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Abstract: Indonesia is one of tropical countries where dengue fever disease can
spread through Aedes aegypti mosquitoes and sometimes cause deaths. There are
many control strategies to bound the spread of dengue fever: vaccination for control-
ling susceptible humans, treatment for controlling infected humans, and abateseae
(larvacides for killing the mosquito larvae). Optimal control is used for minimizing
the number of infected humans, larvae, infected mosquitoes, the cost of vaccination,
the cost of treatment, and the cost of abateseae. Due to the cost of the objective
function depending on weights, in this research, we will apply the Firefly Algorithm
(FA) to optimize the weights minimizing the cost of the objective function. The FA
is based on the behavior of flashing characteristics of fireflies. Simulations have been
applied and we can obtain the comparison of the number of humans and mosquitoes
with and without control. In addition, we also obtain the optimal weight related
to the number of infected humans, the number of larvae, the number of infected
mosquitoes, the cost of vaccination, the cost of treatment, and the cost of abateseae,
respectively.
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1 Introduction

Indonesia is one of tropical countries where dengue fever disease can spread through Aedes
aegypti mosquitoes and sometimes cause deaths. Based on the data of the Directorate
of Animal Disease Control Source, Ministry of Health Department of the Republic of
Indonesia, in 2011, there were 126,908 cases of dengue with 1,125 deaths [14].

Dengue fever disease is caused by Aedes aegypti mosquitoes. The mosquitoes have 4
life stages: egg, larva, pupa and adult (mosquito). Mosquitoes can live and reproduce
inside and outside the home. The mosquitoes are most frequently found in tropical and
subtropical areas of the world. Aedes aegypti historically is considered to be a primary
vector of viral diseases such as dengue fever, chikungunya and yellow fever. Generally,
the habitats of Aedes aegypti are the areas lacking piped water systems and depend on
water storage containers to lay their eggs. Male and female mosquitoes feed on nectar
of plants. However, female mosquitoes need blood in order to produce eggs, and they
are active in the daytime. Aedes aegypti prefers biting people but it also bites dogs and
other domestic animals, mostly mammals. Only female mosquitoes bite to obtain blood
for laying eggs.

The purpose of modelling epidemics is to provide policies designed to control the
spread of the disease [7]. There are many control strategies to bound the spread of dengue
fever: vaccination for controlling susceptible humans, treatment for controlling infected
humans, and abateseae (larvacides for killing the mosquito larvae). Optimal control is
used for minimizing the number of infected humans, larvae, infected mosquitoes, the cost
of vaccination, the cost of treatment, and the cost of abateseae [6].

From the previous researches, a mathematical model to look for stability of the disease
or for controlling the disease has been contructed [13]. In [16], the dengue fever control has
been applied by vaccination to control the number of susceptible humans to be recovered
humans. However, in Indonesia, dengue fever controls have been applied by vaccination
to control the number of susceptible humans to be recovered humans, and fogging for
devastating the mosquitoes [17]. In this paper, we construct a mathematical model for
controlling dengue fever by vaccination for controlling susceptible humans, treatment for
controlling infected humans, and abateseae (larvacides for killing the mosquito larvae)
for controlling larvae.

In the earlier research from Michalewicz, by heuristic optimization like the Genetic
Algorithm (GA), we can determine an optimal control minimizing the objective function
based on the natural selection of chromosomes [5]. In this research, the Firefly Algorithm
(FA) will be used. The FA was discovered by Xin-She Yang in 2008. It is based on the
behavior of flashing characteristics of fireflies. These insects communicate, search for a
prey, and find mates using bioluminescence with varying flaying patterns. One of the
characteristics of fireflies is the less bright one will move toward the brighter one. A
brighter firefly indicates a better objective function as a fitness function [4].

In the optimal control problem, weight selection is applied by trial and error [2].
Due to the cost of the objective function depending on weights [8], [11], in this research,
we will apply the Firefly Algorithm to optimize the weights minimizing the cost of the
objective function. In the previous research, the Ant Colony Optimization (ACO) has
been applied for SEIR contagious disease [6], [9], [10]. The artificial Bee Colony (ABC)
has been applied for influenza disease [7].

Simulations have been applied and we can obtain the comparison of the number of
humans and mosquitoes with and without control. In addition, we also obtain optimal
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weights related to the number of infected humans, the number of larvae, the number
of infected mosquitoes, the cost of vaccination, the cost of treatment, and the cost of
abateseae, respectively.

2 Optimal Control Dengue Fever Model

Generally, the disease can be modeled as a SIR (Susceptible, Infected, Recovered) epi-
demic model [6]. In the SIR epidemic model, there are three compartments of individuals:
susceptible, infected, and recovered. A susceptible individual can be an infected individ-
ual after making contact with an infected individual based on disease transmission rate.
An infected individual can be a recovered individual when the symptoms of the disease
have gone based on recovery rate [1], [12].

2.1 Mathematical model of dengue fever

The dengue fever model is the development of a standard SIR epidemic model. In the
dengue fever model, there are two different populations such as mosquito as a vector and
human as a host. The compartments of the dengue fever model can be seen in Figure
1 where in the mosquito as a vector one, there are larvae (mosquitoes in aquatic phase)
Am, susceptible mosquitoes Sm, and infected mosquitoes Im, while in the human as a
host one, there are susceptible humans Sh, infected humans Ih, and recovered humans
Rh. The mathematical model of dengue fever can be constructed in equations (1) - (8):

Figure 1: Compartments of the Dengue Fever Model.

dSh

dt
= Λ−Bβmh

Im
Nh

Sh − µhSh − u1Sh, (1)

dIh
dt

= Bβmh
Im
Nh

Sh − ηhIh − µhIh − αhIh − u2Ih, (2)

dRh

dt
= ηhIh + u1Sh + u2Ih − µhRh, (3)

dAm

dt
= φ

(
1− Am

kNh

)
(Sm + Im)− ηAAm − µAAm − u3Am, (4)

dSm

dt
= ηAAm −Bβhm

Ih
Nh

Sm − µmSm, (5)
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dIm
dt

= Bβhm
Ih
Nh

Sm − µmIm, (6)

Nh(t) = Sh(t) + Ih(t) +Rh(t), (7)

Nm(t) = Sm(t) + Im(t), (8)

with the positive solutions

Sh(t) ≥ 0, Ih(t) ≥ 0, Rh(t) ≥ 0, Am(t) ≥ 0, Sm(t) ≥ 0, Im(t) ≥ 0.

The parameters used in the model above are:
Λ : The recruitment rate (birth or immigration) of the human population.
µh : The natural death rate of humans.
µm : The natural death rate of mosquitoes (adult phase).
µA : The natural death rate of mosquitoes (aquatic phase).
B : The average daily biting (per day) of the mosquito.
βmh : The transmission probability (per bite) from infected mosquitoes to humans.
βhm : The transmission probability (per bite) from infected humans to mosquitoes.
φ : The number of eggs at each deposit per capita (per day).
ηh : The recovery rate of the human population.
ηA : The maturation rate from larvae to adult mosquitoes (per day).
αh : The death by the disease rate of humans.

In the human population, the model can be explained as follows. At the suscepti-
ble compartment, the recruitment rate (birth or immigration) can increase the number
of susceptible. However, the disease transmission rate due to the contact with infected
mosquitoes through bitings and the natural death rate can decrease the number of sus-
ceptible. At the infected compartment, the disease transmission rate due to the contact
with infected mosquitoes through bitings can increase the number of infected. How-
ever, the natural death rate, death by the disease rate, and recovery rate can decrease
the number of infected. At the recovered compartment, the recovery rate can increase
the number of recovered. However, the natural death rate can decrease the number of
recovered.

In the mosquito population including larva in aqua phase, the model can be explained
as follows. At the larvae compartment, the recruitment rate can increase the number of
larvae. However, the maturation rate and natural death rate can decrease the number of
larvae. At the susceptible compartment, the maturation rate of larvae can increase the
number of susceptible. However, the disease transmission rate due to the contact with
infected humans through bitings and the natural death rate can decrease the number of
susceptible. At the infected compartment, the disease transmission rate due to the con-
tact with infected humans through bitings can increase the number of infected. However,
the natural death rate can decrease the number of infected.

In addition, there are the control function of susceptible humans vaccinated, u1, the
control function of infected humans treated, u2, and the control function of larvae killed
by abateseae, u3. The effectiveness range of u1, u2 and u3 is [0, 1], where the value 0
means the control functions fail or are not applied, and the value 1 means the control
functions are successful or applied entirely.
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The objective function which will be minimized is

J(u, v)=

∫ tf

0

(
W1Ih(t)

2 +W2Am(t)2 +W3Im(t)2 +W4u1(t)
2 +W5u2(t)

2 +W6u3(t)
2
)
dt

(9)
with the weights W1 > 0,W2 > 0,W3 > 0,W4 > 0,W5 > 0,W6 > 0. From the model,
we want to minimize the number of infected humans, the number of larvae, the number
of infected mosquitoes, the cost of vaccination, the cost of treatment, and the cost of
abateseae.

The goal is finding u∗
1, u

∗
2, u

∗
3 such that

J(u∗
1, u

∗
2, u

∗
3) = min(J(u1, u2, u3)). (10)

2.2 Pontryagin’s maximum principle

If u∗
1, u

∗
2, u

∗
3 are the optimal control, there exist the adjoint variables(

λ1 λ2 λ3 λ4 λ5 λ6

)
which satisfy the following [3]:

dλ1

dt
= − ∂H

∂Sh
= λ1Bβmh

Im
Nh

+ λ1µh + λ1u1 − λ2Bβmh
Im
Nh
− λ3u1, (11)

dλ2

dt
= −∂H

∂Ih
= λ2ηh + λ2µh + λ2αh + λ2u2 − λ3ηh − λ3u2 +

λ5Bβhm
Sm

Nh
− λ6Bβhm

Sm

Nh
− 2W1Ih, (12)

dλ3

dt
= − ∂H

∂Rh
= λ3µh, (13)

dλ4

dt
= − ∂H

∂Am
= λ4φ

Sm + Im
kNh

+ λ4ηA + λ4µA + λ4u3 − λ5ηA − 2W2Am, (14)

dλ5

dt
= − ∂H

∂Sm
= −λ4φ+ λ4φ

Am

kNh
+ λ5Bβhm

Ih
Nh

+ λ5µm − λ6Bβhm
Ih
Nh

, (15)

dλ6

dt
= − ∂H

∂Im
= λ1Bβmh

Sh

Nh
− λ2Bβmh

Sh

Nh
− λ4φ+

λ4φ
Am

kNh
+ λ6µm − 2W3Im, (16)

with the final conditions λ1(T ) = λ2(T ) = λ3(T ) = λ4(T ) = λ5(T ) = λ6(T ) = 0, where
the Hamiltonian is

H = W1Ih(t)
2 +W2Am(t)2 +W3Im(t)2 +W4u1(t)

2 +W5u2(t)
2 +W6u3(t)

2

λ1

(
Λ−Bβmh

Im
Nh

Sh − µhSh − u1Sh

)
+

λ2

(
Bβmh

Im
Nh

Sh − ηhIh − µhIh − αhIh − u2Ih

)
+

λ3 (ηhIh + u1Sh + u2Ih − µhRh)+
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λ4

(
φ

(
1− Am

kNh

)
(Sm + Im)− ηAAm − µAAm − u3Am

)
+

λ5

(
ηAAm −Bβhm

Ih
Nh

Sm − µmSm

)
+ λ6

(
Bβhm

Ih
Nh

Sm − µmIm

)
. (17)

Furthermore, we can find the optimal control u∗
1, u

∗
2, u

∗
3 :

∂H

∂u1
= 0,

2W4u1 − λ1Sh + λ3Sh = 0,

u1 = min

(
1,max

(
0,

(λ1 − λ3)Sh

2W4

))
,

∂H

∂u2
= 0,

2W5u2 − λ2Ih + λ3Ih = 0,

u2 = min

(
1,max

(
0,

(λ2 − λ3) Ih
2W5

))
,

∂H

∂u3
= 0,

2W6u3 − λ4Am = 0,

u3 = min

(
1,max

(
0,

λ4Am

2W6

))
. (18)

2.3 Forward-backward sweep method

The forward backward sweep method applied to the optimal control dengue fever model
can be designed as follows [3]. Suppose the state variables and the adjoint variables are

f1 =
dSh

dt
, f2 =

dIh
dt

, f3 =
dRh

dt
, f4 =

dAm

dt
, f5 =

dSm

dt
, f6 =

dIm
dt

,

g1 =
dλ1

dt
, g2 =

dλ2

dt
, g3 =

dλ3

dt
, g4 =

dλ4

dt
, g5 =

dλ5

dt
, g6 =

dλ6

dt
.

The algorithm to compute the objective function as the fitness function with the param-
eter weights W1 > 0,W2 > 0,W3 > 0,W4 > 0,W5 > 0,W6 > 0 is:
control dengue(W1,W2,W3,W4,W5,W6) while (process has not converged yet) uold = 0.

1. Compute the solution of state variables forward with the initial condition
x(0) = (Sh(0), Ih(0), Rh(0), Am(0), Sm(0), Im(0)) using the Runge-Kutta fourth-
order method:

k1i = fi (t, xi(t), u1(t), u2(t), u3(t)) , i = 1, 2, . . . , 6,

k2i = fi

(
t+

h

2
, xi(t) +

h

2
k1i,

u1(t) + u1(t+ h)

2
,

u2(t) + u2(t+ h)

2
,
u3(t) + u3(t+ h)

2

)
, i = 1, 2, . . . , 6,
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k3i = fi

(
t+

h

2
, xi(t) +

h

2
k2i,

u1(t) + u1(t+ h)

2
,

u2(t) + u2(t+ h)

2
,
u3(t) + u3(t+ h)

2

)
, i = 1, 2, . . . , 6,

k4i = f (t+ h, xi(t) + hk3i, u1(t+ h), u2(t+ h), u3(t+ h)) , i = 1, 2, . . . , 6,

xi(t+ h) = xi(t) +
h

6
(k1i + 2k2i + 2k3i + k4i) , i = 1, 2, . . . , 6.

2. Compute the solution of adjoint variables backward with the final condition
λ(0) = (λ1(T ), λ2(T ), λ3(T ), λ4(T ), λ5(T ), λ6(T )) using the Runge-Kutta fourth
order method:

k1i = gi (t, xi(t), λ1(t), u2(t), u3(t)) , i = 1, 2, . . . , 6,

k2i = gi

(
t− h

2
,
xi(t) + xi(t− h)

2
, λi(t)−

h

2
k1i,

u1(t) + u1(t− h)

2
,

u2(t) + u2(t− h)

2
,
u3(t) + u3(t− h)

2

)
, i = 1, 2, . . . , 6,

k3i = gi

(
t− h

2
,
xi(t) + xi(t− h)

2
, λi(t)−

h

2
k2i,

u1(t) + u1(t− h)

2
,

u2(t) + u2(t− h)

2
,
u3(t) + u3(t− h)

2

)
, i = 1, 2, . . . , 6,

k4i=gi (t− h, xi(t− h), λi(t)− hk3i, u1(t− h), u2(t− h), u3(t− h)) , i = 1, 2, . . . , 6.

λi(t− h) = λi(t) +
h

6
(k1i + 2k2i + 2k3i + k4i) , i = 1, 2, . . . , 6.

3. Compute the optimal control u∗
1, u

∗
2, u

∗
3 using equations (18).

4. Update the optimal control

u1 ←
u1 + u1,old

2
, u2 ←

u2 + u2,old

2
, u3 ←

u3 + u3,old

2
(19)

End

5. Compute the objective function as the fitness function

J(u1, u2, u3) =

T−1∑
k=0

(
W1Ih(k)

2 +W2Am(k)2 +W3Im(k)2 +W4u1(k)
2+

W5u2(k)
2 +W6u3(t)

2
)
. (20)
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3 Firefly Algorithm

The Firefly Algorithm (FA) was discovered by Xin-She Yang in 2008. It is based on the
behavior of flashing characteristics of fireflies. These insects communicate, search for a
prey, and find mates using bioluminescence with varying flaying patterns. The FA is
based on the rules [4]:

1. All fireflies are unisex so they attract one another.

2. Attractiveness is proportional to firefly brightness. For any couple of flashing fire-
flies, the less bright one will move toward the brighter one. Attractiveness is pro-
portional to brightness and they both decrease as their distance increases. If there
is no a brighter one than a particular firefly, it will move randomly.

The brightness of a firefly is affected or determined by the landscape of the objective
function. In the FA, the attractiveness of a firefly is assumed to be determined by
its brightness which is related to the objective function. The brightness of a firefly at
a particular location x can be chosen as f(x), where f(x) is the objective function.
However, if the attractiveness β is relative, it should be judged by the other fireflies.
Thus, it will vary with the distance rij between the firefly i and the firefly j.

In this algorithm, the weights used are W1,W2,W3,W4,W5,W6 related to the number
of infected humans, the number of larvae, the number of infected mosquitoes, the cost of
vaccination, the cost of treatment, and the cost of abateseae, respectively.

The overall algorithm for optimizing the weights W1,W2,W3,W4,W5,W6 using the
FA is as follows:

1. Generate the initial population position of fireflies xi =(
W i

1,W
i
2,W

i
3,W

i
4,W

i
5,W

i
6

)
, i = 1, 2, . . . ,max pop, and compute the fitness

value

f(xi) = control dengue
(
W i

1,W
i
2,W

i
3,W

i
4,W

i
5,W

i
6

)
i = 1, 2, . . . ,max pop.

2. Determine the best firefly in the population with its position

imin ← argmin
i

(
f(xi), i = 1, 2, . . . ,max pop

)
, (21)

ximin

← argmin
xi

(
f(xi), i = 1, 2, . . . ,max pop

)
. (22)

3. Do the iteration as follows:
for i = 1 : max pop
for j = 1 : max pop
if (f(x)j < f(xi)).

a. Compute the distance between the firefly i and the firefly j

rij =
∥∥xi − xj

∥∥ =

√√√√ T∑
t=1

(
xi
t − xj

t

)2

.

b. Compute the attractiveness function of a firefly β ← β0e
−γrij .

c. Generate ui = α
(
rand− 1

2

)
, with rand ∼ U(0, 1).
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d. Update the movement of the firefly i

xi ← (1− β)xi + βxj + ui

end
end
end
Generate uimin = α

(
rand− 1

2

)
, with rand ∼ U(0, 1).

Update the movement of the best firefly

ximin

← ximin

+ uimin .

4. Repeat step 3 until stopping criteria is achieved.

4 Simulation Results

Parameters used in the FA simulations are β0 = 1, γ = 5, α = 0.1 with the number of
fireflies being 10 and maximum iterations being 50. Parameters used in the dengue fever
model are [15], [16]:

Parameters Value
The recruitment rate (birth or immigration) of the human population Λ 3
The natural death rate of humans µh

1
(70×365)

The natural death rate of mosquitoes (adult phase) µm 0.0741
The natural death rate of mosquitoes (aquatic phase) µA 0.2
The average daily biting (per day) of the mosquito B 0.5
The transmission probability (per bite) from infected mosquitoes
to humans βmh 0.38
The transmission probability (per bite) from infected humans
to mosquitoes βhm 0.38
The number of eggs at each deposit per capita (per day) φ 3
The recovery rate of the human population ηh 0.17
The maturation rate from larvae to adult mosquitoes (per day) ηA 0.0541
The death by the disease rate of humans αh 0.000457

Table 1: Parameters of the Dengue Fever Model.

The simulations of the optimal control dengue fever model can be seen in Figures 3-5,
while Figure 2 is the FA simulation.

Figure 2 shows the optimization process of the FA. At the first iteration, the positions
of fireflies are random. In the optimization process, we update the brightness of fireflies
so that the fireflies move toward the brighter firefly with the minimum fitness function.
Optimal weights obtained are W1 = 0.641,W2 = 0.110,W3 = 6.040,W4 = 5.581,W5 =
7.443,W6 = 1.990 with the minimum fitness being 4.529× 1012.

Figure 3 shows the numerical solution for larvae with and without control. The
number of larvae with control is lower than that without control because of the abateseae
effect which decreases the number of larvae. The decreasement of larvae will cause the
decrease of the number of susceptible mosquitoes and infected mosquitoes.
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Initial Value Value
Susceptible humans Sh(0) 39850
Infected humans Ih(0) 50
Recovered humans Rh(0) 100
Larvae Am(0) 50
Susceptible mosquitoes Sm(0) 1500
Infected mosquitoes Im(0) 100

Table 2: Initial Value of Dengue Fever Model.

Figure 2: The FA Optimization Process.

Figure 3: Numerical Solutions for Mosquitoes as a Vector. (a) Larvae. (b) Susceptible
Mosquitoes. (c) Infected Mosquitoes.

Figure 4(a) shows the numerical solution for susceptible humans with and without
control. The number of susceptible humans with control is lower than that without
control because of the vaccination effect which decreases the number of susceptible hu-
mans. Figure 4(b) shows the numerical solution for infected humans with and without
control. The number of infected humans with control is lower than that without control
because of the treatment effect which decreases the number of infected humans. Figure
4(c) shows the numerical solution for recovered humans with and without control. The
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number of recovered humans with control is higher than that without control because of
the vaccination and treatment effect which increases the number of recovered humans.

Figure 4: Numerical Solutions for Humans as a Host. (a) Susceptible Humans. (b) Infected
Humans. (c) Recovered Humans.

Figure 5 shows the control function of vaccination, the control function of treatment
and the control function of abateseae. Each of the control functions has the range of
effectiveness between 0 to 1, where the value 0 means the control functions fail or are not
applied and the value 1 means the control functions are successfull or applied entirely.

Figure 5: Control Function Solutions. (a) Vaccination. (b) Treatment. (c) Abateseae.

5 Conclusion

The FA can optimize the weights of the optimal control dengue fever model. From the
simulations, the positions of fireflies are random. In the optimization process, we update
the brightness of fireflies so that the fireflies move toward the brighter firefly with the
minimum fitness function. When the FA has obtained optimal weights related to the
number of infected humans, the number of larvae, the number of infected mosquitoes,
the cost of vaccination, the cost of treatment, and the cost of abateseae, respectively,
the optimal weights are applied in dengue fever simulation. Based on the parameters of
the dengue fever model, we can compare the numerical solutions for larvae, susceptible
mosquitoes, infected mosquitoes in the mosquito population and the susceptible humans,
infected humans, and recovered human in the human population when the vaccination,
treatment, and abateseae controls are applied.



248 A. Y. ASIH, et al.

References

[1] F. Brauer and C. Castillo-Chavez. Mathematical Models in Population Biology and Epi-
demiology. Springer, New York, 2012.

[2] J. B. Burl. Linear Optimal Control. CA : Addison-Wesley, Menlo Park, 1999.

[3] S. Lenhart and J.T. Workman. Optimal Control Applied to Biological Models. CRC Press,
London, 2007.

[4] X. S. Yang, Z. Chui and R. Xiao. Swarm Intelligence and Bio-Inspired Computation. Else-
vier, 2013.

[5] Z. Michalewicz, J. B. Krawczyk and C. Z. Janikow. A Modified Genetic Algorithm for Op-
timal Control Problem. Computers Math Application. 23 (1992) 83–94.

[6] D. Rahmalia, and T. Herlambang. Application Ant Colony Optimization on Weight Selec-
tion of Optimal Control SEIR Epidemic Model. Proceeding The 7th Annual Basic Science
International Conference (2017) 196–199.

[7] D. Rahmalia and T. Herlambang. Weight Optimization of Optimal Control Influenza Model
Using Artificial Bee Colony. International Journal of Computing Science and Applied Math-
ematics 4 (2018) 27–31.

[8] T. Herlambang, D. Rahmalia and T. Yulianto. Particle Swarm Optimization (PSO) and Ant
Colony Optimization (ACO) for Optimizing PID Parameters on Autonomous Underwater
Vehicle (AUV) Control System. Journal of Physics : Conference Series 1211 (2019) 123039.

[9] T. Herlambang, D. Rahmalia, H. Nurhadi, D. Adzkiya and S. Subchan. Optimization of
Linear Quadratic Regulator with Tracking Applied to Autonomous Underwater Vehicle
(AUV) Using Cuckoo Search. Nonlinear Dynamics and Systems Theory 20 (3) (2021) 282–
298.

[10] T. Herlambang, S. Subchan, H. Nurhadi and D. Adzkiya. Motion Control Design of UN-
USAITS AUV Using Sliding PID. Nonlinear Dynamics and Systems Theory 20 (1) (2020)
51–60.

[11] A. Khernane. Numerical Approximation of the Exact Control for the Vibrating Rod with
Improvement of the Final Error by Particle Swarm Optimization. Nonlinear Dynamics and
Systems Theory 20 (2) (2021) 179–190.

[12] E.R.M. Putri, M. Iqbal, M. L. Shahab, H.N. Fadhilah, I. Mukhlash, D.K. Arif, E. Apriliani
and H. Susanto. COVID-19 Outbreak Prediction in Indonesia Based on Machine Learning
and SIRD-Based Hybrid Methods. Nonlinear Dynamics and Systems Theory 21 (5) (2021)
494–509.

[13] D. Rahmalia. Pemodelan Matematika dan Analisis Stabilitas dari Penyebaran Penyakit Flu
Burung. Unisda Journal of Mathematics and Computer Science (UJMC) 1 (2015) 11–19.

[14] R. Widyaningrum, S. Partiwi, A. Rahman and A. Sudiarno. Prediction of Dengue Fever
Epidemic Spreading Using Dynamics Transmission Vector Model. Indonesian Journal of
Tropical and Infectious Disease 5 (2014) 41–48.

[15] R.W. S. Hendron and M.B. Bonsall. The Interplay of Vaccination and Vector Control on
Small Dengue Networks. Journal of Theoretical Biology 407 (2016) 349–361.

[16] H. S. Rodrigues, M.T. Monteiro and D.F.M. Optimal Control of a Dengue Epidemic Model
with Vaccination. AIP Conference Proceedings 1389 (2011).

[17] I. Fitria, W. Winarni, S. Pancahayani and S. Subchan. An Optimal Control Strategies Using
Vaccination and Fogging in Dengue Fever Transmission Model. AIP Conference Proceedings
1867 (2017).


	Introduction
	Optimal Control Dengue Fever Model
	Mathematical model of dengue fever
	Pontryagin's maximum principle
	Forward-backward sweep method

	Firefly Algorithm
	Simulation Results
	Conclusion

