics Subject Classification (2010): 90C50, 90C33, 14C20, 70K75,
93C10.

1 Introduction

In this paper, we consider the absolute value equation (AVE) of the form

Ax−B |x| = b, (1)

where A, B ∈ Rn×n, b, x ∈ Rn and |x| denotes the component-wise absolute value of the
vector x. When B = I, the AVE (1) reduces to a special form

Ax− |x| = b. (2)

∗ Corresponding author: mailto:nasimaannan@gmail.com.

© 2023 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua119
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In the last years, the AVEs have become an interesting topic of research in the domain of
mathematical programming and applied sciences. For instance, linear complementarity
problems, bi-matrix games and equilibrium problems, and the hydrodynamic equation
can be reformulated as AVE (1) [4, 7, 9]. For the existence and uniqueness of solutions
of AVE (1) and (2), many results are stated based on different assumptions most of
which are made on matrices A and B. Besides, various numerical methods have been
developed for solving efficiently the uniquely solvable AVEs (see eg. [1, 2, 5, 8, 10, 13, 17]
and the references therein).

The present work deals with AVE (1) that is not necessarily uniquely solvable, i.e., it
has more than one solution. For that, a non-convex quadratic optimization is considered
and its first-order optimality conditions are reduced to AVE (1). Therefore, finding a
solution of AVE (1) is equivalent to computing a local minimum of the corresponding
non-convex quadratic optimization. Next, by exploiting the idea of DC programming
and DC Algorithm (DCA) for non-convex optimization [11, 14, 15], we propose a sim-
ple and efficient iterative method for solving the AVE (1) by its non-convex quadratic
optimization. Hence, a suitable DC decomposition of the DC program is proposed for
which the DC algorithm is applied. Numerical results are reported by some examples of
solvable AVE (1) that can have either a unique solution or many solutions.

At the end of this section, some notations used in the paper are as follows. The
scalar product of two vectors x and y in Rn is denoted by ⟨x, y⟩ = xT y. For x ∈ Rn, the
norm ∥x∥ will denote the Euclidean norm (xTx)1/2 and sign(x) will denote a vector with
components equal to +1, 0 or −1, depending on whether the corresponding component
of x is positive, zero or negative, respectively. In addition, D := ∂|x|=Diag(sign(x))
(D is a diagonal matrix corresponding to sign(x)), where ∂|x| represents the generalized
Jacobian of |x| based on the sub-gradient. λmax(A) stands for the maximal eigenvalue of
a matrix A. The vector of one is denoted by e and the matrix A is positive semi-definite
if xTAx ≥ 0 for any x ∈ Rn. Finally, ∥A∥ := max {∥Ax∥ : x ∈ Rn, ∥x∥ = 1} denotes the
induced norm of A.

The paper is organized as follows. In Section 2, a quadratic formulation of the AVE
(1) is presented. The equivalence of its first optimality conditions to AVE (1) is shown,
where any local minimum of the latter is a solution of the AVE. In Section 3, a brief
outline of DC programming and the DCA is given. The DCA for this formulation is
discussed. In Section 4, some numerical results are reported. A conclusion and future
work outlook end Section 5.

2 Quadratic Formulation of AVE

In this section, we present a quadratic formulation of the AVE (1). It states that when A
and B are given arbitrary matrices, the AVE (1) is equivalent to the first-order optimality
conditions of the following unconstrained quadratic optimization problem:

min
x∈Rn

q(x) =
1

2
⟨Ax−B |x| , x⟩ − ⟨b, x⟩ (3)

or, equivalently,

min
x∈Rn

q(x) =
1

2
⟨Cx− F |x| , x⟩ − ⟨b, x⟩ ,

where C = AT + A, F = BT + B are symmetric matrices, and q(x) is the quadratic
objective function of (3). Indeed, if x satisfies the first-order optimality conditions of
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problem (3), then we have ∇q(x) = Ax − B|x| − b = 0. It follows that any local
minimum of (3) is a solution of the AVE (1). In the case where q is convex, any local
minimum is global. Consequently, any unique solution of AVE (1) is a global minimum
of (3).

3 Outline of DC Programming and DCA (Algorithm)

In general, a DC program takes the form

α = inf
x∈Rn

(q (x) = g (x)− h (x)) (Pdc) ,

where g, h are proper lower semi-continuous and convex functions on Rn. The function
q is called a DC function, and g − h is a DC decomposition of q, while g and h are the
DC components of q.
A point x∗ is called a critical point of g−h or a generalized Karush-Kuhn-Tucker (KKT)
point of Pdc (3) if

∂h(x∗) ∩ ∂g(x∗) = ∅,

where ∂ϕ(x) denotes the sub-differential of ϕ(x) at the point x. Based on local optimality
conditions and duality in DC programming, the DCA generates two sequences

{
xk

}
and{

yk
}
in the primal and its dual, respectively. Each iteration k of DCA approximates the

concave part of −g by its affine majorization (that corresponds to taking yk ∈ ∂h(xk)
and minimizing the resulting convex function (that is equivalent to determining a point
xk+1 ∈ ∂g∗(yk) (or yk ∈ ∂g(xk+1)) with g∗ being the conjugate function of g. The
generic form of a DC algorithm is stated as follows.

3.1 Generic DCA scheme

Initialization: Let x0 ∈ Rn be a starting point, k := 0;
Repeat.
Calculate yk ∈ ∂h(xk);
Calculate xk+1 ∈ ∂g∗(yk) ⇒ yk ∈ ∂g(xk+1);
k := k + 1;
Until convergence of

{
xk

}
.

We note that the convergence properties of DCA (Algorithm) can be found in details
in [14].

4 Proposed DC Decompositions

Let ρ > 0 be such that g and h are convex. In this paper, we adopt the following DC
decomposition of q(x):

q (x) = g (x)− h (x) . (4)

4.1 DCA for AVE

The DC decomposition of the objective function q(x) is given by

g(x) =
1

2
xT (A+ ρI)x and h (x) =

1

2
(xT (BD + ρI)x) + xT b
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with D(x)x = |x|. Then the problem (4) is a DC program in the standard form

min
x∈Rn

{g (x)− h (x)} .

Following the generic DCA scheme and its properties, we detail the ingredients of the
DC algorithm for solving AVE (1).
• An initial point x0 ∈ Rn.
• Computation of yk. We have

yk ∈ ∂h(xk) =
{
▽h(xk)

}
=

{
(ρI +BD(xk))xk + b

}
.

Then
yk = (ρI +BD(xk))xk + b. (5)

• Computation of xk+1. We have

xk+1 ∈ ∂g∗(yk) ⇒ yk ∈ ∂g(xk+1) =
{
▽g(xk+1)

}
=

{
(A+ ρI)xk+1

}
.

Hence
yk = (A+ ρI)xk+1. (6)

Consequently, due to (5) and (6), we deduce that the DC algorithm is based only on
solving the following linear system to obtain at each iteration k, xk+1:

(A+ ρI)xk+1 = (ρI +BD(xk))xk + b. (7)

• Choice of ρ. The choice of the parameter ρ is based on the fact that g and h in (4)
are convex functions. This is equivalent to obtaining for what suitable values of ρ, the
Hessian matrices

∇2g(x) = A+ ρI and ∇2h(x) = ρI +BD

are positive semi-definite (PSD) for any matrixD whose elements are±1 or 0. The matrix
∇2h(x) is a generalized Hessian caused by the non-differentiability of the absolute value
function |x|. We have ∇2g(x) is PSD if vT (A+ ρI)v ≥ 0 for any vector v ∈ Rn. By the
Cauchy-Schwartz inequality, it follows that

vT (A+ ρI)v ≥ ρvT v − ∥A∥∥v∥2 = (ρ− ∥A∥)∥v∥2.

Hence (A+ ρI) is PSD if (ρ−∥A∥) ≥ 0. Therefore, it suffices to take ρ ≥ ∥A∥ such that
∇2g(x) is PSD and so g is convex. Now, according to the linear system (7), the matrix
(A+ ρI) must be invertible to ensure the uniqueness of solution of the latter. Therefore,
we require only the values of ρ which provide the positive definiteness of this matrix, i.e.,
ρ > ∥A∥.

In a similar way, ∇2h(x) is PSD for any diagonal matrix D whose elements are ±1
or 0 if vT (ρI + BD)v ≥ 0 for any v ∈ Rn. Also, by the Cauchy-Schwartz inequality, we
get

vT (ρI +BD)v ≥ ρvT v − ∥B∥∥D∥∥v∥2 ≥ (ρ− ∥B∥)∥v∥2, ∀v ∈ Rn.

Hence, (ρI + BD) is PSD for all diagonal matrix D whose elements are ±1 or 0 if
(ρ − ∥B∥) ≥ 0. So, it suffices to take ρ ≥ ∥B∥ such that (ρI + BD) is PSD. Finally, to
guarantee that g and h are convex, we take ρ as follows:

ρ ≥ ρmin = max(∥A∥ , ∥B∥).
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Remark 4.1 When A and B are symmetric matrices, ρ is taken as follows:

ρ ≥ ρmin = max(|λmax(A)|, |λmax(B)|).

Now, according to (7), the DCA for solving AVE (1) is presented in Figure 1 as
follows.

Step 0.
A precision ϵ > 0;
a starting point x0 ∈ Rn, a parameter ρ ≥ ρmin, set k := 0;
for k = 0, 1, ...
Step 1. Compute xk+1 the unique solution of the system (7);

If the relative residue RSD :=
∥xk+1 − xk∥

1 + ∥b∥
≤ ϵ,

then stop and xk+1 is an approximated solution;
If not, set k := k + 1 and go to Step 1.

Figure 1. DC Algorithm for the AVE (1).

4.2 Numerical experiments

In this section, we implement the DC algorithm on MATLAB and run it on three
examples of solvable AVE (1). We denote by x0 the initial point in the algorithm and
x∗ is the true solution of the AVE (1). In the tables of the obtained numerical results,
(Iter) represents the number of iterations produced by the algorithm and CPU(s) is the
elapsed time. In all our implementation, we set ϵ = 10−6. However, the value of ρ > 0 is
taken such that ρ ≥ ρmin, which ensures the convexity of functions g and h as well the
uniqueness of solution of system (7). Our stopping criterion is the residual relative error

RSD:=
∥xk+1 − xk∥

1 + ∥b∥
.

Problem 1. Consider the AVE, where A and B are symmetric matrices:

A =

 0 1 2
1 3 1
2 1 0

 , B =

 2 −1 −2
−1 −1 −1
−2 −1 2

 , b = [−1, 2, −1]T .

In this example, two initial points are taken as x0
1 = [0, 0, 0]T and x0

2 = [0.8, 0.8, 0.8]T .
The iterations number, the CPU(s) times and the RSD for our obtained numerical results
are stated in Table 1.

x0
1 x0

2

ρ ↓ Iter CPU(s) RSD Iter CPU(s) RSD
0.8 18 0.006220 6.2374e− 007 18 0.005908 7.4684e− 007
2.5 20 0.006584 4.5457e− 007 20 0.005955 8.3400e− 007
3 22 0.005967 6.5456e− 007 23 0.005950 5.5641e− 007
ρmin 25 0.010668 5.6823e− 007 26 0.010063 4.6759e− 007
10 45 0.006927 8.1837e− 007 55 0.008193 8.7384e− 007

Table 1.
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This example of the AVE has at least two solutions, namely,

x∗
1 = [−1, 0.5,−1]T and x∗

2 =

[
2

3
,
1

6
,−2

]T
.

Problem 2. In this example of AVEs, the matrices A and B are not symmetric and
sparse, where

A =



−5 0 0 · · · 0 0
0 10 0 · · · 0 0

0 0 10 · · · 0
...

...
...

. . .
. . . 0 0

0 0 0 · · · 10 0
0 0 · · · 0 1 10


and

B =



10 0 0 · · · 0 0
0 10 0 · · · 0 0

0 0 10 · · · 0
...

...
...

. . .
. . . 0 0

0 0 0 · · · 10 0
0 0 · · · 0 12 3


.

For b = [−15, −20, · · · , −20, −26]T , this example of the AVE admits at least two solu-
tions, namely,

x∗
1 = [1, −1, · · · , −1]T and x∗

2 = [−3, −1, · · · , −1]T .

The initial point is taken as

x0 = [0, −0.5, · · · ,−0.5]T .

Then the obtained numerical results with different size of n are shown in Table 2.

Size n ρmin 20 100

100
iter

CPU(s)
RSD

8
0.033798

7.4215e− 007

22
0.075531

9.9621e− 007

125
0.188725

9.6155e− 007

1500
iter

CPU(s)
RSD

7
5.151696

5.5016e− 007

19
13.954670

8.7237e− 007

100
72.055416

9.6398e− 007

3000
iter

CPU(s)
RSD

7
37.860998

3.8919e− 007

18
95.470970

9.2569e− 007

93
495.417176

9.9564e− 007

4000
iter

CPU(s)
RSD

6
93.784429

9.6312e− 007

18
258.326851

8.0178e− 007

91
1381.492980
9.6084e− 007

Table 2.
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For b = [−15, 0, · · · , 0, 0]T , this example of the AVE admits at least two solutions,
namely,

x∗
1 = [1, 0.5, · · · , 0.5, 0.7857]T andx∗

2 = [−3, 0, · · · , 0]T .

Our starting point in the algorithm for this example is taken as

x0 = [0,−0.5, · · · ,−0.5,−0.5]T .

The obtained numerical results with different size of n are shown in Table 3.

Size n ρmin 20 100

100
iter

CPU(s)
RSD

21
0.096385

7.6245e− 007

30
0.075766

9.9112e− 007

172
0.220155

9.5277e− 007

1500
iter

CPU(s)
RSD

21
18.841956

7.6245e− 007

30
21.227324

9.9112e− 007

172
123.081425

9.5277e− 007

3000
iter

CPU(s)
RSD

21
116.801005

7.6245e− 007

30
154.224982

9.9112e− 007

172
882.412729

9.5277e− 007

4000
iter

CPU(s)
RSD

21
294.215091

7.6245e− 007

30
415.582267

9.9112e− 007

172
2381.140220
9.5277e− 007

Table 3.

Next, we deal with two examples of the AVEs which have a unique solution (see
[2, 3, 5]).

Problem 3. Consider the AVE, where

A =



−100 10 0 · · · 0 0
10 −100 10 · · · 0 0

0 10 −100 · · · 0
...

...
...

. . .
. . . 10 0

0 0 0 · · · −100 10
0 0 · · · 0 10 −100


,

and

B =



−1 0.1 0 · · · 0 0
0.1 −1 0.1 · · · 0 0

0 0.1 −1 · · · 0
...

...
...

. . .
. . . 0.1 0

0 0 0 · · · −1 0.1
0 0 · · · 0 0.1 −1


, b = (A− I)e.

The numerical results with different size of n and with the initial point

x0 = [0.1, · · · , 0.1]T
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are shown in Table 4.

Size n ρmin 10 35

100
iter

CPU(s)
RSD

3
0.013635

3.1876e− 009

6
0.009922

4.9863e− 007

37
0.044977

9.8002e− 007

1500
iter

CPU(s)
RSD

2
4.078783

4.2391e− 007

6
5.753656

5.0486e− 007

38
34.767854

7.7765e− 007

3000
iter

CPU(s)
RSD

2
30.693572

2.9980e− 007

6
39.979472

5.0511e− 007

38
259.846648

7.7887e− 007

4000
iter

CPU(s)
RSD

2
70.940271

2.5965e− 007

6
95.628900

5.0518e− 007

38
605.623886

7.7918e− 007

Table 4.

Now, with and without spacing other initial point x0 = [1, 2, · · · , n]T , the numerical
results are shown in Table 5.

Size n ρmin 10 35

100
iter

CPU(s)
RSD

3
0.022255

2.4503e− 007

8
0.011792

6.1149e− 007

53
0.055950

9.6970e− 007

1500
iter

CPU(s)
RSD

3
5.803212

9.5316e− 007

10
8.905991

1.8358e− 007

64
58.258065

9.9229e− 007

3000
iter

CPU(s)
RSD

4
44.731209

3.3368e− 009

10
71.126180

3.7840e− 007

67
458.376902

9.3035e− 007

4000
iter

CPU(s)
RSD

4
113.000257

3.8532e− 009

10
156.209290

5.0839e− 007

68
1065.611029
9.6915e− 007

Table 5.

This example is uniquely solvable and for b = (A− I)e, the solution is

x∗ = [1.0215, 1.0226, 1.0227, · · · , 1.0227, 1.0226, 1.0215]T .

Problem 4. Consider the AVE, where

A =



−25, 5 −2, 5 0 · · · 0 0
−2, 5 −25, 5 −2, 5 · · · 0 0

0 −2, 5 −25, 5 · · · 0
...

...
...

. . .
. . . −2, 5 0

0 0 0 · · · −25, 5 −2, 5
0 0 · · · 0 −2, 5 −25, 5


,
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and

B =



0, 6 −0, 01 0 · · · 0 0
−0, 01 0, 6 −0, 01 · · · 0 0

0 −0, 01 0, 6 · · · 0
...

...
...

. . .
. . . −0, 01 0

0 0 0 · · · 0, 6 −0, 01
0 0 · · · 0 −0, 01 0, 6


, b = (A− I) e.

The numerical results with different size of n and with the starting point

x0 = [1, 2, · · · , n]T ,

are summarized in Table 6.

Size n ρmin 0.1 9

100
iter

CPU(s)
RSD

6
0.025191

8.3305e− 008

5
0.011119

2.2208e− 007

50
0.056285

8.6286e− 007

1500
iter

CPU(s)
RSD

6
7.978099

1.7720e− 007

6
5.531777

9.9349e− 008

55
51.736639

9.0413e− 007

3000
iter

CPU(s)
RSD

6
57.503325

2.7508e− 007

6
39.353990

2.0998e− 007

56
370.091181

9.3224e− 007

4000
iter

CPU(s)
RSD

6
132.305173

3.4085e− 007

6
93.222723

2.4286e− 007

57
942.398052

8.3854e− 007

Table 6.

This example has a unique solution if σmin(A) > σmax(B) in [2, 3, 5] given by

x∗ = [1.0144, 1.0134, 1.0135, · · · , 1.0135, 1.0134, 1.0144]T .

5 Concluding Remarks

In this paper, we have used the technique of DC programming for solving absolute
value equations. For that, a quadratic optimization is considered, where its first-order
optimality conditions are equivalent to the AVE (1) and where any local minimum of the
quadratic problem is a solution of the AVE. Further, based on a suitable decomposition
of the objective function q(x), we have designed a simple DC algorithm for solving the
AVE (1). Numerical results illustrate that the DC algorithm is efficient for solving some
solvable AVE problems that can have either one unique solution or many solutions. A
good topic of research in the future is suggesting other DC decompositions of the objective
q(x) in order to design other DC algorithms for solving the AVE (1).

Our results have a great importance in application such as the solution of a linear
complementarity problem including the linear and convex quadratic optimization, bima-
trix games, interval matrix, hydrodynamic equation.
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Abstract: The hotel business is one of the important sectors in the tourism industry
because it has a multiplier effect in social life and economics. Nowadays, the room
reservation in hotels is more flexible so that the guests can extend or cancel their stay
easily due to the development of technology. Based on the report on the number of
room reservations, everyday, there are differences in the number of occupied rooms, so
it is required that a forecasting in daily data be made. Forecasting is very important
for the hotel management because it is affecting all hotel operations such as staff
manning, amenities preparation, breakfast preparation, linen preparation to provide
customer satisfaction. Customer satisfaction is a critical component of profitability
[1]. The number of occupied rooms depends on in-house guests, same day reservation,
extension of stay, early departure, today’s cancellation, and walk-in. In this research,
the classification method applied is the linear Support Vector Machine (SVM). The
linear SVM uses the best hyperplane as a separator between two classes. In this
method, we divide the dataset of guest reservation into training data and testing
data in various proportions. Then the set of support vectors can be determined by
the sequential programming method and we can test them in testing data. Based
on simulation with various proportions of training data and testing data, the linear
SVM can classify occupied rooms based on guest reservation with a good accuracy,
error rate, recall, specificity, and precision.
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1 Introduction

Travelling is the activity which is often done by people when they also are looking for
a hotel for a temporary stay. The hotel business is one of the important sectors in the
tourism industry because it has a multiplier effect in social life and economics. Based on
online hotel reservation sites, the purpose of booking a hotel is for a holiday, business,
romance, or medical cure.

Nowadays, the room reservation in a hotel is more flexible so that the guests can
extend or cancel their stay due to the development of technology. Based on the report
on the number of room reservations, everyday, there are differences in the number of
occupied rooms so that it is required that a forecasting in daily data be made. Forecasting
is very important for the hotel management because it is affecting all hotel operations
such as staff manning, amenities preparation, breakfast preparation, linen preparation to
provide customer satisfaction. Moreover, customer satisfaction is also affecting the hotel
performance, it is one of the measurements of the success of the hotel management in
managing the hotel with all resources that they have [2]. The number of occupied rooms
depends on in-house guests, same day reservation, extension of stay, early departure,
today’s cancellation, and walk-in. Using these variables, we can calculate the number of
occupied rooms in a hotel. Based on the number of occupied rooms per day, they will
be divided into two classes, i.e., the class where the number of occupied rooms is higher
than its average and the other, where the number of occupied rooms is lower than its
average.

In this research, there is a method for classifying the occupied rooms in a hotel,
called the Support Vector Machine (SVM). The SVM uses the best hyperplane as a
separator between two classes on input space [3]. This method has many applications
in the classification of objects [4] or diagnosing the disease [5]. In this method, we
divide the dataset of guest reservation into training data and testing data in various
proportions. For training data, an optimization model of SVM is formed for determining
the support vectors. After the set of support vectors can be determined by the sequential
programming method [6], [7], we can test them in testing data.

In the previous researches, some clustering methods have been used, namely, cluster-
ing by the Kohonen Network in clustering airports [8] and clustering by the K-Means and
Fuzzy Clustering Means in agriculture production [9]. Besides clustering, there are fore-
casting methods. The applications of a Neural Network have been used in forecasting by
Backpropagation (BP) for forecasting of weather [10], estimation of AUV [11], [12], [13],
estimation of the Vibrating Rod [14], estimation of disease spread [15], [16], forecast-
ing of air temperature [17] and the Adaptive Neuro Fuzzy Inference System (ANFIS)
in forecasting of humidity [18] or forecasting of sunlight intensity [19]. The forecasting
methods are also applied by the Kalman Filter in stock price estimation [20], forefinger
motion estimation [21], mobile robot estimation [22] and estimation of closed hotels and
restaurants [23], [24], [25].

Based on simulation with various proportions of training data and testing data, the
linear SVM can classify occupied rooms based on guest reservation with a good accuracy,
error rate, recall, specificity, and precision.
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2 Support Vector Machine (SVM)

Support Vector Machine (SVM) was introduced by Vapnik in 1992. SVM uses the best
hyperplane as a separator between two classes on input space. The hyperplane can be
determined by measuring the margin and optimizing the maximum point. The margin is
the distance between the hyperplane and the closest pattern from each class. The closest
pattern to the hyperplane is called the support vector. The illustration of SVM can be
seen in Figure 1, with the red circle patterns being the class −1, blue square patterns
being the class +1 and the hyperplane between them [3].

Figure 1: Support Vector Machine (SVM) Model.

Let x1, x2, . . . , xn be the number of data and y1, y2, . . . , yn ∈ −1, 1 be the classes of
x1, x2, . . . , xn, respectively. The optimization model of SVM is the maximizing margin
m with m = 2

∥w∥ subject to yi
(
wTxi + b

)
≥ 1, i = 1, 2, . . . n, so that the optimization

model becomes

min
1

2
∥w∥2 (1)

subject to
yi
(
wTxi + b

)
≥ 1, i = 1, 2, . . . n. (2)

In the constrained optimization above, we need to construct the Lagrange equation in
equation (3) for optimizing the value of w,α, b,

L =
1

2
wTw +

n∑
i=1

αi

(
1− yi

(
wTxi + b

))
. (3)

For optimizing the value of w,α, b, the first differential of the Lagrange equation will be
used,

∂L

∂w
= w −

n∑
i=1

αiyixi = 0,

w =

n∑
i=1

αiyixi, (4)

∂L

∂b
= −

n∑
i=1

αiyi = 0. (5)
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Substitute w = αiyixi and −
∑n

i=1 αiyi = 0 into the Lagrange equation

L =
1

2
(αiyixi)

T
(αiyixi) +

n∑
i=1

αi

(
1− yi

(
wTxi + b

))
,

L = −1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj +

n∑
i=1

αi (6)

so that the optimization model becomes

W (α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj

subject to

n∑
i=1

αiyi = 0, αi ≥ 0, i = 1, 2, . . . , n. (7)

In equation (7), an optimal αi ≥ 0, i = 1, 2, . . . , n, can be found by the sequential
programming method [6],[7].

Generally, two classes on input space cannot be separated perfectly as in Figure 2
and the constraint in equation (2) is not satisfied.

Figure 2: Soft Margin Method.

For solving this problem, the soft margin method will be applied using the slack
variables εi ≥ 0, i = 1, 2, . . . , n,

min
1

2
∥w∥2 + C

n∑
i

εi (8)

subject to
yi
(
wTxi + b

)
≥ 1− εi, εi ≥ 0, i = 1, 2, . . . , n. (9)

With a similar process in equation (3) - (6), the optimization model becomes

W (α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj

subject to

n∑
i=1

αiyi = 0, C ≥ αi ≥ 0, i = 1, 2, . . . , n. (10)
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For testing data with the new data z, we use a discriminant function in equation (11):

f(z) =

n∑
i∈V

αiyi
(
xT
i z
)
+ b, (11)

where V is the set of support vectors.

The constant b can be determined using the average of the sum of support vector
discriminant,

b =
1

Nv

∑
i∈V

(
yv −

∑
i∈V

αiyix
T
i xv

)
with yv ∈ −1, 1. (12)

If f(z) ≥ 0, then the new data z is classified as the class +1 and if f(z) < 0, then the
new data z is classified as the class −1.

3 Non Linear Support Vector Machine

When the SVM is applied to a nonlinear dataset, we need to define a feature mapping
function x → ϕ(x) to the higher dimensional feature space as in Figure 3. The feature
mapping function is called the kernel function. The kernel function uses the inner product
in the feature space.

K(xi, xj) → ϕ(xi)
Tϕ(xj). (13)

Kernel functions which are often used are as in Table 1.

Figure 3: Transforming Data from the Input Space to the High Dimensional Feature Space.
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Kernel Function Type

K(xi, xj) =
(
xT
i xj + 1

)d
Polynomial Function

K(xi, xj) = exp
(

−∥xi−xj∥2

2σ2

)
Radial Basis Function

K(xi, xj) = tanh(κxT
i xj + θ) Sigmoid Function

Table 1: Kernel Functions.

There are some modifications due to the kernel function so that equation (10) becomes

W (α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj)

subject to

n∑
i=1

αiyi = 0, C ≥ αi ≥ 0, i = 1, 2, . . . , n. (14)

For testing data with the new data z, we use a discriminant function in equation (15),

f(z) =

n∑
i∈V

αiyiK(xi, z) + b (15)

with V being the set of support vectors.
The constant b can be determined using the average of the sum of support vector

discriminant,

b =
1

Nv

∑
i∈V

(
yv −

∑
i∈V

αiyiK(xi, xv)

)
with yv ∈ −1, 1. (16)

If f(z) ≥ 0, then the new data z is classified as the class +1, and if f(z) < 0, then the
new data z is classified as the class −1.

4 Methodology

In classifying occupied rooms in a hotel, there are reports on the number of room reser-
vations by guests during 60 days, where the attributes which will be used as the inputs
are: in-house guests, same day reservation, extention of stay, early departure, today’s
cancellation, and walk-in. The explanations of the attributes are:

1. In-house guest (x1):
The guest who is staying for today.

2. Same day reservation (x2):
The guest who makes a booking today for the check-in today as well.

3. Extention of stay (x3):
The guest who extends the stay from the check-out time.

4. Early departure (x4):
The guest who cuts the stay from the check-out time.
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5. Today’s cancellation (x5):
The guest who made a reservation on the previous days for today and makes a
cancellation.

6. Walk-in (x6):
The guest who comes to the reception for today’s check-in without a reservation.

These six attributes will be used to compute the number of occupied rooms by the
formula:

Occupied rooms = In-house guests + Same day reservation + Extention of stays -
Early departure - Today’s cancellation + Walk-in

According to the number of occupied rooms on each day, they will be divided into
two classes:

1. Class +1 : the number of occupied rooms is higher than the average during 60
days.

2. Class −1 : the number of occupied rooms is lower than the average during 60 days.

In the classification, the data used are the accuracy, error rate, recall, specificity, and
precision specified by the following formulae [2]:

accuracy =
TP + TN

P +N
× 100%, (17)

errorrate =
FP + FN

P +N
× 100%, (18)

recall =
TP

P
× 100%, (19)

specificity =
TN

N
× 100%, (20)

precision =
TP

TP + FP
× 100% (21)

with the explanations:
TP : the number of positive tuples that are correctly labeled as positive by the classifier;
TN : the number of negative tuples that are correctly labeled as negative by the classifier;
FP : the number of negative tuples that are incorrectly labeled as positive by the
classifier;
FN : the number of positive tuples that are incorrectly labeled as negative by the
classifier;
P : the number of positive tuples in target data;
N : the number of negative tuple in target data;

Before using SVM, data partition into training data and testing data is made in
various proportions.

5 Simulation Results

In classifying occupied rooms in a hotel, there are reports on the number of room reser-
vations by guests during 60 days, where the attributes which will be used as inputs are:
in-house guests, same day reservation, extention of stay, early departure, today’s can-
cellation, and walk-in. Then, they will be classified into the class +1 (the number of
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occupied rooms is higher than the average during 60 days) and the class -1 (the number
of occupied rooms is lower than the average during 60 days).

Before applying the classification process, five simulations of SVM will be applied
with various proportions of training data and testing data.

• Classification model I : 50 % of training data and 50 % of testing data.

• Classification model II : 67 % of training data and 33 % of testing data.

• Classification model III : 75 % of training data and 25 % of testing data.

• Classification model IV : 80 % of training data and 20 % of testing data.

• Classification model V : 83 % of training data and 17 % of testing data.

After training data and testing data are determined, support vectors can be found
by the sequential programming method aided by CPLEX software.

In the classification model I, the proportions of training data and testing data used
are 50 % of training data and 50 % of testing data, with training data being the data
which are not multiplied by 2 (1, 3, 5, . . . , 59) and testing data being the data which are
multiplied by 2 (2, 4, 6, . . . , 60).

For training data, the best kernel function used is the polynomial kernel with degree
d = 1 (linear model) so that based on objective equation (14) with its constrains, the
support vectors obtained are[

α5 = 0.013193 α9 = 0.18556 α16 = 0.30668
α18 = 0.077692 α24 = 0.014615 α29 = 0.04201

]
αi ≈ 0, otherwise.

The objective function in equation (14) is 0.32. Using the support vectors obtained,
we can find the best hyperplane for the training data. Then we use the best hyperplane
for the new testing data, with the performance as follows.

Training data Testing data
Accuracy 100% 96.67%
Error rate 0% 3.33%
Recall 100% 94.7368%

Specificity 100% 100%
Precision 100% 100%

Table 2: Results of SVM Performance with 50 % of training data and 50 % of testing data.

In the classification model II, the proportions of training data and testing data used 67
% of training data and 33 % of testing data, with training data being the data which are
not multiplied by 3 (1, 2, 4, 5, . . . , 59) and testing data being the data which are multiplied
by 3 (3, 6, 9, . . . , 60).

For training data, the best kernel function used is the polynomial kernel with degree
d = 1 (linear model) so that based on objective equation (14) with its constrains, the
support vectors obtained are[

α5 = 0.065524 α6 = 0.0054547 α12 = 0.3411
α21 = 0.4495 α22 = 0.015323 α27 = 0.02614

]
αi ≈ 0, otherwise.
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The objective function in equation (14) is 0.52. Using the support vectors obtained,
we can find the best hyperplane for the training data. Then we use the best hyperplane
for the new testing data, with the performance as follows.

Training data Testing data
Accuracy 100% 100%
Error rate 0% 0%
Recall 100% 100%

Specificity 100% 100%
Precision 100% 100%

Table 3: Results of SVM Performance with 67 % of training data and 33 % of testing data.

In the classification model III, the proportions of training data and testing data used
are 75 % of training data and 25 % of testing data, with training data being the data
which are not multiplied by 4 (1, 2, 3, 5, . . . , 59) and testing data being the data which
are multiplied by 4 (, 4, 8, . . . , 60).

For training data, the best kernel function used is the polynomial kernel with degree
d = 1 (linear model) so that based on objective equation (14) with its constrains, the
support vectors obtained are[

α7 = 0.013193 α13 = 0.18556 α24 = 0.30668
α27 = 0.077692 α36 = 0.014615 α43 = 0.04201

]
αi ≈ 0, otherwise.

The objective function in equation (14) is 0.32. From the support vectors obtained,
we can find the best hyperplane for the training data. Then we use the best hyperplane
for the new testing data, with the performance as follows.

Training data Testing data
Accuracy 100% 93.33%
Error rate 0% 6.67%
Recall 100% 90%

Specificity 100% 100%
Precision 100% 100%

Table 4: Results of SVM Performance with 75 % of training data and 25 % of testing data.

In the classification model IV, the proportions of training data and testing data used
are 80 % of training data and 20 % of testing data, with training data being the data
which are not multiplied by 5 (1, 2, 3, 4, 6, . . . , 59) and testing data being the data which
are multiplied by 5 (5, 10, 15, . . . , 60).

For training data, the best kernel function used is the polynomial kernel with degree
d = 1 (linear model) so that based on objective equation (14) with its constrains, the
support vectors obtained are[

α6 = 0.070096 α7 = 0.0091087 α14 = 0.34108
α25 = 0.4266 α26 = 0.1492 α46 = 0.015526

]
αi ≈ 0, otherwise.
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with the objective function in equation (14) being 0.506. From the support vectors
obtained, we can find the best hyperplane for the training data. Then we use the best
hyperplane for the new testing data, with the performance as follows.

Training data Testing data
Accuracy 100% 91.67%
Error rate 0% 8.33%
Recall 100% 87.5%

Specificity 100% 100%
Precision 100% 100%

Table 5: Results of SVM Performance with 80 % of training data and 20 % of testing data.

In the classification model V, the proportions of training data and testing data used
are 83 % of training data and 17 % of testing data, with training data being the data
which are not multiplied by 6 (1, 2, 3, 4, 5, 7, . . . , 59) and testing data being the data which
are multiplied by 6 (6, 12, 18, . . . , 60).

For training data, the best kernel function used is polynomial kernel with degree d = 1
(linear model) so that based on objective equation (14) with its constrains, the support
vectors obtained are[

α6 = 0.065524 α7 = 0.0054547 α15 = 0.3411
α26 = 0.4495 α27 = 0.15323 α34 = 0.02614

]
αi ≈ 0, otherwise.

with objective function in equation (14) is 0.52. From the support vectors obtained, we
can find the best hyperplane for the training data. Then we use the best hyperplane for
the new testing data, with the performance as follows.

Training data Testing data
Accuracy 100% 100%
Error rate 0% 0%
Recall 100% 100%

Specificity 100% 100%
Precision 100% 100%

Table 6: Results of SVM Performance with 83 % of training data and 17 % of testing data.

6 Conclusion

Forecasting is significantly important for the hotel operation. It can help the hotel man-
agement to prepare guest amenities and supplies, scheduling of the staff, and controlling
energy. Shortly, accurate forecasting will help the hotel management to manage the hotel
efficiently without sacrificing service quality. The linear SVM uses the best hyperplane
as a separator between two classes. In this method, we divide the dataset of guest reser-
vation into training data and testing data in various proportions. For training data, the
optimization model of SVM is formed for determining the support vectors. After the
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set of support vectors can be determined by the sequential programming method, we
can test them in testing data. Based on simulation with various proportions of training
data and testing data, the linear SVM can classify the occupied rooms based on guest
reservation with accuracy, error rate, recall, specificity, and precision. The developments
of this research are classification techniques with big data using the machine learning
process.
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Abstract: We consider a quasistatic contact problem for thermo-elasto-viscoplastic
material with thermal effects. The contact is modeled with the normal damped
response condition, associated to Coulomb’s law of dry friction. A variational formu-
lation of the model is derived, and the existence of a unique weak solution is proved.
The proofs are based on the arguments of evolutionary quasivariational inequality,
the classical result of nonlinear first order evolution inequalities, and the fixed point
arguments. We also study the dependence of the solution and prove a convergence
result.
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1 Introduction

Scientific research and recent papers in mechanics are articulated around two main com-
ponents, one devoted to the laws of behavior and other devoted to the boundary con-
ditions imposed on the body. The boundary conditions reflect the binding of the body
with the outside world. The frictional contact between deformable bodies can be fre-
quently found in industry and everyday life. Because of the importance in metal forming
and automotive industry, a considerable effort has been made towards the modeling and
numerical simulations of contact problems and the engineering literature concerning this
topic is rather extensive. An excellent reference in the field of contact problems with
or without friction is [8]. The constitutive law with internal variables has been used in
various publications in order to model the effect of internal variables on the behavior
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of real bodies such as metal and rocks polymers. Some of the internal state variables
considered by many authors are the spatial display of dislocation, the work-hardening
of materials, the absolute temperature and the damage fields. The cases of hardening,
temperature and other internal state variables were considered in [2, 5, 17, 18], general
models for contact processes with thermal effects can be found in [4, 10, 19]. Elastic
or viscoelastic frictional contact problems, with thermal considerations, can be found
in [1,3,14] and the references therein. The purpose of this paper is to make the coupling
of an elasto-viscoplastic material with thermal effects and friction. We study a quasistatic
problem of frictional contact with the normal damped response condition and the asso-
ciated version of Coulomb’s law of dry friction. We derive a variational formulation of
the problem and prove that the proposed model has a unique weak solution by using the
evolutionary quasivariational inequality. Also, we study the continuous dependence of
the weak solution of the problem and prove a convergence result.

The paper is structured as follows. In Section 2, we present notation and some
preliminaries. The model is described in Section 3, where the variational formulation is
given. In Section 4, we present our existence and uniqueness result and the proof is based
on the arguments for functional analysis concerning the evolutionary quasivariational
inequality, the classical result for nonlinear first order evolution inequalities and the
fixed point arguments. In Section 5, we study the dependence of the solution and prove
a convergence result.

2 Notation and Preliminaries

In this section, we list the assumptions on the data, derive a variational formulation
for the contact problem (9)–(18) and state our main existence and uniqueness result,
Theorem 4.2. To this end, we need to introduce some notation and preliminary material.

We recall that the inner products and the corresponding norms on Rd and Sd are
given by

u.v = uivi, ∥v∥ = (v.v)
1
2 ∀u, v ∈ Rd,

σ.τ = σijτij , ∥τ∥ = (τ.τ)
1
2 ∀σ, τ ∈ Sd.

Here and everywhere in this paper, i, j run from 1 to d, the summation over repeated
indices is used and the index which follows the comma represents the partial derivative.
We use the classical notation for Lp and Sobolev spaces associated to Ω and Γ. Moreover,
we use the notation H, H , H1 and H1 for the following spaces:

H = L2 (Ω)
d
=

{
v = (vi) / vi ∈ L2 (Ω)

}
,

H =
{
σ = (σij) / σij = σji ∈ L2 (Ω)

}
,

H1 = {u = (ui) / ε(u) ∈ H} ,
H1 = {σ ∈ H / Div σ ∈ H} .

The spaces H, H, H1 and H1 are the real Hilbert spaces endowed with the canonical
inner products given by

(u, v)H =

∫
Ω

u.vdx, (σ, τ)H =

∫
Ω

σ.τdx,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H , (σ, τ)H1

= (σ, τ)H + (Div σ,Div τ)H ,
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and the associated norms ∥.∥H , ∥.∥H , ∥.∥H1
and ∥.∥H1

, respectively. Here and below, we
use the notation

ε (v) = (εij (v)) , εij (v) =
1

2
(vi,j + vj,i) ∀v ∈ H1 (Ω)

d
,

Div τ = (τij,j) ∀τ ∈ H1.

For every element v ∈ H1, we also write v for the trace of v on Γ and we denote by vν
and vτ the normal and tangential components of v on Γ given by vν = v.ν, vτ = v− vνν.
We also denote by σν and στ the normal and the tangential traces of a function σ ∈ H1,
and we recall that when σ is a regular function, then σν = (σν).ν, στ = σν − σνν, and
the following Green’s formula holds:

(σ, ε (v))H + (Div σ, v)H =

∫
Γ

σν.vda ∀v ∈ H1.

Let T > 0. For every real Banach space X, we use the notation C(0, T ;X) and C1(0, T ;X)
for the space of continuous and continuously differentiable functions from [0, T ] to X, re-
spectively; C(0, T ;X) is a real Banach space with the norm ∥f∥C(0,T ;X) = max

t∈[0,T ]
∥f(t)∥X ,

while C1(0, T ;X) is a real Banach space with the norm ∥f∥C1(0,T ;X) = max
t∈[0,T ]

∥f(t)∥X +

max
t∈[0,T ]

∥∥∥ .

f(t)
∥∥∥
X
. Finally, for k ∈ N and p ∈ [1,∞], we use the standard notation for the

Lebesgue spaces LP (0, T ;X) and for the Sobolev spaces W k,p(0, T ;X). Moreover, for a
real number r, we use r+ to represent its positive part, that is, r+ = max {0, r}. More-
over, if X1 and X2 are real Hilbert spaces, then X1 × X2 denotes the product Hilbert
space endowed with the canonical inner product (., .)X1×X2

.
Let X be a real Hilbert space with the inner product (.,.)X and the associated norm

∥.∥, and consider the problem of finding u : [0, T ] → X such that
(Au̇(t), v − u̇(t))V + (Bu(t), v − u̇(t))V + j (u̇(t), v)
−j

( .
u(t),

.
u(t)

)
⩾

(
f(t), v − .

u(t)
)
V

∀v ∈ X, t ∈ [0, T ] .
u(0) = u0.

(1)

To study problem (1), we need the following assumptions.
The operator A : X → X is Lipschitz continuous and strongly monotone, i.e.,

a) There exists LA > 0 such that
∥Au1 −Au2∥X ⩽ LA ∥u1 − u2∥X ∀u1, u2 ∈ X,
c) There exists mA > 0 such that

(Au1 −Au2, u1 − u2)X ⩾ mA ∥u1 − u2∥2X ∀u1, u2 ∈ X.

(2)

The nonlinear operator B : X → X is Lipschitz continuous, i.e.,{
There exists LB > 0 such that
∥Bu1 −Bu2∥X ⩽ LB ∥u1 − u2∥X ∀u1, u2 ∈ X.

(3)

The functional j : X ×X → R satisfies the following conditions:
a) j(u, .) is convex and i.s.c on X for all u ∈ X.
b) There exists α > 0 such that
j(u1, v2) + j(u1, v1) + j(u2, v1) + j(u2, v2)
⩽ α ∥u1 − u2∥X ∥v1 − v2∥X , ∀u1, u2, v1, v2 ∈ X.

(4)
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f ∈ C(0, T ;X), (5)

u0 ∈ X, (6)

mA > α. (7)

We have the following existence and uniqueness result which can be found in [16].

Theorem 2.1 Assume that (2)-(7) hold. Then there exists a unique solution u to
problem (1). Moreover, the solution satisfies u ∈ C1([0, T ] ;X).

3 Mechanical and Variational Formulations

We consider a thermo-elasto-viscoplastic body which occupies a bounded domain Ω ⊂
Rd (d = 2.3) with a Lipschitz continuous boundary Γ that is divided into three disjoint
measurable parts Γ1,Γ2 and Γ3 such that meas Γ1 > 0. Let T > 0 and let [0, T ] be the
time interval of interest. The body is clamped on Γ1 × (0, T ), so the displacement field
vanishes there. The surface tractions of density f2 act on Γ2× (0, T ), and the body force
of density f0 acts in Ω× (0, T ). The contact between the body and the foundation, over
the contact surface Γ3, is modeled with the normal damped response and the associated
general version of Coulomb’s law of dry friction. Moreover, the process is quasistatic, i.e.,
the intertial terms are neglected in the equation of motion. The material is assumed to
behave according to the general elasto-viscoplastic constitutive law with thermal effects
given by

σ = Aε
( .
u
)
+ Fε (u) +

∫ t

0

G
(
σ (s)−Aε

( .
u (s)

)
, ε (u (s))

)
ds−Mθ (t) , (8)

where σ denotes the stress tensor, u represents the displacement field,
.
u is the velocity,

ε (u) is the small strain tensor, and θ is the temperature field. Here, A and F are non-
linear operators describing the purely viscous and the elastic properties of the material,
respectively. G is a general nonlinear constitutive function describing the viscoplastic
behavior of the material. M = (mij) represents the thermal expansion tensor. We use
dots for derivatives with respect to the time variable t. It follows from (8) that at each
time moment, the stress tensor σ(t) is split into two parts: σ(t) = σV (t) + σR(t), where
σV (t) = Aε

( .
u
)
represents the purely viscous part of the stress, whereas σR(t) satisfies a

rate-type thermo-elasto-viscoplastic relation

σR(t) = Fε (u) +

∫ t

0

G
(
σR (s) , ε (u (s))

)
ds−Mθ (t) .

The evolution of the temperature field θ is governed by the heat equation (see [1]), ob-
tained from the conservation of energy, and defined by the following differential equation
for the temperature:

.

θ − div(k∇θ) = q −M∇ .
u,

where K = (kij) represents the thermal conductivity tensor, div(k∇θ) = (kijθ,i),i and q
represents the density of volume heat sources.

The associated temperature boundary condition on Γ3 is described by

kijθ,inj = −ke (θ − θR) + hτ

(∣∣ .uτ

∣∣) on Γ3 × (0, T ),
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where θR is the temperature of the foundation, ke is the heat exchange coefficient between
the body and the obstacle and hτ : Γ3 ×R+ → R+ is a given tangential function.

Then, the classical formulation of the mechanical problem is as follows.
Problem P : Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ :

Ω× [0, T ] → Sd and a temperature θ : Ω× [0, T ] → R such that

σ = Aε
( .
u
)
+ Fε (u) +

∫ t

0

G
(
σ (s)−Aε

( .
u (s)

)
, ε (u (s))

)
ds (9)

−Mθ (t) in Ω× (0, T ) ,

.

θ − div(k∇θ) = q −M∇ .
u in Ω× (0, T ) , (10)

Div σ + f0 = 0 in Ω× (0, T ) , (11)

u = 0 on Γ1 × (0, T ) , (12)

σν = f2 on Γ2 × (0, T ) , (13)

− σν = pν
( .
uν

)
on Γ3 × (0, T ) , (14)

∥στ∥ ⩽ µpν
( .
uν

)
∥στ∥ < µpν

( .
uν

)
⇒ .

uτ = 0
∥στ∥ = µpν

( .
uν

)
⇒ ∃λ ⩾ 0 στ = −λ

.
uτ

on Γ3 × (0, T ) , (15)

− kij
∂θ

∂ν
= ke (θ − θR)− hτ

(∣∣ .uτ

∣∣) on Γ3 × (0, T ) , (16)

θ = 0 on ( Γ1 ∪ Γ2)× (0, T ) , (17)

u (0) = u0, θ (0) = θ0 in Ω. (18)

We now provide some comments on the equations and conditions of problem (9)–(18).
First, (9)-(10) represent the thermo-elasto-viscoplastic constitutive law and the evo-

lution equation of the heat field, respectively. (11) is the equilibrium equation. (12)
and (13) represent the displacement and traction boundary conditions, respectively.
Conditions (16) and (17) represent the temperature boundary conditions, where (17)
means that the temperature vanishes on (Γ1 ∪ Γ2) × (0, T ). Conditions (14) and (15)
are Colomb’s friction law, where µ ⩾ 0, λ ⩾ 0, and they state a general normal damped
response condition, where

.
uν represents the normal velocity, pν is a prescribed function,

σν is the normal stress,
.
uτ denotes the tangential velocity and στ represents the tangen-

tial force on the contact boundary. Denote by u0 and θ0 the initial displacement and the
initial temperature, respectively. To simplify the notation, we do not indicate explicitly
the dependence of various functions on the variables x ∈ Ω ∪ Γ and t ∈ [0, T ] . To obtain
a variational formulation of the problem (9)–(18), we need additional notations. Let E
denote the closed subspace of H1 (Ω) given by

E =
{
γ ∈ H1 (Ω) / γ = 0 on Γ1 ∪ Γ2

}
.

Let us now consider the closed subspace of H1 defined by

V = {v ∈ H1/ v = 0 on Γ1} .
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Since meas (Γ1) > 0, the following Korn’s inequality holds:

∥ε (v)∥H ⩾ ck ∥v∥H1
∀v ∈ V, (19)

where ck > 0 is a constant which depends only on Ω and Γ1. On the space V , we consider
the inner product and the associated norm given by

(u, v)V = (ε (u) , ε (v))H , ∥v∥V = ∥ε(v)∥H ∀u, v ∈ V. (20)

It follows from Korn’s inequality that ∥.∥H1
and ∥.∥V are equivalent norms on V . There-

fore (V, ∥.∥V ) is a real Hilbert space. Moreover, by the Sobolev trace theorem and (20),
there exists a constant c0 > 0 depending only on the domain Ω , Γ1 and Γ3 such that

∥v∥L2(Γ3)
d ⩽ c0 ∥v∥V ∀v ∈ V. (21)

In the study of the mechanical problem (9)–(18), we assume that the viscosity operator
A : Ω× Sd → Sd satisfies the conditions:

(a) There exists a constant LA > 0 such that
∥A (x, ε1)−A (x, ε2)∥ ⩽ LA ∥ε1 − ε2∥ ∀ε1, ε2 ∈ Sd, a.e.x ∈ Ω.
(b) There exists a constant mA > 0 such that

(A (x, ε1)−A (x, ε2)) . (ε1 − ε2) ⩾ mA ∥ε1 − ε2∥2 , ∀ε1, ε2 ∈ Sd, a.e.x ∈ Ω.
(c) The mapping x 7→ A (x, ε) is Lebesgue measurable on Ω, for any ε ∈ Sd.
(d) The mapping x 7→ A (x, 0) ∈ H.

(22)

The elasticity operator F : Ω× Sd × R → Sd satisfies the conditions:
(a) There exists a constant LF > 0 such that
∥F (x, ε1)−F (x, ε2)∥ ⩽ LF ∥ε1 − ε2∥ ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(b) The mapping x → F (x, ε) is Lebesgue measurable on Ω, for any ε ∈ Sd.
(c) The mapping x → F (x, 0) ∈ H.

(23)
The visco-plasticity operator G : Ω× Sd × Sd → Sd satisfies the conditions:

(a) There exists a constant LG > 0 such that
∥G (x, σ1, ε1)− G (x, σ2, ε2)∥ ⩽ LG(∥ε1 − ε2∥+ ∥σ1 − σ2∥)
∀ε1, ε2, σ1, σ2 ∈ Sd, a.e. x ∈ Ω.
(b) The mapping x → G (x, σ, ε) is Lebesgue measurable on Ω, for any ε, σ ∈ Sd.
(c) The mapping x → G (x, 0, 0) ∈ H.

(24)
The contact function pν : Γ3 × R → R+ satisfies the conditions:

(a) There exists a constant Lν ≻ 0 such that
∥pν (x, r1)− pν (x, r2)∥ ≤ Lν ∥r1 − r2∥ ∀r1, r2 ∈ R, a.e.x ∈ Γ3.
(d) The mapping x 7−→ pν (x, r) is Lebesgue measurable on Γ3, for any r ∈ R.
(f) The mapping x 7−→ pν (x, r) belongs to L2(Γ3).

(25)
The tangential function hτ : Γ3 × R+ → R+ satisfies the conditions: (a) There exists a constant Lh > 0 such that

∥hτ (x, r1)− hτ (x, r2)∥ ≤ Lh ∥r1 − r2∥ ∀r1, r2 ∈ R+, a.e.x ∈ Γ3.
(b) The mapping x → hτ (x, r) ∈ L2(Γ3) is Lebesgue measurable on Γ3,∀r ∈ R+.

(26)
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The body forces and surface tractions have the regularity

f0 ∈ C (0, T ;H) , f2 ∈ C
(
0, T ;L2(Γ2)

d
)
. (27)

The coefficient µ satisfies the following conditions:

µ ∈ L∞(Γ3) µ(x) ⩾ 0 a.e. on Γ3. (28)

The thermal tensors and the heat source density satisfy the conditions:
M = (mij), mij = mji ∈ L∞(Ω).
K = (kij), kij = kji ∈ L∞(Ω), kijζiζi ⩾ ckζiζi,

for some ck > 0, for all (ζi) ∈ Rd.
q ∈ L2(0, T ;L2(Ω)).

(29)

Finally, the boundary and initial data verify that

u0 ∈ V, θ0 ∈ E, θR ∈ L2(0, T ;L2(Γ3)), ke ∈ L∞(Ω, R+). (30)

We define the function f : [0, T ] → V by

(f(t), v) =

∫
Ω

f0(t).vdx+

∫
Γ2

f2(t).vda. ∀v ∈ V,∀t ∈ [0, T ] . (31)

Next, we denote by j : V × V → R the functional defined by

j(u, v) =

∫
Γ3

pν(u).vνda+

∫
Γ3

µpν(u). ∥vτ∥ da ∀u, v ∈ V. (32)

We note that condition (27) implies

f ∈ C ([0, T ] , V ) . (33)

Using standard arguments, we obtain the variational formulation of the mechanical prob-
lem (9)-(18).

Problem PV . Find a displacement field u : [0, T ] → V, a stress field σ : [0, T ] → H
and a temperature field θ : [0, T ] → E such that for all t ∈ [0, T ] ,

σ = Aε
( .
u
)
+ Fε (u) +

∫ t

0

G
(
σ (s)−Aε

( .
u (s)

)
, ε (u (s))

)
ds−Mθ (t) , (34)(

σ (t) , ε(v)− ε
( .
u
))

H + j
( .
u(t), v

)
− j

( .
u(t),

.
u(t)

)
⩾

(
f(t), v − .

u
)
V
. (35)

.

θ(t) +Kθ(t) = R
.
u(t) +Q(t) in E′, (36)

u(0) = u0, θ(0) = θ0, (37)

where K : E → E′, R : V → E′ and Q : [0, T ] → E′ are given by

(Kτ, ω)E′×E =

d∑
i,j=1

∫
Ω

kij
∂τ

∂xj

∂ω

∂xi
dx+

∫
Γ3

keτωda,

(Rv, ω)E′×E =

∫
Γ3

hτ (|vτ |)ωda−
∫
Ω

mij
∂vi
∂xj

ωdx,

(Q(t), ω)E′×E =

∫
Γ3

keθR(t)ωda+

∫
Ω

q(t)ωdx

for all v ∈ V, τ, ω ∈ E.
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4 Existence and Uniqueness Result

Now, we propose our existence and uniqueness result.

Theorem 4.1 Assume that (22)-(30) hold. Then there exists L0 > 0 depending only
on Ω,Γ1,Γ3 and A such that if Lν(∥µ∥L∞(Γ3)

+ 1) < L0, problem PV has a unique
solution which satisfies the conditions:

u ∈ C1 ([0, T ] , V ) , σ ∈ C ([0, T ] ,H1) , (38)

θ ∈ W 1,2(0, T ;E′) ∩ L2(0, T ;E) ∩ C(0, T ;L2(Ω)). (39)

The functions u, σ and θ which satisfy (34)-(37) are called a weak solution of the
contact problem P . We conclude that, under the assumptions (22)–(30), the mechanical
problem (9)-(18) has a unique weak solution satisfying (38)-(39).

The proof of Theorem 4.2 is carried out in several steps that we prove in what follows,
everywhere in this section we suppose that the assumptions of Theorem 4.2 hold, and we
consider that C is a generic positive constant which is independent of time and whose
value may change from one occurrence to another.

Let η ∈ C (0, T ;H) be given; in the first step, we consider the following variational
problem.

Problem PVη : Find a displacement field uη : [0, T ] → V such that(
Aε

( .
uη

)
, ε(v)− ε

( .
uη

))
H +

(
Fε (uη) , ε(v)− ε

( .
uη

))
H +

(
η (t) , ε(v)− ε

( .
uη

))
H

+ j
( .
uη(t), v

)
− j

( .
uη(t),

.
uη(t)

)
⩾

(
f(t), v − .

uη

)
V
.

(40)

uη(0) = u0. (41)

We have the following result for the problem.

Lemma 4.1 There exists L0 depending only on Ω,Γ1,Γ3 and A such that if
Lν(∥µ∥L∞(Γ3)

+ 1) < L0, the problem PV has a unique solution uη ∈ C1 ([0, T ] , V ) .

Proof. We define the operators A : V → V , F : V → V and the function fη
:[0, T ] → V by

(Au, v)V = (Aε (u) , ε(v))H , (42)

(Fu, v)V = (Fε (u) , ε(v))H , (43)

(fη, v)V = (f(t), v)V − (η(t), ε(v))H (44)

for all u, v ∈ V and t ∈ [0, T ] .
We use (42), (22)(b) and (22)(c) to find that

∥Au1 −Au2∥ ⩽ LA ∥u1 − u2∥V . (45)

(Au1 −Au2, u1 − u2)V ⩾ mA ∥u1 − u2∥2V . (46)

From (23)(a) and (43), we have

∥Fu1 − Fu2∥ ⩽ LF ∥u1 − u2∥V . (47)

From (46) and (45), A is a strongly monotone Lipschitz continuous operator, then from
(47), F is a Lipschitz continuous operator. We use (27), we find that the function f



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (2) (2023) 141–156 149

defined by (31) satisfies f ∈ C ([0, T ] , V ), and keeping in mind that η ∈ C ([0, T ] ,H), we
deduce by (44) that fη ∈ C ([0, T ] , V ) and u0 ∈ V . We use (25), (28) and (21), we find
that the function j given by (32) satisfies the condition (4)(a). Moreover,

j(u1, v2)− j(u1, v1) + j(u2, v1)− j(u2, v2)
⩽ c20Lν(∥µ∥L∞(Γ3)

+ 1) ∥u1 − u2∥V ∥v1 − v2∥V
(48)

for all u1, u2, v1, v2 ∈ V , which implies that the function j satisfies the condition (4)(b)
on X = V with α = c20Lν(∥µ∥L∞(Γ3)

+1). Let L0 = mA
c20

and note that L0 depends only

on Ω,Γ1,Γ3 and A. Then, if Lν(∥µ∥L∞(Γ3)
+ 1) < L0, we have

mA > α, (49)

and it follows from Theorem 4.1 that there exists a unique function uη ∈ C1 ([0, T ] , V )
such that (

A
.
uη(t), v −

.
uη(t)

)
V
+
(
Fuη(t), v −

.
uη(t)

)
V
+ j

( .
uη(t), v

)
− j

( .
uη(t),

.
uη(t)

)
⩾

(
fη(t), v −

.
uη(t)

)
V
. ∀v ∈ V, t ∈ [0, T ] . (50)

uη(0) = u0. (51)

We use (42), (43), (50) and (51) to see that uη is the unique solution to PVη.
Let uη : [0, T ] → V be the function defined by

u =

∫ t

0

vη(s)ds+ u0, ∀t ∈ [0, T ] . (52)

In the second step, let η ∈ C ([0, T ] ,H) , we use the displacement field uη obtained
in Lemma 4.1 and we consider the following variational problem.

Problem QVη. Find the temperature field θη : [0, T ] → E such that

θ̇η(t) +Kθη (t) = Ru̇η (t) +Q (t) , (53)

θη (0) = θ0. (54)

We have the following result.

Lemma 4.2 Problem QVη has a unique solution θη which satisfies the regularity
(39), then we have for all t ∈ [0, T ],

∥θη1
(t)− θη2

(t)∥2L2(Ω) ⩽ C

∫ t

0

∥∥ .
uη1

(s)− .
uη2

(s)
∥∥2
V
ds. (55)

Proof. We use a classical result for the first order evolution equation given in [15].
We have the Gelfand triple

E ⊂ L2(Ω) ≡ (L2(Ω))′ ⊂ E′.

The operator K is linear and coercive. By Korn’s inequality

(Kτ, τ)E′×E ⩾ C |τ |2E , C > 0.

Now, for θηi ∈ E, i = 1, 2, let t ∈ [0, T ].
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We have(
θ̇η1

(t) −
.

θη2
(t), θη1

(t)− θη2
(t)

)
E′×E

+ (Kθη1
(t)−Kθη2

(t), θη1
(t)− θη2

(t))E′×E

=
(
R

.
uη1

(t)−R
.
uη2

(t), θη1
(t)− θη2

(t)
)
E′×E

,

(56)
we integrate (56) over (0, t) and we use the coercivity of K and the Lipschitz continuity

of R : V → E′ to deduce that (55) is satisfied for all t ∈ [0, T ] .
In the third step, we use the displacement field uη obtained in Lemma 4.1 and the

temperature field θη obtained in Lemma 4.2 to construct the following Cauchy problem
for the stress field.

Problem PV ση. Find the stress field ση : [0, T ] → H such that

ση(t) = Fε (uη(t)) +

∫ t

0

G (ση (s) , ε (uη (s))) ds−Mθη (t) ∀t ∈ [0, T ] . (57)

In the study of problem PV ση, we have the following result.

Lemma 4.3 There exists a unique solution of problem PV ση and it satisfies ση ∈
C1 ([0, T ] ,H) . Moreover, if ui, σi and θi represent the solutions of the problems PVηi

,
PV σηi

and QVηi
, respectively, for ηi ∈ C (0, T ;H), i = 1, 2, then there exists C > 0 such

that
∥σ1(t)− σ2(t)∥2H ⩽ C(∥u1(t)− u2(t)∥2V + ∥θ1(t)− θ2(t)∥2L2(Ω)

+
∫ t

0
∥u1(s)− u2(s)∥2V ds), ∀t ∈ [0, T ] .

(58)

Proof. Let Λη : C (0, T ;H) → C (0, T ;H) be the operator given by

Λησ(t) = Fε (uη(t)) +

∫ t

0

G (σ (s) , ε (uη (s))) ds−Mθη (t) (59)

for σ ∈ C (0, T ;H) and t ∈ [0, T ]. For σ1, σ2 ∈ C (0, T ;H), we obtain for all t ∈ [0, T ],

∥Λησ1 − Λησ2∥H ⩽ LG

∫ t

0

∥σ1(s)− σ2(s)∥ ds.

It follows from this inequality that for p large enough, the operator Λp
η is a contraction

on the Banach space C (0, T ;H) and, therefore, there exists a unique element ση ∈
C (0, T ;H) such that Λησ = ση. Moreover, ση is the unique solution of problem PV ση

and, when using (57), the regularity of uη, the regularity of θη and the properties of the
operators F and G, it follows that ση ∈ C1 (0, T ;H).

Consider now η1, η2 ∈ C (0, T ;H) and for i = 1, 2, denote uηi
= ui, σηi

= σi and
θηi

= θi. We have

σi(t) = Fε (ui(t)) +

∫ t

0

G (σi (s) , ε (ui (s))) ds−Mθi (t) , ∀t ∈ [0, T ] ,

and, using the properties (23) and (24) of F and G, we find

∥σ1(t)− σ2(t)∥2H ⩽ C(∥u1(t)− u2(t)∥2V +
∫ t

0
∥σ1(s)− σ2(s)∥2H ds

+
∫ t

0
∥u1(s)− u2(s)∥2V ds+ ∥θ1(t)− θ2(t)∥2L2(Ω)) ∀t ∈ [0, T ] .

We use the Gronwall argument in the obtained inequality to deduce the estimate (58).
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Finally, we consider the operator Λ : C (0, T ;H) → C (0, T ;H) defined by

Λη =

∫ t

0

G (ση (s) , ε (uη (s))) ds−Mθη. (60)

Here, for every η ∈ C (0, T ;H) , uη, θη and ση represent the displacement field, the
temperature field and the stress field which are obtained in Lemma 4.1, Lemma 4.2 and
Lemma 4.3, respectively. We have the following result.

Lemma 4.4 The operator Λ has a unique fixed point η∗ ∈ C (0, T ;H) such that
Λη∗ = η∗.

Proof. Let now η1, η2 ∈ C (0, T ;H). We use the notation uηi
= ui,

.
uηi

=
.

vηi
= vi, θη1

=
.

θη1
and σηi

= σi for i = 1, 2. Using (24), (20), (29) and (60), we de-
duce that

∥Λη1(t)− Λη2(t)∥2H ⩽ C(
∫ t

0
∥σ1(s)− σ2(s)∥2H ds+

∫ t

0
∥u1(s)− u2(s)∥2V ds

+ ∥θ1(t)− θ2(t)∥2L2(Ω)).
(61)

We use the estimate (58) to obtain

∥Λη1(t)− Λη2(t)∥2H ⩽ C(
∫ t

0
∥u1(s)− u2(s)∥2V ds+ ∥θ1(t)− θ2(t)∥2L2(Ω)

+
∫ t

0
∥θ1(s)− θ2(s)∥2L2(Ω) ds).

Moreover, from (40), we obtain

(Aε (v1)−Aε (v2) , ε(v1)− ε (v2))H − (Fε (u1)−Fε (u2) , ε(v2)− ε (v1))H
− (η1 (t)− η2, ε(v2)− ε (v1))H ⩽ j (v1, v2)− j (v1, v1) + j(v2, v1)− j(v2, v2).

We use the assumptions (22), (23) and the estimation (48) to find that

mA ∥v1 − v2∥2V ⩽ LF ∥u1 − u2∥V ∥v1 − v2∥V + ∥η1 − η2∥H ∥v1 − v2∥V
+c20Lν(∥µ∥L∞(Γ3)

+ 1) ∥v1 − v2∥2V .

Then, by (49), we have

∥v1 − v2∥V ⩽ C(∥u1 − u2∥V + ∥η1 − η2∥H). (62)

Since

ui(t) =

∫ t

0

vi(s)ds+ u0 ∀t ∈ [0, T ] ,

we have

∥u1(t)− u2(t)∥V ⩽ C

∫ t

0

∥v1(s)− v2(s)∥V ds. (63)

Next, we use (62), (63) and we apply Gronwall’s inequality to deduce

∥v1(t)− v2(t)∥2V ⩽ C ∥η1(t)− η2(t)∥2H , (64)

and from (56) and (64), we obtain

∥θ1(t)− θ2(t)∥2L2(Ω) ⩽ C

∫ t

0

∥η1(s)− η2(s)∥2H ds. (65)
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We substitute (63),(64) and (65) to obtain

∥Λη1 − Λη2∥2H ⩽ C

∫ t

0

∥η1(s)− η2(s)∥2H ds.

Reiterating this inequality m times leads to

∥Λmη1 − Λmη2∥2C(0,T ;H) ⩽
CmTm

m!
∥η1 − η2∥2C(0,T ;H) .

For m sufficiently large, Λm is a contraction on the Banach space C (0, T ;H) , and so Λ
has a unique fixed point.

Now, we have all the ingredients needed to prove Theorem 4.1.
Proof. Existence. Let η∗ ∈ C (0, T ;H) be the fixed point of Λ defined by

(60), and let uη∗
.

, ση∗ and θη∗ be the solutions of the problems PVη , PV ση and QVη,
respectively, for η = η∗, and denote

u = uη∗ ,
.
u =

.
uη∗ , θ = θη∗ , (66)

σ = Aε
( .
u
)
+ Fε (u) + ση∗ . (67)

We prove that (u, σ, θ) satisfies (34)-(37) and (38)-(39). Indeed, we write (57) for η = η∗

and use (66)-(67) to obtain (34). We consider (40) for η = η∗ and use the equality Λη∗

= η combined with (60) and (66)-(67) to conclude that (35) is satisfied. We write (53) for
η = η∗ and use (66) to find that (36) is also satisfied. Next, (37) and the regularities (38)-
(39) follow from Lemmas 4.1 and 4.2. The regularity of σ is a consequence of Lemmas
4.1, 4.2, 4.3, the relations (66)-(67) and the assumptions on A and F .

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the
fixed point of the operator Λ defined by (60) and the unique solvability of the problems
PVη, QVη and PV ση .

5 Convergence Results

In this section, we study the dependence of the solution to problem PV when we introduce
the perturbation of certain data. We suppose that the assumptions (22)-(30) are satisfied.
Moreover, we assume that Lν(∥µ∥L∞(Γ3)

+1) < L0, where L0 = mA
c20

. Let (u, σ, θ) be the

solution of PV which is obtained by Theorem 4.1 for every ρ > 0, let Fρ, p
ρ
ν and Lρ

ν be
the perturbations of F , pν and Lν , respectively, which satisfy the conditions (23) and
(25).

We define the function jρ : V × V → R by

jρ(u, v) =

∫ t

0

pρν(uν).vνda+

∫ t

0

µpρν(uν). ∥vτ∥ da ∀u, v ∈ V. (68)

Under these assumptions, we consider the following variational problem.
Problem PVρ. Find a displacement field uρ : [0, T ] → V , a stress field σρ : [0, T ] →

H and a temperature field θρ : [0, T ] → E such that for all t ∈ [0, T ] ,

σρ (t) = Aε
( .
uρ(t)

)
+ Fε (uρ(t)) +

∫ t

0
G
(
σρ (s)−Aε

( .
uρ (s)

)
, ε (uρ (s))

)
ds

−Mθρ (t) .
(69)
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σρ (t) , ε(v)− ε

( .
uρ

))
H + jρ

( .
uρ(t), v

)
− jρ

( .
uρ(t),

.
uρ(t)

)
⩾

(
f(t), v − .

uρ(t)
)
V
.

(70)

.

θρ(t) +Kθρ(t) = R
.
uρ(t) +Q(t) in E′, (71)

uρ(0) = u0, θρ(0) = θ0. (72)

Assume that
Lρ
ν(∥µ∥L∞(Γ3)

+ 1) < L0 ∀ρ > 0.

We deduce from Theorem 4.1 that for each ρ > 0, the problem PVρ has a unique solution
(uρ, σρ, θρ) satisfying uρ ∈ C1 ([0, T ] , V ), σρ ∈ C ([0, T ] ,H1) and θρ ∈ W 1,2(0, T ;E′) ∩
L2(0, T ;E) ∩ C(0, T ;L2(Ω)).

Let us suppose Fρ, F , pρν and pν satisfy the following assumptions:
There exists B : R+ → R+ such that
a) ∥Fρ(x, ε)−F(x, ε)∥ ⩽ B(ρ)
∀ε ∈ Sd, a.e.x ∈ Ω, for each ρ > 0.
b) lim

ρ→0
B(ρ) = 0.

(73)


There exists Gν : R+ → R+ such that
a) |pρν(x, r)− pν(x, r)| ⩽ Gν(ρ)
∀r ∈ R, a.e.x ∈ Γ3, for each ρ > 0.
b) lim

ρ→0
Gν(ρ) = 0.

(74)

We have the following convergence result.

Theorem 5.1 Assume that (73)-(74) hold, the solution (uρ, σρ, θρ) of the problem
PVρ converges to the solution (u, σ, θ) of problem PVη,

uρ → u in C1(0, T ;V ) as ρ → 0; (75)

σρ → σ in C(0, T ;H1) as ρ → 0; (76)

θρ → θ in C(0, T ;L2(Ω)) as ρ → 0. (77)

In addition to the mathematical interest of convergence result (75)-(77), it is im-
portant in mechanical applications because it indicates that small perturbations of the
contact conditions and of the elasticity operator lead to small perturbations of the weak
solution of the problem P .

Proof. Let ρ > 0 and t ∈ [0, T ], we use v =
.
u(t) in (70) and v =

.
uρ(t) in (35),

then in addition to the two inequalities, we get(
σρ(t)− σ(t), ε(

.
uρ(t))− ε

( .
u(t)

))
H ⩽ jρ

( .
uρ(t),

.
u(t)

)
− jρ

( .
uρ(t),

.
uρ(t)

)
+ j

( .
u(t),

.
uρ(t)

)
− j

( .
u(t),

.
u(t)

)
.

(78)

We have
σR
ρ (t) = σρ(t)−Aε

( .
uρ(t)

)
, σR(t) = σ(t)−Aε

( .
u(t)

)
, (79)

where

σR
ρ (t) = Fρε (uρ(t)) +

∫ t

0

G
(
σR
ρ (s) , ε (uρ (s))

)
ds−Mθρ (t) , (80)
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σR(t) = Fε (u(t)) +

∫ t

0

G
(
σR (s) , ε (u (s))

)
ds−Mθ (t) . (81)

We combine (78) and (79) to obtain(
Aε

( .
uρ(t)

)
−Aε

( .
u(t)

)
, ε(

.
uρ(t))− ε

( .
u(t)

))
H +

(
σR
ρ (t)− σR(t), ε(

.
uρ(t))− ε

( .
u(t)

))
H

⩽ jρ
( .
uρ(t),

.
u(t)

)
− jρ

( .
uρ(t),

.
uρ(t)

)
+ j

( .
u(t),

.
uρ(t)

)
− j

( .
u(t),

.
u(t)

)
.

(82)
Moreover, from (22), it follows that for a.e. t ∈ [0, T ],(

Aε
( .
uρ(t)

)
−Aε

( .
u(t)

)
, ε(

.
uρ(t))− ε

( .
u(t)

))
H ⩾ mA

∥∥ .
uρ(t)−

.
u(t)

∥∥2
V
. (83)

Using (80) and (81), we get

σR
ρ (t)− σR(t) = Fρε (uρ(t))−Fε (u(t)) +

∫ t

0
G
(
σR
ρ (s) , ε (uρ (s))

)
ds

−
∫ t

0
G
(
σR (s) , ε (u (s))

)
ds+Mθ (t)−Mθρ (t) .

We now use (20), (23), (24), (29) and (73) to obtain∥∥σR
ρ (t)− σR(t)

∥∥
H ⩽ B(ρ) + LF ∥uρ(t)− u(t)∥V + LG

∫ t

0

∥∥σR
ρ (s)− σR(s)

∥∥
H ds

+ LG
∫ t

0
∥uρ(s)− u(s)∥V ds+ ∥M∥∥θρ(t)− θ(t)∥L2(Ω) .

By the Gronwall inequality, we find∥∥σR
ρ (t)− σR(t)

∥∥
H ⩽ B(ρ) + LF ∥uρ(t)− u(t)∥V

+LG
∫ t

0
∥uρ(s)− u(s)∥V ds+ ∥M∥∥θρ(t)− θ(t)∥L2(Ω) .

(84)

From (71) and (36), we obtain

∥θρ(t)− θ(t)∥2L2(Ω) ⩽ C

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥2
V
ds. (85)

The estimation (84) becomes

∥∥σR
ρ (t)− σR(t)

∥∥
H ⩽ B(ρ) + C(

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥
V
ds+ ∥θρ(t)− θ(t)∥L2(Ω)). (86)

We use (85), the inequality (86) shows that

−
(
σR
ρ (t)− σR(t), ε(

.
uρ(t))− ε

( .
u(t)

))
H

⩽ (B(ρ) + C
∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥
V
ds)

∥∥ .
uρ(t)−

.
u(t)

∥∥
V

a.e t ∈ [0, T ] .
(87)

We use the definition of j and jp, (73)(a) and (24)(b), we find

jρ (u̇ρ(t), u̇(t))− jρ (u̇ρ(t), u̇ρ(t)) + j (u̇(t), u̇ρ(t))− j (u̇(t), u̇(t))
⩽

∫
Γ3

(pρν(u̇ρν)− pν(u̇ν)) (u̇ν − u̇ρν) da+
∫
Γ3
(µpρν(u̇ρν)− µpν(u̇ν))(∥u̇τ∥ − ∥u̇ρτ∥)da

⩽
∫
Γ3

|pρν(u̇ρν)− pν(u̇ν)| |u̇ν − u̇ρν | da+
∫
Γ3

|µpρν(u̇ρν)− µpν(u̇ν)| |∥u̇τ∥ − ∥u̇ρτ∥| da.

Then we use (74) and after some calculations, we get

jρ (u̇ρ(t), u̇(t))− jρ (u̇ρ(t), u̇ρ(t)) + j (u̇(t), u̇ρ(t))− j (u̇(t), u̇(t))

⩽ meas(Γ3)
1
2 c0(1 + ∥µ∥L∞(Γ3)

)Gν(ρ) ∥u̇ρ(t)− u̇(t)∥V
+ c20(1 + ∥µ∥L∞(Γ3)

)Lν ∥u̇ρ(t)− u̇(t)∥2V .

(88)
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We use (82), (83), (87) and (88) to obtain

∥u̇ρ(t)− u̇(t)∥V ⩽ 1
mA−c20(1+∥µ∥L∞(Γ3))Lν

B(ρ)

+ C
mA−c20(1+∥µ∥L∞(Γ3))Lν

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥
V
ds+

meas(Γ3)
1
2 c0(1+∥µ∥L∞(Γ3))

mA−c20(1+∥µ∥L∞(Γ3))Lν
Gν(ρ),

this inequality implies that

∥u̇ρ(t)− u̇(t)∥V ≤ δ (B(ρ) +Gν(ρ))+
C

mA − c20(1 + ∥µ∥L∞(Γ3)
)Lν

∫ t

0

∥∥ .
uρ(s)−

.
u(s)

∥∥
V
ds,

where δ = max

{
1

mA−c20(1+∥µ∥L∞(Γ3))Lν
,
meas(Γ3)

1
2 c0(1+∥µ∥L∞(Γ3))

mA−c20(1+∥µ∥L∞(Γ3))Lν

}
.

Using the Gronwall inequality, we find

∥u̇ρ(t)− u̇(t)∥V ≤ c (B(ρ) +Gν(ρ)) . (89)

We integrate (89) over (0, t), using (52), (37) and (72), we get

∥uρ − u∥V ⩽ c

∫ t

0

∥u̇ρ(t)− u̇(t)∥V ds ⩽ c (B(ρ) +Gν(ρ)) . (90)

It results from (90), (73)(b) and (74)(b) that ( 75) is satisfied.

It follows from (79) that

σρ(t)− σ = σR
ρ (t)− σR(t) +Aε (u̇ρ(t))−Aε (u̇(t)) , a.e t ∈ [0, T ] .

We use this inequality, the properties (22) of the operator A, (87), (73) and (75), we
see that (76) is satisfied. We conclude that (77) is a consequence of (85), (90), (73)(b)
and (74)(b).

6 Conclution

Contact problems involving bodies arise in many industrial processes as well as in every-
day life. For this reason, they have been widely studied in the recent years, with various
constitutive laws and boundary conditions, including the normal compliance condition
associated to a version of Coulomb’s friction law. The studies concern the mechanical,
mathematical and numerical modeling of the corresponding boundary value problems.
In this paper, we consider a mathematical model which describes a quasistatic frictional
contact between a body and a foundation. We study an elasto-viscoplastic material with
thermal effects. The frictional contact is modeled with a normal damped response condi-
tion associated to a version of Coulomb’s law of dry friction. These non standard contact
conditions could model the contact with the deformable foundation covered by a lubri-
cant, say oil, as already mentioned. We derive a variational formulation of the problem
and prove that the proposed model has a unique weak solution by using evolutionary
quasivariational inequality. Also, we study the dependence of the solution on the data
and prove a convergence result.
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[19] N. Strömberg. Thermomechanical modelling of tribological systems, Ph.D. Thesis, No. 497,
Linkoping University, Sweden, 1997.

[20] A. Touzaline. Study of a viscoelastic frictional contact problem with adhesion. Commen-
tationes Mathematicae Universitatis Carolinae 52 (2) (2011) 257–272, Persistent URL:
http://dml. cz/dmlcz/141499.



Nonlinear Dynamics and Systems Theory, 23 (2) (2023) 157–166

Implementation of Infeasible Interior-Point Methods

Based on a New Search Direction

L. Derbal

Department of Mathematics, University of Ferhat Abbas Setif 1.

Received: March 22, 2023; Revised: May 6, 2023

Abstract: In this paper, we present the implementation of infeasible interior-point
methods (IIPMs) for linear and nonlinear optimization with the full-Newton
step based on an algebraic equivalent transformation (AET). The algorithm was
implemented in Matlab language, thus supporting the effectiveness of the method.
Numerical tests demonstrate the behavior of the algorithms for different results of
parameters.
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1 Introduction

Linear optimization (LO) has numerous applications in different fields such as economics,
logistics, engineering, nonlinear dynamics and systems (see, e.g., [6], [7]). The classical
method for solving LO problems is the simplex algorithm proposed by Dantzig [2] in
1947. The appearance of interior-point algorithms (IPAs) in LO is the result of a longer
process. From the literature, we know that the first result is due to Frisch, who proposed
the use of logarithmic barrier functions in LO [8]. Later on Fiacco and McCormick [5]
developed the sequential unconstrained minimization technique (SUMT). Since then, the
barrier functions have been extensively studied.

The result of Karmarkar obtained in 1984 [9] had a great impact on mathematical
optimization from both theoretical and practical point of view. He derived projective
scaling IPAs with better complexity than the ellipsoid algorithm and he claimed that
his algorithm had better practical performance. Moreover, it turned out that the IPA

∗ Corresponding author: mailto:louiza.derbal@univ-setif.dz.

© 2023 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua157
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approach to LO has a natural generalisation to the related field of convex nonlinear
optimisation, which resulted in a new stream of research and an exellent monograph
of Nesterov and Nemirovski [13]. This study opened the way into other new subfields
of optimization such as semidefinite optimization (SDO), convex quadratic optimization
(CQO), second-order cone optimization (SOCO), symmetric optimization (SO) and the
complementarity problem (CP), with important applications in system theory, discrete
optimization, and many other areas. The most important results related to IPAs for LO
were summarized in the monographs written by Roos, Terlaky and Vial [16], Wright [19]
and Ye [20]. Based on the starting point, two types of IPAs exist; feasible and infeasible
algorithm. Feasible IPAs start from a feasible interior point and maintain feasibility
during the whole process of the algorithms. Infeasible IPAs start from an infeasible
interior point and they use two kinds of steps, feasibility and centering steps in each
iteration. The first infeasible algorithms were introduced by Lustig [12] and Tanabe
[18]. Kojima et al. [11] analyzed the complexity of these algorithms. In 2005, Roos
[14] proposed a new algorithm, which uses only the full-Newton steps and starts from
infeasible points. Takács [17] gave an application of infeasible interior-point algorithms.
Several implementations of IPAs can be found in state-of-the-art solvers nowadays. The
paper presents an implementation of original Roos’s infeasible algorithm [2006, 2016],
and a short updating algorithm [10], where the AET technique is used with the new
function ψ(t) = t2 to transform the central path equation. Numerical results show
that the algorithm with the practical step size is more efficient than that with the fixed
(theoretical) step size.

The outline of the paper is as follows. In Section 2, we briefly recall the new search
direction based on the type of AET using the new function ψ(t) = t2. In Section 3, we
report some preliminary numerical results to demonstrate the computational performance
of the proposed methods. Finally, some conclusions and remarks are made in Section 4.

We use the following notations throughout the paper: Rn is the n-dimensional Eu-
clidean space with the inner product ⟨., .⟩ and ∥.∥ is the Euclidean norm which denotes
the 2−norm, Rm×n is the space of matrices of order m× n, xi is the i-th component of
x, xs is the component-wise product of vector x and s, respectively. The vector of ones
is denoted by e.

2 Formulation of the Problem

We consider the LO problem in standard form

min
{
cTx : Ax = b, x ≥ 0

}
, (P )

and its dual form
max

{
bT y : AT y + s = c, s ≥ 0

}
, (D)

where A ∈ Rm×n with rank(A) = m, b ∈ Rm and c ∈ Rn with y ∈ Rm and s ∈ Rn.
As usual, for IIPMs, we consider the starting point (x0, y0, s0) = ξ(e, 0, e) such that

∥ (x∗, s∗) ∥∞≤ ξ ⇔ 0 ≤ x∗ ≤ ξe and 0 ≤ s∗ ≤ ξe. (1)

For some primal-dual optimal solution (x∗, y∗, s∗), e is the all-one vector and ξ is a
positive scalar. The triple (x, y, s) is the ϵ-solution of (P ) and (D) if the norms of the
residual vectors b−Ax and c−AT y − s do not exceed ϵ, and also xT s.

For any λ with 0 < λ ≤ 1, we consider the perturbed problem (Pλ) defined by
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{
min(c− λr0c )

Tx : b−Ax = λr0b , x ≥ 0
}
, (P

λ
)

and its dual form {
max(b− λr0b )

T y : c−AT y − s = λr0c , s ≥ 0
}
, (D

λ
)

where r0b and r0c denote the primal and dual initial residual vectors, respectively,

r0b = b−Aξe and r0c = c− ξe.

Note that if λ = 1, then x = x0 yields a strictly feasible solution of (Pλ), and
(y, s) = (y0, s0) is a strictly feasible solution of (Dλ). We conclude that if λ = 1, then
(P

λ
) and (D

λ
) satisfy the interior point condition (IPC), we recall and develop some new

results on the scaled search directions.

Lemma 2.1 (cf. Theorem 5.13 in [20]) The original problems, (P ) and (D), are
feasible if and only if for each λ satisfying 0 < λ ≤ 1, the perturbed problems (Pλ) and
(Dλ) satisfy the IPC.

Let (P ) and (D) be feasible and 0 < λ ≤ 1. Then Lemma 2.1 implies that the
problems (Pλ) and (Dλ) satisfy the IPC, and hence their central paths exist. This means
that the system  b−Ax = λr0b , x ≥ 0,

c−AT y − s = λr0c , y ∈ Rm, s ≥ 0,
xs = µe

(2)

has a unique solution for every µ > 0. This solution consists of the µ-centers of the
perturbed problems (Pλ) and (Dλ). The perturbed central path can be equivalently
stated as follows: 

b−Ax = λr0b , x ≥ 0,
c−AT y − s = λr0c , y ∈ Rm, s ≥ 0,
xs

µ
=

√
xs

µ
.

(3)

From [10], we replace the third equation of system (3) by the equivalent equation ψ(
xs

µ
) =

ψ(

√
xs

µ
), where ψ is a real valued function differentiable on

(
k2 → +∞

)
, where 0 ≤ k <

1, such that 2tψ′(t2)− ψ′(t), we get
b−Ax = λr0b , x ≥ 0,
c−AT y − s = λr0c , y ∈ Rm, s ≥ 0,

ψ(
xs

µ
) = ψ(

√
xs

µ
).

(4)

Let (x, y, s) be a feasible solution of (Pλ) and (Dλ). We consider the notation

f(x, y, s) =


λ+r0b − b+Ax
λ+r0c − c+AT y + s

ψ(
xs

µ
)− ψ(

√
xs

µ
)

 = 0,
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where λ+ = (1− θ)λ and θ ∈ (0, 1), a new triple

(x+, y+, s+) = (x+∆x, y +∆y, s+∆s)

is obtained thanks to the Newton method for solving the following system:



A∆x = θλ+r0b ,
AT∆y +∆s = θλ+r0c

1

µ
(s∆x+ x∆s) =

−ψ
(
xs

µ

)
+ ψ

(√
xs

µ

)
ψ′

(
xs

µ

)
− 1

2

√xs

µ

ψ′
(√

xs

µ

) . (5)

Define the scaled search directions dx and ds as follows:

v =

√
xs

µ
, dx :=

v∆x

x
, ds :=

v∆s

s
, (6)

then the system reduces to the system


Ādx = θλ+r0b ,

ĀT ∆y

µ
+ ds = θvλ+s−1r0c ,

dx + ds = pv,

(7)

where

pv =
2ψ(v)− 2ψ(v2)

2vψ′(v2)− 2ψ′(v)
and Ā = A diag(

x

v
). (8)

We consider the proximity measure defined by

δ(v) = δ(x, s;µ) =
∥pv∥
2

=
1

2
∥ v − v3

2v2 − e
∥, (9)

suppose that for some µ ∈ (0, µ0), we have a feasible solution (x, y, s) of the problem

(Pλ) and (Dλ) with λ =
µ

µ0
, such that δ(x, s;µ) ≤ τ , τ ∈ (0, 1). Then the algorithm

finds the feasible solution (x+, y+, s+) of (Pλ+) and (Dλ+), where λ+ = (1 − θ)λ and
θ ∈ (0, 1). In this case, µ is reduced to µ+ = (1− θ)µ and so δ(x+, y+;µ

+) = δ(v+) ≤ τ .
If necessary, we repeat the procedure until an ϵ-solution is found.

Now we can define the generic infeasible interior-point algorithm for LO.
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Algorithm 2.1 The generic infeasible interior-point algorithm for LO.

Input :
-Accuracy parameter ϵ > 0,
-barrier update parameter θ barrier update parameter θ, 0 < θ < 1,
-threshold parameter τ > 0,
Begin
x = ξe; y = 0; s = ξe;λ = 1;µ = λξ2.
while : max(xT s, ∥rb∥, ∥rc∥) > ϵ do
Begin
solve the systeme (7) and use (6) to obtain (∆x,∆y,∆s);
x = x+∆x;
y = y +∆y;
s = s+∆s;
update of λ and µ
λ = (1− θ)λ;
µ = (1− θ)µ;

end
end

Lemma 2.2 ( [10]) If τ =
1

12
and θ =

1

22n
, n ≥ 4, then δ(v) ≤ τ implies δ(v+) ≤ τ .

Theorem 2.1 (Theorem 1 [10]) If (P ) and (D) are feasible and ξ > 0 such that
∥(x∗; s∗)∥∞ ≤ ξ for some optimal solutions x∗ of (P ) and (y∗, s∗) of (D), then after at
most

22n log
max(nξ2, ∥r0b∥, ∥r0c∥

ϵ

iterations, the algorithm finds an ϵ-optimal solution of (P ) and (D).

3 Numerical Results

In this section, we present an implementation of the IIPMs for LO, which demonstrates
the influence of the update parameters θ and the dimension of the problem on the number
of the iterations. The algorithm is coded in MATLAB (R 2014 a) and our experiments
are performed on PC with Processor Genuine Intel (R) CPR T2080 @ 1, 73 GHZ in-
stalled memory (RAM) 2, 00GO. In all test problems, the starting point is designated
by (x0, y0, s0) = ξ(e, 0, e) such that e = (1, 1, . . . , 1)T , we use (m,n) as the size of the

problem, ϵ = 10−6and τ =
1

12
as our default accuracy parameter. The barrier update

parameter θ is a given constant between 0 and 1, while in the theoretical version of

the algorithm, θ =
1

22n
. We denote by iter the number of iterations and by CPU the

computing time in seconds. The primal and dual optimal solutions are denoted by x∗,
(y∗, s∗), we tested the above mentioned algorithms in two different cases of the test: the
full Newton step (α = 1) and the practice step size αmax, which guarantees that the new
iterates {

x+ = x+ αmax∆x,
s+ = s+ αmax∆s
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remain nonnegative. To ensure the strict feasibility of the new iterates, we used a factor
ρ = 0.95 to shorten the step length, thus the used step length is αp = ραmax with
αmax = min(αx, αs), or αx and αs are given by

αx =

 min

(
− xi
∆xi

)
if ∆xi < 0,

1 if ∆xi ≥ 0,

αs =

 min

(
− si
∆si

)
if ∆si < 0,

1 if ∆si ≥ 0.

3.1 Cases of full Newton step (α = 1) with θ =
1

22n

3.1.1 Examples with fixed size

Example 3.1 m = 2, n = 4,

A =

(
1 1 1 1
1 1 0 −3

)
, b =

(
1 0.5

)T
, c =

(
1 2 3 2 4

)T
.

The optimal solution is

x∗ = (0.875, 0, 0, 0.125)
T
, y∗ = (1.75,−0.75)

T
, s∗ = (0, 1, 1.25, 0)

T
.

iter CPU
1332 0.3279

Table 1: Number of iterations and computation time.

Example 3.2 m = 3, n = 6,

A =

 2 1 0 −1 0 0
0 0 1 0 1 −1
1 1 1 1 1 1

 , b =
(
0 0 1

)T
, c =

(
3 −1 1 0 0 0

)T
.

The optimal solution is

x∗ = (0.0000, 0.5000, 0.0000, 0.5000, 0.0000, 0.0000)T ,

y∗ = (−0.5000,−0.0383,−0.5000)
T
,

s∗ = (4.5000, 0.0000, 1.4617, 0.0000, 0.4617, 0.5383)
T
.

iter CPU
2054 0.5914

Table 2: Number of iterations and computation time.
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Example 3.3 m = 5, n = 9,

A =


0 1 2 −1 1 1 0 0 0
1 2 3 4 −1 0 1 0 0
−1 0 −2 1 2 0 0 1 0
1 2 0 −1 −2 0 0 0 1
1 3 4 2 1 0 0 0 0

 ,

b =
(
1 2 3 2 1

)T
, c =

(
1 0 −2 1 1 0 0 0 0

)T
.

The optimal solution is

x∗ = ( 0 0 0.25 0 0 0.5 1.25 3.5 2 )T , y∗ =
(
0 0 0 0 −0.5

)T
,

s∗ =
(
1.5 1.5 0 2 1.5 0 0 0 0

)T
.

iter CPU
3241 1.5285

Table 3: Number of iterations and computation time.

3.1.2 Examples with variable size

Example 3.4 We consider the following example: n = 2m,

A(i, j) =

{
0 if i ̸= j and i ̸= j +m
1 if i = j and i = j +m

, c(i) = −1, c(i +m) = 0 and b(i) = 2 for

i = 1, ...,m.

The optimal solutions is obtained as follows:

x∗ =

{
2 for i = 1, ...,m,
0 for i = m+ 1, ..., n,

, y∗ = −1 for i = 1, ..., n,

and s∗ =

{
0 for i = 1, ...,m,
1 for i = m+ 1, ..., n.

We have the following results:

(m,n) iter CPU
(10, 20) 7390 6.2958
(15, 30) 11356 13.8918
(25, 50) 19493 45.4140
(50, 100) 40518 226.3179
(100, 200) 84093 1856.1149
(200, 400) 174293 61443.8710

Table 4: Number of iterations and computation time.

3.2 Cases of practice step size (αmax ) with θ ∈ (0, 1)

In this part, to improve the numerical results, we take θ ∈ (0, 1). Then we obtain the
numerical results in the following tables.
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3.2.1 Examples with fixed size

θ iter CPU
0.01 1514 0.3941
0.02 754 0.2678
0.05 298 0.1895
0.1 146 0.1646
0.2 70 0.1575
0.8 11 0.1868

Table 5: Number of iterations and computation time in Example 1.

θ iter CPU
0.01 1554 0.438790
0.02 774 0.283944
0.05 306 0.190252
0.1 150 0.167571
0.2 72 0.180073
0.4 32 0.184932

Table 6: Number of iterations and computation time in Example 2.

θ iter CPU
0.01 1633 0.7102
0.05 320 0.2167
0.02 813 0.4256
0.1 156 0.1827
0.7 15 0.2377
0.8 11 0.2349

Table 7: Number of iterations and computation time in Example 3.

3.2.2 Examples with variable size

θ 0.01 0.05 0.1
(m,n) iter CPU iter CPU iter CPU
(10, 20) 1664 1.0255 329 0.3340 161 0.2524
(15, 30) 1715 1.7057 337 0.4459 165 0.2990
(25, 50) 1765 2.7304 347 0.6487 170 0.4376
(50, 100) 1834 8.4164 361 1.5884 176 0.86035
(100, 200) 1903 38.0307 374 7.0592 176 4.5225
(200, 400) 1972 182.1165 388 36.1221 183 29.9616
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θ 0.2 0.3
(m,n) iter CPU iter CPU
(10, 20) 74 0.2840 47 0.6049
(15, 30) 76 1.2352 48 0.6665
(25, 50) 78 2.1898 49 1.3937
(50, 100) 81 4.3522 − −
(100, 200) 84 16.9204 − −
(200, 400) − − − −

Table 8: Number of iterations and computation time in Example 4.

4 Concluding Remarks

In this paper, we have proposed an implementation of the IIPMs for linear and nonlinear
optimization based on the AET proposed in [10]. Some preliminary numerical results
are provided to reveal the influence of the update parameters θ and the dimension of the
problem on the number of iterations. Through these results, we notice that the number
of iterations and the computation time to reach the optimal solution are a bit large. To
improve these results, we proposed other choices of the parameter θ and the step size α
different from the theorecal values. It was found that these values decreased the number
of iterations and the computation time. For further research, it is necessary to think of
a simple strategy to determine the appropriate values of the parameter θ which keeps
the iteration in the interior of the feasible domain. Furthermore, this algorithm may be
possible to extend to the semidefinite linear optimization, quadratic programming and
linear complementarity problem with these choices of the step size.
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Abstract: We consider a mathematical problem for the quasistatic contact between
two electro-viscoelastic bodies. The contact is modelled with a version of normal
compliance and the evolution of the wear function is described by Archard’s law. We
derive a variational formulation for the model and prove an existence and uniqueness
result of the weak solution. The proof is based on the arguments of evolutionary
variational inequalities, a classical existence and uniqueness result for parabolic in-
equalities and the Banach fixed point theorem.
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1 Introduction

A considerable progress has been achieved recently in applied mathematics and mechan-
ics for dynamic and quasistatic problems, the recent advances in the formulation of these
problems are articulated around two main components, one devoted to the laws of be-
havior and the other devoted to the boundary conditions imposed on the body. The
boundary conditions reflect the binding of the body with the outside world. The laws of
behavior are stipulated by the nature of the materials under study, The authors utilize
composite laws of behavior that combine materials with varying thermal and mechanical
characteristics. These materials are referred to as thermo-mechanical materials. Alter-
natively, the authors also consider materials with combined mechanical and electrical
behavior, which are known as piezoelectric materials. For the boundary conditions, the
authors investigate the real processes such as adhesion, friction and wear to describe new
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problems, these processes can be described by several types of the models with normal
compliance or a normal damped response version.

The piezoelectric effect is characterized by the coupling between the mechanical and
electrical behavior of the materials.

Materials undergoing piezoelectric effects are called piezoelectric materials; their
study requires techniques and results from electromagnetic theory and continuum me-
chanics. However, there are very few mathematical results concerning contact problems
involving piezoelectric materials and therefore, there is a need to extend the results to the
models for contact with deformable bodies which include coupling between mechanical
and electrical properties. General models for elastic materials with piezoelectric effects
can be found in [4,6,12,13,15,16]. A static frictional contact problem for electric-elastic
materials was considered in [4, 15]. A frictional contact problem for electro-viscoelastic
materials was studied in [13]. Contact problems with friction and adhesion for electro
elastic-viscoplastic materials were studied recently in [1].

Wear is one of the processes which reduce the lifetime of modern machine elements.
It represents the unwanted removal of materials from the surfaces of contacting bodies
occurring in relative motion. Wear arises when a hard rough surface slides against a
softer surface, digs into it, and its asperities plough a series of grooves. When two surfaces
come into contact, rearrangement of the surface asperities takes place. When they are
in relative motion, some of the peaks break, and therefore, the harder surface removes
the softer material. This phenomenon involves the wear of the contacting surfaces. The
material loss by the wearing solids, the generation and circulation of free wear debris are
the main effects of the wear process. The loose particles form a thin layer on the body
surface. Tribological experiments show that this layer has a great influence on contact
phenomena and the wear particles between sliding surfaces affect the frictional behavior.
Realistically, wear cannot be totally eliminated.

Wear is a major problem for materials when two bodies come into contact with friction
and sliding, the contact surfaces are found worn-out, the more rigid one wears out the
other. The particles lost by contact surfaces form a thin layer between the two bodies,
this layer can improve the sliding, it may get one body enters in the other.

Generally, a mathematical theory of friction and wear should be a generalization
of experimental facts and it must be in agreement with the laws of thermodynamics
of irreversible processes. The first attempts of a thermodynamical description of the
friction and wear processes were provided in [3]. A bilateral frictional problem with wear
for multidisciplinary bodies and foundation was studied in [6, 8, 9]. General models of
quasi-static frictional contact with wear between deformable bodies were derived in [18]
from thermodynamic considerations.

The goal of this paper is to analyse the coupling of two electro-viscoelastic mate-
rials and a frictional contact problem with wear. We study a quasistatic problem of
frictional contact with wear. We model the materials behavior by an electro-viscoelastic
constitutive law and the contact is frictional.

The paper is organized as follows. In Section 2, we introduce the notation and give
some preliminaries. In Section 3, we describe the mathematical models for the frictional
contact problem between two electro-viscoelastic bodies. The contact is modelled with
normal compliance and wear, we introduce the list the assumptions on the problem’s data
and the variational formulation of the model. In Section 4, we state our main existence
and uniqueness result, Theorem 4.1. The proof of the theorem is based on the arguments
of evolutionary variational inequalities, a classical existence and uniqueness result on



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (2) (2023) 167–182 169

parabolic inequalities, differential equations and the Banach fixed point theorem.

2 Notation and Preliminaries

In this short section, we present the notation we shall use and some preliminary material.
For more details, we refer the reader to [5, 10, 17]. We denote by Sd the space of second
order symmetric tensors on Rd (d = 2, 3), while ∥·∥ represents the Euclidean norm if it
is applied to a vector on Sd and Rd, respectively. Let Ωk ⊂ Rd be a bounded domain
with the outer Lipschitz boundary Γ and let ν denote the unit outer normal on ∂Ωk =
Γk. We shall use the following notation.

We recall that the inner products and the corresponding norms on Sd and Rd are
given by

uk.vk = uki .v
k
i , ∥vk∥ = (vk.vk)

1
2 , ∀uk,vk ∈ Rd,

σk.τ k = σk
ij .τ

k
ij , ∥τ k∥ = (τ k · τ k)

1
2 , ∀σk, τ k ∈ Sd.

Here and below, the indices i and j run between 1 and d and the summation convention
over repeated indices is adopted. Now, to proceed with the variational formulation, we
need the following function spaces:

Hk = {vk = (vki ); v
k
i ∈ L2(Ωk)}, Hk

1 = {vk = (vki ); v
k
i ∈ H1(Ωk)},

Qk = {τ k = (τkij); τ
k
ij = τkji ∈ L2(Ωk)}, Qk

1 = {τ k = (τkij) ∈ Qk; div τ k ∈ Hk}.

The spaces Hk, Hk
1 , Q

k and Qk
1 are the real Hilbert spaces endowed with the canonical

inner products given by

(uk,vk)Hk =

∫
Ωk

uk.vkdx, (uk,vk)Hk
1
=

∫
Ωk

uk.vkdx+

∫
Ωk

∇uk.∇vkdx,

(σk, τ k)Qk =

∫
Ωk

σk.τ kdx, (σk, τ k)Qk
1
=

∫
Ωk

σk.τ kdx+

∫
Ωk

div σk.Div τ kdx

and the associated norms ∥ · ∥Hk , ∥ · ∥Hk
1
, ∥ · ∥Qk , and ∥ · ∥Qk

1
, respectively. Here and

below we use the notation

∇uk = (uki,j), ε(uk) = (εij(u
k)), εij(u

k) =
1

2
(uki,j + ukj,i), ∀uk ∈ Hk

1 ,

Div σk = (σk
ij,j), ∀σk ∈ Qk

1 .

For every element vk ∈ Hk
1 , we also use the notation vk for the trace of vk on Γk and we

denote by vkν and vk
τ the normal and the tangential components of vk on the boundary

Γk given by

vkν = vk.νk, vk
τ = vk − vkνν

k.

Let H ′
Γk be the dual of HΓk = H

1
2 (Γk)d and let (·, ·)− 1

2 ,
1
2 ,Γ

k denote the duality pairing

between H ′
Γk and HΓk . For every element σk ∈ Qk

1 , let σkνk be the element of H ′
Γk

given by

(σkνk,vk)− 1
2 ,

1
2 ,Γ

k = (σk, ε(vk))Qk + (Div σk,vk)Hk , ∀vk ∈ Hk
1 .
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Denote by σk
νσ

k
ν and σk

τ the normal and the tangential traces of σk ∈ Qk
1 , respectively.

If σk is continuously differentiable on Ωk ∪ Γk, then

σk
ν = (σkνk) · νk, σk

τ = σkνk − σk
νν

k,

(σkνk,vk)− 1
2 ,

1
2 ,Γ

k =

∫
Γk

σkνk · vkda

for all vk ∈ Hk
1 , where da is the surface measure element.

For the displacement field, we need the closed subspace of Hk
1 defined by

V k =
{
vk ∈ Hk

1 ;v
k = 0 on Γk

1

}
.

Since meas Γk
1 > 0, the following Korn’s inequality holds:

∥ε(vk)∥Qk ⩾ cK∥vk∥Hk
1
, ∀vk ∈ V k, (1)

where the constant cK denotes a positive constant which may depend only on Ωk, Γk
1

(see [17]).

Over the space V k, we consider the inner product given by

(uk,vk)V k = (ε(uk), ε(vk))Qk , ∀uk,vk ∈ V k, (2)

and let ∥ · ∥V k be the associated norm. It follows from Korn’s inequality (1) that the
norms ∥ · ∥Hk

1
and ∥ · ∥V k are equivalent on V k. Then (V k, ∥ · ∥V k) is a real Hilbert

space. Moreover, by the Sobolev trace theorem and (2), there exists a constant c0 > 0
depending only on Ωk, Γk

1 and Γ3 such that

∥vk∥L2(Γ3)d ⩽ c0∥vk∥V k , ∀vk ∈ V k. (3)

We also introduce the spaces

W k = {ψk ∈ Ek
1 ;ψ

k = 0 on Γk
a},

W k
1 = {Dk = (Dk

i );D
k
i ∈ L2(Ωk), div Dk ∈ L2(Ωk)}.

Since meas Γk
a > 0, the following Friedrichs-Poincaré inequality holds:

∥∇ψk∥Wk ⩾ cF ∥ψk∥H1(Ωk), ∀ψk ∈W k, (4)

where cF > 0 is a constant which depends only on Ωk, Γk
a. In the space W k, we consider

the inner product

(φk, ψk)Wk =

∫
Ωk

∇φk · ∇ψkdx, (5)

and let ∥ ·∥Wk be the associated norm. It follows from (4) that ∥ ·∥H1(Ωk) and ∥ ·∥Wk are

equivalent norms on W k and therefore (W k, ∥ · ∥Wk) is a real Hilbert space. Moreover,
by the Sobolev trace theorem, there exists a constant c0 depending only on Ωk, Γk

a and
Γ3 such that

∥ζk∥L2(Γ3) ⩽ c0∥ζk∥Wk , ∀ζk ∈W k. (6)
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The space W k
1 is a real Hilbert space with the inner product

(Dk,Φk)Wk
1
=

∫
Ωk

Dk ·Φkdx+

∫
Ωk

div Dk · div Φkdx,

where div Dk = (Dk
i,i), and the associated norm ∥ · ∥Wk

1
.

To simplify the notation, we define the product spaces

V = V 1 × V 2,H = H1 ×H2, H1 = H1
1 ×H2

1 ,

Q = Q1 ×Q2, Q1 = Q1
1 ×Q2

1, W =W 1 ×W 2,W1 =W 1
1 ×W 2

1 .

The spaces V, W and W1 are the real Hilbert spaces endowed with the canonical inner
products denoted by (·, ·)V, (·, ·)W and (·, ·)W1 . The associate norms will be denoted by
∥ · ∥V, ∥ · ∥W and ∥ · ∥W1 , respectively.

Finally, for any real Hilbert space X, we use the classical notation for the spaces
Lp(0, T ;X), W k,p(0, T ;X), where 1 ≤ p ≤ ∞, k ≥ 1. We denote by C(0, T ;X) and
C1(0, T ;X) the space of continuous and continuously differentiable functions from [0, T ]
to X, respectively, with the norms

∥f∥C(0,T ;X) = max
t∈[0,T ]

∥f(t)∥X ,

∥f∥C1(0,T ;X) = max
t∈[0,T ]

∥f(t)∥X + max
t∈[0,T ]

∥ḟ(t)∥X .

3 The Model and Variational Problem

Let us consider two electro-viscoelastic bodies occupying two bounded domains Ω1, Ω2

of the space Rd(d = 2, 3). For each domain Ωk, the boundary Γk is assumed to be
Lipschitz continuous, and is partitioned into three disjoint measurable parts Γk

1 , Γ
k
2 and

Γk
3 on one hand, and into two measurable parts Γk

a and Γk
b on the other hand, such that

meas Γk
1 > 0, meas Γk

a > 0. Let T > 0 and let [0, T ] be the time interval of interest. The
body Ωk is subjected to fk

0 forces and volume electric charges of density qk0 . The bodies
are assumed to be clamped on Γk

1 × [0, T ]. The surface tractions fk
2 act on Γk

2 × [0, T ].
We also assume that the electrical potential vanishes on Γk

a× [0, T ] and a surface electric
charge of density qk2 is prescribed on Γk

b × [0, T ]. The two bodies can enter in contact
along the common part Γ1

3 = Γ2
3 = Γ3, the bodies are in contact with wear.

We denote by uk the displacement field, by σk the stress tensor field and by ε(uk)
the linearized strain tensor. We use an electro-viscoelastic constitutive law given by

σk(t) = Akε(u̇k(t)) + Gkε(uk(t)) + (Ek)∗∇φk(t). (7)

Here Ak is a given nonlinear operator, Gk represents the elasticity operator. E(φk) =
−∇φk is the electric field, Ek represents the third order piezoelectric tensor, (Ek)∗ is its
transposition. In (7) and everywhere in this paper, the dot above a variable represents
the derivative with respect to the time variable t.

We now briefly describe the boundary conditions on the contact surface Γ3 based on
the model derived in [18]. We introduce the wear function w : Γ3 × [0, T ] → R+ which
measures the wear of the surface.

The wear is identified as the normal depth of the material that is lost. Let g be the
initial gap between the two bodies and let pν and pτ denote the normal and tangential
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compliance functions. We denote by v∗ and α∗ = ∥v∗∥ the tangential velocity and the
tangential speed of the contact surface, respectively. We use the modified version of
Archard’s law ẇ = −kwα∗σν to describe the evolution of wear, where kw > 0 is a wear
coefficient. We introduce the unitary vector δ : Γ3 → Rd defined by δ = v∗/ ∥v∗∥. In
the reference configuration, there is a gap between Γ3 of the two bodies, measured along
the direction of ν, denoted by g. When the contact occurs, some material of the contact
surface is worn out and immediately removed from the system. This process is measured
by the wear function w.

Then, the classical formulation of the mechanical problem of a frictional contact with
wear between two electro-viscoelastics bodies may be stated as follows.

Problem P

For k = 1, 2, find a displacement field uk : Ωk × [0, T ] → Rd, a stress field σk : Ωk ×
[0, T ] → Sd, an electric potential φk : Ωk × [0, T ] → R, a wear function w : Γ3 × [0, T ] →
R+ and an electric displacement field Dk : Ωk × [0, T ] → Rd such that

σk = Akε(u̇k) + Gkε(uk) + (Ek)∗∇φk, in Ωk × [0, T ] , (8)

Dk = Ekε(uk)− Bk∇φk in Ωk × [0, T ] , (9)

Div σk + fk
0 = 0 in Ωk × [0, T ] , (10)

div Dk − qk0 = 0 in Ωk × [0, T ] , (11)

uk = 0 on Γk
1 × [0, T ] , (12)

σkνk = fk
2 on Γk

2 × [0, T ] , (13)

σ1
ν = σ2

ν ≡ σν ,

σν = pν (uν − w − g) ,

}
on Γ3 × [0, T ] , (14)

σ1
τ = −σ2

τ ≡ στ ,

στ = −pτ (uν − w − g)
v∗

∥v∗∥
,

 on Γ3 × [0, T ] , (15)

u1ν + u2ν = 0, on Γ3 × [0, T ] , (16)

ẇ = −kwα∗σν = kwα
∗pν (uν − w − g) , on Γ3 × [0, T ] , (17)

φk = 0 on Γk
a × [0, T ] , (18)

Dk · νk = qk2 on Γk
b × [0, T ] , (19)

uk(0) = uk
0 , in Ωk, (20)

w(0) = w0 on Γ3. (21)

First, equations (8) and (9) represent the electro-viscoelastic constitutive law. Equations
(10) and (11) are the equilibrium equations for the stress and electric-displacement fields,
respectively, in which “Div ” and “div ” denote the divergence operator for the tensor
and vector valued functions, respectively. Next, the equations (12) and (13) represent
the displacement and traction boundary condition, respectively. Conditions (14), (15)
represent the frictional contact with the wear described above. Equation (16) means that
the two bodies are inseparable.

Next, the equation (17) represents the ordinary differential equation which describes
the evolution of the wear function. Equations (18) and (19) represent the electric bound-
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ary conditions. (20) represents the initial displacement field. Finally, (21) represents the
initial condition in which w0 is the given initial wear field.

We now list the assumptions on the problem’s data.
The viscosity function Ak : Ωk × Sd → Sd satisfies the following conditions:

(a) There exists LAk > 0 such that
∥Ak(x, ε1)−Ak(x, ε2)∥ ⩽ LAk∥ε1 − ε2∥ for all ε1, ε2 ∈ Sd, a.e. x ∈ Ωk.

(b) There exists mAk > 0 such that
(Ak(x, ε1)−Ak(x, ε2)) · (ε1 − ε2) ⩾ mAk∥ε1 − ε2∥2
for all ε1, ε2 ∈ Sd, a.e. x ∈ Ωk.

(c) The mapping x 7→ Ak(x, ε) is Lebesgue measurable on Ωk

for any ε ∈ Sd.
(d) The mapping x 7→ Ak(x,0) belongs to Q.

(22)

The elasticity operator Gk : Ωk × Sd → Sd satisfies the following conditions:

(a) There exists a constant LGk > 0 such that
∥Gk(x, ε1)− Gk(x, ε2)∥ ⩽ LGk∥ε1 − ε2∥
for all ε1, ε2 ∈ Sd a.e. x ∈ Ω.

(b) The mapping x → Gk(x, ε) is Lebesgue measurable on Ωk

for all ε ∈ Sd.
(c) The mapping x → Gk(x, 0) ∈ Q.

(23)

The piezoelectric tensor Ek : Ωk × Sd → Rd satisfies the following conditions:{
(a) Ek(x, τ) = (ekijk(x)τjk) for all τ = (τij) ∈ Sd a.e. x ∈ Ωk.

(b) ekijk = ekikj ∈ L∞(Ωk), 1 ⩽ i, j, k ⩽ d.
(24)

Recall also that the transposed operator (Ek)∗ is given by (Ek)∗ = (ek,∗ijk), where

ek,∗ijk = ekkij and the following equality holds:

Ekσ.v = σ · (Ek)∗v ∀σ ∈ Sd, ∀v ∈ Rd.

The electric permittivity operator Bk = (bkij) : Ωk × Rd → Rd satisfies the following
conditions:

(a) Bk(x,E) = (bkij(x)Ej) for all E = (Ei) ∈ Rd, a.e. x ∈ Ωk.
(b) bkij = bkji, b

k
ij ∈ L∞(Ωk), 1 ⩽ i, j ⩽ d.

(c) There exists mBk > 0, such that BkE ·E ⩾ mBk |E|2 for all E = (Ei) ∈ Rd,
a.e. x ∈ Ωk.

(25)
The normal compliance function pν : Γ3 × R → R+ satisfies the following conditions:

(a) There exists Lν > 0 such that
|pν(x, r1)− pν(x, r2)| ⩽ Lν |r1 − r2| for all r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) The mapping x 7→ pν(x, r) is measurable on Γ3 for all r ∈ R.
(c) pν(x, r) = 0 for all r ⩽ 0, a.e. x ∈ Γ3.

(26)

The tangential contact function pτ : Γ3 × R → R+ satisfies the following conditions:
(a) There exists Lτ > 0 such that

|pτ (x, r1)− pτ (x, r2)| ⩽ Lτ |r1 − r2| for all r1, r2 ∈ R, a.e. x ∈ Γ3.
(b) The mapping x 7→ pτ (x, r) is measurable on Γ3 for all r ∈ R.
(c) pτ (x, r) = 0 for all r ⩽ 0, a.e. x ∈ Γ3.

(27)
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We also suppose the following regularities:

fk0 ∈ C(0, T ;L2(Ωk)d), fk2 ∈ C(0, T ;L2(Γk
2)

d),

qk0 ∈ C(0, T ;L2(Ωk)), qk2 ∈ C(0, T ;L2(Γk
b )),

(28)

uk
0 ∈ V k, (29)

w0 ∈ L2(Γ3), (30)

pν (., r) ∈ L2(Γ3), pτ (., r) ∈ L2(Γ3),∀r ∈ R (31)

g ∈ L2(Γ3), g ⩾ 0 a.e on Γ3. (32)

Using the Riesz representation theorem, we define the linear mappings f = ( f1, f2) :
[0, T ] → V and q = (q1, q2) : [0, T ] → W as follows:

(f(t),v)V =

2∑
k=1

∫
Ωk

fk0 (t) · vk dx+

2∑
k=1

∫
Γk
2

fk2 (t) · vk da ∀v ∈ V, (33)

(q(t), ζ)W =

2∑
k=1

∫
Ωk

qk0 (t)ζ
k dx−

2∑
k=1

∫
Γk
b

qk2 (t)ζ
k da ∀ζ ∈ W. (34)

The use of (33) permits to verify that

f ∈ C(0, T ;V). (35)

Next, we define the mappings j : L2(Γ3)× V× V → R by

j(w,u,v) =

∫
Γ3

(pν (uν − w − g) vν) da+

∫
Γ3

pτ (uν − w − g) .δ.vτda,

for all u,v ∈V,w ∈ L2 (Γ3) .

(36)

Now, we give the following variational formulation of the mechanical problem (8)–
(21).

Problem PV

Find a displacement field u = (u1,u2) : [0, T ] → V, a stress field σ = (σ1,σ2) : [0, T ] →
Q, an electric potential φ = (φ1, φ2) : [0, T ] → W, a wear w : [0, T ] → L2(Γ3) and an
electric displacement field D = (D1,D2) : [0, T ] → W1 such that

σk = Akε(u̇k) + Gkε(uk) + (Ek)∗∇φk in Ωk × [0, T ] , (37)

Dk = Ekε(uk)− Bk∇φk in Ωk × [0, T ] , (38)

2∑
k=1

(σk, ε(vk))Qk + j(w(t),u(t),v) = (f(t),v)V

∀v ∈ V, a.e. t ∈ (0, T ),

(39)

2∑
k=1

(Bk∇φk(t),∇ϕk)Hk −
2∑

k=1

(Ekε(uk(t)),∇ϕk)Hk = (q(t), ϕ)W,

∀ϕ ∈ W, a.e. t ∈ (0, T ),

(40)

ẇ = kwα
∗pν (uν − w − g) , a.e. (0, T ), (41)

u(0) = u0, w(0) = w0. (42)
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We notice that the variational Problem PV is formulated in terms of a displacement
field, a stress field, an electrical potential, a wear and an electric displacement field. The
existence of the unique solution of Problem PV is stated and proved in the next section.

4 Existence and Uniqueness of a Solution

Our main existence and uniqueness result is the following.

Theorem 4.1 Assume that (22)–(32) hold and also assume the smallness assump-
tion:

(Lν + Lτ ) < α0, (43)

where α0 =
mAk

c20
such that mAk is defined in (22) and c0 is defined in (3). Then there

exists a unique solution of Problem PV. Moreover, the solution satisfies the following
conditions

u ∈ C1(0, T ;V), (44)

σ ∈ C(0, T ;Q1), (45)

w ∈ C1(0, T ;L2(Γ3)), (46)

φ ∈ C(0, T ;W), (47)

D ∈ C(0, T ;W1). (48)

Then {u, σ, w, φ,D} which satisfy (37)-(42) are called a weak solution of the contact
Problem P. We conclude that, under the assumptions (22)–(32), the mechanical problem
(8)–(21) has a unique weak solution satisfying (44)–(48).

The proof of Theorem (4.1) is carried out in several steps and is based on the following
abstract result for evolutionary variational inequalities.

We turn now to the proof of Theorem (4.1) which will be carried out in several steps
and is based on the arguments of nonlinear equations with monotone operators, a classical
existence and uniqueness result on parabolic inequalities and fixed-point arguments. To
this end, we assume in what follows that (22)–(32) hold, and we consider that C is a
generic positive constant which depends on Ωk, Γk

1 , Γ
k
1 , Γ3, pν ,pτ , Ak, Gk, Ek but does

not depend on t or the rest of input data, and whose value may change from place to
place.

First step.
Let η = (η1, η2) ∈ C(0, T ;V).
We consider the following variational problem.

Problem PVu
η .

Find a displacement field uη = (u1
η,u

2
η) : [0, T ] → V such that

2∑
k=1

(Akε(u̇k), ε(vk))Qk + (η(t),v)V = (f(t),v)V, (49)

uη (0) = u0 (50)
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for all v ∈ V a.e t ∈ (0, T ).

We have the following result for PVu
η .

Lemma 4.1 There exists a unique solution uη = (u1
η,u

2
η) ∈ C1(0, T ;V) to the prob-

lem (49) and (50).

Proof. Let A : V → V be a semi-continuous and monotone operator which satisfies
the condition

(Au,v)V×V =

2∑
k=1

(Akε(uk), ε(vk))Qk . (51)

It follows from hypothesis (22) that

∥Au−Av∥V ⩽ LAK∥u− v∥V ∀u,v ∈ V.

This proves that A is bounded and semi-continuous on V.
On the other hand, by (22) and Korn’s inequality, we find, for every v ∈ V,

(Av,v)V×V

∥v∥V
⩾ c20mAk∥v∥V .

The passage to the limit in this inequality when ∥v∥V → +∞ implies that A is coercive
in V

Next, by the definition of A, the use of (22) and Korn’s inequality permits also to
obtain

(Au−Av,u− v)V×V > c20mAK∥u− v∥V if u ̸= v.

Then A is strict monotone. Therefore, we put

fη(t) = f(t)− η(t) ∈ C(0, T ;V).

From (33) and the condition η ∈ C(0, T ;V), we have fη ∈ C(0, T ;V). Then, from the
Cauchy-Lipschitz theorem, there exists a unique function vη satisfying the relations

Avη(t) = fη(t) a.e t ∈ (0, T ) ,

uη =

∫ t

0

vη (s) ds+ u0, ∀t ∈ [0, T ] .

We recall that by (35), we have Fη ∈ C(0, T ;V). Keeping in mind that the operator
A is strict monotone, semi-continuous, bounded and coercive, and by using the classical
arguments of functional analysis concerning parabolic equations [5, 14], we can easily
prove the existence and uniqueness of uη satisfying (49)–(50) and the regularity (44).

Second step.

In the second step, we consider the following variational problem.
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4.1 Problem PVw
η

Find the wear function wη : [0, T ] → L2(Γ3) such that

ẇη (t) = kwα
∗pν (uν − w − g) , (52)

wη (0) = w0 in Γ3. (53)

We have the following result for PVw
η .

Lemma 4.2 There exists a unique solution wη ∈ C1
(
0, T ;L2(Γ3)

)
to the problem

PVw
η .

Proof. We use a version of the classical Cauchy–Lipschitz theorem when consid-

ering the mapping Fη : [0, T ]× L2(Γ3) → L2(Γ3) defined by

Fη (t, wη) = kwα
∗pν (uν − wη − g) , ∀wη ∈ L2(Γ3), t ∈ [0, T ] .

It is easy to see that Fη is Lipschitz continuous with respect to the second variable,
uniformly in time. Thus, by the Cauchy–Lipschitz theorem, there exists a unique solution
wη which satisfies (52)–(53).

Third step.
In the third step, we consider the following variational problem.

4.2 Problem PVφ
η

Find the electric potential φη : [0, T ] → W such that

2∑
k=1

(Bk∇φk
η(t),∇ϕk)Hk −

2∑
k=1

(Ekε(uk
η(t)),∇ϕk)Hk = (q(t), ϕ)W (54)

for all ϕ ∈ W, a.e. t ∈ (0, T ). We have the following result.

Lemma 4.3 There exists a unique solution φη ∈ C(0, T ;W ) to the problem PVφ
η .

Proof. We define a bilinear form b(·, ·) : W×W → R such that

b(φ, ϕ) =

2∑
k=1

(Bk∇φk,∇ϕk)Hk ∀φ, ϕ ∈ W. (55)

We use (4), (5), (25) and (55) to show that the bilinear form b(·, ·) is continuous, sym-
metric and coercive on W, moreover, using (34) and the Riesz representation theorem,
we may define an element qη : [0, T ] → W such that

(qη(t), ϕ)W = (q(t), ϕ)W +

2∑
k=1

(Ekε(uk
η(t)),∇ϕk)Hk ∀ϕ ∈ W, t ∈ [0, T ].

We apply the Lax-Milgram theorem to deduce that there exists a unique element φη(t) ∈
W such that

b(φη(t), ϕ) = (qη(t), ϕ)W ∀ϕ ∈ W. (56)
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We conclude that φη is a solution of Problem PVφ
η . Let t1, t2 ∈ [0, T ], it follows from

(54) that

∥φη(t1)− φη(t2)∥W ⩽ C
(
∥uη(t1)− uη(t2)∥V + ∥q(t1)− q(t2)∥W

)
. (57)

We also note that assumptions (28), uη ∈ C1(0, T ;V) and inequality (57) imply that
φη ∈ C(0, T ;W).

Finally, as a consequence of these results, and using the properties of the operator Ek

and the functional j , for t ∈ [0, T ], we consider the element

Λ : C(0, T ;V) → C(0, T ;V) (58)

defined by the equations

(Λη(t),v)V =

2∑
k=1

(Gkε(uk
η(t)),v)V + j(wη(t),uη(t),v)

+

2∑
k=1

(
(Ek)∗∇φk

η(t), ε(v
k)
)
Qk ,∀v ∈ V.

(59)

Here, for every η ∈ C(0, T ;V), uη, wη and φη represent the displacement field, wear field
and the potential electric field obtained in Lemmas 4.1, 4.2 and 4.3, respectively, and σk

η

is denoted by

σk
η(t) = Akε(u̇k

η(t)) + Gkε(uk
η(t)) + (Ek)∗∇φk

η(t) in Ωk × [0, T ]. (60)

We have the following result.

Lemma 4.4 There exists a unique η∗ ∈ C(0, T ;V) such that Λη∗ = η∗.

Proof. Let η1, η2 ∈ C(0, T ;V) and denote by ui, wi, φi and σi the functions
obtained in Lemmas 4.1, 4.2, 4.3 and the relation (60), respectively, for η = ηi, i = 1, 2.
Let t ∈ [0, T ], we have

∥Λη1(t)− Λη2(t)∥V ⩽
2∑

k=1

∥Gkε(uk
1(t))− Gkε(uk

2(t))∥Qk

+ |j(w1(t),u1(t),v)− j(w2(t),u2(t),v)|

+

2∑
k=1

∥(Ek)∗∇φk
1(t)− (Ek)∗∇φk

2(t)∥Qk .

We use (23) and (24), we have

∥Λη1(t)− Λη2(t)∥V ⩽ C
(
∥u1(t)− u2(t))∥V + ∥φ1(t)− φ2(t)∥W

+ |j(w1(t),u1(t),v)− j(w2(t),u2(t),v)|
)
.

(61)

From (3),(26),(36) and (27), we get

∥j(w1(t),u1(t),v)− j(w2(t),u2(t),v)∥L2(Γ3)

⩽ c0 (Lν + Lτ )
(
c0∥u1(t)− u2(t)∥V + ∥w1(t)− w2(t)∥L2(Γ3)

)
∥v∥V.

∀u1,u2,v ∈V, w1, w2 ∈ L2(Γ3).
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Recall that ukην and uk
ητ denote the normal and the tangential component of the

function uk
η, respectively.

Also, since

uk
i (t) =

∫ t

0

u̇k
i (s)ds+ uk

0(t), t ∈ [0, T ], k = 1, 2,

we have

∥u1(t)− u2(t)∥V ⩽
∫ t

0

∥u̇1(s)− u̇2(s))∥V ds. (62)

Using now (22),(26),(27), (59) and (60), we get

(mAk − (Lν + Lτ )) ∥u̇1(t)− u̇2(t))∥V ⩽ ∥η1(s)− η2(s))∥V.

It follows from (49) that

∥u̇1(t)− u̇2(t))∥2V ⩽ C∥η1(s)− η2(s))∥2V,

and using this inequality in (62) yields

∥u1(t)− u2(t)∥2V ⩽ C

∫ t

0

∥η1(s)− η2(s))∥2V ds. (63)

On the other hand, from the Cauchy problem (52)–(53), we can write

wi(t) = w0 −
∫ t

0

kwα
∗pν (uν (s)− wi (s)− g (s)) ds,

and then

∥w1(t)− w2(t)∥L2(Γ3) ⩽ C
(∫ t

0

∥kwα∗pν (uν (s)− w1 (s)− g (s)) ∥L2(Γ3)ds

+

∫ t

0

∥kwα∗pν (uν (s)− w2 (s)− g (s)) ∥L2(Γ3)ds
)
.

Using (26),(27), and writing w1 = w1 − w2 + w2, we obtain

∥∥w1(t)− w2(t)
∥∥
L2(Γ3)

⩽ C
(∫ t

0

∥w1(s)− w2(s)∥L2(Γ3)ds

+

∫ t

0

∥∥u1(s)− u2(s)
∥∥
Vds

)
.

Next, we apply Gronwall’s inequality to deduce

∥w1(t)− w2(t)∥L2(Γ3) ⩽ C

∫ T

0

∥u1(s)− u2(s)∥Vds,

and from the relation (3), we obtain

∥w1(t)− w2(t)∥2L2(Γ3)
⩽ C

∫ T

0

∥u1(s)− u2(s)∥2Vds. (64)
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We use now (4), (24),(25) and (54) to find

∥φ1(t)− φ2(t)∥2W ⩽ C∥u1(t)− u2(t)∥2V. (65)

We substitute (63), (64) and (65) in (61) to obtain

∥Λη1(t)− Λη2(t)∥2V ⩽ C

∫ T

0

∥η1(s)− η2(s)∥2V ds.

Reiterating this inequality m times, we obtain

∥Λmη1 − Λmη2∥2C(0,T ;V) ⩽
CmTm

m!
∥η1 − η2∥2C(0,T ;V).

Thus, for m sufficiently large, the operator Λm is a contraction on the Banach space
C(0, T ;V), and so Λ has a unique fixed point.

Now, we have all the ingredients to prove Theorem 4.1.
Proof. [Proof of Existence] Let η∗ ∈ C(0, T ;V) be the fixed point of Λ defined

by (59), and if {u∗, w∗, φ∗} are the solutions of PVu
η ,PVw

η and PVφ
η , for η = η∗, we use

the following notations:

u∗ = uη∗ , φ∗ = φη∗ , w∗ = wη∗ . (66)

Let σ and D be the functions defined by

σk
∗ = Akε(u̇k

∗) + Gkε(uk
∗) + (Ek)∗∇φk

∗, (67)

Dk
∗ = Ekε(uk

∗)− Bk∇φk
∗. (68)

We prove that {u∗,σ∗, w∗, φ∗,D∗} satisfies (37)–(42) and the regularities (44)–(48).
Clearly, (37), (41) and (42) are satisfied. We use now the equality Λη∗ = η∗, it follows

that
(Λη∗(t),v)V = (η∗(t),v)V. (69)

From the problem PVu
η , we get

(η∗(t),v)V = −
2∑

k=1

(Akε(u̇k
∗(t)), ε(v

k(t)))Qk + (f(t),v)V,∀v ∈ V, a.e. t ∈ (0, T ).

(70)
From the definition of Λ, we have

(Λη∗(t),v)V =

2∑
k=1

(Gkε(uk
∗(t)), ε(v

k(t)))V + j(w∗(t),u∗(t),v)

+

2∑
k=1

(
(Ek)∗∇φk

∗(t), ε(v
k(t))

)
Qk ,

∀v ∈ V, a.e. t ∈ (0, T ), k = 1, 2.

(71)

From (69), (70) and (71), we deduce that

(f(t),v)V =

2∑
k=1

(Akε(u̇k
∗(t)), ε(v

k(t)))Qk +

2∑
k=1

(Gkε(uk
∗(t)), ε(v

k))V

+ j(w∗(t),u∗(t),v) +

2∑
k=1

(
(Ek)∗∇φk

∗(t), ε(v
k)
)
Qk ,

∀v ∈ V, a.e. t ∈ (0, T ), k = 1, 2.

(72)
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We use (67) and (72), we get

(f(t),v)V =

2∑
k=1

(σk
∗(t), ε(v

k))Qk + j(w∗(t),u∗(t),v). (73)

We deduce that (39) is satisfied. Additionally, we use uη∗ in (52) and (66) to find

ẇ∗(t) = kwα
∗p∗ν (u∗ν − w∗ − g) , a.e.t ∈ (0, T ). (74)

Now, relations (66), (67), (68), (73) and (74) allow us to conclude that
{u∗,σ∗, w∗, φ∗,D∗} satisfies (37)–(42).

Next, (42) and the regularities (44), (46)–(47) follow from Lemmas 4.1, 4.2 and 4.3.
Since u∗, w∗ and φ∗ satisfy (44), (46) and (47), respectively, it follows from (66) and

(67) that

σ∗ ∈ C(0, T ;Q). (75)

For k = 1, 2, we choose v = u̇± ϕ in (73), with ϕ = (ϕ1, ϕ2), ϕk ∈ D(Ωk)d and ϕ3−k = 0
in (54), to obtain

Div σk
∗(t) = −fk

0(t) ∀t ∈ [0, T ], k = 1, 2, (76)

whereD(Ωk) is the space of infinitely differentiable real functions with a compact support
in Ωk. The regularity (45) follows from (28), (75) and (76). Let now t1, t2 ∈ [0, T ], by
(4),(24), (25) and (68), we deduce that

∥D∗(t1)−D∗(t2)∥H ⩽ C (∥φ∗(t1)− φ∗(t2)∥W + ∥u∗(t1)− u∗(t2)∥V) .

The regularity of u∗ and φ∗ given by (44) and (47) implies

D∗ ∈ C(0, T ;H). (77)

For k = 1, 2, we choose ϕ = (ϕ1, ϕ2) with ϕk ∈ D(Ωk)d and ϕ3−k = 0 in (54) and using
(34), we find

div Dk
∗(t) = qk0 (t) ∀t ∈ [0, T ], k = 1, 2. (78)

Property (48) follows from (28), (77) and (78).
Finally, we conclude that the weak solution {u∗,σ∗, w∗, φ∗,D∗} of the Problem PV

has the regularities (44)–(48), which concludes the existence part of Theorem 4.1.
Proof. [Proof of Uniqueness] The uniqueness of the solution is a consequence

of the uniqueness of the fixed point of the operator Λ defined by (59) and the unique
solvability of the Problems PVu

η ,PVw
η and PVφ

η .
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Abstract: This paper deals with the multidimensional global optimization problem
where the objective function f is non-Lipschitz over a hyper-rectangle of Rn. The
generalization of Piyavskii’s algorithm to the multivariate case requires finding the
intersection of many non-linear hyper-surfaces. In this paper, we propose an algorithm
which is composed of two steps. The first one is to transform the multivariate function
f into a single variable function f(t) using the α-dense curves and the second one is to
apply the extended version of Piyavskii’s algorithm to f(t). For minimizing f(t), we
construct a sequence of lower bounding piecewise tangent functions. A convergence
result is proved and the numerical experiments on some test functions are given and
compared with the existing methods.

Keywords: global optimization; non-Lipschitz multivariate functions; lower bound-
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1 Introduction

Let us consider the box constrained global optimization problem

min
x∈P=

n∏
i=1

[ai,bi]

f(x), (P)

where f is a real continuous multi-extremal function defined on the hyper-rectangle P
and satisfies the following condition:

|f(x)− f(y)| ≤ h ∥x− y∥1/m , ∀x, y ∈ P, (1)
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with two parameters h > 0 and 1/m (m > 1), where ∥.∥ stands for the Euclidean norm.
The last condition is called the Hölder condition (it is clear that if m = 1, we have
the Lipschitz case) [7]. Global optimization is of interest in many complex industrial
applications. But it can also be applied to a variety of other multidimensional prob-
lems such as the resolution of systems of nonlinear functional equations [6] involving
objective functions, which are only continuous and do not possess strong mathemati-
cal proprieties such as convexity or differentiability, and which should be optimized [1].
The kind of problem (P) arises in several applications, for instance, the simple plant
location problem under a uniform delivered price policy, see Hanjoul et al. [10], infinite
horizon optimization problems, see Kiatsupaibul et al. [12], etc. The local irregular-
ity of the objective function, particularly when the value of m is large, is what causes
the problem to be complex to solve in this case. When applied to higher dimensions,
the traditional multidimensional global optimization methods present significant chal-
lenges. Some researchers have considered reducing the dimension of certain problems
to convert them into others that are simpler [5], [17]. There are numerous methods for
reducing a multidimensional global optimization problem to one or more optimization
problems with a smaller dimension, especially with one dimension. Many authors have
explored the strategy based on filling the feasible region with a curve, see, for example,
Butz [4], Strongin [18], and Sergeyev et al. [17]. For this, they take into account the
Peano-type curve approximations. These curves, known as space-filling curves, were first
presented by Peano (1890), subsequently by Hilbert (1891), and have the property of
passing through all points of a hyper-rectangle of Rn. On the other hand, Cherruault [5],
Guettal and Ziadi [9], [15], [16] and their collaborators have consistently improved the
reducing transformation method in recent years, their method depends on reducing a
multidimensional problem to a unidimensional one by using the space-filling curves like
α-dense type curves to fill the feasible domain, and then, using a one-dimensional global
optimization algorithm, to approximate the global minimizer. Gourdin et al. [8] have
suggested solving this problem by the generalization of Piyavskii’s algorithm to the mul-
tivariate situation [8]. Indeed, Piyavskii’s approach cannot be directly generalized since
finding the intersection of many parabolic hyper-surfaces is necessary to find the local
minima of the sub-estimators of the objective function on P. The authors in [8] proposed
a procedure for partitioning and eliminating (Branch-and-Bound) hyper-rectangles of no
interest by constructing piecewise constant sub-estimator functions. Here, we present
a novel method for deterministic global optimization that relies on a methodology for
reducing the dimension of the problem (P) and is referred to as the ”method of the re-
ducing transformation”. Finding the global minima of multivariate functions with a lot
of local minima has proven to be quite effective with the Alienor method coupled with
some covering one-dimensional methods. The concept is to densify the hyper-rectangle
P as accurately as we need, using pretty regular so-called ”α-dense curves”, and then
approach the objective function f with n variables defined on the hyper-rectangle P,
by a function f with a single variable t on a real interval A of R, which will be spec-
ified later. This allows the multidimensional optimization problem to be reduced to a
one-dimensional optimization problem, which can then be solved using one-dimensional
methods that are well-known for their effectiveness and performance. This coupling has
proved to be efficient for solving diverse non-Lipschitz global optimization problems. For
minimizing the function f on A, we construct a sequence of lower bounding piecewise
tangent functions.

The remainder of the work is organized as follows. Section 2 contains the Alienor



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (2) (2023) 183–194 185

reducing transformation method. Section 3 presents some covering methods to find
the global minima of univariate functions. Section 4 shows the modified mixed Alienor
method with covering methods and their convergence. Section 5 gives some numerical
experiments confirming theoretical results and showing a reliable performance of the
proposed method and Section 6 concludes the paper.

2 A Multivariate non-Lipschitz Method

2.1 The Alienor reducing transformation method

Global optimization is essentially the purpose of the Alienor reducing transformation
approach [5], [19], [20]. But it can also be applied to a variety of other multidimensional
problems such as the resolution of systems of non-linear functional equations and the ap-
proximation of functions of many variables by functions of a single variable. The essential
idea behind this approach is to perform a transformation that turns multidimensional
optimization problems into single-variable ones before using an effective algorithm for
one-dimensional optimization problems. The transformation is thus based on the cre-
ation of a specific α-dense parametrized curve ζ(t) = (ζ1(t), ζ2(t), ..., ζn(t)) in the feasible
set P.

Definition 2.1 Let A be an interval of R. We say that a parametrized curve of Rn

defined by ζ : A→ P is α-dense in P if for all x ∈ P, ∃t ∈ A such that

d(x, ζ(t)) ≤ α,

where d stands for the Euclidean distance in Rn.

2.2 Building α-dense curves

In order to create α-dense curves in P, let us assume that the function ζ(t) is defined on
the closed and bounded interval A = [0, T ] of R with values in P, where T is the upper
bound of the domain of definition of ζ. The number α is supposed strictly positive and

extremely small the dimension of the hyper-rectangle P =
n∏

i=1

[ai, bi]. We define by a

constructive way an α-dense curve in an arbitrary hyper-rectangle of Rn thanks to the
following results.

Theorem 2.1 Let ζ(t) = (ζ1(t), ζ2(t), ..., ζn(t)) be a function defined from [0, T ] into
the hyper-rectangle P, α > 0, and µ be the Lebesgue measure such that

(1) (ζi)1≤i≤n are continuous and surjective.
(2) (ζi)2≤i≤n are periodic, respectively, of periods (ti)2≤i≤n.
(3) For any interval I of [0, T ] and for any i ∈ {2, ..., n}, we have

µ(I) ≤ ti ⇒ µ(ζi−1(I)) < α.

Then for t ∈ [0, T ], the function ζ(t) represents a parametrized
√
n− 1α-dense curve in

P. (The proof can be found in [20]).

Corollary 2.1 [20] Let ζ(t) = (ζ1(t), ζ2(t), ..., ζn(t)) :
[
0, π

α1

]
→

n∏
i=1

[ai, bi] be a

function defined by

ζi(t) =
ai − bi

2
cos(αit) +

ai + bi
2

, i = 1, 2, ..., n,
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where α1, α2, ..., αn are given strictly positive constants satisfying the relationships

αi ≥
π

α
(bi−1 − ai−1)αi−1, ∀i = 2, ..., n.

Then the curve defined by the parametric curve ζ(t), is
√
n− 1α-dense in P.

When using the reducing transformation approach, we first explicitly provide a para-
metric representation xi = ζi(t), where i = 1, ..., n, of the α-dense curve in the hyper-

rectangle P, for t ∈
[
0, π

α1

]
. Let us specify the following function:

ζ(t) = (ζ1(t), ζ2(t), ..., ζn(t)) :

[
0,

π

α1

]
→ P

with

ζi(t) =
ai − bi

2
cos(αit) +

ai + bi
2

, i = 1, ..., n,

where α and (αi)1≤i≤n are provided by

α =
( ε

2h

)m 1√
n− 1

, α1 = 1 and αi =
π

α
(bi−1 − ai−1)αi−1, i = 2, ..., n.

According to Corollary 2.1, the parametrized curve ζ(t) is α-dense in the hyper-rectangle

P. Moreover, the function ζ is Lipschitzian on
[
0, π

α1

]
with the constant

L =
1

2

(
n∑

i=1

(bi − ai)
2α2

i

) 1
2

.

Then the objective function f is approximated by the function of a single variable defined
by f(t) = f(ζ(t)). The minimization problem (P) is then approximated by the one-
dimensional minimization problem

min
t∈

[
0, π

α1

]f(t).

Theorem 2.2 The function f(t) = f(ζ(t)) for t ∈
[
0, π

α1

]
satisfies the condition (1)

with the constant h and exponent 1/m, where h is given by h = hL1/m.

Proof. For t1 and t2 in
[
0, π

α1

]
, we have

|f(t1)− f(t2)| = |f(ζ(t1))− f(ζ(t2))| ≤ h ∥ζ(t1)− ζ(t2)∥1/m .

As the function ζ is Lipschitzian on
[
0, π

α1

]
with the constants L, we have

∥ζ(t1)− ζ(t2)∥ ≤ L |t1 − t2| ,

then
|f(t1)− f(t2)| ≤ h (L |t1 − t2|)1/m ,

whence
|f(t1)− f(t2)| ≤ hL1/m |t1 − t2|1/m .

This permits us to use one of the unidimensional algorithms to solve the multidimensional
problem (P) shown in Section 3.
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3 A Single Variable non-Lipschitz Method

The following unidimensional optimization problem will be defined by

min
t∈

[
0, π

α1

]f(t), (P′)

where f is defined on the interval
[
0, π

α1

]
and satisfies the condition (1) with the constant

h and exponent 1/m, (m > 1). When minimizing a non-convex function f , the general
principle behind most deterministic global optimization methods is to relax the original
non-convex problem in order to make the relaxed problem convex by utilizing an under-
estimator of the objective function [11], [14].

Definition 3.1 A function 𭟋 is said to be an under-estimator of a function f on a
set X if

𭟋(t) ≤ f(t), ∀t ∈ X,

with the possibility that 𭟋 may not reach f at any point in X.

3.1 Constructing a sequence of under-estimators

The idea is to build an increasing sequence of piecewise functions that minorize the
objective function f and are constructed in such a way that their global minima converge

to the desired global minimum. From the condition (1), if a point t′ ∈
[
0, π

α1

]
is fixed,

then we have

𭟋(t) = f(t′)− h |t− t′|1/m ≤ f(t), ∀t ∈
[
0,

π

α1

]
,

i.e., 𭟋 is an under-estimator of f on
[
0, π

α1

]
. Let us define the first under-estimator by

𭟋1 (t) = f(t1)− h |t− t1|1/m ≤ f(t), ∀t ∈
[
0,

π

α1

]
,

where t1 is chosen arbitrarily, we then determine a point t2 = argmin
t∈[0, π

α1
]

𭟋1 (t) , we thus

obtain a new under-estimator of f ,

𭟋2 (t) = max
1≤i≤2

{
f(ti)− h |t− ti|1/m

}
.

At step k, the function

𭟋k (t) = max
1≤i≤k

{
f(tk)− h |t− tk|1/m

}
.

In the search interval
[
0, π

α1

]
, the restriction of 𭟋k on each sub-interval [ti−1, ti], i =

2, . . . , k, can be expressed as

𭟋i (t) = max
i

f(ti−1)− h (t− ti−1)
1/m︸ ︷︷ ︸

Φi−1(t)

, f(ti)− h (ti − t)
1/m︸ ︷︷ ︸

Φi(t)

 .
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The function 𭟋i (t) is convex and non-differentiable in [ti−1, ti] and its global minimum
value can be computed by locating the point where the two parabolic curves intersect,
i.e., it necessitates solving a non-linear algebraic equation on [0, π

α1
],

f(ti−1)− h (t− ti−1)
1/m

= f(ti)− h (ti − t)
1/m

. (2)

Determining the unique point of intersection of two parabolic curves is generally easy
only for certain cases of m. Gourdin et al. [8] give the analytical expression for the
intersection point when m is the integers 2, 3, 4 and h is known. Lera and Sergeyev
proposed the secant method (SM) [13] when they utilized a different concept based on
changing the intersection point of the parabolic curves at each sub-interval [ti−1, ti] to
the intersection point t̄i of two linked linear interpolations li−1 (resp. li) of the parabolas
Φi−1 (resp. Φi). Then the constant lower bound of the objective function on [ti−1, ti] is
defined by

wi = min {Φi−1(̄ti),Φi(̄ti)} .
Here we suggest another technique noted TM , when changing the solution of the equation
(2) by an intersection point ωi of two tangents Ti−1 (resp. Ti) at the same middle point
of the interval [ti−1, ti], related to these two parabolas Φi−1 (resp. Φi) and defined by Ti−1(t) = −(h/m)e

(1/m)−1
i t+ he

1/m
i ( vi

mei
− 1) + f(ti−1),

Ti(t) = (h/m)e
(1/m)−1
i t− he

1/m
i ( vi

mei
+ 1) + f(ti)

(3)

such as vi =
ti+ti−1

2 and ei =
ti−ti−1

2 .
In this case, the point ωi can be calculated even if m is large enough or not integer,

by

ωi = vi +
m(f(ti−1)− f(ti))

2he
(1/m)−1
i

. (4)

Proposition 3.1 Let f be a real univariate function satisfying the condition (1) with

the constant h > 0 and exponent 1/m defined on the interval
[
0, π

α1

]
. Let the value

Ti = min {Φi−1 (ωi) ,Φi (ωi)} as a constant lower bound of f on [ti−1, ti] ⊂
[
0, π

α1

]
, then

we have

Ti = min

{
f(ti−1)− h

(
ei +

m(f(ti−1)−f(ti))

2he
(1/m)−1
i

)1/m

, f(ti)− h

(
ei +

m(f(ti)−f(ti−1))

2he
(1/m)−1
i

)1/m
}

and
Ti < f(t), ∀t ∈ [ti−1, ti] . (5)

Proof. The value Ti is given by replacing the variable t in the two functions Φi−1(t)
and Φi (t) by the expression (4). Since 𭟋i(t) < f(t), ∀t ∈ ]ti−1, ti[, where 𭟋i(t) =
max {Φi−1(t),Φi (t)}, we have

min {Φi−1(t),Φi(t)} ≤ min
[ti−1,ti]

𭟋i(t) ≤ f(t), ∀t ∈ [ti−1, ti] .

In particular, for t = ωi, it then follows

Ti = min {Φi−1(ωi),Φi(ωi)} < f(t), ∀t ∈ ]ti−1, ti[ .
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4 The Modified Mixed Alienor-TM Method

In order to determine the global minimum of f(x), the modified mixed Alienor-TM
Method consists of two steps: the reducing transformation step and the application of
the TM algorithm to the function f(t) = f(ζ(t)), which satisfies the condition (1) with
the constant h =hL1/m.

Algorithm 4.1 (Alienor-TM)

Input: P =
n∏

i=1

[ai, bi] is the search domain, f is the objective function (multivariate

non-Lipschitz function). The parameters h,m, ε and the dimension n.
Output: Part 1 : ζ(t) is the parametric curve,

f is the univariate non-Lipschitz function.
Part 2 : fopt is the best global minimum of f .

Part 1 :

α = ( ε
2h )

m, α1 = 1.
for i = 2 to n do
αi =

π
α (bi − ai)αi−1.

end for
for i = 1 to n do

ζi(t) =
ai−bi

2 cos(αit) +
ai+bi

2 .
end for

ζ(t) = (ζ1(t), ζ2(t), ..., ζn(t)) and f(t) = f(ζ(t)).

Part 2 :

Initialization: k ← 2, µ← 2, t1 ← 0, t2 ← π
α1

.
Step k: t1,t2, . . . , tk are ordered such that 0 = t1 < t2 < · · · < tk = π

α1
.

for i = 2 to k do
ωi = vi +

m(f(ti−1)−f(ti))

2he
(1/m)−1
i

,

Ti = min
{
f(ti−1)− h(ωi − ti−1)

1/m, f(ti)− h(ti − ωi)
1/m
}
.

end for

Tµ ← min {Ti, 2 ≤ i ≤ k} , (6)

tµ ← ωµ.

if |tµ − tµ−1| > ϵ =
(

ε
2h

)m
, then

tk+1 ← ωµ (7)

k ← k + 1
Go to Step k

else
fopt = min {f(ti) : 1 ≤ i ≤ k} and Stop.

end if
return fopt
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5 Convergence Results of TM and Alienor-TM Algorithms

Theorem 5.1 Let f(t) be a real non-Lipschitz function defined on a closed interval
[0, π

α1 ], with h > 0 and 1/m, (m > 1). Let t∗ be a global minimizer of f(t). Then the
sequence (tk)k≥1 generated by the TM algorithm converges to t∗, i.e.,

lim
k→+∞

f(tk) = f(t∗).

Proof. Let t1, t2, t3, ... be the sampling sequence satisfying (4), (6), (7). Let us
consider that ts ̸= ts′ for all s ̸= s′, the set of the elements of the sequence (tk)k≥1

is then infinite and therefore has at least one limit point in [0, π
α1

]. Let z be any limit
point of (tk)k≥1 such that z ̸= 0, z ̸= π

α1
, then the convergence to z is bilateral (one can

see [13]). Consider now an interval [tρ(k)−1, tρ(k)] which contains z, using (4), (6) and
(7), we obtain

lim
k→+∞

(tρ(k)−1 − tρ(k)) = 0. (8)

In addition, the value Tρ(k) that corresponds to [tρ(k)−1, tρ(k)], is given by

Tρ(k) = min
{
f(tρ(k)−1)− h(ωρ − tρ(k)−1)

1/m, f(tρ(k))− h(tρ(k) − ωρ)
1/m
}
, (9)

where zρ is obtained by replacing i by ρ in (4). As z ∈ [tρ(k)−1, tρ(k)] and from (8), we
have

lim
k→+∞

Tρ(k) = f(z). (10)

On the other hand, according to (5),

Tj(k) ≤ f(t), ∀t ∈ [tj(k)−1, tj(k)]. (11)

From (6), Tρ(k) = min {Tj , j = 2, ..., k}, then

Tρ(k) ≤ Tj(k), ∀t ∈ [tj(k)−1, tj(k)],

and since [0, π
α1

] =
k
∪

j=2
[tj(k)−1, tj(k)] , we have

lim
k→+∞

Tρ(k) ≤ Tj(k), ∀t ∈ [0,
π

α1
], (12)

and from (11), (12) we get

lim
k→+∞

Tρ(k) ≤ f(t), ∀t ∈ [0,
π

α1
].

Since t∗ is the global minimizer of f over [0, π
α1

] ,

lim
k→+∞

Tρ(k) ≤ f(t∗) ≤ f(z),

from (10), we have

0 ≤ f(z)− f(t∗) ≤ f(z)− lim
k→+∞

Tρ(k) = 0,
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then
f(z) = f(t∗).

The function f is non-Lipschitz on [0, π
α1

], so f must be continuous so that

f(z) = f

(
lim

k→+∞
tk

)
= lim

k→+∞
f (tk) = f(t∗).

Theorem 5.2 Let f be a non-Lipschitz function satisfying the condition (1) over
P and M be the global minimum of f on P. Then the mixed Alienor-TM algorithm
converges to the global minimum with an accuracy at least equal to ε.

Proof. Denote by M∗ the global minimum of f on [0, π
α1

], where f(t) = f(ζ(t)). On
the other hand, let us designate by fε the global minimum of the problem (P′) obtained
by the Alienor-TM method.
Let us show that

fε −M ≤ ε.

a) As f is continuous on P, there exists a point x ∈ P such that M = f(x). Moreover,
there exists t0 ∈ [0, π

α1
] such that ∥x− ζ(t0)∥ ≤

(
ε
2h

)m
so that ∥f(x)− f(ζ(t0))∥ ≤ ε

2 .
And therefore

f(ζ(t0))−M ≤ ε

2
.

But from M ≤M∗ ≤ f(ζ(t0)), we deduce that

M∗ −M ≤ ε

2
. (13)

b) As f is continuous on [0, π
α1

], there exists a point t∗ ∈ [0, π
α1

] such that M∗ = f(t∗),
involving t∗ as a global minimizer of f . Then t∗ is a limit point of the sequence (tk)k≥1

obtained by the mixed algorithm.
Hence t∗ ∈ [tρ(k)−1, tρ(k)] and lim

k→+∞
(tρ(k) − tρ(k)−1) = 0, i.e.,

∃tε ∈ [ts−1, ts] : |ts − ts−1| ≤
( ε

2h

)m
and fε = f(tε)

so that {
Ts = min

{
f(ts−1)− h |t− ts−1|1/m , f(ts)− h |t− ts|1/m

}
,

Ts ≤ f(t∗) ≤ f(tε) and t∗ ∈ [ts−1, ts].

Consequently,

fε −M∗ = f(tε)− f(t∗) ≤ h |tε − t∗|1/m ≤ ε

2
. (14)

Finally, from (13) and (14), the result of Theorem 5.2 is proved.

6 Computational Experiments

In this section, we present a series of numerical results concerning two mixed Alienor-SM
and Alienor-TM algorithms, applied to a set of non-Lipschitz test functions given in the
literature. The analytical expressions of the objective functions are reported in Table 1
below including their sources.
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Problem No. Non-Lipschitz test functions. Domain h m Ref.

1 max
{√
|x|,
√
|y|
}

[−1, 1]2 1 2 [2]

2
√
|x|+ |y| [−1, 1]2 (

√
2)

1
2 2 [2]

3
√
|x|+

√
|y| [−1, 1]2 2 2 [2]

4 |x+ y − 0.25|2/3 − 3 cos(x2 ) [−1
2 , 1

2 ]
2 2.42 3

2 [15]

5
3∑

k=1

1
2k

∣∣cos (( 3
2k + 1

)
x+ 1

2k

)∣∣ |x− y|3 [0, 3]2 15.8 3 [15]

6 − cos(x) cos(y) exp

(
1−
√

x2+y2

π

)
[−6, 6]2 45.265 2 [3]

7 −10 exp
(
−
√
0.5 (|x|+ |y|)

)
[−2, 12]2 10√

2
2 [3]

Table 1: The non-Lipschitz test functions.

The experiments have been carried out on PC with Intel(R) Core(TM)i5-7200U CPU
2.50 GHz and 8.00 RAM. The codes are implemented in MATLAB R2017a, with the
parameter α = 0.1. We give, in Table 2, the numerical results obtained by each method
to solve the problem (P) and the comparison is made with respect to the number of
evaluations Ev and the calculation time CPU . In Table 2, the bold form indicates the
best results in terms of CPU and Ev.

Problem No.
Alienor-SM Alienor-TM

Ev CPU Ev CPU
1 207 0.0655 212 0.1506
2 192 0.0901 196 0.1731
3 283 0.1738 248 0.0783
4 214 0.1063 206 0.0899
5 4905 1.6163 4865 1.6039
6 65549 308.5771 65546 307.6463
7 4792 13.5927 4862 12.9657

Table 2: The numerical results.

According to Table 1, all the test functions satisfy the condition (1) with m > 1 and
even for non-integer m. The results given in Table 2 show that the Alienor-TM mixed
method gives relatively satisfactory results, either in terms of the calculation time CPU
or the number of evaluations Ev. The dimensionality reduction Alienor method is rather
effective for dealing with difficult problems and its numerical implementation is very
simple. The number of evaluations Ev of f(t) depends on the length of the α-dense
curve. This raises a particular interest when choosing other curves. In general, for a
fixed value of α, the shorter the curve, the shorter the calculation time. It is therefore
natural to look for other α-dense curves having a shorter length.
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7 Conclusion

In this paper, we report a method for solving a multidimensional global optimization
problem, where the objective function is non-Lipschitz over a hyper-rectangle of Rn. The
concept relies on using the α-dense curve for reducing the size of the space Rn to 1,
then we apply the one-dimensional version of Piyavskii’s algorithm based on construct-
ing tangent minorant functions. This method is simple and easy to implement on any
multivariate non-Lipschitz function even if m is not an integer. We suggested a series of
numerical applications, followed by a comparative study of two mixed algorithms applied
to the proposed problem. We see that the mixed Alienor-TM and Alienor-SM methods
offer interesting prospects for reducing the computation time and the number of evalua-
tions. Finally, we want to elaborate on these investigations in cases where the constant
h is a priori unknown.
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variables. Applied mathematics and Computation 197 (2) (2008) 478–488.

[16] M. Rahal, A. Ziadi and R. Ellaia. Generating α-dense curves in non-convex sets to solve a
class of non-smooth constrained global optimization. Croatian Operational Research Review
10 (2) (2019) 289–314.

[17] Y.D. Sergeyev, R.G. Strongin and D. Lera. Introduction to Global Optimization Exploiting
Space-Filling-Curves. Springer Science & Business Media, 2013.

[18] R.G. Strongin. Algorithms for multi-extremal programming problems employing the set of
joint space-fiLling curves. Journal of Global Optimization 2 (1992) 357–378.

[19] A. Ziadi, Y. Cherruault and G. Mora. Global optimization: A new variant of the Alienor
method. Computers & Mathematics with Applications 41 (1-2) (2001) 63–71.

[20] A. Ziadi, D. Guettal and Y. Cherruault. Global optimization: The Alienor mixed method
with Piyavskii-Shubert technique. Kybernetes 34 (7/8) (2005) 1049–1058.



Nonlinear Dynamics and Systems Theory, 23 (2) (2023) 195–206

Analysis of Solutions to Equations with a Generalized

Derivative and Delay

O.D. Kichmarenko 1∗, I. V. Chepovskyi 2, Y. Platonova 1

and S. Dashkovskiy 3

1 Department of Optimal Control and Economical Cybernetics, Faculty of Mathematics,
Physics and Information Technologies, Odesa I. I. Mechnikov National University, 2

Dvoryanska Str., 65082, Odesa, Ukraine.
2 The Development Department, LLC “Dengroup”, 19 Velyka Arnautska str., 19, 65048,

Odesa, Ukraine.
3 Institute of Mathematics, University of Würzburg, Emil-Fischer-Str. 40, 97074, Würzburg,

Germany.

Received: December 16, 2021; Revised: May 5, 2023

Abstract: This paper is concerned with the set-valued differential equations with
a generalized derivative and constant delay. We introduce the notion of the initial
problem solutions and establish conditions for their existence and uniqueness, also
we provide a result on the continuous dependence of the solution of this problem
on the initial function. It is found that the solutions of such equations can expand
and contract, depending on the initial conditions. Also, in this paper we develop a
numerical algorithm to calculate solutions to such problem approximately. By means
of examples, we demonstrate how this algorithm works when solving different non-
linear differential equations with generalized derivative with constant delay under
different initial conditions.

Keywords: set-valued differential equations; generalized derivative; delay; existence
and uniqueness of solution; numerical algorithm.

Mathematics Subject Classification (2010): 34A06, 34K05, 34K06, 93C10,
93C35.

∗ Corresponding author: mailto:olga.kichmarenko@gmail.com

© 2023 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua195

mailto: olga.kichmarenko@gmail.com
http://e-ndst.kiev.ua


196 O.D. KICHMARENKO, I. V. CHEPOVSKYI, Y. PLATONOVA AND S. DASHKOVSKIY

1 Introduction

The study of the properties of a trajectory set and the construction of a reachability
set for control systems plays an important role in the investigation of optimal control
problems. Let the equation of motion of the control object have the form

ẋ = f(t, x, u), u ∈ U, x(t0) = x0, (1)

where x ∈ Rn is a phase vector, t > t0, u(t) ∈ U ∈ comp(Rk) is a control vector. Problem
(1) can be replaced by the following problem [23]:

ẋ ∈ F (t, x), x(t0) = x0, (2)

where F (t, x) = {z ∈ Rn|z = f(t, x, u), u ∈ U} is a multivalued mapping. It is also men-
tioned in [23] that the sets of solutions of equation (1) and inclusion (2) coincide. In
the same book, it is mentioned that the solution of the corresponding equation with
the Hukuhara derivative, in which the right-hand side contains the same multi-valued
mapping from (2), bounds the solution of the differential inclusion (2).

Thus, differential equations with a set-valued right-hand side can be used to study
solutions to the optimal control problem.

The first analysis of differential equations with a multivalued right-hand side was
conducted by S. Zaremba [28] and A. Marchaud [12], [13], [14]. The main results were also
presented in the works of T. Wazewski [26], [27], V.A. Plotnikov [22], [23], J.-P.Aubin [1],
K. Deimling [7], M. Kisielewiez [9], [10] and others. The development of the theory of
multivalued mappings has led to the clarification of the question of what is meant by a
derivative of multivalued mappings. This is stated in the works of M. Hukuhara [8], T.F.
Bridgland [4], H.T. Banks, M.Q. Jacobs [2], A.V. Plotnikov, N.V. Skripnik [19], [21], B.
Bede, S.G. Gal [3], O. Carja, T. Donchev and A. I. Lazu [6].

Differential equations with set-valued right-hand side and generalized derivative ap-
peared first in the works of A.V. Plotnikov, N.V. Skripnik [19], [21]. The existence and
uniqueness of solutions to the Cauchy problems with such equations were studied there.

Let us note that the notion of generalized derivatives for multivalued maps was first
introduced in [17], where the corresponding Cauchy problem was stated and the notion
of solutions to such problems was provided. The initial condition in this Cauchy problem
was given at a time point and the right-hand side of the equation depends on a time point
rather than on a time interval. In contrary to [17], in the current paper, we consider
the equations and initial states which depend on prehistory, that is, are defined on a
time interval. Hence we consider equations with time delay which make the problems
considered here essentially different from [17]. Hence our work extends the results of [17]
to the case of equations with time delays. The presence of a time delay leads to essential
changes in the approach of [17] and to other properties of solutions.

In this paper, the differential equation with a generalized derivative with a constant
delay is considered, the theorem on the existence and uniqueness of solution of such
equations is formulated and proved, the numerical algorithm for construction of these
solutions is developed, and examples of the application of the numerical algorithm for
construction of solutions of differential equations with a constant delay are given.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (2) (2023) 195–206 197

2 Main Results

2.1 Concept of solution

Consider a nonlinear differential equation with a generalized derivative with a constant
delay:

DX = F (t,X (t) , X (t−∆)) , X (s) = ρ (s) , s ∈ [−∆, t0] , (3)

where t ∈ I = [t0, T ] , F : I × conv (Rn) × conv (Rn) → conv (Rn) is a multivalued
mapping, t0 = 0,∆ > 0 is a constant delay, ρ (·) : [−∆, t0] → conv (Rn).

Definition 2.1 A multivalued mapping X (·) : [t0, T ] → conv (Rn) is called a so-
lution of differential equation (3) if it is absolutely continuous and satisfies (3) almost
everywhere on [t0, T ].

But similarly to a differential equation with a generalized derivative without delay,
in this case, it is impossible to ensure the unity of the solution [21]. Next, consider the
differential equation of the form

DX
h
− Φ (−φ (t))F1 (t,X (t) , X (t−∆)) = Φ (φ (t))F2 (t,X (t) , X (t−∆)) ,

X (s) = ρ (s) , s ∈ [−∆, t0] , (4)

where t ∈ [t0, T ] , X (·) : [t0, T ] → conv (Rn) , t0 = 0,∆ > 0 is a constant delay,
ρ (·) : [−∆, t0] → conv (Rn) , F1, F2 (·, ·, ·) [t0, T ] × conv (Rn) × conv (Rn) → conv (Rn)
is a multivalued mappings, φ (·) : [t0, T ] → R is a continuous function.

Φ (φ) =

{
1, φ > 0,
0, φ ≤ 0.

Definition 2.2 A multivalued mapping X (·) : [t0, T ] → conv (Rn) is called a so-
lution of differential equation (4) if it is absolutely continuous and on any segment
[τi, τi+1] ⊂ [t0, T ], where the function φ (·) on the interval (ti, ti+1) has a constant sign,
satisfies the integral equation

X (t) +

t∫
τi

Φ (−φ (s))F1 (s,X (s) , X (s−∆)) ds =

= X (τi) +

t∫
τi

Φ (φ (s))F2 (s,X (s) , X (s−∆)) ds. (5)

If on the interval (τi, τi+1), a function φ (t) > 0, then X (·) satisfies the integral equation

X (t) = X (τi) +

t∫
τi

F2 (s,X (s) , X (s−∆)) ds

for t ∈ [τi, τi+1] and diam (X (t)) is a growing function.
If on the interval (τi, τi+1), a function φ (t) < 0, then X (·) satisfies the integral equation

X (τi) = X (t) +

t∫
τi

F1 (s,X (s) , X (s−∆)) ds,
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that is,

X (t) = X (τi)
h
−

t∫
τi

F1 (s,X (s) , X (s−∆)) ds

for t ∈ [τi, τi+1] and diam (X (t)) is a decreasing function.
If on the interval (τi, τi+1), a function φ (t) = 0, then X (t) = X (τi) for t ∈ [τi, τi+1] and
diam (X (t)) is a constant function.

We will also introduce another equivalent definition of the solution of the equation
(4).

Definition 2.3 A multivalued mapping X (·) : [t0, T ] → conv (Rn) is called a so-
lution of differential equation (4) if it is absolutely continuous, satisfying (4) almost
everywhere on [t0, T ], and

diam (X (t)) =

 increase, φ (t) > 0,
constant, φ (t) = 0,
decrease, φ (t) < 0.

In the equation (4), the multivalued mappings F1 and F2 determine the rate of change
(”compression” and ”expansion”) of the multivalued mapping X (t) and how it changes
in the space conv (Rn), and a function φ (t) determines when a diameter X (t) increases,
decreases or is constant. These mappings are considered different because the laws of
”compression” and ”expansion” may be different.

2.2 A condition for the existence of a unique solution.

Based on [24], we can formulate and prove the following theorems.

Theorem 2.1 Let F1 and F2 be continuous mappings and, in some neighborhood,
points (t0, ρ (t0) , ρ (t0 −∆)) satisfy the Lipschitz condition with respect to the 2nd and
3rd variables with a constant λ. Let the initial function ρ (s) be continuous and the
delay ∆ be non-negative. Then there is a unique solution X (t) of equation (4) for
t0 ≤ t ≤ t0 + σ, where σ is arbitrarily small.

Proof. Consider the function φ (t) on the segment t ∈ [t0; t0 + σ]. As mentioned
above, it can take a negative, positive and zero value.

1. φ (t) = 0. Then

X (t) = ρ (t) . (6)

2. φ (t) > 0. Then we obtain a differential equation with the Hukuhara derivative
with a constant delay, which has a unique solution [24].

3. φ (t) < 0. Then we transform the system (4) into the integral equation

X (t) = ρ (t)
h
−

t∫
t0

F1 (s,X (s) , X (s−∆)) ds (7)
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and prove that it has a unique solution on the segment [t0; t0 + d].

Suppose the opposite. Let the equation (7) have at least two solutions X (t) and
Y (t) such that

ω = max
t∈[t0;t0+d]

h (X (t) , Y (t)) > 0,

where [t0; t0 + d] is the total period of existence of solutions X (t) and Y (t). We
have

X (t) ≡ ρ (t)
h
−

t∫
t0

F1 (s,X (s) , X (s−∆)) ds,

Y (t) ≡ ρ (t)
h
−

t∫
t0

F1 (s, Y (s) , Y (s−∆)) ds,

whence, using the Lipschitz condition and the Hausdorff distance properties, we
obtain

h (X (t) , Y (t)) =

= h

ρ (t) h
−

t∫
t0

F1 (s,X (s) , X (s−∆)) ds, ρ (t)
h
−

t∫
t0

F1 (s, Y (s) , Y (s−∆)) ds

 =

= h

 t∫
t0

F1 (s,X (s) , X (s−∆)) ds,

t∫
t0

F1 (s, Y (s) , Y (s−∆)) ds

 ≤

≤
t∫

t0

h (F1 (s,X (s) , X (s−∆)) , F1 (s, Y (s) , Y (s−∆))) ds ≤

≤ λ

 t∫
t0

h (X (s) , Y (s)) ds+

t∫
t0

h (X (s−∆) , Y (s−∆)) ds

 .

So we get

h (X (t) , Y (t)) ≤ λ

t∫
t0

ωds = λω (t− t0) ≤ λωd,

h (X (t) , Y (t)) ≤ λ

t∫
t0

ω (s− t0) ds =
λ2ω (t− t0)

2

2
≤ λ2ωd2

2
. . .

Using the method of complete mathematical induction, we have that for any natural
m on the segment [t0; t0 + d], there is an inequality

h (X (t) , Y (t)) ≤ λmωdm

m!
.

Then

ω = max
t∈[t0;t0+d]

h (X (t) , Y (t)) ≤ λmωdm

m!
,
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from here, by virtue of the positivity ω, we have that for any natural m,

1 ≤ (λd)
m

m!
. (8)

In view of the sign of the d’Alembert series,
∞∑

m=1

(λd)m

m! converges and from here,

the necessity of the condition lim
m→∞

(λd)m

m! = 0. This means that for ε = 1
2 , there

exists m ∈ N such that (λd)m

m! < 1
2 . Then, by virtue of (8), we get that 1 < 1

2 .
We have obtained a contradiction, and so we have that the equation (7) and the
equivalent equation (4) have a unique solution.

4. In the case when the function φ (t) changes the sign on the segment [t0; t0 + d], the
existence of a unique solution is proved by the combination of cases 1)− 3).

The theorem is proved.

Theorem 2.2 Let all conditions of Theorem 2.1 be satisfied. Then the solution of
the equation (4) continuously in the space comp (Rn) depends on the initial function,
and at h (ρ1 (s) , ρ2 (s)) ≤ δ, δ > 0, s ∈ [−∆; t0], we have

h (X1 (t) , X2 (t)) ≤ δe2λ(t−t0), t ≥ t0. (9)

Proof. Similarly to the previous theorem, consider 3 cases for the function φ (t).

1. φ (t) = 0. We have
h (ρ1 (s) , ρ2 (s)) < δ ≤ δe2λ(t−t0),

which implies (9).

2. φ (t) > 0. We have

h

 t∫
t0

F2 (s,X1 (s) , X1 (s−∆)) ds,

t∫
t0

F2 (s,X2 (s) , X2 (s−∆)) ds

 ≤

≤
t∫

t0

h (F2 (s,X1 (s) , X1 (s−∆)) , F2 (s,X2 (s) , X2 (s−∆))) ds ≤

≤ λ

t∫
t0

[h (X1 (s) , X2 (s)) + h (X1 (s−∆) , X2 (s−∆))] ds. (10)

Let

z (t) = max

{
δ, max

t0≤s≤t
h (X1 (s) , X2 (s))

}
.

From (10), we get

z (t) ≤ δ + 2λ

t∫
t0

z (s) ds. (11)

From (11), by the Gronwall-Bellman lemma, we get (9).
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3. φ (t) < 0. Similar to the previous case, we have

h

 t∫
t0

F2 (s,X1 (s) , X1 (s−∆)) ds,

t∫
t0

F2 (s,X2 (s) , X2 (s−∆)) ds

 ≤

≤ λ

t∫
t0

[h (X1 (s) , X2 (s)) + h (X1 (s−∆) , X2 (s−∆))] ds.

Next, from (11) and by the Gronwall-Bellman lemma, we get (9).

The theorem is proved.

2.3 A numerical algorithm for construction of solutions of differential equa-
tions with a generalized derivative with a constant delay

Based on Definitions 2.2 and 2.3, Theorems 2.1, and 2.2 and [21], we can formulate a nu-
merical algorithm for constructing a solution of a differential equation with a generalized
derivative with delay.

Consider the equation (4)

DX
h
− Φ (−φ (t))F1 (t,X (t) , X (t−∆)) = Φ (φ (t))F2 (t,X (t) , X (t−∆)) ,

X (s) = ρ (s) , s ∈ [−∆, t0] ,

where t ∈ [t0, T ] , X (·) : [t0, T ] → conv (Rn) , t0 = 0,∆ > 0 is a constant delay,
ρ (·) : [−∆, t0] → conv (Rn) , F1, F2 (·, ·, ·) [t0, T ] × conv (Rn) × conv (Rn) → conv (Rn)
are multivalued mappings, φ (·) : [t0, T ] → R is a continuous function.

Φ (φ) =

{
1, φ > 0,
0, φ ≤ 0.

Let the dimension of the space n = 2. Next, we write the formula for a counterpart
of Euler’s method in the case of differential equation (4)

Xm (t) =


Xm (tk) + (t− tk)F2 (tk, X (tk) , X (tk −∆)) , φ (t) > 0,

Xm (tk)
h
− (t− tk)F1 (tk, X (tk) , X (tk −∆)) , φ (t) < 0,

Xm (tk) , φ (t) = 0.

t ∈ [tk, tk+1] , k = 0,m− 1, Xm (s) = ρ (s) , s ∈ [−∆, t0] .

Using the apparatus of support functions, we obtain

C (Xm (t) , ψ) =


C (Xm (tk) + (t− tk)F2 (tk, X (tk) , X (tk −∆)) , ψ) ,

C

(
Xm (tk)

h
− (t− tk)F1 (tk, X (tk) , X (tk −∆)) , ψ

)
,

C (Xm (tk) , ψ) .

=

=

 C (Xm (tk) , ψ) + (t− tk)C (F2 (tk, X (tk) , X (tk −∆)) , ψ) ,
C (Xm (tk) , ψ)− (t− tk)C (F1 (tk, X (tk) , X (tk −∆)) , ψ) ,
C (Xm (tk) , ψ) ,
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where ψ is a unit vector.

For t = tk+1 we have formulas:

C (Xm (tk+1) , ψ) =

 C (Xm (tk) , ψ) + δC (F2 (tk, X (tk) , X (tk −∆)) , ψ) ,
C (Xm (tk) , ψ)− δC (F1 (tk, X (tk) , X (tk −∆)) , ψ) ,
C (Xm (tk) , ψ) .

(12)

To construct an external approximation of the set Xm (tk+1), we find

C (Xm (tk+1) , ψi), where ψi =

(
cosγi
sinγi

)
, γi =

2πi
p , i = 0, p− 1.

It follows from (12) that

C (Xm (tk+1) , ψ) =


C (Xm (tk) + δF2 (tk, X (tk) , X (tk −∆)) , ψi) ,

C

(
Xm (tk)

h
− δF1 (tk, X (tk) , X (tk −∆)) , ψi

)
,

C (Xm (tk) , ψi) .

=

=

 C (Xm (tk) , ψ) + δC (F2 (tk, X (tk) , X (tk −∆)) , ψi) ,
C (Xm (tk) , ψ)− δC (F1 (tk, X (tk) , X (tk −∆)) , ψi) ,
C (Xm (tk) , ψi) .

Thus, we can get the values of the support functions C (Xm (tk) , ψi), k = 0,m,
i = 0, p− 1.

Figure 1: Construction of boundary points of the numerical approximation of a convex set.

To construct the approximation (Fig. 1), find the points of intersection of the support
hyperplanes to the set Xm (tk) in the directions of the vectors ψi and ψi+1, i = 0, p− 1,
ψp = ψ0: {

(x, ψi) = C (Xm (tk) , ψi) ,
(x, ψi+1) = C (Xm (tk) , ψi+1) .

This is a linear system relatively unknown vector x ∈ R2 with determinant

∆ =

(
cosγi sinγi
cosγi+1 sinγi+1

)
= sin(γi+1 − γi) = sin

2π

p
̸= 0.
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Let us denote the solution of the system by xi, i = 0, p− 1. Construct a polygon with
vertices at points x0, x1, . . . , xp−1, which we denote Qp

k. The criterion for account
termination is ∣∣∣square Qp+1

k+1 − square Qp
k

∣∣∣ < ε,

where ε is a predefined number.

2.4 Construction of solutions of differential equation with a generalized
derivative with a constant delay

Using the Octave package, we constructed a solution of differential equations with a
generalized derivative with a delay with different initial sets X0, a partition m, the Euler
number of ”broken lines” p and a constant delay ∆ on the time interval t ∈ [0;T ]. It
should be noted that the delay ∆ must be a multiple of the time step h = T−t0

m . The
following examples show how this program works.

Consider the equation of the form

DX
h
− Φ (t− a)

1

2
X (t−∆) = Φ (a− t)X (t) , X (s) = X0 (s) , s ∈ [−∆, 0] . (13)

1. Let X0 = S100

(
0
t

)
, then c (X0, ψ) = tψ2 + 100

∥∥ψ∥∥.

Figure 2: Equation (13) sol. graph for m = 30, p = 30, ∆ = 30, a = 5, T = 30, init. conditions
(1).

2. Let X0 = K10000

(
t
2t2

)
, then c (X0, ψ) = tψ1 + 2t2ψ2 + 10000 |ψ1|+ 10000 |ψ2|.

Consider the equation with a generalized derivative with a delay of the form

DX
h
− Φ (diam (X (t))− diam (X0)− 100)

1

2
X (t−∆) =

= Φ(diam (X0) + 100− diam (X (t)))X (t) , (14)

X (s) = X0 (s) , s ∈ [−∆, 0] .

There are no proved theorems on the existence and uniqueness of the solution for this
equation, so we will consider it as an experiment.
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Figure 3: Equation (13) sol. graph for m = 30, p = 30, ∆ = 30, a = 5, T = 30, init. conditions
(2).

1. Let X0 =

(
10 0
0 20

)
S1

(
sint
2cost

)
, then c (X0, ψ) = sintψ1 + 2costψ2+

+

∥∥∥∥(10 0
0 20

)
ψ

∥∥∥∥.

Figure 4: Equation (14) sol. graph for m = 30, p = 30, ∆ = 30, T = 30, init. conditions (1).

2. Let X0 =

rectangle with half sides 100 and 300

and the center at the point

(
sint
2cost

) ,

then c (X0, ψ) = sintψ1 + 2costψ2 + 100 |ψ1|+ 300 |ψ2|.

3 Conclusion

The theorem on the existence of a unique solution of a differential equation with a
generalized derivative with a delay and the theorem on the continuous dependence of
this solution on the initial function are formulated and proved. A numerical algorithm
for solving such equations is developed. The paper presents examples of this algorithm
for different types of equations, different initial conditions, partitions, and delays.
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Figure 5: Equation (14) sol. graph for m = 30, p = 30, ∆ = 30, T = 30, init. conditions (2).
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Abstract: This paper investigates the phenomenon of chaos anti-synchronization
between the fractional-order lesser date moth and the integer-order chaotic systems
based on the Lyapunov stability theory and numerical differentiation. The nonlinear
feedback control is the method used to achieve the anti-synchronization of chaotic
systems addressed in this paper. Numerical examples are implemented to illustrate
and validate the results.
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1 Introduction

Chaos is a fascinating nonlinear phenomenon that has received a lot of attention in recent
years. During the previous two decades, the chaos theory proved to be effective in a wide
range of areas such as data encryption [20], financial systems [18, 19], biology [23] and
biomedical engineering [2], etc. Fractional-order chaotic dynamical systems have begun
to attract a lot of attention in recent years and can be seen as a generalization of chaotic
dynamic integer-order systems. The synchronization between a fractional-order chaotic
system and an integer-order chaotic system is thoroughly a new domain which has begun
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to attract much attention in recent years [9,21] because of its potential applications in se-
cure communication and cryptography [11,12]. Obviously, the synchronization between a
fractional-order chaotic system and an integer-order chaotic system is more difficult than
the synchronization between a fractional-order chaotic system or an integer-order chaotic
system for the different order of their error dynamical system. The synchronization be-
tween a fractional-order system and an integer-order system was first studied by Zhou et
al. [21]. As a special case of generalized synchronization, anti-synchronization is achieved
when the sum of the states of master and slave systems converge to zero asymptotically
with time. In this research work, we apply nonlinear control theory to anti-synchronize
two chaotic systems when a fractional-order system is chosen as the drive system and
an integer-order system serves as the response system. The anti-synchronization capa-
bility of the approach is demonstrated using a fractional-order lesser date moth chaotic
system and an integer-order chaotic system [15]. The paper is arranged in the following
manner. In Section 2, we describe the problem formulation for a fractional-order and an
integer-order chaotic system. In Section 3, we discuss the anti-synchronisation between
a fractional-order lesser date moth chaotic system and an integer-order chaotic system
using the nonlinear control. Section 4 gives a brief conclusion.

2 Problem Formulation for Fractional-Order and Integer-Order Chaotic
System

Consider the following fractional-order chaotic system as a drive (master) system:

Dαx1 = Ax1 + g(x1), (1)

where x1 ∈ Rn is the state vector, A ∈ Rn×n is the linear part, g(x1) is a continuous
nonlinear function, and Dα is the Caputo fractional derivative. Also, the response system
(slave) can be described as

ẋ2 = Ax2 + g(x2) + u, (2)

where x2 ∈ Rn is the state vector, A ∈ Rn×n is the linear part, g(x2) is a continuous
nonlinear function and u ∈ Rn is the control.

Define the anti-synchronization errors as e = x2 +x1. The anti-synchronisation error
system between the driving system (1) and the response system (2) can be expressed as

ė = ẋ2 + ẋ1,

where ẋ2 is obtained from the response system (2), while no exact expressions of ẋ1 can
be obtained from the driving system (1). Therefore, a numerical differentiation method
is used to obtain ẋ1.

According to the definition of the derivative, the derivative is approximately expressed
using the difference quotient as

g′(a) ≈ g(a+ h)− g(a)

h
, (3)

g′(a) ≈ g(a)− g(a− h)

h
, (4)

where (h > 0) is a small increment. Formulae (3) and (4) are called the pre-difference
formula and the post-difference formula, respectively. The post-difference formula is used
in this paper.
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The global anti-synchronization problem is essentially to find a feedback controller u
so as to stabilize the error dynamics for all initial conditions e(0) ∈ Rn (i.e., lim

t→∞
∥e(t)∥ =

0).

3 Anti-Synchronisation of Fractional-Order Lesser Date Moth Chaotic Sys-
tem and Integer-Order Chaotic System by Nonlinear Control

3.1 Main results

In this section, to validate the nonlinear control method proposed in [5], we take the
fractional-order lesser date moth chaotic system [15] as a drive system and the integer-
order chaotic system as a response system.

Thus, the drive and response systems are as follows:
Dαx1 = x1(1− x1)− x1y1

β+x1
,

Dαy1 = −δy1 +
γx1y1

β+x1
− y1z1,

Dαz1 = −ηz1 + σy1z1,

(5)

and 
ẋ2 = x2(1− x2)− x2y2

β+x2
+ u1,

ẏ2 = −δy2 +
γx2y2

β+x2
− y2z2 + u2,

ż2 = −ηz2 + σy2z2 + u3,

(6)

where u1, u2, u3 are the nonlinear controller. It is reported that the fractional-order lesser
date moth system (5) with the fractional order of α = 0.95 can behave chaotically [15].
The three-dimensional (3D) phase portraits of the lesser date moth chaotic system with
fractional-order and integer-order, respectively, are shown in Figure 1 and Figure 2.

The anti-synchronization error e is defined by e1 = x1 + x2,
e2 = y1 + y2,
e3 = z1 + z2.

(7)

The error dynamics is obtained as
ė1 = ẋ1 + x2(1− x2)− x2y2

β+x2
+ u1,

ė2 = ẏ1 − δy2 +
γx2y2
β+x2

− y2z2 + u2,

ė3 = ż1 − ηz2 + σy2z2 + u3.

(8)

We consider the nonlinear controller defined by
u1 = −ẋ1 − x2(1− x2) +

x2y2
β+x2

− e1,

u2 = −ẏ1 − δy1 − γx2y2
β+x2

+ y2z2,

u3 = −ż1 − ηz1 − σy2z2.

(9)

Substituting (9) into (8), we obtain the linear system ė1 = −e1,
ė2 = −δe2,
ė3 = −ηe3.

(10)
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Figure 1: The 3D phase portrait of the fractional-order lesser date moth system.
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Figure 2: The 3D phase portrait of the integer-order lesser date moth system.

We consider the quadratic Lyapunov function defined by

V (e) =
1

2
eT e =

1

2
(e21 + e22 + e23), (11)

which is a positive definite function on R3. A simple calculation gives

˙V (e) = −e21 − δe22 − ηe23, (12)

which is a negative definite function on R3.
Thus, by the Lyapunov stability theory [24], the error dynamics (10) is globally

exponentially stable. Hence, we have proved the following result.

Theorem 1 The fractional-order lesser date moth chaotic system and the integer-order
chaotic systems (5) and (6) are exponentially and globally anti-synchronized for any
initial conditions with the nonlinear controller u defined by (9).

3.2 Numerical results

For the numerical simulations, we use some documented data for some parameters
like γ = 3, δ = η = 1, σ = 3, β = 1.15, h = 0.85, α = 0.95, then we have
(x1, y1, z1) = (0.7, 0.3, 0.8) and (x2, y2, z2) = (−0.68,−0.91,−0.65). The simulation re-
sults are illustrated in Figure 3.
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Figure 3: Anti-synchronization between response system (6) and drive system (5).

4 Conclusion

Anti-synchronizing different chaotic systems have important applications in many phys-
ical and biological systems, as well as in secure communication using chaotic signals,
where one cannot assume that the equations and parameters of the drive and response
systems are identical. Furthermore, in the literature, few studies apply nonlinear control
theory to anti-synchronize two chaotic systems when a fractional-order system is chosen
as the drive system and an integer-order system is the response system. And there is no
study regarding the anti-synchronization capability of the approach demonstrated using
a fractional-order lesser date moth chaotic system and an integer-order chaotic system.
Our goal in this paper was to study the phenomenon of chaos anti-synchronization be-
tween a fractional-order lesser date moth chaotic system and an integer-order chaotic
system. Our findings show that chaos anti-synchronization can be performed between
fractional-order chaotic systems and integer-order chaotic systems using nonlinear control
techniques. The numerical outcomes are consistent with the theoretical analyses.
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1 Introduction

The hyperchaotic system is a nonlinear dynamical system with at least two positive Lya-
punov exponents. The positive Lyapunov exponents indicate the complexity and unpre-
dictable response of a dynamical system. Due to this complex nature, the hyperchaotic
system is used in many engineering fields such as oscillators [1], image encryption [2] and
secure communication [3] etc. Recently, many hyperchaotic systems with hidden attrac-
tors have been introduced [4–6] and their dynamic behaviors are discussed in detail.

In this paper, another hyperchaotic system with hidden attractor is proposed and
its basic dynamic properties and bifurcation are studied in detail. The proposed system
also exhibits some special features such as multistability and offset boosting property for
various applications. Multistability is an important phenomenon by which the chaotic
system generates various number of attractors for different initial conditions. The mul-
tistability feature is observed in a periodic state in the proposed system. The position
of the proposed attractor is controllable by introducing a controller in one of the state
variable and this is known as the offset boosting control. The proposed system has three
nonlinear terms. It is exciting to observe that our proposed system has no rest point
and hence, its attractor is masked. In order to verify the dynamical behavior of our
proposed system, the electronic circuit realization is presented in this paper. The circuit
realization is based on discrete components and Integrated Circuits (IC) and simulated
using MULTISIM software.

The trajectory of a hyperchaotic signal highly depends on its initial points and the
parameters of the system are uncertain in practice. Therefore, there is a need to design a
controller function to synchronize the even identical hyperchaotic systems with unknown
parameters. Recently, many chaos synchronization methodologies have been proposed in
literature reviews [7–9]. In this research paper, an anti-synchronization scheme is chosen
for the demonstration of adaptive synchronization of the proposed system.

The digital realization of an adaptive synchronization scheme for chaotic systems has
predominant applications in many digital chaotic systems such as digital data transmis-
sion [10] etc. In order to expand the hyperchaos based real time applications, nowadays,
researchers give more attention to the implementation of a hyperchaotic system in digital
circuits such as Field Programmable Gate Array (FPGA) [11], [12]. Based on the lit-
erature survey, in this work, the proposed adaptive anti-synchronization scheme for the
hyperchaotic system is realized in FPGA using MATLAB simulink and Xilinx system
generator tools.

2 Modelling of New Hidden Attractor Hyperchaotic System

The new hyperchaotic system with hidden attractor is of the form

ṗ = α(q − p),
q̇ = βq − pr + w,
ṙ = pq − γr,
ẇ = w − pr.

(1)

Here, p, q, r, w are the state variables and α, β, γ are the non zero positive parameters
of the system (1). The system parameter values are chosen as α = 26, β = 14 and
γ = 3. The behavior of the new dynamical system (1) never changes the polarity of
the co-ordinates changes as (p, q, r, w) → (−p,−q, r,−w) and the proposed system has
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rotational symmetry about the r-axis. The divergence of the system (1) is given as

∇f =
∂fp
∂p +

∂fq
∂q + ∂fr

∂r + ∂fw
∂w = −14.36, where fp = ṗ, fq = q̇, fr = ṙ, fw = ẇ. Since

the divergence of (1) is negative for all positive values of α,β,γ, we can conclude that the
proposed system has a strange attractor. The rest points of the proposed system (1) can
be computed numerically by equating the Equation (1) to zero as given in Equation (2),

α(q − p) = 0,

βq − pr + w = 0,

pq − γr = 0,

w − pr = 0.

(2)

From Equation (2), the rest points of system (1) are computed as E{0, 0, 0, 0} and it
is observed that the attractor of new dynamical system (1) is masked up somewhere in
phase space. The Jacobian matrix of the system (1) is given as

J =


−α α 0 0
−r β −p 1
q p −γ 0
−r 0 −p 1

 . (3)

The eigenvalues of the Jacobian matrix (J) can be obtained as λ1 = −26, λ2 =
14, λ3 = −3 and λ4 = 1. Since the set of eigenvalues has both positive and
negative real values, the rest point E is an unstable point. The Lyapunov ex-
ponents of the new hyperchaotic dynamic system (1) are calculated using the
Wolf algorithm as LE = [0.331891, 0.038063, 0,−14.314174] for the initial conditions
p0 = 1, q0 = 2, r0 = 1, w0 = 3. The sum of Lyapunov exponents is −13.94422 < 0 and
hence, the proposed system (1) is dissipative. The Lyapunov dimension (DL) can be ob-
tained as DL = 3 + LE1+LE2+LE3

|LE4| = 3.019644, which indicates the fractional dimension

of the proposed system (1).

3 Dynamic Analysis of Proposed System

The variations of state variables of the proposed hyperchaotic system (1) in 2D and
3D planes are given in Figure 1. The bifurcation diagrams and Lyapunov exponents
of the proposed system (1), based on the parameters α and β for the initial conditions
{0, 1, -1, 1}, are shown in Figure 2. First, the parameter α varies in the range of
αϵ[22− 27] and the remaining parameters are kept constant, as demonstrated in Figure
2a, which shows that the system (1) is in a period state in the range of αϵ[22 − 22.3],
αϵ[24.3− 25.5] and in chaos states in the range of αϵ[22.3− 24.2], αϵ[25.5− 27]. Second,
the parameter β varies in the range of βϵ[13 − 18] and the other parameters are kept
constant as given in Figure 2b, which shows that there is the inverse doubling behavior.
It is in a chaotic state in the range of βϵ[13 − 14.5], and in a period state in the range
of nearly βϵ[14.5 − 15.4] and βϵ[17.5 − 18]. The Lyapunov spectrum versus the various
parameters is also demonstrated in Figures 2c and 2d, in which LE1, LE2, LE3 and LE4

are represented in blue, red, green, and cyan, respectively.
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(a) (b)

(c) (d)

Figure 1: Attractors of the proposed hyperchaotic system.

4 Controllability of Proposed Hyperchaotic System

The position of the proposed attractor is controllable by introducing a controller param-
eter δ in the state variable w in the proposed system (1). The state variable w in the
proposed system is replaced with w + δ as given in (4). Figure 3a shows the position of
the proposed controlled attractor in the r−w plane for δ = 0 (blue), δ = −90 (black) and
δ = 90 (magenta). Figure 3b shows that the state variable w is converted from bipolar
into unipolar by varying the controller value.

ṗ = α(q − p),
q̇ = βq − pr + (w + δ),
ṙ = pq − γr,
ẇ = (w + δ)− pr.

(4)

5 Multistability of Proposed Hyperchaotic System

Multistability or a multiple attractor property is observed in the various periodic states
of the proposed system. Figure 4a shows a bifurcation diagram for the parameter β
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(a) (b)

(c) (d)

Figure 2: (a-b) Bifurcation diagram, (c-d) Lyapunov exponents plots of the proposed
system.

under the initial conditions (0, 1,−1, 1) (red) and (1, 1,−1, 1)(black) and indicates that
there is a multiple attractor in periodic states. Figure 4b shows the phase portraits of
the proposed system when a = 26, b = 15, c = 3 under the initial conditions (0, 1,−1, 1)
(blue) and (1, 1,−1, 1) (magenta).

6 Electronic Circuit Implementation of Proposed Hyperchaotic System

In this section, an analog circuit is constructed to confirm the theoretical results of the
proposed system (1) using electronic components such as resistors, capacitors, OPAMP
741, and multiplier. The time and amplitude scaling factors are chosen as T = 100t and
A = 5, respectively, to realize the circuit parameters α, β and γ. The system (1) can be
written as (5),

dx
dT = 100α(y − x),

dy
dT = 100(βy −Axz + w),

dz
dT = 100(Axy − γz),

dw
dT = 100(w −Axz).

(5)
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(a) (b)

Figure 3: Position variation of the proposed attractor with δ = 0(Blue), δ =
90(Magenta), δ = −90(Black). (a) r − w plane, (b) The time series of the state variable
w.

(a) Bifurcation diagram for β (b) α = 26, β = 15, γ = 3

Figure 4: Multistability behaviour of the proposed system.

The equations for the proposed electronic circuit design can be given as in Equation (6),

dx
dT = R1

R2R3C1
(−y)− R1

R2R4C1
(x),

dy
dT = R5

R6R7C2
(−y)− R5

10R6R9C2
(xz)− R5

R6R8C2
(−w),

dz
dT = R10

R11R12C3
(−xy)− R10

R11R13C3
(z),

dw
dT = R14

R15R16C4
(−w)− R14

R15R17C4
(−xz).

(6)

The circuit realization of system (6) using Multisim software is shown in Figure 5. The
electronic components are chosen as C1 = C2 = C3 = C4 = 10nF, R1 = R5 = R10 =
R14 = R18 = R19 = R20 = R21 = R22 = R23 = R24 = R25 = 100Ω, R2 = R6 = R11 =
R15 = 50kΩ, R3 = R4 = 77kΩ,R7 = 143kΩ, R8 = R16 = 2000kΩ,R9 = R12 = R17 =
40kΩ and R13 = 595kΩ. Circuit simulation results are shown in Figure 6. Note that the
Multisim simulation results are agreeing with the Matlab results shown in Figure 1.
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(a) x signal (b) y signal

(c) z signal (d) w signal

Figure 5: Circuit realization of the proposed system.

(a) xy (b) yz

(c) zw

Figure 6: Electronic simulation result for the proposed system.
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7 Adaptive Synchronization of Proposed Hyperchaotic System

In this section, the anti-synchronization of the proposed system (1) is established us-
ing an adaptive control method. In the last two decades, a variety of synchronization
schemes such as fuzzy set based methods [13], observer-based methods [14], Lyapunov-
based methods [15], sliding surface-based methods [16], PID control [17], and active
method [18] were used. However, the synchronization schemes proposed in the literature
review [13–18] have some limitations. The fuzzy set methods need the states of the sys-
tem for the calculations of membership and non - membership functions and building a
regressor vector. The observer-based synchronization scheme is restricted to synchronize
different systems since the structure of the slave system is defined by the master system.
In backstepping, synchronization is a Lyapunov-based synchronization method in which
the calculation of the Lyapunov exponent is required for the entire system. The sliding
mode control method requires the design of a sliding surface in which the states of the
system sliding on the sliding surface and the dynamic behavior of the system depend on
the sliding surface equations. The chattering problem is the main drawback of the sliding
mode controller. The Proportional Integral Derivative (PID) controller has low robust-
ness and suitability for linear systems. The active control method is not suitable for
practical situations since the initial conditions and the system parameters are unknown
in practice. The literature review on chaos synchronization pinpoints that compared to
any other method, the adaptive feedback control method is a simple, convenient, and
efficient methodology for implementing the chaos synchronization. The master and the
slave system are given as in (1) and (7), respectively,

ṗ1 = α(q1 − p1) + u1,
q̇1 = βq1 − p1r1 + w1 + u2,
ṙ1 = p1q1 − γr1 + u3,
ẇ1 = w1 − p1r1 + u4.

(7)

Here, p1, q1, r1 and w1 are the state variables of the slave system, u1, u2, u3 and u4 are the
adaptive controllers used to synchronize the master and the slave system, α = 26, β =
14, γ = 3 are the system parameters. The anti-synchronization error between the master
and the slave system can be written as (8),

e1 = p1 + p,
e2 = q1 + q,
e3 = r1 + r,
e4 = w1 + w.

(8)

Based on adaptive control theory, the adaptive controllers can be derived as (9),

u̇1 = −α̂(e2 − e1)− g1e1,

u̇2 = −β̂e2 + e4 + p1r1 + pr − g2e2,
u̇3 = γ̂e3 − p1q1 − pq − g3e3,
u̇4 = −e4 + p1r1 + pr − g4e4.

(9)

Here, α̂, β̂, γ̂ are the estimate values of the unknown parameters α, β, γ, respectively.
g1, g2, g3, g4 are the gain of the controllers. Consider a Lyapunov function candidate as

V = e1ė1 + e2ė2 + e3ė3 + e4ė4 + eaėa + ebėb + ecėc

= ea[e1(e2 − e1)− ˙̂α] + eb[e
2
2 −

˙̂
β] + ec[−e23 − ˙̂γ]− g1e

2
1 − g2e

2
2 − g3e

2
3 − g4e

2
4.

(10)
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By choosing the dynamics of unknown parameter values as ˙̂α = e1(e2 − e1),
˙̂
β = e22

and ˙̂γ = −e23, Equation (10) becomes Equation (11) which indicates the negative Lya-
punov function, the anti-synchronization error signals and the parameter error signals
exponentially reach zero, which means that both the master and the slave system are
synchronized together.

V = −(g1e
2
1 + g2e

2
2 + g3e

2
3 + g4e

2
4) < 0. (11)

To demonstrate the adaptive synchronization of the proposed system, different initial
conditions are chosen for the master and the slave system separately such as Xm =
(3,−7, 1.5, 6) and Xs = (2, 3, 4, 1). The initial conditions for the positive parameters
α, β, γ are, respectively, taken for demonstration as (0.5,0.2,0.7). The gain of the adaptive
controllers is also chosen for the demonstration purpose as gi = 1, where i = 1, 2, 3, 4.
Figure 7a shows that the anti−synchronization errors e1, e2, e3 and e4 become zero when
both the master and the slave system are synchronized together. Figure 7b represents the
synchronized state variables for the simulation time 1500s. The dotted line represents
the master system and the solid line represents the controlled slave system p−p1 (Blue),
q − q1 (Brown), r − r1 (Magenta) and w − w1 (Red).

8 FPGA Implementation of Adaptive Synchronization of Proposed Hyper-
chaotic System

In this section, an FPGA-based digital circuit realization of the proposed adaptive
synchronization methodology for a new hyperchaotic system is presented. The digi-
tal realization of the synchronized hyperchaotic system is achieved in the MATLAB
and Xilinx environments. In this methodology, initially, Equations (1) and (7) to
(9) are constructed in MATLB simulink using Xilinx system generator tools to gen-
erate the VHDL code. Then, the generated VHDL code is simulated and synthe-
sized in Xilinx software. Figure 8 shows the digital circuit realization of the pro-
posed hyperchaotic system. The initial conditions for the master and the slave sys-
tem are chosen for the FPGA implementation of the synchronization methodology as
(p(0), q(0), r(0), w(0)) = (5, 2, 3, 1) and (p1(0), q1(0), r1(0), w1(0)) = (20, 30, 25, 15), re-
spectively. Hence, the initial conditions for the anti-synchronization error signal can be
from Equation (8): (e1(0), e2(0), e3(0), e4(0)) = (25, 32, 28, 16). The model of the pro-
posed anti-synchronization methodology is shown in Figure 9, which shows the coupling
between Equations (1) and (7) to (9). In Figure 9, p0 and q0 are the initial conditions for
the master and the slave system, pi outnet [31 : 0] is the 32-bit state signal of the master
system and qi outnet [31 : 0] is the 32-bit state signal of the slave system. α0, β0, and γ0
are the initial conditions for the parameters α, β, and γ, respectively. The master block
is shown in Figure 8, the controller block contains Equation (10), parameter and error
signal block generate the anti-synchronization error signals, and the initial conditions are
fed in the master and slave system block. The VHDL code for the proposed synchro-
nization methodology is generated for the FPGA device virtex-xc6vsx315t3ff1156. After
that, the generated code is simulated in Xilinx software using ISE simulator.

As a result of simulation, a small portion of discrete waveform for the proposed
anti-synchronization methodology is obtained as given in Figure 11, in which the sig-
nals x1outnet[31 : 0] to x4 outnet [31 : 0] represent the signals from the master system,
the signals y1 outnet [31 : 0] to y4 outnet [31 : 0] represent the signals from the slave
system, and e1 outnet [31 : 0] to e4 outnet [31 : 0] are the error signals. For instance,
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(a) Time variation of error signals.

(b) Synchronized master and slave system.

Figure 7: Simulation result for the adaptive synchronization of the proposed system.

x1 outnet [31 : 0] has the value 0000000000000101, which is equivalent to x1(0) = 5, and
y1 outnet [31 : 0] has the value 0000000000010100, which is equivalent to y1(0) = 20, and
the anti-synchronization error e1 outnet [31 : 0] has the value 0000000000011001, which
is equivalent to e1(0) = 25. Thus, we can conclude that the VHDL code simulation
result agrees with the theoretical model developed for the adaptive anti-synchronization
methodology in Section 7.

The resource utilization for virtex-xc6vsx315t3ff1156 is given in Table 1, which shows
that the proposed synchronization methodology utilizes a very small amount of the avail-
able source.

9 Conclusion

A new hyperchaotic system with no rest point or hidden attractors is investigated, and
numerical and analytical studies are carried out on its basic properties. The new system
has two positive, 4-dimensional Lyapunov exponents, no rest points, and is unstable,
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Figure 8: Digital realization of the proposed hyperchaotic system.

Figure 9: Coupling between the master and the slave hyperchaotic system.

which means that the proposed system has a hyperchaotic nature. The dynamical analy-
sis of the proposed system is conducted using a bifurcation diagram and a Lyapunov
exponents spectrum. An analog circuit for the new hyperchaotic system is constructed
and simulated in Multisim and the simulation results show the viability of the proposed
theoretical modeling of the new system. By using the adaptive control methodology,
the anti-synchronization of a new, identical hyperchaotic system is studied. The Matlab
simulation results for the adaptive anti-synchronization are demonstrated with different
initial conditions to verify the theoretical analysis of the designed controllers. In order
to digitize the synchronization methodology, FPGA implementation of the new synchro-
nized hyperchaotic system with hidden attractors is designed. The simulation results
and FPGA outputs demonstrate the efficiency of the proposed digitization methodology
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Figure 10: Simulation result of VHDL code for the proposed anti - synchronized hyper-
chaotic system.

Used Sources Available Sources Percentage
Number of Slice Registers 2502 393,600 1
Number of Slice LUTs 4775 196,800 2

Number of Occupied Slices 1466 49,200 2
Number of Bonded IOBs 193 600 32

Number of BUFG/BUFGCTRLs 1 32 0.3

Table 1: Utilization of resources for virtex-xc6vsx315t3ff1156.

for the adaptive anti-synchronization scheme for a new hyperchaotic system with hidden
attractors.
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Abstract: A modified harmonic balance method (MHBM) has been exhibited for
operating the damped Duffing oscillator with varying coefficients and periodic exter-
nal forces. The mentioned technique is able to convert a set of nonlinear algebraic
equations into a set of linear algebraic equations using only a nonlinear algebraic
equation and it makes the simplest form of the system and requires less computa-
tional effort than the classic harmonic balance method (HBM). On the contrary, a
set of nonlinear algebraic equations is required to solve by the numerical technique
in classic HBM. As a result, it needs a heavy computational attempt. The obtained
results have been compared with the numerical solutions attained by the fourth order
Runge-Kutta method in the Figures and Table. It is mentioned that the obtained
results display a strong similarity with the corresponding numerical results.
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1 Introduction

Differential equations are a very important branch of science and engineering. They
are linear or nonlinear differential equations. Actually, a greater portion of the real life
physical and engineering problems are related to nonlinear differential equations. Solu-
tions of differential equations provide a detailed information regarding the behavior of
the systems. In this regard, nonlinear oscillators are very important in all areas of sci-
ence and engineering. The appropriate solutions of these nonlinear oscillators are rarely
obtained. Therefore, many researchers and scientists have focused their attention on de-
veloping numerical techniques as well as analytical methods. Numerical techniques are
procedures for determining the true values for a set of discrete points. The true values
are attained by the process of incremental steps. The proper initial guess values are
required to perform the numerical techniques. Commonly, these techniques are compar-
atively simple but sometimes they need massive computational attempts and appropriate
primary approximate values to achieve the desired solutions. Also, the numerical tech-
niques are unable to provide overall feature of the nonlinear dynamical systems. It is
also not possible to know the amplitude and phase by the numerical techniques. In con-
trast, analytical approximation methods have become more interesting to the scientists,
physicists, engineers and applied mathematicians because of their analytical expression
and suitability for parametric study. Many analytical approximation methods have been
investigated for handling nonlinear dynamical systems, for example, the perturbation
method [1- 10], homotopy analysis technique [11,12], homotopy perturbation technique
[13-16], variational iteration technique [17,18], harmonic balance method (HBM) [19-
28], modified multi-level residue harmonic balance method [25- 27], modified harmonic
balance method (HBM) [28-33], etc. The perturbation methods [1- 10] are broadly used
techniques for dealing with weakly nonlinear dynamical systems. Jones [8] investigated
a technique to improve the scope of precision of the classical perturbation technique
for large as well as small parameters. Cheung et al.[9] modified the Lindstedt–Poincare
technique based on the idea of Jones [8]. Alam et al.[10] developed a modified Lindstedt-
Poincare method to control oscillators with strong nonlinearities. The HBM and MHBM
are also impressive methods for obtaining periodic solutions of nonlinear oscillators. In
this method, the truncated Fourier series is selected as the trial solution of the nonlinear
oscillators. According to the classical HBM, a set of nonlinear algebraic equations is
handled by a numerical technique to find the values of the unknown coefficients. This
method has been revised by some authors [18-28]. Rahman et al.[20] applied the HBM
to study the Van der Pol equation. Wagner and Lentz [21] investigated the HBM for
detecting the solutions to nonlinear oscillators. Wu [22] presented the HBM for the Yao-
Cheng oscillator. Yeasmin et al. [24] presented an analytical technique to solve the free
vibration problems with quadratic nonlinearity based on the HBM. Rahman and Lee
[25] and Rahman et al. [26] exhibited a modified multi-level residue HBM. Hasan et
al.[27] developed a multi-level residue harmonic balance solution for the nonlinear nat-
ural frequency of axially loaded beams with an internal hinge. Lee [28] presented an
analytical solution for nonlinear multimode beam vibration using a modified harmonic
balance approach and Vieta’s substitution. Ullah et al. [29] exhibited MHBM to solve
forced vibration problems with strong cubic and quadratic nonlinearities. Ullah et al.[30]
extended this method to forced vibration problems with generalized nonlinearities. Fur-
ther, Ullah et al.[31] exhibited the MHBM for the forced Van der Pol vibration equation.
Recently, Ullah et al. [32] have exhibited the MHBM for free vibration analysis of non-
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linear axially loaded beams. Ullah et al.[33] have handled a modified forced Van der Pol
vibration equation using a modified harmonic balance method. Kandil et al.[35] have
exhibited a HBM to obtain the steady-state solutions of the nonlinear problems. Alam
et al. [36] have solved some strongly nonlinear oscillators with a combination of the mod-
ified Lindstedt-Poincare and the homotopy perturbation methods. Uddin and Sattar [34]
developed an analytical procedure to solve the damped Duffing equation with varying
coefficients without periodic external force combining KBM and homotopy perturbation
methods. It is observed that MHBM has been remaining untouched for the controlling
forced Duffing equation with varying coefficients and damping with strong nonlinearity.
To fulfill this gap, a MHBM has been proposed to control the damped Duffing oscillator
with varying coefficients and periodic external forces. The proposed technique reduces
the heavy computational effort that cannot be avoided in the classical HBM.

2 Method

We guess a damped nonlinear oscillator [29-33, 34] with varying coefficients and periodic
external force

ẍ+ 2k ẋ+ e−τx+ ϵf(x) = F cos(ωt), (1)

where the dots above denote differentiation with respect to time t, 2k is the coefficient of
viscous damping, f(x) is a certain nonlinear function, ϵ is a positive parameter which is
not necessarily small, τ = ϵt is the slow varying time, F and ω represent the amplitude
and frequency of excitation, respectively. All of the parameters are positive. According
to the proposed method, the approximate solution of Eq.(1) is assumed [29-33]to be of
the following form:

x = c1 cos(ωt) + d1 sin(ωt) + c3 cos(3ωt) + d3 sin(3ωt) + . . . , (2)

where c1, d1, c3, d3... are unknown coefficients in the Fourier series. Now, differentiating
Eq.(2) twice with respect to t and then putting into Eq.(1) and expanding f(x) as a
truncated Fourier series expansion and then comparing similar harmonics, we accomplish
the following set of algebraic equations

c1(−ω2 + e−τ ) + 2d1kω + ϵA1(c1, d1, c3, d3, ...) = F, (3a)

d1(−ω2 + e−τ )− 2c1kω + ϵB1(c1, d1, c3, d3, ...) = 0, (3b)

c3(−9ω2 + e−τ ) + 6d3kω + ϵA3(c1, d1, c3, d3, ...) = 0, (3c)

d3(−9ω2 + e−τ )− 6c3kω + ϵB3(c1, d1, c3, d3, ...) = 0. (3d)

Deducting ω2 from the Eqs.(3b)-(3d), utilizing Eq.(3a), and removing the terms whose
responses are small, we get Eqs.(3a)-(3d) in the form

ω2 = e−τ + 2d1kω/c1 + ϵA1(c1, d1, c3, d3, ...)− F/c1, (4a)

− 2c1kω − 2d21kω/c1 − ϵA1(c1, d1, c3, d3, ...) + ϵB1(c1, d1, c3, d3, ...) + d1F/c1 = 0, (4b)

−8c3e
−τ−18c3d1kω/c1+6d3kω−ϵA1(c1, d1, c3, d3, ...)+ϵA3(c1, d1, c3, d3, ...)−9c3F/c1 = 0,

(4c)

−8d3e
−τ−18d1d3kω/c1+6c3kω−ϵA1(c1, d1, c3, d3, ...)+ϵB3(c1, d1, c3, d3, ...)+9d3F/c1 = 0.

(4d)



230 M. ALHAZ UDDIN, MAHMUDA AKHTER NISHU AND M. WALI ULLAH

Utilizing Eq.(4b), terminating ω from the Eqs.(4c)-(4d) and taking into account only
the linear terms of c3, d3, a set of linear algebraic equations of c3, d3 is achieved. After
simplifying, c3, d3 are acquired in terms of c1,d1. Finally, inserting c3, d3 in Eq.(4b), and
expanding d1 into a power series of λ(k, ω, F ), we acquire

d1 = l0 + l1λ+ l2λ
2 + l3λ

3 + . . . , (5)

where l0, l1, l2, . . . are the functions of c1 and λ is a small parameter. After inserting
c3, d3 and d1 in Eq.(4a) and solving, c1 is obtained. Systematically, d1, c3 and d3 are
obtained.

3 Example

Consider a nonlinear damped oscillator having varying coefficients with periodic external
force [29-33, 34] of the following form:

ẍ+ 2k ẋ+ e−τx+ ϵx3 = F cos(ωt). (6)

The solution of Eq.(6) is supposed as [29-33]

x(t) = c1 cos(ωt) + d1 sin(ωt) + c3 cos(3ωt) + d3 sin(3ωt). (7)

Eq.(7) is treated as the truncated Fourier series. The unknown constants c1, d1, c3 and d3
are to be found to get the desired results. Putting Eq.(7) in Eq.(6) and then comparing
the coefficients of similar harmonics and removing the terms whose effects are negligible,
we carry out

c1e
−τ − c1ω

2 + 3ϵc31/4 + 3ϵc21c3/4 + 3ϵc1c
2
3/2 + 2kωd1 + 3ϵc1d

2
1/4

− 3ϵc3d
2
1/4 + 3ϵc1d1d3/2 + 3ϵc1d

2
3/2 = F,

(8a)

− 2kωc1 + d1e
−τ − d1ω

2 + 3ϵc21d1/4− 3ϵc1c3d1/2 + 3ϵc23d1/2 + 3ϵd31/4

+ 3ϵc21d3/4− 3ϵd21d3/4 + 3ϵd1d
2
3/2 = 0,

(8b)

ϵc31/4 + c3e
−τ − 9c3ω

2 + 3ϵc21c3/2 + 3ϵc33/4− 3ϵc1d
2
1/4 + 3ϵc3d

2
1/2

+ 6kωd3 + 3ϵc3d
2
3/4 = 0,

(8c)

− 6kωc3 + 3ϵc21d1/4− ϵd31/4 + d3e
−τ − 9d3ω

2 + 3ϵc21d3/2 + 3ϵc23d3/4

+ 3ϵd21d3/2 + 3ϵd33/4 = 0.
(8d)

Deducting ω2 from the Eqs.(8b)-(8d), utilizing Eq.(8a), and removing the terms whose
responses are small, we receive

− 8kωc21 + 4Fd1 − 9ϵc21c3d1 − 8kωd21 + 3ϵc3d
3
1 + 3ϵc31d3 − 9ϵc1d

2
1d3 = 0, (9a)

ϵc41 + 36Fc3 − 32c1c3e
−τ − 21ϵc31c3 − 72kωc3d1 − 3ϵc21d

2
1 − 21ϵc1c3d

2
1

+ 24kωc1d3 = 0,
(9b)

− 24kωc1c3 + 3ϵc31d1 − ϵc1d
3
1 + 36Fd3 − 32c1d3e

−τ − 21ϵc31d3 − 72kωd1d3

− 21ϵc1d
2
1d3 = 0.

(9c)
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Figure 1: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) for ω = 10, ϵ = 0.5, k = 0.5, F = 20.

Utilizing Eq.(9a), terminating ω from the Eqs.(9b) and (9c) and taking into account
only the linear expressions of c3, d3 and omitting the expressions whose effects are in-
significant, we obtain

8ϵkc61 + 288kFc21c3 − 256kc51c3e
−τ − 168ϵkC3

1c3 − 16ϵkc41d
2
1 − 256kc1c3d

2
1e

−τ

− 16ϵkc41d
2
1 − 256kc1c3d

2
1e

−τ − 336ϵkc31c3d
2
1 − 24ϵkc21d4 − 168ϵkc1c3d

4
1 = 0,

(10a)

24ϵkc51d1 + 16ϵkc31d
3
1 − 8ϵkc1d

5
1 + 288kFc21d3 − 256kc31d3e

−τ − 168ϵkc51d3

− 256kc1d
2
1d3e

−τ − 336ϵkc31d
2
1d3 − 168ϵkc1d

4
1d3 = 0.

(10b)

By simplifying Eqs.(10a) and (10b), c3 and d3 are obtained as follows:

c3 = ϵc1(c
4
1 − 2c21d

2
1 − 3d41)e

−τ

/(−36Fc1e
τ + 32c21 + 21ϵc41e

τ + 32d21 + 42ϵc21d
2
1e

τ + 21ϵd41e
τ ),

(11a)

d3 = ϵd1(−c41 − 2c21d
2
1 + d41)e

τ

/(36Fc1e
τ − 32c21 − 21ϵc41e

τ − 32d21 − 42ϵc21d
2
1e

τ − 21ϵd41e
τ ).

(11b)

Inserting c3 and d3 in Eq.(9a) and expanding d1 into a power series of λ, we acquire

d1 = l0 + l1λ+ l2λ
2 + l3λ

3 + . . . , (12)

where λ = 2kω/E, l0 = 2c21kω/F , l1 = 16c41k
2ω2/F 2, l2 = 16c61k

3ω3/F 3, l3 =
80c81k

4ω4/F 4. Finally, after inserting c3, d3 and d1 into Eq.(8a) and solving, c1 is ob-
tained. Systematically, d1, c3 and d3 are obtained.

4 Results and Discussion

The proposed method is easy and straightforward. We have successfully applied this
technique to solve the strongly nonlinear forced dynamical damped problems with vary-
ing coefficients and cubic nonlinearity. The solutions have been assimilated with the
corresponding numerical outcomes to rationalize the precision and the correctness of
the mentioned scheme. Comparisons between the solutions acquired by the mentioned
scheme and the numerical technique have been displayed in Figs. 1–5 for nonlinear forced
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Figure 2: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) for ω = 10, ϵ = 1.0, k = 1.0, F = 15.

Figure 3: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) for ω = 3, ϵ = 0.1, k = 0.1, F = 10.

Figure 4: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) for ω = 3, ϵ = 0.5, k = 0.2, F = 10.

vibration problems with varying coefficients for various damping. Moreover, the phase
planes have been traced for different values in Figs. 6 and 7.

Geometrical representation is very important to visualize the behavior of the physical
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Figure 5: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) for ω = 3, ϵ = 0.1, k = 0.1, F = 20.

Figure 6: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) in the phase plane when ω = 10, ϵ = 0.5, k = 0.5, F = 20.

systems since it provides an overall view of the behavior of the nonlinear dynamical
systems. The approximate methods have become more interesting to the scientists,
physicists, engineers and applied mathematicians because of their analytical expression
and suitability for parametric study. From the figures presented, it is noticed that the
obtained results have agreed nicely with the numerical results determined by the fourth
order Runge-Kutta method. In Table 1, a comparison between the results obtained by
the proposed method and the numerical method is given. From the figures and table,
it is observed that the acquired outcomes comply almost accurately with the numerical
outcomes acquired by the fourth order Runge-Kutta technique.

5 Conclusion

A MHBM is exhibited for managing nonlinear forced dynamical equations with varying
coefficients and damping. The convenience of the mentioned scheme is that only one
nonlinear equation is requisite to handle instead of a set of nonlinear algebraic equations.
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Figure 7: Comparison between the outcomes attained by the mentioned technique and the
numerical technique of Eq.(6) in the phase plane when ω = 3, ϵ = 0.1, k = 0.1, F = 10.

Table 1: Comparison between the outcomes achieved by the mentioned and the numerical
techniques.

E = 15, ω = 10, E = 20, ω = 10,
ϵ = 0.1, k = 0.1 ϵ = 0.5, k = 0.5

Time, t Analytical Numerical Analytical Numerical
Solution, xapp Solution, xnu Solution, xapp Solution, xnu

0 -0.151 -0.151 -0.2 -0.2
0.5 -0.046 -0.046 -0.076 -0.076
1 0.125 0.125 0.157 0.157
1.5 0.117 0.117 0.165 0.165
2 -0.059 -0.059 -0.063 -0.061
2.5 -0.151 -0.15 -0.201 -0.89
3 -0.026 -0.026 -0.051 -0.051
3.5 0.136 0.134 0.172 0.17
4 0.103 0.103 0.148 0.148
4.5 -0.077 -0.077 -0.088 -0.085
5 -0.147 -0.146 -0.88 -0.86

It requires less computational effort than the harmonic balance method. The outcomes
acquired by the mentioned technique show a nice similarity with the numerical outcomes
in the figures and table. The mentioned scheme may play an important role for tackling
the forced dynamical systems with varying coefficients and damping.
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