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1 Introduction

Since its applications in numerous industries began to gain traction several decades ago,
fractional-order calculus has made significant stride in many areas such as high-tech in-
dustry [1], spherical tank system for level process [2], heat and mass transfer for the
elliptic inclined plate [3], web transport systems in process industries [4], image encryp-
tion process [5,6], robotic manipulators [7], photovoltaic solar energy [8], manufacturing
industrial natural gas consumption [9], Field-Programmable Gate Array [10], lesser date
moth system [11], magnetic levitation system [12] and spiral-plate heat exchanger [13].

Numerous economic models employ fractional order models of real dynamical objects
and processes. For instance, a business cycle model includes an investment function
and a general liquidity preference function [14], an IS-LM macroeconomic system [15],
a financial risk chaotic system [16,17], an economic growth model [18, 19] and Ivancevic
option pricing model [20].

The Black-Scholes equation (BSE) is among the most important mathematical mod-
els for option pricing. Black and Scholes [21] first introduced the Black-Scholes PDE
employed for calculating the price of European type call and put options, in which the
underlying financial asset is the stock price without dividend payments. The symbol
C = C(S.t) denotes the price of the European call option at time t and the asset price
S. Let E be the exercise price, σ be the price volatility of the asset, T be the maturity
date or time, and r be the rate of interest at which there is no risk of loss. The BSE and
the boundary conditions for pricing European type call options are as follows [22]:

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0, (1)

where C is option, σ is the volatility of the underlying asset, r is the risk-free interest
rate, C(0, t) = 0, C(S, t) ∼ S for S → ∞, and C (S, T ) = max {S − E, 0}. It follows that
the diffusion equation is similar to equation (1) but with more parameters. In order to
simplify equation (1), make the following conversion:

S = Eex, t = T − 2τ

σ2
, and C (S, t) = Ev (x, τ) , (2)

which reduces to the following PDE:

∂v

∂τ
=

∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv, (3)

where k = 2r
σ2 and the main criteria becomes v (x, 0) = max {ex − 1, 0}.

Many Black-Scholes PDE for the option pricing model have been studied and solved.
The semidiscretization technique was employed by Company et al. [23] to evaluate the
computational efficiency of the Black-Scholes option pricing PDEs. They found that
when incorporating transaction costs into a model of option pricing, the semidiscretiza-
tion approach provides a highly accurate approximation. Song and Wang [24] explored
the Black-Scholes time-fractional equation-based option pricing problems, where the frac-
tional derivative is referred to as a modified Riemann-Liouville fractional derivative. The
successful use of the finite difference method demonstrates the efficiency of this approach
and the reduction in computational effort needed to solve fractional PDE. Wang [25] in-
vestigated the degenerate Black-Scholes equation, which governs option pricing by using
a novel numerical strategy. The author has employed implicit temporal stepping and
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fitted finite volume spatial discretization. Edeki et al. [26] extended the idea from the
classical Differential Transformation Method (DTM) for the Black–Scholes equation to
define the Projected DTM Method (PDTM) for European Option Valuation. Due to
the fact that the PDTM requires less computing work than the traditional DTM and
other semi-analytical approaches, it is demonstrated that it is more effective, reliable,
and superior. He and Lin [27], using a new two-step solution approach, investigated the
prices of European option using the stochastic volatility finite moment log-stable model.
Additionally, numerical examples are provided to illustrate the efficiency and accuracy
of the newly developed formula. The generalized Black-Scholes PDE, which appears in
European option pricing, can be solved numerically using a method proposed by Mo-
hammadi [28]. The author demonstrates how the numerical outcomes demonstrate the
method’s effectiveness and validate the predicted behavior of the rates of convergence.
Based on the idea of homotopy perturbation, the Sumudu transform, and He’s polynomi-
als, Elbeleze et al. [29] investigated the fractional Black-Scholes equation and presented
an interesting result. They demonstrate how effective and powerful the new approach
is at locating both approximate and numerical solutions. However, to the best of our
knowledge, the Black-Scholes PDE for the option pricing model using the ADM-Kamal
method has not been studied in the above literature.

The key innovation and contribution of this study is the investigation of a combined
approach for solving the Black-Scholes Fractional Partial Differential Equation (FPDE)
for the Option Pricing Model using the Adomian Decomposition Method (ADM) and
the Kamal Integral Transform (KIT).

The rest of the study is as follows. In Section 2, we briefly introduce the basic theories
and theorems related to the modification and development of the ADM merging theorem
with the Kamal Integral Transform. In Section 3, the combined theorem of the ADM
and KIT to find a solution to the Black-Scholes FPDE for the option pricing model is
discussed. Section 4 and 5 present a detailed description of the numerical experiments
and concluding remarks, respectively.

2 Preliminaries

2.1 Kamal Integral Transform (KIT)

Definition 2.1 [30] Based on the set of functions

S =

{
f (x) : ∃M,k1, k2 > 0, |f (x)| < Me

|x|
kj , x ∈ (−1)

j × [0,∞)

}
,

the Kamal transformation of f to x is given as

G [f (x)] = G (v) =

∫ ∞

0

f (x) e−
x
v dx = lim

b→∞

∫ b

0

f (x) e−
x
v dx, x ≥ 0, k1 ≤ v ≤ k2,

where either the integral is unreasonably convergent or the limit value exists and is finite.
The inverse transformation is given as

G−1 [G (v)] = f (x) .x ≥ 0.

According to Definition 2.1, for f (x) = xn with n being non negative integers and
x ≥ 0, the Kamal transformation of f is

G [xn] = n!vn+1. (4)
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If α ∈ R, then equation (4) is rewritten as

G [xα] = Γ (α+ 1) vα+1, (5)

where Γ(x) denotes the gamma function. In addition, according to Definition 2.1, the
Kamal transformation of the derivative of order n is re-written as

G
[
f (n) (x)

]
=

G (v)

vn
−

n−1∑
k=0

f (k) (0)

vn−k−1
.

Definition 2.2 [31] The fundamental Mittag-Leffler function is represented by
Eα (z) for α ∈ R, Re (α) > 0, and α ∈ C, and is defined as

Eα (z) =

∞∑
k=0

zk

Γ (αk + 1)
.

Definition 2.3 [32] The Caputo fractional derivative (CFD) of f with respect to x
and for order α > 0 is defined as

C
a D

α
xf (x) =

1

Γ (n− α)

∫ x

a

(x− s)
n−α−1

f (n) (s) ds, n− 1 < α ≤ n.

Definition 2.4 [33] The Kamal transformation of the CFD is defined as

G
[
C
αD

α

xf (x)
]
=

G (v)

vα
−

n−1∑
k=0

f (k) (0)

vα−k−1
, n− 1 < α ≤ n.

2.2 The ADM-Kamal method

The fractional PDE is given as

GDα
t w (x, t) +Nw (x, t) +Rw (x, t) = g (x, t) . (6)

The defined powerpoint is w (x, 0) = f (x), where w is the function to be determined,
g denotes the function that illustrates the homogeneity of the differential equation, R is a
linear operator, N is a nonlinear operator, and Dα

t is the CFD operator with 0 < α ≤ 1,
then the approximate solution of equation (6) is

w0 =f (x) + G−1 [vαG [g (x, t)]] ,

wn+1 =− G−1 [vαG [An] + vαG [Rwn]] , n = 0, 1, 2, . . . ,
(7)

where

w = lim
k→0

k∑
n=0

wn.

Proof. Equation (6) can be rewritten with Dα
t w (x, t) as the subject,

Dα
t w (x, t) = g (x, t)−Nw (x, t)−Rw (x, t) . (8)

Using the Kamal transformation in equation (8), we obtain

G[Dα
t w (x, t)] = G [g(x, t)−Nw(x, t)−Rw(x, t)] ,
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where α is the order of the CFD, n− 1 < α ≤ n, n ∈ Z+.

w (x, v)

vα
−

n−1∑
k=0

w(k) (x, 0)

vα−k−1
= G [g(x, t)] + G [Nw (x, t)] + G [Rw (x, t)] .

For 0 < α ≤ 1 such that k = 0, it becomes

w (x, v)

vα
− w (x, 0)

vα−1
= G [g (x, t)]− G [Nw (x)] + G [Rw (x)] ,

w (x, v)− vw (x, 0) = vαG [g (x, t)]− vαG [Nw (x, t)] + vαG [Rw (x, t)] ,

w (x, v) = vw (x, 0) + vαG [g (x, t)]− vαG [Nw (x, t)]− vαG [Rw (x, t)] . (9)

We use the inverse Kamal transformation in equation (9) to obtain

w (x, t) = w (x, 0) + G−1 [vαG [g (x, t)]]− G−1 [vαG [Nw (x, t)]]− G−1 [vαG [Rw (x, t)]] .
(10)

The ADM presumes that the function w can be broken down into an infinite series

w =

∞∑
n=0

wn, (11)

where wn is recursively determinable. Additionally, this approach presupposes that the
infinite polynomial series may decompose the nonlinear operator Nw:

Nw =

∞∑
n=0

An, (12)

where An = An (w0, w1, w2, . . . , wn) is the defined Adomian polynomial (AP)

An (w0, w1, w2, . . . , wn) =
1

n!

dn

dλn

[
N

(
n∑

k=0

λkwk

)]
λ=0

;n ≥ 0.

With λ denoting a parameter, the AP An can be parsed as

A0 =
1

0!

d0

dλ0

[
N

(
0∑

k=0

λkwk

)]
λ=0

= N (w0) ,

A1 =
1

1!

d1

dλ1

[
N

(
1∑

k=0

λkwk

)]
λ=0

= w1N ′ (w0) ,

A2 =
1

2!

d2

dλ2

[
N

(
2∑

k=0

λkwk

)]
λ=0

=
w2

1

2!
N ′′ (w0) + w2N

′ (w0) ,

...

We substitute the initial conditions, equations (11) and (12) into equation (10):

∞∑
n=0

wn = f (x) + G−1 [vαG [g (x, t)]]− G−1

[
vαG

[ ∞∑
n=0

An

]
+ vαG

[
R

∞∑
n=0

wn

]]
. (13)
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Describing both sides of (13) gives

w0 =f (x) + G−1 [vαG [g (x, t)]] ,

w1 =− G−1 [vαG [A0] + vαG [Rw0]] ,

w2 =− G−1 [vαG [A1] + vαG [Rw1]] ,

w3 =− G−1 [vαG [A2] + vαG [Rw2]] .

...

The iterative relation derived from the approximate solution to FPDE (6) is generally
defined as

w0 = f (x) + G−1 [vαG [g (x, t)]] ,

wn+1 = 7− G−1 [vαG [An] + vαG [Rwn]] , n = 0, 1, 2, ..,
(14)

where

w = lim
k→0

k∑
n=0

wn.

3 Mean Absolute Error (MAE)

The method that can be used to measure the accuracy of the model in this study
is the Mean Absolute Error (MAE). The MAE value represents the average er-
ror/error/absolute error between the calculation results/estimated model and the actual
value [34]. The MAE formula is defined as

MAE =
1

n

n∑
i=1

|ŷi − yi| , (15)

where n is the number of data, ŷi is the approximate value, and yi is the actual value.

4 Solution of the Black-Scholes FPDE for the Option Pricing Model Using
the Combined ADM-Kamal Method

This study analyzed the performance of the Black-Scholes FPDE via the combined ADM-
Kamal method. The Black-Scholes FPDE defined below follows from (3):

∂αv (x.τ)

∂τα
=

∂2v (x.τ)

∂x2
+ (k − 1)

∂v (x.τ)

∂x
− kv (x.τ) , (16)

where 0 < α ≤ 1 and v (x, 0) = max {ex − 1, 0} represents the initial condition.
Based on the defined algorithm of the Black-Scholes fractional partial differential

equation with the combined ADM-Kamal method, equation (16) can be rewritten as

Dα
τ v (x, τ) = Rv (x, τ) , (17)

where Rv = ∂2v
∂x2 + (k − 1) ∂v

∂x − kv is a linear operator.
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Based on the solution in the form of a recursive relation in equation (14), the solution
of equation (17) is

v0 =max {ex − 1. 0},
vn+1 =G−1 [vαG [Rvn]] , n = 0, 1, 2, . . . .

If the iterative solution is explained, then based on equation (5) and the inverse Kamal
transformation, we obtain

v1 = G−1 [vαG [Rv0]]

= G−1

[
vαG

[
∂2v0
∂x2

+ (k − 1)
∂v0
∂x

− kv0

]]
= G−1 [vαG [kmax {ex, 0} − kmax {ex − 1, 0} ]]

= G−1
[
vα+1 (kmax {ex, 0} − kmax {ex − 1, 0})

]
=

τα

Γ (α+ 1)
(kmax {ex, 0} − kmax {ex − 1, 0}) .

If ∂v1

∂x = τα

Γ(α+1) (kmax {ex, 0} − kmax {ex, 0}) = 0, we get

v1 ==
τ3α

Γ (3α+ 1)

(
k3k3 max {ex, 0} − k3 max {ex − 1, 0}

)
.

Therefore, the approximation solution of the Black-Scholes fractional partial differ-
ential equation (16) is obtained as follows:

v (x.τ) =

∞∑
n=0

vn = max {ex − 1, 0}Eα (−kτα) + max {ex, 0} (1− Eα (−kτα)) , (18)

where Eα (z) is a one-parameter Mittag-Leffler function. Based on Definition 2.2, for
α = 1, equation (18) can be written as

v (x.τ) = max {ex − 1, 0}e−kτ +max {ex, 0}
(
1− e−kτ

)
. (19)

It is obvious that the solution of (19) is similar to the approximate solution of the
classical Black-Scholes PDE for order α = 1, by using the Sumudu decomposition method.
Furthermore, the Black-Scholes PDE defined in (3) has the following exact solution:

v (x.τ) = exN (d1)− e−kτN (d2) , (20)

where

d1 =
x√
2τ

+
1

2
(k + 1)

√
2τ , d2 = d1 −

√
2τ , k =

2r

σ2
,

and N (d) is the cumulative distribution function.

5 Numerical Simulation

This section investigates the solution by the Black-Scholes PDE approach based on the
combined ADM-Kamal method. Table 1 shows the numerical comparison of the Black-
Scholes PDE solution defined in equation (19) for α = 1 with the exact solution (equation
(20)), for k = 0.75, and the magnitude of the error.
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x τ Approach Solution Exact Solution Error
–0.50 0.50 0.189669 0.082462 0.107207
–0.40 1.00 0.353683 0.353395 0.000288
–0.30 1.50 0.500310 0.539833 0.039523
–0.20 2.00 0.636047 0.688686 0.052639
–0.10 2.50 0.766076 0.819751 0.053675
0.00 3.00 0.894601 0.943932 0.049331
0.10 3.50 1.032731 1.068042 0.035311
0.20 4.00 1.171616 1.196726 0.025110
0.30 4.50 1.315641 1.333412 0.017771
0.40 5.00 1.468307 1.480838 0.012531
0.50 5.50 1.632558 1.641369 0.008811

Table 1: Comparison of the numerical solution of the Black-Scholes PDE with the exact solu-
tion.

The example of Table 1 with a caption is given below.

Based on the numerical simulations presented in Table 1, the results of the comparison
of the Black-Scholes PDE solution with the exact solution using equation (15) is 3.66%.

Referring to equation (2), then we get

x = ln

(
S

E

)
τ =

σ2

2
(T − t) v (xτ) =

C (St)

E
k =

2r

σ2
,

where T denotes the time or maturity date, r is the risk-free interest rate, E is the
exercise price, σ is the volatility of the asset price, t is the time, and S is the price of the
asset. Based on (18), the price model for the call option C of fractional order is

C (S.t) = max {S − E, 0}Eα (ζ) + max {S, 0} (1− Eα (ζ)) , (21)

where ζ = − 22−αr
σ2−2α (T − t)

α
. Next, the formula for the price of the put option P of

fractional order, which is based on the put-call parity formula, is given as

P (S.t) = max {S − E, 0}Eα (ζ) + max {S, 0} (1− Eα (ζ)) + Ee−r(T−t) − S. (22)

Suppose the stock price is represented by the price of asset S in this study. Figure 1
shows the call option price C(S.t) against the stock price S of the Black-Scholes partial
differential equation solution based on the combined ADM-Kamal method, with dissim-
ilar values of α, where the exercise price is E = 5 and the risk-free interest rate (RIR) is
r = 5% for a one-year option contract.

Figure 2 shows the put option price P (S.t) against the stock price variable S from the
Black-Scholes PDE solution based on the combined ADM-Kamal method with dissimilar
values of α, where the exercise price is E = 5 and the RIR is r = 5% for a one-year
contract.

We fix α = {0.2, 0.5, 0.8, 0.9, 1}. In Fig. 1, an increase in α value will lower the
call option price. Meanwhile, in Fig.2, an increase in alpha value will lower the put
option price. We have calculated the price of the call option C in equation (21) which is
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Figure 1: The price C(S.t) with a fractional order of α against the stock price S.

Figure 2: The price P (S.t) with a fractional order of α against the stock price S.

simplified to

C (S.t) =max {S − E, 0}Eα (ζ) + max {S, 0} (1− Eα (ζ))

= (S − E)Eα (ζ) + S (1− Eα (ζ))

=SEα (ζ)− EEα (ζ) + S − SEα (ζ)

=S − EEα (ζ) .

(23)
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Meanwhile, for the put option price P , the equation (22) becomes

P (S.t) =max {S − E, 0}Eα (ζ) + max {S, 0} (1− Eα (ζ)) + Ee−r(T−t) − S

=(S − E)Eα (ζ) + S (1− Eα (ζ)) + Ee−r(T−t) − S

=SEα (ζ)− EEα (ζ) + S − SEα (ζ) + Ee−r(T−t) − S

=E
(
e−r(T−t) − Eα (ζ)

)
.

(24)

The price of P (S.t) for the stock price is higher than the exercise price (S > E) and
is not affected by the stock price S. However, it is only affected by the exercise price E,
e−r(T−t) and ζ is constant. Also, if S > E, then the price of the put option tends to be
constant, regardless of the stock price.

To calculate the price of the call option C, if the share price is less than or equal to
the exercise price (S ≤ E), we obtained

C (S.t) = max {S − E, 0}Eα (ζ) + max {S, 0} (1− Eα (ζ)) = S (1− Eα (ζ)) . (25)

The call option price for the stock price is less than or equal to the exercise price (S ≤ E)
and is not affected by the exercise price E, but only influenced by the stock prices S and
ζ is constant.

Meanwhile, we get

P (S.t) =max {S − E, 0}Eα (ζ) + max {S, 0} (1− Eα (ζ)) + Ee−r(T−t) − S

=S (1− Eα (ζ)) + Ee−r(T−t) − S

=S − SEα (ζ) + Ee−r(T−t) − S

=Ee−r(T−t) − SEα (ζ) .

(26)

Then, with using Definition 2.2, for α = 1, equations (21) and (22) become

C (S.t) = max {S − E, 0}e−r(T−t) +max {S, 0}
(
1− e−r(T−t)

)
, (27)

and
C (S.t) = SN (d1)− Ee−r(T−t)N (d2) . (28)

Based on equations (27) and (28), it can be seen that the determination of the price
of buy and sell options, respectively, using the Black-Scholes model with a fractional
order for α = 1 is not affected by the stock price volatility because there is no parameter.
Equations (27) and (28) are equivalent to the formula for the call and put option prices
obtained from the results of the classical Black-Scholes equation (not fractional order)
via the method of the Adomian-Laplace decomposition [35].

Based on equation (20), thus obtained the classical Black-Scholes model (CBLM) for
the call option price is as follows:

P (S.t) = max {S − E, 0}e−r(T−t) +max {S, 0}
(
1− e−r(T−t)

)
+ Ee−r(T−t) − S. (29)

d1 =
ln
(
S
E

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.
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Furthermore, we use the put-call parity formula, which is S+P−C = Ee−r(T−t), and
the identity formula for the cumulative distribution function for the normal distribution,
which is N (d)+N–d = 1. So, the CBLM is obtained for the put option price as follows:

P (S.t) = Ee−r(T−t)N (−d2)− SN (−d1) , (30)

where σ is the volatility of the stock price, r is the risk-free interest rate, E is the exercise
price, S is the stock price, and T is the expiration date of the option contract.

Figure 3 shows the C(S.t) against the stock price S of the Black-Scholes model with
a fractional order for α = 1 (see equation (27)) compared to the classical Black-Scholes
model (see equation (29)), where the exercise price E = 5 and the interest rate r = 5%
for a one-year option contract.

Figure 3: Comparison of the fractional order Black-Scholes model for α = 1 with the classical
Black-Scholes model for call option prices over a one-year period.

Furthermore, Figure 4 shows the P (S.t) against the stock price S of the Black-Scholes
model with a fractional order for α = 1 (see equation (28)) compared to the classical
Black-Scholes model (see equation (30)), where the exercise price E = 5 and the interest
rate r = 5% for a one-year option contract.

Based on the numerical simulation presented in Figure 3, the comparison of the
fractional Black-Scholes model for α = 1 with the classical Black-Scholes model for call
options prices over a one-year period is 7.80%. Meanwhile, in Figure 4, the comparison
of the Black-Scholes model with a fractional order for α = 1 with the CBSM for put
option prices over a one-year period is 7.80%.

For the stock price higher than the exercise price (S > E), the Black-Scholes model
has a fractional order with α = 1 and the calcullation of the call option price C in
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Figure 4: Comparison of the fractional order Black-Scholes model for α = 1 with the classic
Black-Scholes model for put option prices over a one-year period.

equation (27) can be simplified to

C (S.t) = max {S − E, 0}e−r(T−t) +max {S, 0}
(
1− e−r(T−t)

)
= (S − E) e−r(T−t) + S

(
1− e−r(T−t)

)
= Se−r(T−t) − Ee−r(T−t) + S − Se−r(T−t)

= S − Ee−r(T−t).

(31)

Meanwhile, for the put option price P , equation (28) becomes

P (S.t) = max {S − E, 0}e−r(T−t) +max {S, 0}
(
1− e−r(T−t)

)
+ Ee−r(T−t) − S

= (S − E) e−r(T−t) + S
(
1− e−r(T−t)

)
+ Ee−r(T−t) − S

= Se−r(T−t) − Ee−r(T−t) + S − Se−r(T−t) + Ee−r(T−t) − S

= 0.

(32)

If the stock price is higher than the exercise price (S > E), then the put price P
is equal to 0. This is in accordance with the illustration of the numerical simulation in
Figure 4. For the stock price less than or equal to the exercise price (S ≤ E) and the
Black-Scholes model of fractional order with α = 1, the calculation of the call option
price can be simplified to

C (S.t) = max {S − E, 0}e−r(T−t) +max {S, 0}
(
1− e−r(T−t)

)
= S

(
1− e−r(T−t)

)
.

(33)
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The call option price for the stock price less than or equal to the exercise price (S ≤ E)
is not affected by the exercise price E, only influenced by the stock price S and e−r(T−t)

which are constant.
Meanwhile, we get

P (S.t) = max {S − E, 0}e−r(T−t) +max {S, 0}
(
1− e−r(T−t)

)
+ Ee−r(T−t) − S

= S
(
1− e−r(T−t)

)
+ Ee−r(T−t) − S

= (E − S) e−r(T−t).

(34)

The price of put options for the stock prices less than or equal to the exercise price
(S ≤ E) is affected by the difference between the exercise price and the stock price (E–S)
and e−r(T−t) which is constant.

Next, suppose T = t, the option transaction is exercised at maturity, thus equations
(27) and (28) become

C (S, T ) = max {S − E, 0}, (35)

and
P (S, T ) = max {S − E, 0}+ E − S. (36)

Equations (35) and (36) are equivalent to the payoff obtained from buying call and
put options without taking into account the premium.

6 Conclusion

The main finding of this study is the investigation of a combined approach for solving
the Black-Scholes Fractional Partial Differential Equation (FPDE) for the Option Pric-
ing Model using the Adomian Decomposition Method (ADM) and the Kamal Integral
Transform (KIT). In conclusion, the ADM-Kamal method is a very effective and powerful
way to obtain both approximate and numerical solutions.
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