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Abstract: This paper reports on a novel chaotic system with three nonlinearities.
Firsltly, some properties of the system are studied including equilibrium points and
their stability, the Lyapunov exponent and Kaplan-Yorke dimension. Also, the sys-
tem dynamics are studied by numerical mathematical tools, namely, the Lyapunov
exponent spectrum, bifurcation diagrams and 0-1 test. Also, we have studied a type
of synchronization, a full-state hybrid projective synchronization (FSHPS), between
master and slave chaotic systems. We design suitable controllers to achieve this type
of synchronization by using the Lyapunov stability criteria of the integer-order linear
system. Finally, the effectiveness of the proposed scheme for this type of synchroniza-
tion is demonstrated by an illustrative example with numerical simulation in Matlab.
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1 Introduction

In the fields of nonlinear systems dynamics and Chaos theory, a chaotic system is a non-
linear deterministic system that displays a complex, unpredictable behavior and extreme
sensitivity to initial conditions. Chaotic systems are applied in many disciplines such as
biology, ecology, economics, science and engineering [1-4], etc. They have many different
and common application areas such as neural networks, image and sound encryption,
robotics, cryptography and secure communication [5-13]. In 1963, Lorenz discovered the
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first 3-d chaotic system [14]. After that, several chaotic systems have been designed by
many researchers, they are: the Rossler, Chen, Zhou, Vaidyanathan, Yu-Wang, Han-
nachi systems [15-20], etc. After the work done by Pecora and Carroll [21], the chaos
synchronization between chaotic systems has been extensively studied by different the-
oretical and experimental methods and due to the powerful and multiple applications
of synchronization using chaotic systems in various fields such as secure communication,
telecommunication, cryptography and encryption [22-26], the study of chaos and syn-
chronization in dynamical systems has attracted a considerable attention, and an intense
competition has begun among researchers for finding new chaotic systems and developing
different types and methods of synchronization for those systems. The synchronization
of chaotic systems has been presented in diverse works, where different techniques were
employed to synchronize two chaotic systems. In recent years, we find that diverse types
and methods of synchronization have been developed, among them there are the active
control [27-28], sliding mode control [29-31], backstepping control [32], adaptive control
[33-36], function projective synchronization [37], modified projective synchronization [38],
hyprid projective synchronization [39], full state hybrid projective synchronization [40],
inverse full state hybrid projective synchronization [41]. In this work, a new 3-D chaotic
system with three nonlinearities is introduced. Basic dynamical properties of this new
chaotic system are studied, namely, the equilibrium points and their stability, dissipa-
tivity and Lyapunov exponent, Lyapunov exponent spectrum, Kaplan-Yorke dimension,
bifurcations. Also, we have studied a type of synchronization, a full-state hybrid pro-
jective synchronization (FSHPS), using the new systems. We design suitable controllers
to achieve this type of synchronization by using the Lyapunov stability criteria of the
integer-order linear system. Finally, the effectiveness of the proposed scheme for this type
of synchronization is demonstrated by an illustrative example with numerical simulation
in Matlab.

This paper is organized as follows. In Section 2, a description of the novel chaotic
system is given. In Sections 3, the FSHP synchronization using the new chaotic sys-
tem is investigated. The new system and another new system are used in Section 4 to
demonstrate the effectiveness of the proposed method. Finally, the conclusion is given
in Section 4.

1.1 Description of the novel chaotic system

A novel 3-D autonomous chaotic system is expressed as follows:
dx
dt = a(y − x),
dy
dt = cx− y − xz,
dz
dt = exy − y2 − bz,

(1)

where x, y, z are the state variables and a, b, c are the positive real parameters.

There are eight terms on the right-hand side but it mainly relies on three nonlineari-
ties, namely, exy, y2 and xz, respectively.

System (1) can generate a new double scroll strange attractor for the parameters
a = 10, b = 3, c = 35 with the initial conditions [1, 1, 1] as displayed in Figs.2-3. We
note the new chaotic attractor is different from that of the Lorenz system or any existing
systems.
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1.2 Basic properties

In this section, some basic properties of the system (1) are given. We start with the
equilibrium points of the system and check their stability at the initial values of the
parameters a, b, c.

1.3 Equilibrium points

Put the equations of the system (1) equal to zero, i.e., a(y − x) = 0,
cx− y − xz = 0,
exy − y2 − bz = 0.

(2)

A simple calculation yields the unique equilibrium point

p1 =

(
0, 0,

1

3

)
. (3)

1.4 Stability

In order to check the stability of the equilibrium points, we derive the Jacobian matrix
at a point p (x, y, z) of the system (1):

J(p) =

 −a a 0
c− z −1 −x
yexy −2y + xexy −b

 . (4)

For p1, we obtain three eigenvalues:

λ1 =
1

6

√
3
√
4403− 11

2
, λ2 = −1

6

√
3
√
4403− 11

2
, λ3 = −3. (5)

Since all the eigenvalues are real, the Hartma-Grobman theorem implies that p1 is a
saddle point which is unstable according to the Lyapunov theorem on stability.

1.4.1 Lyapunov exponents and Kaplan-Yorke dimension

For the chosen parameter values of a, b, c, the Lyapunov exponents of the novel chaotic
system (1) are obtained using Matlab with the initial conditions (x (0) , y (0) , z (0)) =
(1, 1, 1) as

L1 = 0.955333, L2 = −0.00158345, L3 = −14.9537. (6)

Since the spectrum of Lyapunov exponents (6) has a maximal positive value L1, it
follows that the 3-D novel system (1) is a chaotic system. Moreover, the sum of all
the Lyapunouv exponents is negative, which implies that the system is dissipative. The
Kaplan-Yorke dimension of system (1) is calculated as

DKL = 2 +
L1 + L2

|L3|
= 2.0638. (7)

The Lyapunov exponents spectrum and the chaotic attractor of system (1) in 2-D and
3-D are shown in Figs.1-3.
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Figure 1: Lyapunov exponents spectrum.
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Figure 2: Chaotic attractor of system (1) in the x-y and x-z plane.
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Figure 3: 3-D view of the chaotic attractor of system (1) in the x-y-z and y-x-z space.

2 Dynamics of the System

In this section, we investigate numerically the dynamical behavior of the system (1) using
the largest Lyapunov exponents spectrum and bifurcation diagrams.

Figs.4-6 show the largest Lyapunov exponents spectrum and the bifurcation diagrams
of system (1) with respect to the parameters a, b, c, respectively. Obviously, when a ∈
[0, 20], b ∈ [0, 10], c ∈ [20, 40], the behavior of system (1) is either chaotic, periodic or con-
verges to an equilibrium. When a ∈]1.07, 1.3]∪]4, 8.7[∪]9.3, 11.2[, b ∈ [2.6, 3.2] ∪ [3.5, 10],
c ∈ [22.23, 22.6]∪[23, 40], the maximum Lyapunov exponent is positive, implying that the
new system (1) is chaotic in this range of parameters. For a ∈ [11.47, 20], b ∈ [1.25, 2.5],
c ∈ [20, 21.9], the maximum Lyapunov exponent almost always equals zero, imply-
ing that the new system (1) has a periodic orbit. The maximum Lyapunov expo-
nent is negative when a ∈ [0, 1.06] ∪ [1.43, 4[∪]11.2, 11.46[, b ∈ [2.3267697, 2.3886929] ∪
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[3.2490194, 3.2743673] ∪ [3.3644489, 3.437006] ∪ [3.4626194, 3.4800358], c ∈]21.9, 22] ∪
[22.8, 22.87], which means that the trajectories of the new system (1) is fall to converge
to equilibria. Figs.7 shows the different behavior of system (1): for a = 3.02 converging
to an equilbrium, for c = 32 chaotic, for c = 21.9 and b = 1.75 periodic.
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Figure 4: Lyapunov exponents spectrum and bifurcation diagram for a ∈ [0, 20].
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Figure 5: Lyapunov exponents spectrum and bifurcation diagram for b ∈ [0, 10].
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Figure 6: Lyapunov exponents spectrum and bifurcation diagram for c ∈ [20, 40].

2.1 0-1 test for system (1)

The 0-1 test was proposed by Gottwald and Melbourne, it is a test approach for distin-
guishing regular and chaotic dynamics in deterministic dynamical systems [42]. This test
depends on the rapport kc, if it is close to one, then the system has a chaotic behavior
and if it is close to zero, then the system has a regular behavior.
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Figure 7: Different behavior of system (1): For a=3.02 converging to an equilbrium, for c=32
chaotic, for c=21.9 and b=1.75 periodic.
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Figure 8: Brownian motion in the (p-q) plane and Kc Plot for the new system (1).

In Matlab, we choose the random constant (C ∈ [0;π]), as a result, we find the rapport
kc = 0.9990 which is close to one as shown in Fig.8, moreover, we obtain a Brownian
motion in the (p-q) plane, which means that the novel system (1) has a chaotic behavior
as shown in Fig.8.

3 Master-Slave Synchronization of Non-Identical 3-D Novel Chaotic Sys-
tems Using FSHP Method

We consider the drive system given by

ẋi (t) = fi (X (t)) , i = 1, .., n, (8)

where X (t) = (x1, x2, ..., xn)
T
is the state vector of the system (8) , fi : Rn −→ Rn for

i = 1, .., n are nonlinear functions, and the response system is the system given by

ẏi (t) =

n∑
j=1

bijyj (t) + gi (Y (t)) + ui, i = 1, .., n, (9)

where Y (t) = (y1, y2, ..., yn)
T
is the state vector of the system (9) , gi : Rn −→ Rn for

i = 1, .., n are the nonlinear functions, ui are the controllers to be designed so that the
system (8) and the system (9) are synchronized.

Now, we introduce the definition of FSHPS [40] between master and slave systems.
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Definition 3.1 FSHPS occurs between master and slave systems (8) and (9) when
there are controllers ui, i=1,2,...,n, and given real numbers (αij)1≤i,j≤n such that the
synchronization errors

ei (t) = yi (t)−
n∑

j=1

αijxj (t) , i = 1, .., n, (10)

satisfy limt→+∞ ei (t) = 0.

Full-state hybrid projective synchronization (FSHPS) is one of the most noticeable
types. It has been widely used in the synchronization of chaotic systems. In this type of
synchronization, each slave system state achieves synchronization with the linear combi-
nation of master and system states. The state errors for (8) and (9) are

ei = yi −
n∑

j=1

αijxj , i = 1, .., n. (11)

Consequently, the error dynamic system is given by

ėi =

 n∑
j=1

bijyj (t) + gi (Y (t))

+ Ui −
n∑

j=1

αijfj (X (t)) , i = 1, .., n. (12)

The error system can be described as

ėi =

n∑
j=1

bijej (t) +

 n∑
j=1

bijyj (t)−
n∑

j=1

bijej (t) + gi (Y (t))

+ Ui −
n∑

j=1

αijfj (X (t)) ,

(13)
i = 1, .., n, i.e.,

ėi =

n∑
j=1

bijej (t) +Ri + Ui, i = 1, .., n, (14)

where

Ri =

 n∑
j=1

bijyj (t)−
n∑

j=1

bijej (t) + gi (Y (t))

−
n∑

j=1

αijfj (X (t)) , i = 1, .., n. (15)

Rewrite error system (14) in the compact form

ė = Be+R+ U, (16)

where B = (bij)n×n and e = (e1, e2, ..., en)
T
, R = (Ri)1≤i≤n , U = (Ui)1≤i≤n.

Theorem 3.1 FSHPS between the master system (8) and the slave system (9) will
occur under the following control law:

U = − (R+ Ce) (17)

with C being a feedback gain matrix selected so that B −C is a negative definite matrix.
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Proof. By inserting (17) into (16), we get

.
e = (B − C) e. (18)

If we choose matrix C so that B − C is negative, then all the eigenvalues λi, i = 1, 2, 3,
of (B − C) stay in the left-half plane, i.e., Re (λi) < 0, which ensures, according to the
Lyapunov stability theory, that error system (18) is asymptotically stable. Hence the
synchronization between the sytem (8) and the sytem (9) is achieved.

4 Illustrative Example

In this section, the new system (1) and another new system (19) are used to demonstrate
the effectiveness of the proposed method.

As a driving system, we considier the chaotic system [20] given by
dx1

dt = a(x2 − x1),
dx2

dt = cx1 − x1x3,
dx3

dt = −x1x2 + b(x1 − x3),

(19)

where a = 13, b = 2.5, c = 50, and as a response system, we consider the controlled
system of system (1) given by

dy1

dt = a(y2 − y1) + u1,
dy2

dt = cy1 − y2 − y1y3 + u2,
dy3

dt = ey1y2 − y22 − by3 + u3,

(20)

where a = 10, b = 3, c = 35.
According to the above method, for FSHPS, we have

B =

 −10 10 0
35 −1 0
0 0 −3

 (21)

and the choice of C =

 0 10 0
35 4 0
0 0 −2

 and (αij)1≤i,j≤4 =

 1 8 5
7 2 1
6 0 −3

 yields

 R1 = 10e1 − 10e2 − 399. 5x1 − 13x2 + 12. 5x3 − 10y1 + 10y2 + 5x1x2 + 8x1x3,
R2 = e2 − 35e1 − 11. 5x1 − 91x2 + 2. 5x3 + 35y1 − y2 + x1x2 + 2x1x3 − y1y3,

R3 = 3e3 + 85. 5x1 − 78x2 − 7. 5x3 − 3y3 + ey1y2 − y22 − 3x1x2

(22)
and

(U1, U2, U3)
T

= −
(
R+ C (e1, e2, e3)

T
)

(23)

=


399.5x1 − 10e1 + 13x2 − 12.5x3 + 10y1

−10y2 − 5x1x2 − 8x1x3

11.5x1 − 5e2 + 91x2 − 2.5x3 − 35y1
+y2 − x1x2 − 2x1x3 + y1y3

78x2 − 85.5x1 − e3 + 7.5x3 + 3y3 − ey1y2

+y22 + 3x1x2

 . (24)
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The error system is given by .
e1
.
e2
.
e3

 =

 −10 0 0
0 −5 0
0 0 −1

 e1
e2
e3

 , (25)

then the eigenvalues of the matrix (B − C) are given by λ1 = −10, λ2 = −5, λ3 = −1,
which all are negatives. Hence the error system is asymptotically stable [43] and the
synchronization between the two systems (19) and (20) is achieved.

We used the classical fourth-order Runge-Kutta method with the step size h = 10−6 to
solve the system of differential equations (25). The initial conditions of the drive system
(19) and the response system (20) are chosen as (x1 (0) , x2 (0) , x3 (0)) = (20, 10,−10) ,
(y1 (0) , y2 (0) , y3 (0)) = (−20,−10,−50) , respectivelly. (e1 (0) , e2 (0) , e3 (0)) =

(−70,−160,−200), (z1 (0) , z2 (0) , z3 (0)) = (50, 150, 150) with zi =
3∑

j=1

αijxj , i = 1, 2, 3.

In Fig.10, the time-history of the synchronization errors e1(t); e2(t); e3(t) is depicted.
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Figure 9: Synchronization between zi, yi, i = 1, 2, 3.

5 Conclusion

In this work, a new 3-D chaotic system with three nonlinearities is introduced. Basic dy-
namical properties of this new chaotic system are studied including equilibrium points and
their stability, dissipativity, the Lyapunov exponent, Kaplan-Yorke dimension, Lyapunov
exponent spectrum and bifurcation diagrams. Moreover, the synchronization problem for
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Figure 10: The time-history of the synchronization errors e1(t); e2(t); e3(t).

globally synchronizing the non-identical 3-D chaotic systems is solved using the FSHP
method and Lyapunov stability criteria of the integer-order linear system. Numerical
simulations using MATLAB have been shown to illustrate our results for the new chaotic
system and the considered synchronization scheme.

6 Concluding remarks

The main important points in this work are:

• The new chaotic attractor is different from that of the Lorenz system or any existing
systems.

• The dynamics of the novel system is investigated by means of the largest Lyapunov
exponents spectrum and bifurcation diagrams of the system with respect to the
system parameters.

• We achieved FSHP synchronyzation between non-identical 3-D chaotic systems
using the new system and the Lyapunov stability theory.

The novel system and the obtained results of this work have many applications in many
fields such as secure communication and signal encryption. Therefore, further research
of the system is still important and will be taken into consideration in a future work.
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