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Abstract: In the present paper, some new explicit bounds on solutions to a class of
new nonlinear retarded integral inequalities of Volterra-Fredholm type for the func-
tions of n-independent variables are established, which generalize some known integral
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1 Introduction

It is well known that the Gronwall-Bellman integral inequality [3,8] and its various gener-
alizations which provide explicit bounds on unknown functions have played an important
role in the study of existence, uniqueness, boundedness, and other qualitative proper-
ties of solutions of differential equations, integral equations and have been applied in
the stability analysis of solutions to dynamic equations on time scale [1,|12]. Recently,
many authors have further improved more general forms of this inequality [2,{4l/6]. In the
past few decades, many such new interesting retarded integral inequalities of Volterra-
Fredholm type were established [10}/15].
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In [13] and [14], respectively, Pachpatte has established the following useful linear
Volterra-Fredholm type integral inequalities with delay:

a(T)
ds + / b(t, s)u(s)ds, (1)

alt) s
u(t) <k —|—/ a(t, s) [f(s)u(s) —|—/ e(s, m)u(r)dr -

(to) (to)

B(y) a(M)
u(x,y) <c—|—/ / a(z,y, s, t)u (stdtd$+/ / b(x,y, s, t)u(s,t)dtds.
a(wo) B(yo)

(2)
In [11], Ma and Pecarié¢ discussed the following nonlinear retarded Volterra-Fredholm
integral inequality:

u(z,) <k+/£m/ﬂw [(s. ) (s 1)
+/:(IO)/ o) oo (1, 8w (u(T,§))d§dT] dtds
QAW)/éf [F(s. ) (u(s, 1)

—|—/a(m0) /ﬁ(zo) o2 (7, §)w (u(T, §))d§d7’] dtds. (3)

El-Deeb and Ahmed [5] have established the following useful Volterra-Fredholm type
integral inequality with delay which generalizes some results obtained in [9]:

a(t) b
PO <)+ [ g+ [ o) (4)
a a

However, in certain situations such as some classes of delay differential or integral equa-
tions of Volterra-Fredholm type, it is desirable to find some new delay inequalities in
order to achieve a diversity of desired goals. In this paper, we discuss a class of retarded
integral inequalities of Volterra-Fredholm type. We use some analysis techniques to get
the explicit estimations of the unknown function in the inequality. Finally, we give an
application to illustrate the usefulness of our results.

2 Main Results

Throughout this paper, we use the following notations: I = [2°,7] = I X ... X I,
where I; = [2,T;], i = 1,..,n, and 2° = (29,...,29), T = (Ty,...,T,) € R", A =
{(x,s) el?:2x'<s<z< T}. Ifz=(x1,...,2n) and y = (Y1, -+, Yn) belong to R™, we
write z < y (z < y) if and only if z; < y; (x; < y;), ¢ = 1,...,n. We also adopt the
notation z = (21,2, ..., 2,) = (71, 2'), where 2! = (z2, ...,xn), (330)1 = (gcg, ...,x2)7 and

e D, = ax ,i=1,...,m,
o da' =dx,...dxs,
o ds= [T . f;ﬁ, . dsy = f“f L ...dstdsy,

Ty n
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o fa(ﬂﬂ) .ds = fal(wl) ,,,fa”(zn) cudSy,...dsy.

a(z0) * a(z]) a(z))

In the following, we establish some new generalized Volterra-Fredholm type integral
inequalities in n-independent variables.

Theorem 2.1 Let u(z) € C(I,Ry), f(z,s),1(x,s),%(xz,s) € C(AR}) and
f,71,72 be nondecreasing in x for each s € I,a(z) = (ai(x1),...,an(x,)) € CH(I,1),
where a;(x;) € C* (I, I;) are nondecreasing functions on I; with o;(z;) < @4, i =1,...,n.
Let Y,w,w; € C(R4+,Ry) be nondecreasing with {¢,w, w1} (u) > 0 for u > 0, and

d

ull}rfoo (u) = +o0 and F1(v) = [, sorwiorm—my ¥ = Yo > 0, Fi(+o0) = +o0.

If u(z) satisfies

+ [ e ) [/ (@, ) (u(s))

+/a(zo)’y2(s,7')w1(u(7'))d7'] ds (5)

for x € I, where ug > 0 is a constant and

Hy(t) = F1(2t — uo) — Fi(t) (6)
1s increasing for t > ug, then

-1 -1 -1 (1) ° s <
u@w) < v {F (F i, ( [ s | s [ sate | d
a(z) s
+/a(x0) v (z, s) [f(:r,s) +/a(z0)'yg(s,7')d'r] ds)} (7)

forxel, Fl_1 and Hl_1 are the inverse functions of F1 and H, respectively.

Proof. Let ug > 0 and fix any arbitrary X = (Xi,...,X,,) € I, then for 2° < z <
X < T, we define a positive and nondecreasing function z(x) on I by the right-hand side
of (B)) for z € I, so we have

u(z) < v (2(a)), (®)
and
Di.Dyx(z) < (XK. a(@)(! ((a(@) (X o) @ (o)
+/am (o), PYr (" (2(r)))dr | o ()
a(zo)r}/Q ’ !
< 'Vl(Xval(xl)?"'van(mn))(wwl)(w_l (z(al(x1)7“'7an(xn))))

[f(X,al(ml), oy () + /al(xl) /a%(xn) Yo(a(x), 1, ooy Tn)

o (@) n(2)

d’Tn...d’Tl} ol (x1)...al, (z,).
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So

D;...Dpz(x) <
(wwr) (=M (z(2)))  —

(X, a1 (@1), ooy () [f(X,al(xl), ey O (a0)) +

(ajl) n(xn)
/ / Yol(a(x), ooy atn (), T1y ooy Tr )T dmy

1(29) n(af)

o (x) X o x al(xy),

then

Dn< D1 Dn12(2) ) < fyl(X,al(:cl),...,an(xn))[f(X,al(zl),...,an(xn))+

(wwr) (P~ 1(z(x)))
ay(z1) an(zn)
/ / Yo(a1(x1), ooy an(Tn), T1y ooy Tn)

I(CE?) an(l‘%)

dTn...dﬁ}a;(m) X o X 0l (). 9)

Keeping 1, ..., z,_1 fixed in @, setting x,, = s, and integrating with respect to s,, from
2 to x,, we get

Dy..Dy1z(z) /%W)
(wwr) (=1 (2())) an(29)
/(X1 (@1), s @1 (1), 50) +
ay(z1) Sn
/ / Vo1 (x1)y ooy Ap—1(Tp—1), Sn, Tty ooy Tn)
« 0 an (z9)

1(29)
dTn...dﬁ}all(xl) X oo X al, 1 (p_1)ds,.

Vl(Xa 041(1‘1), L) Oén—l(xn—l), Sn)

Repeating this, we find (after n — 1 steps)

Dy z(z) /0@(12) /Oén(l’n)
T 17 7 N\ S ’Yl(X’Oél(Jfl),SQ,...,Sn) [f(Xaal(x1)782?"'a3n)
wwi (Pt (2(x))) aa(22) an (29)
ai(z1)  ps2 Sn
+/ / / Yo (1(X1), 82, ey Spy T1y oery Tn)
al(I[l)) a2($g) an(z9)
dTn...dT1:| o (z1)dsy...dss. (10)

Keeping 2! = (z2,...,2,) fixed in , replacing x; by s; and then integrating with
respect to s; from x‘f to x1, we obtain

a(z)

S

Z@SFﬁ<EMﬁw%+/

1(X, s X,s
[ ﬂﬂ )+

fyg(s,T)dT} ds) (11)
a(x9)

for x € I. From the equation

a(T) s

a(z0)

v1(X, s)w(u(s)) lf(X,s)wl(u(s)) —|—/ ’)/Q(S,T)wl(u(T))dT] ds,

(29)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 23 (3) (2023) 265

we observe that

a(T)

2AT) = 2z2(29,2') —up = up + 2/ 11(X, s)w(u(s)) [f(X, s)wi (u(s))

(0)

+/a(x0) ’YQ(S,T)wl(U(T))dT] ds.

Using , we get

a(T)

22(xV, xl)—uy < F1_1 (Fl( (29, 21) _|_/( . 1(X,s) [f(X, s) —|—/i 5 WQ(S,T)dT] ds) ,

or
0 1 L a(T) s
Py (22et) — ) = FrCetada) < [ i) (169 + [ vatsmlar | ds,
a(z?) a(z)
(12)
then Hl( 2(29, @ ) < fa(z:[;)) (X [f(X s +f( 0) 2 (s, T)dT} ds. Since H; is increas-

ing, for t > ug, we get

a(T) s
2(2y, 2') < Hy (/a(mo) 7 (X, s) lf(X,s) +/Q(I0)W(S’T)d7] ds) ) (13)

Since X € I is chosen arbitrary, now substituting into and from 7 we obtain
the desired inequality . If ug = 0, we carry out the above procedure with £ > 0 instead
of ug and subsequently let ¢ — 0. O

Remark 2.1 For y1 =1, 72 = 0, ¥(u) = w1 (u) = u, w(u) = 1 and 2% = (x3,...,T,,)
fixed, inequality reduces to inequality .

Remark 2.2 For ¢(u) =u, ’Yl(xa 5) = '71(5)7 72(577_) = 72(7—)7 f((l?, S) - f(s)a w(u) =
1 and ! fixed, reduces to . Further, for ¥(u) = u, v1(x,s) = y(s), 12(s,7) =
Yv2(7), f(z,8) = f(s), w(u) = 1 and z* fixed, Theoremreduces to Theorem 3.1 in |11].

Theorem 2.2 Let u, f,g,h € C (I,R}) and a(z) = (a1(z1), ..., an(z)) € CT (I, 1),
where a;(x;) € CY (I; , I;) are nondecreasing functions on I; with a;(x;) < x4, i =1,...,n
Let wy,wa, w3, 52 € C(R4,R;) be nondecreasing with w;(u) > 0 (i = 1,2,3) for u > 0,
and

(" ds ” = ng(Gl_l(s))ds s o) = o) — o0
G1(T)—/TO Fle(S),C&( )_/ro " (G L8 G (5) > 19> 0,G1(00) = Ga(o0) = ( ,)
14

a(T)

Hy(u) = G2(G1(2u—up)) — G2 (Gl(u) +/ f(S)g(S)d«S)

(0)

a(T) s
— s h(T)dr | ds 15
/WO)“)(/M ™) ) (15)
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is increasing, and Hi(u) = 0 has a solution ¢ for u > ug. If u(x) satisfies

a(z) s

u(z) < u0—|—/

wa@mwwnp@w@m»+/

h(T)ws (’UJ(T))dT‘| ds
a(z?)

S

a(T)
+/a(m0) f(s)wi(u(s)) [Q(S)WQ (u(s)) _|_/a

a(z) a(x) s
Go (Gl(c) +/Q(zo) f(s)g(s)ds) +/a(z0) f(s) (/a(mo)h(T)dT> ds]})

(17

o) ]’L(T)W3(U(T))d7’] ds, (16)

then

u(z) < Gy! {Gz_l

for x € I, where Gl_l, GQ_1 are the inverse functions of Gy, G2, respectively.

Proof. Let ug > 0 and z(z) denote the function on the right-hand side of (16]), which
is positive and nondecreasing function on /. Then we have

u(z) < z(x), (18)

and

a(T) s
z@%f>:w+/“ f@MAM@>m$wum»+/“ MﬂmeDMLm

(=) a(z?)

Differentiating z(x) with respect to z, using , we have

DMDM@%Qﬂ@fm@Dm@m@»)MM@MAAM@D+/

a(z9)

a(x)

h(T)W3(Z(T))dT]

by the monotonicity of wi, ws, and z and the property of a. From the above inequality,
we have

a(z)

gdwvmwnkmw»+/ Mﬂ“*“?my

(z0) wa (2(7))

D;...Dpz(x)
(wiw2)(2(z))

or

D, <Dan_1z(:c)> < Ay (z1).al (@) f (ar(z1),y oy ap(20)) [g(al(zl), vy @ (y))

wiws (2(x))
ai(z1) an(zn) ’
—|—/ / h(T17...7Tn)MdTn...dT1 .
a1 (z9) o (29) w2 (Z(Tlv sy Tn))

Keeping z1, ..., 7,1 fixed, integrating both sides of the above inequality from z¥ to z,,
we obtain
Dl..anlz(CE)

wiws(z(z))

an(@n)
/a F(1(@1), ey riet (Tt 5n) [g(al(xl)...,an_l(xn_l),sn)

n(2f)
+/a1(1‘1) /anl(ﬂﬁnl)/sn W - )w3(z(7’1,...,7’n))
aq(z?) on—1(x?_1) Jan(z9) w2 (Z(T17 "'77-"))

dTn...dTl}O/l(l'l) X o X a1 (n_1)ds,.
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Continuing this process, we obtain (after n — 1 steps)

Dy z(z) /Cm(”m) /Oén(ffn)
— < Jlai(z1), 82,5 80) [g(a1(®1), 52, .0, 80) +
wiw2 Z(x)) az(z9) an(z9) [
(11(331)
/ / (71, ey Tn) wa (271, 1) Tn )>d7‘n .dm
ay(z9) 042(3?2) an(z9) w2 (Z(Tlv "'7Tn))
o) (x1)ds".

Integrating the above inequality from x{ to z1, using , we obtain

a(z) 5 wa(z(T
G (2(z)) < Gi(2(a?,2Y)) +/a(zo) £(s) 1g(s) _|_/a(z0) h(Tl,.--,Tn)wj((z((T))))dT] ds
< Geha)+ [ e

" : wa(z(r)
+A(x0) f(s) (/Q(IU) h(r, ...,Tn)ow(q_))m-) ds (19)

for all z € [2°, X], X € I, and X is chosen arbitrarily. Let v(z) denote the function on the
right-hand side of , which is positive and nondecreasing in each variable z € [2°, X].

From ([19), we have

2(z) < G7Y (v(z)), Vo e[ X], (20)
a(X)
v(d,2') = Gy (2(a, 2 1))+/ f(s)g(s)ds.
a(z9)

Differentiating v(x) with respect to x, by the monotonicity of v, Gl , and “3 , the property
of o, and (| ., we have

a(x)
Di..Dyv(z) < d'(2)f (a(z)) ws(Gl(v(:c)))/ h(T1, .y Tn)dT
a(x9)
for all z € [2°, X]. Then we have

wa (G7! (v(2))) Dy...Dyo(x)
w3(GT' (v(z)))

b, <w2 (GT! (v(2))) Dl...Dnlv(:c)>

a(z)
<@ () [ IR
<d(z)f (oz(x))/ h(T1, .oy Tn)dT.

a(z9)

w3(GT ' (v(2)))

Keeping z; fixed, integrating both sides of the above inequality with respect to o, ..., Ty,
respectively, we obtain (after n — 1 steps)

wa (Gl_l (v(z))) Dyv(z) D) an (@)
ws(GT (v(x))) = /a "'/a"(wo

far(z1), s2,..., $n) X
Z(wz

al(wl)
/ / / R(T1,s ooy T )dTy...dTy | dsta ().
(z9 az(z9) o (29)
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Integrating both sides of the above inquality from z{ to x1, using , we obtain

a(x) s
Gs (v(z)) < Gy (v(m?,ml)) —|—/ f(s) (/ h(T)dT) ds,

a(z0) (0)

or

v(z) < Gy'

a(z) s

Gs (v(af,z")) +/ f(s) (/ h(T)dT) ds} . Vee[2% X]. (21)
a(z9) a(z9)

From and , we have

a(z) s
Gy (v(29, 2! s h(T)dr | ds| ;.
(o ))+/a<m0)f<></a($o) ™ ) H
0

Substituting v(x?,z!) into the above inequality, and since X is chosen arbitrarily, we
have

2(x) <Gyl (w(x) <Gy {Gz_l

a(x)

2(x) < Gyt {GJ

Gy <G1 (2(2f,2")) + / . f(s)g(s)ds)

a(x) s
+ /a {6 ( /a (mo)h(T)dT> ds } (22)

By the definition of z and the expression of z (z,z'), we have 2z (2, z') — up = 2(T).

From , we have

a(T)
2z (29,2") —up < Gt {G;l Gy <G1 (2(29,2")) + /( 5 f(s)g(s)ds)
a(T) s
s h(t)dr | ds| » ,or
+/a(z0)f()</a(mo) (") ) }
a(T)
G2 (G1 (22 (2%, 2") —wg)) < Go <G1 (2(29,2Y)) + /( . f(s)g(s)ds)

a(T) s
+/a(10) f(s) </oé(x0) h(T)dT) ds. (23)

By the definition of H;, the assumption of Theorem and 7 we observe that
Hy (2(29,2")) <0=H; (c). (24)

Since H; is increasing, from , , and , we have the desired estimation . If
ug = 0, we carry out the above procedure with € > 0 instead of vy and subsequently let
e—0. 0O
Remark 2.3 If wo = w3, and for 22 = (x3,...,1,) fixed, Go(u) = u — ug, and
G5 (u) = u + ug, is equivalent to
a(x) s
g(s) —|—/ h(r)dr| ds .
a(x0)

u(z) < G;l {Gl(c) —|—/( 5 f(s)

Theorem reduces to Theorem 3.1 in [11].
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Theorem 2.3 Let u, f,o, ug be as in Theorem 2.1], a(z,s), b(z,s), c(z,s), g(z,s),
d(z, s) be the functions of C (A, R) nondecreasing in x for each s € I, and 0 < p < 1
be a constant. If u(x) satisfies

u(z) < wo —|—/ a(z, s) [f(x,s)u(s) +/( 0)b(s,T)u(T)dT] ds

a(T) s
+~/a(a;0) c(x, 8) lg(a@s)up(s) + /a(wo) d(s,T)up(T)dT] ds (25)

forz €I, and
S * ° "
exp ( /a L [f (2, 5) + /a (IO)%(S,T)dT] ds) <2, (26)
then
1— (=) * * 3 *
u(z) < {(1+<c> ) exp ((1 -0 [ i [f @+ | (wo)fyZ(s,T)dT] ds>
—1}ﬁ (27)

for x € I, where c is the solution of the equation

1 14+ @2t —u)? oD
HQ(t) = — In + ( 1I_L0) - /
1—»p 1+t¢i-p a(z0)

S

i (z,5) [f*(LS) +/ Vg(svT)dT] ds =0
a(z9)

(28)

for t > ug, where v (x,s) = max {a(z,s),c(z,s)}, f*(x,s) = max {f(x,s),g(x,s)}, and

73 (,5)) = max {b(x, 5), d(x, s)}.

Proof. Let W € C(R4,R4) so that W(u) = u+u” is nondecreasing, so it is obvious
that u, u? < W(u). From and the assumptions, we get

a(x)

wa) < we+ [

S

e [f*(%S)W(u(S)) +f

a(z9)

o) ’y;(S,T)W(U(T))dT] ds

[ i [f*(fm W (ule)) + [

(0) a(z0)

5 (s, )W (u(T)) d’T] ds.

Fix any arbitrary X = (X1,...,X,,) € I, then for 2° < 2 < X < T, define a positive and
nondecreasing function z(z) on I by

S

a(z)
z(x) = wo +/a<$0) 71 (X, s) lf (X, )W (uls)) +/a(:c°)

¥ (8, )W (u(7)) dT] ds

S

a(T)
o[, it [f KW+ [

¥5 (8, )W (u(T)) dT‘| ds,

so we have u(z) < z(x), by the same steps as in the proof of Theorem [2.1] we obtain

a(x)
2(z) < Fy! <F2<z<x?,x1>> + /

Vi (z,5) [f*(x,s) + 5 v;‘(sn)dT] ds> . (29)
(20) a(z0)
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where p p —
Y ds Y ds 1 1+t~
Fg(v):/ :/ = In — v >y >0, (30)
W) st Top T
then .
Jont o 1-p T-p
o) = [(1 o) exp (1 =p)o) = 1] 77 (31)
‘We have
a(T) s
Hy(t) = Fy (2t — ug) — Fa(t) — / iz, 8) | f*(z,5) +/ 5 (s, 7)dT| ds,
a(z0) a(z0)
so
1 14+ @2t —u) " oD \ s
) = ot = [ i | e+ [ it mar] ds
so we have .
2tP — (2t —
(1) = —o @t-w) (32)

[2t —ugp + (2t — ug)?] (t + tP)
for t > ug and

a(T) s
Hs(ug) = —/( 5 1 (z, 3) [f*(a:,s) + /( O)’Y;(S,T)dT] ds < 0, (33)

and from , we get

a(T) s
lim Hs(t) =1In2 —/ i (z, s) [f*(x,s) —|—/ ’yg(sm)dT] ds > 0. (34)

t=too a(aV) (z0)

By —, we obtain that has a unique solution ¢ > ug. Now by , and
, we get . d

3 Application

In this section, we apply our results to obtain the estimate of the solution of the retarded
Volterra-Fredholm integral equation with delay in n-independent variables.

Example 3.1. Consider the following differential boundary value problem system in
n-independent variables

{ Dy...Dpz(x) = Dy..Dy f(x) + A(zys,2 (s — B(s))) + B(x,s,2 (s — f(s))),

35
221, oy i1, 20) = F(T1, oy 1,20, oy 2(2Y, oy ) = f(29, 0, 2), (35)

where z, f € C' (I,R), A,B € C(A xR,R), I = [2°,T] C R",

A={(z,s)€l?:2"<s<z<T} CR"and B € C'(,I) is nonincreasing on I such
that B(x) = (Bi(z1), .y Bu(xn)), i — Bi(x;) > 0, Bi(x;) < 1, and B;(x?) = 0 for i =
Lon, @ = (1,...,1,), 2° = (x?,...,x%) € R™. Integrating both sides of with

respect to x1, ..., T, respectively, we obtain (after n steps)

T

2(@) = f(a) + / " A,z (s — B(s)) ds + / Bl(z,s,2(s — A(s))ds.  (36)

0 20
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Theorem 3.1 Assume that the functions f, A, B in @ satisfy the conditions

|f(2)] < uo, (37)
|A(z, 5, 2)| < alx,s) |z, (38)
B(x,5,2)| < bz, s) 2", (39)
where ug, a(z,s), b(z,s) are as in Theorem 0 <p<1isa constant. Let
1 )
Mi:i?gﬁ%,l—l7...,n, (40)
and
a(T)
exp M/ v(z,s)ds | <2, (41)
a(z9)

where M = My X ... x My, a(z) =z — B(z) € C*(I, 1) is increasing on I,
v(z, s) = max {a(z,a"(s)),b(z,a"(s))}. If z(z) is a solution of on I, then

i a(x) ﬁ
|2(2)] < {(1 + (c3) ”) exp <(1 —-p)M V(x, 8)d8> - 1} (42)

a(z0)
for x € I, where c3 is the solution of the equation
- 1 14 (2t—ug)'” ™
Hs(t) = 1 -M ds =0,t > ug.
3( ) 1—p n 1+¢l-» (a9 ’Y(IVS) S yUZ U0

Proof. Using the conditions — for , we have

T T
Sl < ut [ o)t = Be)lds+ [ bla,s)lals — AGs)IP ds
Cl)x - xr
< wg —|—/ a(z, s) |z(a(s))|ds+/ b(z, s) |z(a(s))|” ds,
z0 z0
with a suitable change of variables and using , we get
a(z) T
|z(z)] < w+M a(z,a”t(s)) |z(s)| ds + M/ b(x,at(s)) |2(s)[" ds
a(z) 20
a(z) T
< u+ M v(z, ) \Z(8)|d3+M/ V(@ 8)|2(s)|" ds (43)
a(z9) x0

for € I. The application of Theorem with f=g=1,b=d =0, to yields
@2). o
Remark 3.1 In , if we replace R by any time scale T, we obtain a dynamic
boundary value problem system as follows:
Zhr B (z) = fArBn(a) + Az, s,2(s)) + B (2,5, 2(s))
221, ey X1, 20) = F(21, oy 1,20, ey 2(2Y, oy ) = f(29, .0, 2),

can be restated as follows:

(44)

x T
z(x) = f(:r)—l—/o Az, s,z (s)) As+/0 B (z,s,z(s)) As,

which can be applied in the dynamic analysis of stability of solutions to dynamic Volterra-
Fredholm integral equations on time scales.
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4 Conclusion

Some new generalized Gronwall-Bellman-Volterra-Fredholm type nonlinear integral in-
equalities with delay have been established in this paper, which extend some known
results obtained in [11,/14]. In the last section, to illustrate the usefulness of our results,
we give an application to the research of boundedness of solutions of certain Volterra-
Fredholm integral equations in n-independent variables.
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